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ABSTRACT
As modern computing systems become increasingly complex and
dynamic, managing performance, scalability, and reliability under
diverse workloads has become a significant challenge. Configura-
tion Management Systems (CMS) play a critical role in address-
ing these issues by tuning the system parameters throughout the
software lifecycle. However, the diverse nature of system archi-
tectures and workloads makes it difficult to implement generic,
one-size-fits-all configuration strategies. To address this, the survey
introduces a structured classification of CMS to improve config-
uration strategies for specific programs and environments. The
classification spans three key dimensions: lifecycle stages (pre-
deployment, deployment, runtime), system scope (application-level,
infrastructure-level, cross-level), and execution models (offline, on-
line, hybrid), making it easier to understand how different CMS
approaches tackle various configuration challenges. The survey
also examines the most common techniques, such as telemetry-
based monitoring, heuristic and search-based optimization, and
machine learning-driven approaches that enable adaptive config-
uration across diverse environments. In conclusion, it identified
pressing research challenges, including multi-cloud interoperability
and the development of self-healing CMS. These insights highlight
the growing need for intelligent, automated, and cost-effective
configuration management in today’s heterogeneous computing
ecosystems. A well-defined classification becomes especially im-
portant, as it allows CMS solutions to target specific configuration
scenarios more precisely, based on lifecycle stages, scope, and exe-
cution models, ultimately enabling more adaptive context-aware
optimization strategies.
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1 INTRODUCTION
Configuration Management Systems (CMS) have played an impor-
tant role in computing since the 1950s, when early systems re-
quired a consistent methods for software versioning and hardware
provisioning[13]. Over time, as computing environments evolved,
ranging from on-premise servers to today’s cloud native services,
the importance of configuration management has only been in-
creased. In modern systems, misconfigurations are one of the most
seen causes of outages, poor performance, and and leading to secu-
rity vulnerabilities. Modern computing systems have large number
of configurable parameters that can be adjusted, these parameters
includes virtual machine instance types, container CPU and mem-
ory resource limits, thread pool sizes in multi-threaded applications,
etc. These parameters have an impact on performance, scalability,

and operational cost. But in real-world scenarios, these parameter
tuning are often done manually, left with default values, or require
someone with a lot of domain knowledge. As systems become more
complex and dynamic, these manual or static approaches often
lead to poor performance, wasted resources, or unrealiable systems
[30][3].

Achieving optimal configuration parameters is most essential,
but what does this mean in this domain and why is it so important?
An optimal configuration parameters is a specific combination of
configuration values that enables a system to meet one or more
defined objectives, such as minimizing execution time, maximizing
throughput, or reducing cost, while operating within given resource
and workload constraints [31]. This is important because without
proper tuning, it can lead to under-utilization of resources, perfor-
mance degradation, or high operational cost. However, identifying
these optimal values for the parameters is very challenging because
of the large configuration space, the interdependencies between
parameters, and the unpredictable nature of changing workloads.

The consequences of misconfiguration extend beyond theory,
having caused notable disruptions in real-world scenarios. In 2017,
Amazon Web Services (AWS) suffered a massive outage in its S3
storage service due to a misconfigured input in an internal mainte-
nance tool [4]. An engineer was required to remove a small number
of servers from one of the S3 subsystems for debugging, but incor-
rectly entered a parameter value that removed a much larger set of
servers, including those handling metadata, thus causing service
disruption across the US-East-1 region.

Similarly, in 2012, Knight Capital Group deployed new trading
software with a legacy feature flag (a configuration parameter)
accidentally reactivated on several servers [28]. This led to the
execution of an outdated code which is responsible for an old order
routing system, which quickly executed a series of unintended
trades, resulting in a $440million loss in 45minutes. These incidents
shows how failures in configuration management, whether due
to unsafe tooling defaults or parameter misuse, can lead to huge
system-wide issues. The examples demonstrate the critical need for
robust, intelligent and context-sensitive configuration management
solutions that can mitigate such risks.

Modern computing environments are complex and dynamic, re-
quiring configuration management systems (CMS) that can operate
effectively across a variety of use cases. Although CMS have be-
come more adaptive and intelligent, it remains unrealistic to expect
a single system to handle every configuration challenge. Differ-
ent systems are designed for different phases of operation, target
various layers of the stack, rely on different execution models of
configurations, and adopt a range of underlying techniques. These
differences make it hard to compare systems and see common pat-
terns in CMS design. To better understand this diverse landscape,
this paper introduces a structured perspective that captures the
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essential variations in how CMS are built and used. The following
are the main contributions of this paper:

(1) Lifecycle and Scope Classification: The study presents
a structured classification of CMS across lifecycle stages
(pre-deployment, deployment, runtime) and system scope
(application level, infrastructure level, cross level), enabling
targeted and layer-aware configuration strategies. This helps
in clarifying how CMS differ depending on when and where
configurations are applied. By structuring the CMS along
these dimensions, the user can better match tools and tech-
niques to specific system needs.

(2) Execution Model Classification: A separate classification
based on execution models such as offline, online, and hy-
brid is introduced to capture how configuration changes are
applied over time. This classification is essential for under-
standing trade-offs between stability, adaptability, and per-
formance. It complements the lifecycle classification by fo-
cusing on how changes are made, rather than when or where,
highlighting operational behavior under varying workload
conditions.

(3) Survey of Key Techniques: The study identifies the most
common and dominant techniques used in CMS, such as
telemetry-based monitoring, heuristic and search methods,
and machine learning. These methods enable automated and
adaptive configuration across different environments. Un-
derstanding these techniques allows to choose appropriate
mechanisms based on performance needs, scalability goals,
and available data.

(4) Future Research Directions: The study also highlights
open challenges, including the lack of multi-cloud interop-
erability and the need for self-healing CMS that can auto-
matically detect and recover from misconfigurations. These
gaps present significant barriers to the deployment of CMS
in large-scale real-world systems. Future work should focus
on building more robust, autonomous and portable configu-
ration solutions.

By addressing these aspects, this study provides valuable in-
formation for researchers and practitioners, contributing to the
development of more adaptive, scalable, and intelligent configura-
tion management solutions.

2 RELATEDWORK
Configuration Management Systems (CMS) have been studied from
multiple angles, including historical overviews, tool-specific eval-
uations (e.g., Ansible, Terraform, Puppet), and process of models.
These works have contributed to understanding the evolution of
CMS, best practices, and implementation challenges. However, most
existing works focus narrowly on specific tools and fail to exam-
ine CMS as a unified concept. In many cases, the focus is limited
to specific tools or domains, making it difficult to generalize the
findings across broader CMS applications.

A key limitation across the literature is the lack of systematic
classification.Most existing studies look at specific areas, like de-
ployment or maturity, without considering how CMS work across
different stages, layers, and methods of execution and optimiza-
tion. These dimensions are essential in understanding how CMS

Survey Lifecycle Scope Execution Techniques

Estublier (2000) [10] ✗ ✗ ✗ ✗

Delaet et al. (2010) [7] ✓ ✓ ✓ ✗

Ali & Kidd (2013) [2] ✗ ✗ ✓ ✗

Hintsch et al. (2016) [16] ✗ ✗ ✗ ✗

Serrano & Pereira (2020) [24] ✗ ✗ ✗ ✗

Sherman et al. (2020) [25] ✓ ✗ ✓ ✗

Kostromin (2020) [18] ✗ ✓ ✓ ✗

Farayola et al. (2023) [14] ✗ ✗ ✗ ✓

This survey ✓ ✓ ✓ ✓

Table 1: Related works in the domain, ordered by year.

function in various environments. Without such a classification,
it becomes difficult to compare approaches or design systems that
are adaptable to varying configuration scenarios.

