23
24
25
26
27
28
29

39
40
41
42
43
44

A Systematic Review of GPU Modelling Approaches in
Datacenter Simulators

Niels Thiele

Vrije Universiteit Amsterdam, The Netherlands
n.thiele@vu.nl

ABSTRACT

Over the past decades, datacenters have become increasingly im-
portant—not only for researchers but also for society at large—by
supporting services ranging from websites and video streaming
platforms to, more recently, large-scale Al applications. Conduct-
ing experiments on real-world datacenter infrastructure is often
infeasible due to high costs, limited accessibility, and challenges
with reproducibility. Simulators provide a viable alternative, en-
abling users to evaluate infrastructure and workload configura-
tions with significantly reduced carbon emissions, shorter runtimes,
and lower financial overheads. However, despite the growing sig-
nificance of GPUs in datacenter hardware, their representation
in simulation tools remains inconsistent or entirely absent. This
study presents a systematic literature review focused on how GPUs
are modelled within datacenter simulators. By identifying exist-
ing tools, this work explores their underlying design decisions
and evaluates the extent to which GPUs are represented in de-
tail. Following a structured methodology, over 300 publications
were screened using a combination of keyword-driven and semi-
structured search strategies, from which seven simulators were
selected for in-depth analysis. Our findings reveal that GPU mod-
elling approaches vary widely across simulators. Some frameworks
treat GPUs as near-autonomous subsystems, while others simplify
them to CPU-like abstractions. Although the number of identified
simulators is relatively small, the results highlight considerable
diversity in simulator objectives, modelling granularity, and simu-
lation techniques—ranging from binary indicators to sophisticated
architectural representations. This review offers valuable guidance
for developers seeking to incorporate GPU-aware functionality into
simulators, and for researchers aiming to navigate the design trade-
offs inherent in existing simulation frameworks. For researchers,
this review provides a comprehensive overview of identified GPU
use case, challenges related to GPU integration in datacenter, and
which challenges have not been addressed in simulators.

KEYWORDS

Systematic Literature Review, GPU Modeling, Datacenter Simula-
tion, Cloud Simulators, HPC Simulation, Heterogeneous Resources,
Performance Modeling

1 INTRODUCTION

With announcing the digital decade policy program, the European
Union(EU) has acknowledged the vital role of ICT in general, and
datacenters in particular. Besides strengthening the digital skills
of the population and extending the network infrastructure, the
EU focuses on datacenter-specific aspects, such as climate-neutral
edge-datacenters, use of Al, cloud and big data by European com-
panies and offering all public services online [5]. To achieve these

goals datacenters are required to process and store the data needed
for this digitization process. But not only in the future but already
now are datacenters a vital for media and entertainment, cloud
service providers and training and usage of artificial intelligence.
[19] These services and applications place datacenters in the front
row of energy consumption, with a consumption of about 4% of the
global electrical energy, with peak power demands of 7.4 GW in
2023. On top of the concerning use of energy are the CO2 emissions,
from producing and operating ICT infrastructure. [19]

Datacenter simulators serve as indispensable tools for modelling
and analysing the performance of datacenter architectures and
operations. These simulators typically encapsulate core compo-
nents such as networking, storage, compute, and security within a
software-defined framework, abstracting them from physical hard-
ware. This abstraction enables researchers and engineers to explore
a wide range of configurations and workloads without the con-
straints of physical infrastructure, thereby facilitating the evalua-
tion of emerging technologies and operational strategies [23, 62].

The advantages of employing datacenter simulation are substan-
tial. Running experiments on real-world infrastructure expensive,
time-consuming and create environmental impact, even though
they are producing the results closest to reality. Additionally, are
they not equally accessible for everyone. Simulation, on the other
hand, offers a controlled environment for testing. Datacenter simu-
lation supports scalable experimentation involving large numbers
of jobs and machines, enabling rapid what-if analyses that inform
both design and operational decisions. Simulation also plays a valu-
able role in education and the training of future professionals in
the field [62]. Datacenter simulation provides critical insights into
energy efficiency, load balancing, and resource allocation—factors
essential for optimizing performance and reducing operational ex-
penses [11, 83].

As modern datacenters increasingly accommodate computa-
tionally intensive workloads, the demand for high-performance
hardware has intensified. Graphics Processing Units (GPUs) have
emerged as key accelerators for tasks requiring extensive paral-
lelism, including artificial intelligence (AI), machine learning, high-
performance computing (HPC), and large-scale simulations. In con-
trast to Central Processing Units (CPUs), which are optimized for
sequential execution, GPUs are designed to excel at parallel process-
ing, making them particularly effective for data-intensive applica-
tions [61]. This paradigm shift has led to the widespread integration
of GPUs in cloud computing environments, where they significantly
enhance performance across domains ranging from deep learning
inference to scientific modelling [55].

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

The increasing reliance on GPUs in datacenter infrastructures
presents both opportunities and challenges. While GPUs provide
substantial acceleration for parallelizable workloads, their inte-
gration necessitates careful consideration of power consumption,
memory architecture, and data transfer bottlenecks [43]. Contempo-
rary GPU architectures, such as NVIDIA’s Volta and Ampere series,
emphasize advancements like high-bandwidth memory (HBM) and
tensor cores to improve computational efficiency [71]. However,
fully leveraging their potential requires addressing issues related
to workload scheduling, interconnect bandwidth, and coordination
across heterogeneous CPU-GPU systems. Efficient GPU utilization
is therefore critical for minimizing operational costs and energy
usage, making it a central concern in modern cloud infrastructure
design [95].

In light of the increasing complexity of datacenter workloads
and the pivotal role of GPUs in accelerating computation, it is
imperative to examine their impact on datacenter performance
and resource management. Datacenter designers, operators, and
researchers need tools for optimizing, developing new approaches
and generally understanding datacenters. Simulation is part of that
tool set to help stakeholders achieve their goals. This study aims
to investigate how GPUs are integrated into datacenter simulators.
To this end, a structured, keyword-based literature review was con-
ducted to identify and categorize existing design approaches for
GPU-enabled datacenter simulators.

The remainder of this paper is structured as follows: Section 2
provides general background information on GPU technologies.
Section 3 outlines the study design, including the research questions
and methodology. The results are presented in two sections. Section
5 provides an overview of the identified simulators, their design
approaches and their perspective on GPUs. The open challenges
that have been observed during this literature survey are described
in section 6. Section 7 situates this study within the context of
existing literature.

2 BACKGROUND

This section provides information about datacenter simulators their
overall architecture, benefits, and components. Further, a foun-
dational overview of Graphics Processing Units (GPUs) is given,
covering their historical evolution, architectural structure, process-
ing pipeline, and virtualization techniques. The goal is to establish
a shared understanding of GPU concepts relevant to this study.
Finally, a small comparison to CPUs is made.

2.1 Datacenter Simulator

Datacenter simulators have become indispensable tools for the
design and evaluation of cloud