For example, Estublier (2000) [10] provides a historical perspec-
tive on Software Configuration Management (SCM), focusing on
early version control systems and process control techniques, but
does not address modern cloud-native practices or adaptive CMS.
Similarly, Serrano and Pereira (2020) [24] examine maturity models
in CMS but focus primarily on process evaluation, without dis-
cussing how CMS are applied or executed across different system
layers. Hintsch et al. (2016) [16] and Farayola et al. (2023) [14]
analyze popular tools and discuss challenges in distributed environ-
ments, yet they lack a structured classification of how these tools
operate across different stages or execution models. While these
studies contribute important insights, they do not provide a uni-
fied framework for understanding CMS in a broader, system-wide
context, which is necessary for addressing today’s dynamic and
heterogeneous computing environments.

Table 1 summarizes how recent surveys compare across these
dimensions. While each study provides value in its own domain,
they do so inconsistently and often overlook key relationships
between CMS characteristics. This paper addresses that gap by
offering a high-level classification that links lifecycle stages, execu-
tion models, and optimization strategies, providing a broader and
more structured understanding of CMS.

3 TAXONOMY OF THE LITERATURE STUDY
Configuration Management Systems (CMS) differ widely in how
they handle misconfigurations, adjust to changing workloads, and
balance goals like performance and cost. To better compare these
solutions, a taxonomy is introduced.This taxonomy classifies CMS
based on the most critical aspects and highlights the dominant
techniques, providing a structured way to understand and evaluate
different approaches.

This taxonomy has four main dimensions, each containing sub-
points:

(1) Lifecycle: This concerns with "when configuration changes
occur". Pre-deployment sets parameters before the system
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Figure 1: Concluded taxonomy of Configuration Manage-
ment Systems

is deployed, deployment refines them in the deployment
phase, and runtime fine-tunes settings continuously once
the system is running.

(2) Scope: This focuses on where configuration applies in the
stack. The application level targets application-specific pa-
rameters, the infrastructure level covers domains such as
VMs, containers, and the cross-level coordinates both layers
for end-to-end optimization.

(3) Execution: This dimension refers to when and how con-
figuration changes are applied. Offline execution applies
configurations before runtime, often based on historical data.
Online execution adjusts configurations dynamically during
system operation using real-time feedback. Hybrid execu-
tion combines both, starting with offline-tuned defaults and
refining them at runtime through adaptive techniques.

(4) Techniques: This refers to the dominant strategies used in
modern CMS to optimize configurations. The most widely
adoptedmethods include "telemetry-basedmonitoring"which
provides real-time feedback for continuous tuning, "heuristic
and search-based techniques" which efficiently explore large
spaces configuration, and "machine learning approaches"
which have become increasingly dominant due to their abil-
ity to predict and adapt configurations automatically based
on data-driven insights.

By organizing CMS solutions across these four dimensions,we
gain a clearer understanding of how to target specific system phases,

layers, execution methods, and optimization strategies. This struc-
ture makes it easier to identify potential overlaps, uncover research
gaps, and guide practitioners in selecting approaches that best fit
their needs, whether they require offline stability, online adaptabil-
ity, or an intelligent combination of both.

4 STUDY DESIGN
The main goal of this literature study is to collect, organize and
present information from different sources to better understand
Configuration Management Systems (CMS). As shown in Figure 2,
the study is designed in three main phases: Planning, Execution
and Extraction. Each phase helps refine the search and ensure that
only the most relevant information is gathered.

(1) Planning:
• Objectives: The main objectives were to understand how
Configuration Management Systems (CMS) work across
different lifecycle stages, their scope, identifying the dom-
inant techniques and execution models they employ, and
explore existing research gaps in the field.

• Topics: Based on these objectives, key topics were selected,
including lifecycle stages (pre-deployment, deployment,
runtime), system scope (application level, infrastructure
level, cross level), execution models (offline, online, hy-
brid) and optimization techniques (telemetry, heuristics,
machine learning).

• Research Questions: With the objectives in mind, the next
task was to formulate research questions that would help
guide the entire review. These questions included, for ex-
ample: ’What are the primary dimensions along which
CMS can be classified?" or "How do different execution
models (offline, online, hybrid) affect CMS performance?".

• Keywords: To ensure a complete search, a set of keywords
was identified based on the objectives and research ques-
tions. Examples of keywords included “ConfigurationMan-
agement Systems”, “Dynamic Tuning in Configuration
Management Systems”, “Machine Learning in CMS”, etc.
These keywords were used to query papers from academic
databases such as IEEE Xplore and Google Scholar.

(2) Execution
• Selection: Using keywords that were found, the next step
was to select a broad set of papers which are relevant to the
domain. Initial inclusion criteria typically required papers
to focus on types of cms, system tuning, or automation in
the context of CMS.

• Filtering:After collecting an initial set of papers, an inclusion-
exclusion process was used to narrow down the selection.
In the inclusion process, abstracts were read to include
papers that discussed CMS more generally. In the exclu-
sion papers, they were excluded if they focused only on
a single tool without broader insights or did not explain
their methods clearly. Conclusions were also scanned to
verify the relevance and quality of each paper.

• Citations: To avoid missing influential research, the refer-
ences of selected papers were also checked. If any previ-
ously unknown but relevant publications emerged from
this process, they were added to the pool. This step helps
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Figure 2: Study Design

to snowball the most impactful and frequently cited works,
ensuring that the overall review remains well-rounded and
up to date.

(3) Extraction
• Information Extraction: In this phase, papers that passed
the filtering stage was read in detail. Key findings, such
as system goals, performance metrics, methodology and
results, were extracted and summarized. The information

was organized according to the main areas of interest:
lifecycle stages, scope, execution models, and techniques.

• Taxonomy: Once the essential data from all included stud-
ies was collected, it was organized into a structured taxon-
omy. This taxonomy (elaborated in a later section) groups
CMS approaches along four main dimensions: Lifecycle,
Scope, Execution, and Techniques, giving a clear frame-
work for comparing different solutions.

Through these phases, the study followed a clear path, from
setting objectives and defining search queries, to narrowing down
to the relevant literature set and finally organizing the results into
a taxonomy that classifies different types of Configuration Man-
agement Systems (CMS) and highlights research gaps. Figure 2
visually shows this process, highlighting how each phase builds
on the previous one and leads to a better understanding of how
configuration management systems can be organized and explored.

5 LIFECYLCE STAGES
The configuration parameters have a significant impact on the
performance of how an application or computing environment per-
forms. A configuration parameter that works in one environment
may not be optimal in a different environment or under differ-
ent workloads. To address this, different approaches have been
introduced in various works, focusing on different phases of config-
uration management. Some works optimize configurations before
deployment to avoid misconfigurations, others optimize parameters
at deployment to balance cost and performance, while others focus
on runtime tuning to adapt to changing workloads. This section
examines how configuration management is addressed in different
phases and how existing research contributes to optimizing system
performance over time.

5.1 Pre-Deployment Configuration
The pre-deployment phase is the foundation of configuration man-
agement, where the initial parameters are defined before deploy-
ment. These parameters are based on expected workloads and sys-
tem specifications. Earlier approaches primarily focused on pre-
deployment configuration. The main goal is to prevent misconfig-
urations and tune parameters to meet system requirements. This
helps improve performance, reliability, and cost efficiency by testing
parameters in advance.

Even though pre-deployment configuration is the safest and
most widely used approach, it comes with its own challenges. The
default configuration parameters set during the pre-deployment
phase are often sub-optimal. Many systems are deployed with de-
fault configurations, which become ineffective as the workload
changes. This is mainly because workloads cannot be accurately
predicted in advance. They are dynamic and may shift significantly
after deployment, making pre-deployment tuning difficult. Manual
parameter tuning is time-consuming and makes it difficult to iden-
tify optimal settings. Additionally, configuration parameters must
be tested, which adds overhead.

Several research works have explored techniques to enhance pre-
deployment configuration management by optimizing parameter
selection and preventing misconfigurations. "ConfProf " employs a
white-box performance profiling approach, analyzing and ranking
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configuration options based on execution profiles, helping devel-
opers pinpoint inefficient configuration-dependent code and im-
prove system efficiency [15]. Similarly, "ATConf " utilizes Bayesian
Optimization with dropout-based dimensionality reduction to op-
timize big data processing framework (BPDF) parameters before
execution, significantly reducing execution time by up to 46.52%
compared to default configurations [8]. Another example, FLASH,
utilizes a sequential model-based approach to identify the near-
optimal configurations while using far lesser measurements than
traditional methods [23]. By reflecting on the measurements seen
so far, FLASH dynamically refines its configuration search, making
it well-suited for pre-deployment tuning. Finally another study in-
troduced "CherryPick", applies Bayesian Optimization with a guided
trial-and-error method, launching targeted trial jobs on selected
cloud configurations before execution [3]. By iteratively measuring
performance and refining its model, CherryPick identifies near-
optimal configurations with minimal testing, ensuring efficient
offline tuning without impacting mission-critical workloads. These
methods demonstrate how machine learning and automated tuning
strategies improve pre-deployment configuration, making systems
more reliable before they go live.

However, despite these advancements, pre-deployment tuning
alone is not sufficient to handle real-world variability. Default con-
figurations, even if optimized before deployment, may become
sub-optimal when exposed to dynamic workloads. Many systems
rely on pre-defined configurations that are tested in controlled
environments, but fail to maintain efficiency under changing opera-
tional conditions. Additionally, manual tuning remains a significant
challenge, as identifying the best configuration parameters requires
extensive domain expertise and incurs additional computational
overhead. While pre-deployment techniques reduce initial errors
and enhance system stability, they cannot fully account for work-
load fluctuations, infrastructure variations, and unexpected perfor-
mance bottlenecks that may arise after deployment. This limitation
necessitates the need for deployment and runtime adjustments,
which are explored in the following sections.

Observation 5.1

Pre-deployment configuration is used for optimizing sys-
tem parameters before deployment to avoid misconfig-
urations and improve the performance. However, these
configurations often become suboptimal as the workloads
changes, thus requiring additional tuning during deploy-
ment or runtime for longer efficiency.

5.2 Deployment Configuration
The deployment phase configuration involves setting and optimiz-
ing parameters as the system is deployed into a real-world envi-
ronment. Unlike the pre-deployment phase, where tuning is based
on expected workloads, the deployment phase adjusts parameters
based on actual system conditions. This phase is critical as the
mismatches between the pre-defined configurations on real-world
infrastructure can lead to performance bottlenecks or unexpected
failures. The main goal is to balance performance and cost, avoid

performance bottlenecks, and find the optimal configuration pa-
rameters for real-world environment.

Despite careful pre-deployment tuning, deployment-time config-
uration faces several challenges due to the unpredictable nature of
real-world environments. The configuration parameters optimized
before the deployment may not have the best performance when
resource availability, latency, and network conditions are drastically
different from the test environment. For example, cloud environ-
ments introduce variable resource constraints, thus making static
configurations unreliable. Poor deployment configurations can in-
crease execution time and cost, particularly in large data and cloud
environments [8]. Selecting incorrect VM instance types, storage
configurations, or database settings can lead to wasted resources
[3]. Another challenge is manually optimizing the deployment con-
figuration parameters, which requires a lot of knowledge about
the system [21], and the vast number of configuration parameters
makes it more difficult to scale.

Several key studies have explored deployment-phase configura-
tion techniques to enhance performance and resource efficiency.
"EDLB" (Enhanced Dynamic Load Balancing) optimizes cloud re-
source allocation by dynamically distributing workloads across
virtual machines during deployment, achieving a 22.46% reduction
in execution time and improved resource utilization [32]. "SOAVM"
employs an adaptive resource allocation approach by leveraging
service-oriented virtualization models, which adjust virtualized
application resources dynamically based on real-time system condi-
tions, ensuring performance stability even in fluctuating workloads
[5]. Another research also introduces "Apollo", a predictive configu-
ration deployment framework that estimates the impact of changes
before rollout, while ensuring a safer deployment and reduced like-
lihood of runtime misconfigurations [26]. These frameworks high-
light how intelligent deployment-phase tuning strategies can en-
sure optimal configurations, reducing the need for post-deployment
adjustments while improving scalability and operational stability.

These works highlight the importance of the configuration in
the deployment phase. They demonstrate how automated data-
driven techniques can refine configurations based on real-world
conditions, improving efficiency, reducing costs, and improving
system stability from the moment of deployment.

Observation 5.2

Deployment phase configuration adjusts the system’s pa-
rameters during the deployment to match the real-world
conditions, ensuring better performance and resource effi-
ciency. Unlike pre-deployment tuning, it adjusts settings
based on actual infrastructure constraints, network con-
ditions, and resource availability, preventing performance
bottlenecks, inefficiencies, and misconfigurations that may
arise during deployment.

5.3 Runtime Configuration
The runtime phase is the dynamic optimization of the configura-
tion parameters while the system is running to maintain perfor-
mance. Unlike the pre-ceployment phase (5.1) and the deployment
phase (5.2), which focus on tuning before deployment or during
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deployment, the runtime configuration focuses on optimizing the
configuration parameters based on the real-time workloads of the
system. This phase is crucial for ensuring that the application’s
scalability, efficiency, and cost are balanced in dynamic computing
environments such as cloud environments (AWS, Azure, GCP, etc.).
The runtime configuration can be implemented in two ways: Static
Tuning and Dynamic Tuning.

(1) Static Tuning: Static Tuning requires human involvement
to adjust the configurations based on workloads. System ad-
ministrators or engineers monitor performance metrics and
manually modify parameters when required. This approach
is effective in scenarios that require manual adjustments.
It is used in critical applications where automated adjust-
ments could be risky. Additionally, manual tuning is applied
to legacy systems that lack support for real-time adaptive
tuning. There are many limitations to this approach, such as
slow response time, high operational cost, and susceptibility
to human errors.

(2) Dynamic Tuning: Dynamic Tuning is an approach for mak-
ing real-time changes to configuration parameters based on
workloads, system performance, and external conditions. It is
widely used in cloud computing, databases, and auto-scaling
environments. Dynamic tuning can use various techniques,
including machine learning, control theory methods, and
deep learning. The advantage of dynamic tuning is that it
ensures consistency in performance despite changing work-
loads. It also helps minimize resource wastage through trial
and error and reduces downtime and operational costs by
continuously optimizing system workloads.

While runtime configuration enables systems to adapt dynami-
cally to workload changes, it also introduces several challenges that
must be carefully managed. Constant monitoring is required for
real-time reconfiguration, which leads to system overhead, and fre-
quent adjustments to configuration parameters can cause instability
and high resource consumption [22]. Although dynamic tuning
provides flexibility, excessive changes can negatively impact per-
formance, requiring a balance between rapid reconfiguration and
its consequences [22]. Another challenge is the trade-off between
performance and cost, as dynamic tuning can optimize both, but
poorly timed adjustments may lead to inefficiency. For instance, Op-
timusCloud employs a cost-benefit analysis approach to ensure that
reconfigurations justify their computational expense, optimizing
performance-per-dollar (Perf/$) in cloud-based NoSQL databases
[20]. Several research works have explored runtime configuration,
especially in dynamic tuning. Although static methods have been
widely used, some systems still require manual tuning during op-
eration. "OptimusCloud" achieves 4.5× lower latency by jointly
tuning database and VM configurations at runtime, ensuring effi-
cient adaptation to workload variations[20]. Similarly, "SmartConf "
introduces a control-theoretic approach to dynamically fine-tune
CPU, memory, and I/O allocations, ensuring system stability while
responding to changing workloads[29]. Another study, "DeepHill"
integrates deep learning-based workload prediction with real-time
instance reconfiguration, reducing power consumption by 13.33%
while optimizing resource utilization[1]. These studies highlight the

importance of runtime configuration in modern computing environ-
ments, where workloads are unpredictable and require continuous
optimization.

Observation 5.3

Runtime phase configuration optimizes the system parame-
ters dynamically while the system is running, while ensur-
ing scalability, efficiency, and cost-effectiveness in cloud
and dynamic environments. It can be static, requiring man-
ual adjustments by system administrators, or dynamic,
leveraging techniques likemachine learning, control theory
approaches, and deep learning for real-time optimization.

6 SCOPE OF CONFIGURATION
The configuration management plays an important role in ensuring
the stability, performance, scalability and saving cost of the systems.
There are various systems, applications and environments have
distinct configuration parameters which require optimization in
order to get better performance. The scope of configuration can
be organized into various levels depending on where the tuning is
implemented:

(1) Application-Level Configuration – Focuses on optimiz-
ing the configuration parameters at application level.

(2) Infrastructure-Level Configuration – Managing system-
wide resources such as containers, virtual machines (VM)
and cloud infrastructure. This level can further classified
into:

(a) Container-Level Configuration –Optimizing configurations
within containerized environments to ensure isolation,
scalability and efficiency.

(b) Host-Level Configuration – Managing system hardware,
networking, and virtualization settings.

(c) Cloud-Level Configuration – Tuning cloud-based services
such as provisioning, scaling, and resource optimization.

(3) Cross level Configuration – A hybrid approach integrat-
ing both application and infrastructure-level tuning for system-
wide optimization.

Each configuration level plays a important role in system man-
agement, and their combined effectiveness shows the overall per-
formance, adaptability and reliability of the modern computing
environments.

6.1 Application Level Configuration
Application-level configuration is the most commonly used aspect
of configuration management, as it directly affects application per-
formance, effective execution, and resource optimization. This level
of configuration is about optimizing application’s configuration pa-
rameters such as memory allocation, concurrency control, caching
mechanisms, and query optimization to ensure the application is
running efficiently under workloads. Given its impact on system
behavior, application-level configuration is widely studied, with
various optimization techniques proposed to automate and enhance
this process.
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One key area where application-level configuration has an im-
portant role is in database management systems. Databases re-
quire carefully tuned parameters such as buffer pool sizes, index-
ing strategies, transaction isolation levels, and query execution
plans to achieve optimal performance. As mentioned in the pre-
vious section 5, configuration management can also be done in
pre-deployment, deployment, and runtime phases. Studies such as
iTuned have developed automated methods leveraging adaptive
sampling to dynamically improve database configurations [9]. Sim-
ilarly, web applications depend on application-level configuration
management to optimize request handling, session management,
etc. Poorly configured parameters in applications can lead to longer
response times, inefficient resource allocation, and potential service
failures.

Frameworks for Big Data, including Hadoop, Spark, and Flink,
rely on application-level configurations to optimize job scheduling,
manage memory efficiently and adjust parallelism levels. The com-
plexity of configuring these frameworks has led to optimization
techniques such as ATConf, which applies Bayesian Optimization
to improve execution performance by pre-tuning processing param-
eters [8]. These techniques highlight the importance of application
configuration management, as workload-specific optimization can
enhance efficiency and cost-effectiveness.

Since configuration at the application level plays a crucial role in
system performance, tackling challenges with automated, workload-
aware tuning methods guarantees efficiency and reliability across
different environments.

Observation 6.1

Application-level configuration directly influences the sys-
tem performance, by optimizing application parameters
such as memory allocation, concurrency control, caching
mechanisms, load balancing etc. Proper tuning of these pa-
rameters improves performance, resource utilization, and
responsiveness, while ensuring stability and high perfor-
mance. Application-level configuration is necessary for
ensuring reliability, improving responsiveness and optimiz-
ing resource utilization, as it directly impacts the system
performance.

6.2 Infrastructure Level
Infrastructure-level configuration is fundamental in optimizing re-
source allocation, ensuring system scalability, and saving cost in
computing environments. Unlike application-level configuration,
which optimizes application parameters, infrastructure-level config-
uration is used for provisioning and managing hardware resources,
virtual machines (VMs), networking policies, etc. Optimizing param-
eters at this level helps avoid resource bottlenecks, reduce latency,
and minimize operational overhead, thus directly influencing sys-
tem performance and reliability. Infrastructure-level configuration
is divided into three key dimensions:Container-level,Host-level,
and Cloud-level.

6.2.1 Container Level Configuration. Container-level configura-
tion is used for optimizing parameters such as CPU, memory, and

storage within container environments. The adoption of technolo-
gies such as Docker and Kubernetes serves as an example of how
containers are prioritized in modern computing because of char-
acteristics such as being lightweight, easily scalable, and deploy-
able. However, as mentioned earlier, to obtain optimal container
performance, it is necessary to effectively manage resources, es-
pecially under varying and dynamic workloads. Without proper
optimization of configuration parameters, there can be performance
degradation, inefficient resource utilization, security vulnerabilities,
and scaling issues, leading to high operational costs and reduced
application reliability. Challenges such as resource contention, inef-
ficient auto-scaling, and complex networking can impact container
performance and scalability. Security misconfigurations, persistent
storage issues, and configuration drift further complicate deploy-
ment consistency and container reliability.

One notable piece of research that focuses on managing con-
tainer configurations is ConfAdvisor [11], which uses a white-box
approach to automate detection and correction of misconfigura-
tions by analyzing real-time telemetry data, container metrics, and
deployment logs. This continuous analysis enables adaptation to
various workloads, significantly improving performance, reliability,
and resource utilization within Kubernetes-managed environments
[11].

Another significant contribution is ATConf, an automated con-
figuration framework designed for big data processing frameworks.
It employs a black-box optimization technique, dynamically tuning
both internal parameters (such as Spark’s execution parameters)
and external parameters (such as JVM settings and kernel-level
configurations). This approach effectively addresses the complexity
of high-dimensional configuration spaces, adapting resource allo-
cation to fluctuating workloads to achieve enhanced performance
compared to default settings [8].

More recent research, conTuner, auto-tunes the resource param-
eters of Docker containers using a combination of offline profiling
and online adaptation [6]. By learning from workload patterns and
adjusting configurations in real time, it improves resource utiliza-
tion and container performance in dynamic environments. It uses
clustering and a two-phase random search to efficiently explore con-
figuration spaces, helping to avoid manual tuning while ensuring
better scalability and deployment efficiency.

These studies underline the importance and potential of ad-
vanced configuration management systems in optimizing container-
level performance, reliability, and resource efficiency within mod-
ern, dynamic infrastructure environments.

6.2.2 Host-Level Configuration. Host-level configuration involves
managing and tuning physical hardware resources, virtualization
layers (such as hypervisors), and host operating systems. Proper
optimization at this level is important, as it forms the foundation
that directly impacts the performance, efficiency, and reliability of
higher-level services such as containers and virtual machines.

A key challenge at this level is the overhead introduced by hy-
pervisor resource management tasks, which can degrade perfor-
mance if not properly managed. Research on hypervisor systems
like VMware ESXi shows the critical importance of properly setting
CPU resource allocations, memory management strategies, and
scheduling policies. Effective optimization of these configurations
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reduces hypervisor overhead and optimizes resource usage, sig-
nificantly improving overall system scalability and performance
[17].

In addition to addressing host-level configuration challenges,
frameworks such as iTuned introduce solutions for automated per-
formance optimization, particularly focusing on database systems
running directly on physical or virtualized hosts. iTuned uses an
adaptive sampling strategy and a Gaussian process representation
of response surfaces to dynamically identify and set optimal config-
urations for critical database parameters, such as buffer pool size,
concurrency levels, and query optimization settings. By system-
atically conducting low-overhead experiments, iTuned efficiently
identifies configurations that significantly improve performance
metrics over default or manually tuned settings, reducing complex-
ity and enhancing operational efficiency at the infrastructure level
[9].

These approaches show the importance of configuration man-
agement at the host level. By effectively optimizing hypervisor
and database system parameters, systems can significantly improve
resource utilization, reduce operational costs, and ensure robust
performance and reliability for host-level environments.

6.2.3 Cloud-Level Configuration. Cloud-level configuration involves
strategic optimization of computing resources, storage infrastruc-
ture, network settings, and security policies in cloud environments
such as AWS, Azure, and Google Cloud. Effective management at
this level is critical due to the dynamic and heterogeneous nature
of workloads and resource configurations, directly impacting oper-
ational costs, performance, and reliability of cloud-hosted systems.

Many studies have been conducted on cloud-level configuration.
One of them is Deep-Hill, a framework that addresses cloud-level
configuration challenges by optimizing resource allocation for SaaS
applications in dynamic environments [1]. Unlike traditional meth-
ods, Deep-Hill uses a five-layer deep neural network (DNN) to
predict optimal parameters for cloud servers based on real-time
user demand, and applies a Hill-Climbing (HC) algorithm to fine-
tune these parameters step by step, ensuring optimal performance
under varying workloads. This combined approach helps minimize
power consumption, reduce the number of active servers, and pre-
vent underutilized resources by adapting to workload changes. As
a result, Deep-Hill improves system scalability, reduces operational
costs, and enhances overall cloud performance, making it a key
advancement in cloud-level configuration management.

Additionally, recent studies highlight the importance of effi-
ciently distributing workloads at this level. The Enhanced Dynamic
Load Balancing (EDLB) algorithm proactively assigns tasks to vir-
tual machines by constantly evaluating current system states and
Service Level Agreement (SLA) requirements [12]. Unlike tradi-
tional approaches, EDLB continuously adjusts task allocations to
avoid resource bottlenecks and minimize SLA violations, achieving
significant improvements in overall performance metrics such as
execution time and system responsiveness. This approach greatly
improves resource utilization and operational efficiency, empha-
sizing the crucial role of adaptive load balancing in maintaining
optimal performance and ensuring compliance with service quality
standards in cloud environments [12].

Cloud-level configuration plays a crucial role in ensuring scal-
ability, cost efficiency, and optimization for various workloads in
modern cloud infrastructures. Proper optimization enables dynamic
resource allocation, effective load balancing, and strong security,
helping prevent performance issues and reduce costs. Frameworks
such as Deep-Hill and EDLB demonstrate the importance of adap-
tive and predictive configuration strategies for managing cloud
resources efficiently.

Observation 6.2

Infrastructure configuration optimizes configuration pa-
rameters at infrastructure level and they are categorized
across three key dimensions: container-level, host-machine
and cloud-level configurations. Container-level focuses
on CPU, memory, and storage efficiency within the con-
tainer environment or the containers itself, Host-level tun-
ing enhances hypervisor and database performance, and
cloud-level ensures dynamic workload distribution and
auto-scaling. Proper infrastructure configuration is crucial
for system reliability, cost efficiency, and sustained perfor-
mance.

6.3 Cross Level Configuration
Cross-level configuration is the bridge that connects application-
level and infrastructure-level tuning to provide an effective ap-
proach for optimizing configuration parameters at each layer. In an
isolated environment, cross-level approaches coordinate settings
across the entire software stack. The main goal of this approach
is to ensure that adjustments at one level do not conflict with con-
figurations at another level, thereby improving overall efficiency,
reliability, and cost-effectiveness.

A main advantage of cross-level configuration is the ability to
manage complex interactions among various parameters. For exam-
ple, changes to an application’s concurrency settings can affect the
CPU scheduling of the underlying container, or vice versa. By using
monitoring techniques, cross-level approaches reduce the risk of
misalignment between applications and infrastructure resources.

Many studies have been conducted in this domain.OptimusCloud
tunes both virtual machine and NoSQL database parameters by ad-
justing configurations across the entire stack according to changing
workloads. This study has shown that coordination of application-
and infrastructure-level settings can significantly improve perfor-
mance [20]. Another study introduces OPPerTune, which explores
post-deployment tuning of large-scale services by dynamically re-
configuring both application-level parameters (e.g., cache limits,
data path optimizations) and infrastructure-level parameters (e.g.,
CPU isolation, container scaling) to perform well under evolving
workloads [27]. By aligning changes across all layers, the system
ensures that the specific needs of each workload at the application
level are matched with appropriate container-level configuration
parameters.

Despite its advantages, cross-level configuration adds complex-
ity. This level of configuration demands a unified view of the entire
system, which can be challenging when dealing with different
types of environments. Moreover, aligning priorities across layers
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requires well-designed conflict resolution policies to prevent com-
promises in system stability. As systems become more complex,
cross-layer configuration becomes increasingly important for effec-
tive infrastructure management. It ensures that applications benefit
from globally optimized settings rather than limited, layer-specific
adjustments.

Observation 6.3

Cross-level configuration bridges the gap between
application-level and infrastructure-level tuning by coordi-
nating adjustments across all layers of the software stack.
This approach helps prevent conflicts between configura-
tions at different levels, reducing misalignment and im-
proving performance, efficiency, and cost-effectiveness. By
aligning configuration priorities across components such
as databases, virtual machines, and containers, cross-level
strategies enable globally optimized settings that adapt
better to complex dynamic workloads.

7 TYPES OF EXECUTION
There are different ways in which the execution of configuration
management can implemented, these are categorized on how con-
figuration settings are applied across various environments. These
execution strategies are typically classified into three types:Offline
execution,Online execution, andHybrid execution, each used
for specific system needs, dynamic workloads, and operational con-
ditions.

7.1 Offline Execution
Offline execution in Configuration Management Systems (CMS)
refers to the process of determining and optimizing system param-
eters before execution or deployment. In this approach, parameters
such as historical workload data, performance logs, etc., are consid-
ered, and predefined optimization strategies are used to establish
configuration values before the system runs. This type of execution
ensures that optimal configurations are set up prior to deployment.
Offline execution is especially useful in environments that prioritize
stability, predictability, and minimal runtime overhead. It is cru-
cial for systems with predictable workload patterns, such as batch
processing, enterprise applications, and high-performance comput-
ing (HPC). By predefining configurations, this approach minimizes
runtime delays, maintains consistent performance, and prevents
configuration drift. It is particularly beneficial in low-latency en-
vironments, where real-time tuning could introduce unnecessary
computational overhead. Additionally, offline execution reduces
the risk of ad-hoc misconfigurations, ensuring system reliability
and efficiency.

Several studies have explored offline execution to enhance con-
figuration management by optimizing settings before deployment.
"ATConf " applies Bayesian optimization to analyze historical work-
load data, using dropout-based dimensionality reduction to identify
critical configuration parameters, minimizing execution time and
improving predictability[8]. "ConfProf " profiles system configura-
tions before runtime, leveraging machine learning-based perfor-
mance modeling to predefine optimal resource allocation, reducing

performance variability and improving efficiency where real-time
tuning is infeasible [15]. "CherryPick" employs a guided trial-and-
error approach with Bayesian Optimization, running targeted trial
jobs on different resource configurations before execution. By iter-
atively measuring performance and refining its model, CherryPick
finds near-optimal configurations with minimal testing, ensuring
efficient offline tuning without impacting mission-critical work-
loads [11]. These studies illustrate how offline execution enhances
stability, predictability, and efficiency in structured workload envi-
ronments.

The primary challenge of offline execution is its inability to adapt
to real-time workload variations, making it unsuitable for dynamic
environments. Predefined configurations can lead to resource mis-
matches, either through over-provisioning or under-provisioning.
Additionally, its effectiveness relies on the accuracy of historical
data and outdated workload profiling, which may result in subop-
timal configurations. Despite these limitations, offline execution
remains beneficial for predictable workloads, where pre-tuned con-
figurations reduce runtime overhead and improve system stability.

Observation 7.1

Offline execution optimizes system parameters before de-
ployment, ensuring stability, predictability, and minimal
runtime overhead. It is particularly effective for batch pro-
cessing, enterprise applications, and HPC environments,
where predefined configurations reduce runtime delays
and misconfigurations. However, offline execution cannot
adapt to real-time workload changes, making it less suit-
able for dynamic environments that require continuous
tuning and flexibility.

7.2 Online Execution
Online execution involves dynamically adjusting configuration
parameters while the system is running, ensuring that resources are
allocated in real time based on various workloads and performance
metrics. Unlike offline execution, which relies on historical data,
online execution monitors system behavior in real time and applies
necessary reconfigurations. This approach is particularly helpful in
cloud computing, distributed systems, and real-time applications
where demands are unpredictable and require frequent adjustments.
Online execution is essential to handle varyingworkloads, minimize
resource utilization, and improve system response. By adapting to
real-time telemetry andworkload demands, this approach optimizes
performance while minimizing manual effort. It has an advantage
in scenarios where latency-sensitive applications and auto-scaling
strategies require reconfiguration to maintain system efficiency.

There are several studies that show the importance of online
execution in configuration management by dynamically adjust-
ing system parameters in real time based on workload variations.
"iTuned" applies an adaptive database tuning system that contin-
uously monitors workload patterns and dynamically adjusts data-
base configurations, improving query performance and resource
efficiency [9]. "EDLB (Enhanced Dynamic Load Balancing)" dynami-
cally distributes workloads across virtual machines by analyzing



Literature Study, April 2025, Amsterdam, The Netherlands Rohan Murali Nair, Matthijs Jansen, and Daniele Bonetta

real-time system load, reducing execution time by 22.46% and in-
creasing resource utilization by 3.10% [32]. "SmartConf " applies a
control-theoretic feedback mechanism to fine-tune CPU, memory,
and I/O allocations, ensuring system stability under changing work-
loads while preventing performance degradation[29]. These studies
illustrate how online execution enables continuous self-adaptation,
reducing manual intervention while optimizing performance, effi-
ciency, and reliability in dynamic computing environments.

There are several challenges involved in real-time reconfigura-
tion. One major challenge is the computational overhead associated
with continuous monitoring and reconfiguration based on work-
loads, which can lead to latency and over-utilization of resources.
Additionally, not accounting for unexpected workload spikes can
cause instability in configuration tuning, leading to suboptimal per-
formance if the system fails to adapt quickly. System reliability is
another concern, as frequent changes to configuration parameters
can result in temporary performance degradation or inconsistencies
in configuration. Furthermore, online execution heavily relies on
accurate and efficient decision-making algorithms, making it vul-
nerable to incorrect adjustments caused by noisy data or prediction
errors. There are also security concerns, as real-time changes to
system configurations can introduce vulnerabilities if not properly
managed. Overcoming these challenges requires effective moni-
toring mechanisms, optimization strategies, and efficient feedback
loops to ensure that online execution maintains high performance,
stability, and security in dynamic environments.

Online execution is necessary for systems that require real-time
adaptability, enabling automated performance tuning and resource
optimization. Although it provides better flexibility compared to
offline execution, it also requires strong monitoring, predictive
modeling, and security mechanisms. As computing environments
continue to evolve, AI-driven and control-theoretic approaches will
play an increasingly critical role in enhancing online execution
strategies.

Observation 7.2

Online execution dynamically adjusts configurations in
real time, ensuring optimal resource allocation, system re-
sponsiveness, and performance based on live workload
metrics. It is crucial for cloud computing, distributed sys-
tems, and real-time applications, where workloads change
unpredictably. However, challenges such as computational
overhead, instability risks, and security concerns must be
managed with robust monitoring, predictive modeling, and
adaptive decision-making to maintain system stability and
efficiency.

7.3 Hybrid Execution
Hybrid execution is the combination of offline and online execution,
offering the benefits of both to optimize configuration parameters
and improve performance. Unlike offline execution, which focuses
solely on optimizing configuration parameters prior to execution,
or online execution, where tuning occurs during runtime using real-
time data, hybrid execution combines both approaches to configure
parameters, thus ensuring enhanced performance. This execution

approach is particularly beneficial in cloud environments, high-
performance computing (HPC), and distributed systems, where
workloads can exhibit both predictable and unpredictable behavior.

Hybrid execution is essential for systems that require both sta-
bility and adaptability. By predefining optimal configuration pa-
rameters and continuously making runtime adjustments, hybrid ex-
ecution ensures that workloads operate efficiently without runtime
overhead. This approach is particularly useful in cloud-based appli-
cations, where real-time resource allocation is required to handle
variable workloads, and in database management systems, where
predefined configurations prevent performance degradation while
real-time adjustments ensure query efficiency. Additionally, hybrid
execution minimizes configuration drift by maintaining a strong
baseline while allowing controlled reconfiguration to dynamically
optimize resource utilization.

Several research studies highlight the impactfulness of hybrid
execution in configuration management by combining the tech-
niques of optimizing configurations before execution (offline) along
with real-time adaptive tuning (online) to enhance system per-
formance and efficiency. "SOPHIA" uses a hybrid workload-aware
reconfiguration system for NoSQL databases, where predefined
configurations ensure stability, while real-time adjustments help
prevent performance degradation, resulting in a 30% improvement
in throughput [21]. Similarly, another research study, "Optimus-
Cloud", optimizes cloud-hosted databases by predefining baseline
configurations while dynamically adjusting resource allocations
online based on real-time performance monitoring, leading to im-
provements in latency and efficiency[20]. "Deep-Hill" combines
deep neural network-based offline training with an online adap-
tive resource allocation mechanism, reducing power consumption
by 13.33% while ensuring efficient SaaS instance configuration [1].
These studies show the importance of hybrid execution in balanc-
ing stability and adaptability, optimizing performance, scalability,
and system reliability in dynamic computing environments.

Although hybrid execution is effective in balancing predefined
configurations and dynamically reconfiguring parameters accord-
ing to changing workloads, it also introduces several challenges
in configuration management and system efficiency. Maintaining
consistent performance across both execution methods is challeng-
ing, as any misconfigurations may result in performance drops
or conflicts with existing configurations. Computational overhead
remains a concern, as real-time tuning still requires processing re-
sources, especially in large-scale distributed systems. Additionally,
balancing stability and adaptability is a difficult task—relying too
much on offline methods can limit responsiveness, while depending
heavily on online execution can lead to instability. As mentioned
in the online execution section 7.2, cost optimization must also
be considered, as frequent reconfigurations can increase opera-
tional costs, particularly in cloud environments. Addressing these
challenges requires an intelligent framework or approach that can
predict workloads, automate orchestration, and perform cost-aware
reconfigurations.

Hybrid execution balances efficiency and adaptability, making it
well suited for modern CMS architectures. By integrating offline
execution with online execution, it improves performance, scalabil-
ity, and reliability while minimizing runtime overhead. However,
successful hybrid execution implementation depends on intelligent
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workload prediction, automated orchestration, and cost awareness.
Future advancements in AI-driven configuration tuning and cloud-
native optimization strategies may further refine hybrid execution,
making it even more effective in highly dynamic environments.

Observation 7.3

Hybrid execution combines offline and online approaches,
ensuring stability through pre-defined configurations while
adapting dynamically to workload changes. It is particu-
larly useful in cloud environments, HPC, distributed sys-
tems, etc., where workloads vary between predictable and
unpredictable patterns. However, challenges such as bal-
ancing stability with adaptability, computational overhead,
and cost optimization must be addressed through intelli-
gent workload prediction and automated orchestration for
effective implementation.

8 TECHNIQUES
The core of effective configuration management lies in the tech-
niques, they are the necessary to optimization, adaptation, and
performance stability. Without a proper techniques, even the most
sophisticated systems would struggle to achieve efficiency, scalabil-
ity, or responsiveness to the varying workloads. The configuration
is only as good as the method used to manage it. This study high-
lights three fundamental categories of configuration management
techniques that define modern systems:

(1) Telemetry-based monitoring systems
(2) Heuristic and Search-Based Optimization approaches
(3) Machine Learning–based methods

The core of effective configuration management lies in the tech-
niques; they are necessary for optimization, adaptation, and per-
formance stability. Without proper techniques, even the most so-
phisticated systems would struggle to achieve efficiency, scalability,
or responsiveness to varying workloads. Configuration is only as
good as the method used to manage it. A well-chosen technique
can determine whether a system adapts smoothly or fails under
pressure. The study highlights three commonly used techniques:

8.1 Telemetry-Based Monitoring
Configuration tuning is only effective if there is a feedback system.
Systems evolve, workloads change, and static configurations remain
optimal in only a handful of scenarios before quickly becoming sub-
optimal. Telemetry-based monitoring ensures that configurations
remain optimal by actively tracking CPU usage, memory consump-
tion, latency, and other key performance metrics. Unlike manual
tuning, telemetry enables automated and real-time reconfiguration,
avoiding inefficiencies before performance is impacted.

Several studies have used this technique to optimize configura-
tion parameters in cloud environments. ConfAdvisor, for example,
continuously analyzes container logs and runtime metrics, detect-
ing misconfigurations, and automatically recommends or applies
adjustments to optimize resource allocation [11]. Similarly, another
study introduces OptimusCloud, which extends this approach by

dynamically tuning cloud database parameters and VM configura-
tions based on real-time workload demands, thus reducing costs
while maintaining efficiency.

Telemetry-based monitoring is essential for infrastructure opti-
mization. Studies on VMM overhead show that without real-time
monitoring, resource inefficiencies go unnoticed, leading to per-
formance bottlenecks and wasted resources [17]. By continuously
analyzing system behavior, telemetry-driven frameworks prevent
degradation, optimize hypervisor settings, and ensure sustained
efficiency—making telemetry not just a tool, but the foundation of
self-adaptive configuration management.

This makes telemetry-based monitoring a key part of adaptive
configuration tuning. It helps close the feedback loop between
how the system behaves and how its settings are adjusted. With-
out telemetry, configurations remain fixed and cannot respond to
changes. With telemetry, systems can keep their settings in sync
with changing workloads, ensuring better performance and effi-
ciency.

Observation 8.1

Telemetry-based monitoring enables real-time configura-
tion adjustments by continuously tracking system perfor-
mance metrics such as CPU usage, memory consumption,
and latency. Unlike static tuning, it automates reconfigura-
tion to prevent performance degradation and inefficiencies.
This approach is essential for adaptive systems, optimizing
resources, enhancing efficiency, and maintaining perfor-
mance in dynamic environments.

8.2 Heuristic and Search-Based Techniques
As the configuration space becomes increasingly complex, brute-
force search becomes less effective. Exploring all possible parameter
combinations is not feasible. Instead, heuristic and search-based
optimization techniques efficiently navigate the vast configuration
space by using adaptive search, approximation, and evolutionary al-
gorithms. These methods quickly identify near-optimal parameters
and are scalable, which is essential for modern systems.

The heuristic and search based optimization techniques are
necessary for navigating efficiently across the vast configuration
spaces of the modern system/applications. The "AtConf " leverages
Bayesian optimization methods combined with dimension dropout.
This approach enables the tuning of configurations within a high-
dimensional space, minimizing the computational load associated
with exhaustive searching in big data frameworks like Spark [8]. In
containerized environments, a two-stage optimization approach is
used, where the first applies a greedy algorithm to distribute work-
loads for various VM’s and then the second approach uses genetic
algorithms to resource allocations, which significantly enhances
the CPU utilization. and workload balancing [19]. "EDLB (Enhanced
Dynamic Load Balancing Algorithm)" which improves cloud-based
task scheduling by using a heuristic-based method which dynam-
ically allocates workloads based on execution time predictions,
optimizing system throughput without requiring expensive recon-
figurations [32]. These heuristic-based methods are essential, as
this helps in tackling the manual effort of going through he vast
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complex configuration parameters, thus maintaining performance
and making the system more reliable.

In general, these search-based and heuristic techniques are cru-
cial for managing the complexity of modern systems. They help
maintain system performance and reliability while efficiently han-
dling large configuration spaces.

Observation 8.2

Heuristic and search-based techniques efficiently optimize
configuration parameters by navigating large, complex con-
figuration spaces using adaptive search, approximation,
and evolutionary algorithms. Unlike brute-force methods,
these techniques quickly find near-optimal configurations,
improving performance, scalability, and reliability. They
are essential for automating configuration tuning, reducing
manual effort, and ensuring efficient resource utilization
in modern systems.

8.3 Machine Learning Techniques
Machine learning-based techniques dynamically optimize configu-
ration parameters by training models with system data and then
using the trained models to tune configurations. These methods uti-
lize approaches such as supervised learning, reinforcement learning,
and Gaussian process modeling to improve configuration tuning.

Several researches uses the machine learning for optimizing the
configuration parameters. The tool "iTuned" uses Guassian pro-
cesses and adaptive sampling to optimize the configurations of
database. By running the controlled low-overhead experiments in
production environments, ituned helps in reconfiguration without
requiring extensive manial intervention [9]. "Deep-Hill" is another
example which uses Deep Nueral Networks (DNNs) along with
Hill climibng algorithms to predict the cloud resource allocation
for SaaS workloads. The model is trained extensively on histori-
cal workload data, it continuously reconfigures at runtime, thus
improving efficiency and cost effectiveness [1].

Machine learning techniques offer a powerful and effective adap-
tive approach to configuration tuning by enabling systems to learn
from historical or real-time data. These methods significantly re-
duce manual intervention and improve responsiveness to dynamic
workloads. As the complexity of cloud-native and distributed sys-
tems continues to grow, machine learning-driven configuration
management becomes essential andwill play a critical role in achiev-
ing self-optimization, scalability, and system robustness in modern
computing environments.

Observation 8.3

Machine learning-based techniques dynamically optimize
configuration parameters by leveraging trained models on
system data to predict and adjust configurations in real
time. These approaches enable automated tuning, reducing
manual intervention. By continuously adapting to work-
load changes, machine learning enhances efficiency, cost-
effectiveness, and system performance in complex comput-
ing environments.

9 FUTUREWORKS AND RESEARCH GAPS
Despite the advancements in the configuration management tech-
niques, several key challenges remain open for future research. One
major gap is that there are only limited works in addressing the in-
teroperability of configuration management across the multi-cloud
environments. Existing tools often focus on the vendor-specific
systems, making configuration optimization in multi-platforms
difficult. The Future works should involve exploring the unified
configuration frameworks which is capable of adapting to heteroge-
neous cloud infrastructures while ensuring the seamless integration
and policy enforcement across multiple providers.

Another key challenge is self-healing configuration frameworks
remain an research challenge. Despite having advancements in
AI-driven and automated configuration management, misconfigu-
rations can still occur due to unexpected parameter, unforeseen sys-
tem states or model inaccuracies in the case of AI-driven approach.
Configuration errors can lead to severe performance degradation,
vulnerabilities or system failures. Future research should focus on
fault-tolerant, self-repairing configurations that can autonomously
detect, diagnose and revert faulty settings in real-time. The use
of techniques such as causal inference to find the root cause of
issues and automated rollback mechanisms would allow systems
to correct themselves before problems spread. This would make
configuration management more reliable, stable, and resilient in
complex computing environments.

Observation 9

Key future directions in configuration management include
enabling interoperability across multi-cloud platforms and
developing self-healing systems. Fault-tolerant configura-
tions that can autonomously detect, diagnose, and recover
from errors in real-time are essential for improving system
resilience, stability, and security in dynamic environments.

10 CONCLUSION
This report explored Configuration Management Systems (CMS) in
various dimensions, such as lifecycle stages, scope of the system,
execution models and optimization techniques, with the goal of
understanding how modern systems can be better configured for
performance, scalability, and efficiency. Although the study began
by categorizing CMS along structured lines, the most valuable
insights emerged from examining how these systems function in
real-world dynamic environments.

A key finding is that configurationmanagement must be lifecycle
aware to be effective. Pre-deployment strategies help prevent initial
misconfigurations, but their static nature limits their long-term
value. Deployment-phase adjustments offer some responsiveness,
but it is during the runtime phase that the full adaptability of a
CMS is tested. Systems capable of dynamically tuning parameters
during execution—especially using automated or learning-based
techniques—demonstrate significantly better resilience and effi-
ciency.

In addition, the scope of the configuration plays a critical role.
Application-level tuning has direct and visible effects on perfor-
mance, but without supporting infrastructure-level configuration,
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such as container, host, or cloud-level tuning, the system can remain
unbalanced. The cross-level configuration, while more complex to
manage, enables better coordination across layers and prevents
conflicting adjustments, ultimately improving stability and perfor-
mance.

The execution model of a CMS also affects its adaptability. Of-
fline execution offers stability and is suitable for predictable en-
vironments, but lacks flexibility. Online execution, though more
adaptable, introduces overhead and complexity. Hybrid execution
emerged as a promising direction, combining the predictability
of offline methods with the responsiveness of online techniques,
making it suitable for today’s dynamic native cloud systems.

Finally, the review highlighted the growing importance of ad-
vanced optimization techniques. Telemetry-based monitoring sup-
ports real-time feedback loops, heuristic methods help navigate
large configuration spaces efficiently, and machine learning ap-
proaches, especially those using Gaussian processes and deep learn-
ing, are leading the shift toward intelligent, self-adaptive systems.
These techniques reduce reliance on manual tuning, improve re-
sponse to change, and allow systems to optimize themselves based
on historical and real-time data.

In summary, modern CMS must be intelligent, adaptive, and
context-aware. The path forward lies in building systems that are
not only capable of cross-layer coordination and dynamic tuning,
but also resilient and autonomous: capable of detecting, correcting,
and learning from misconfigurations without human intervention.
Future research should focus on enabling interoperability across
heterogeneous environments and developing robust self-healing
mechanisms to ensure system reliability at scale.
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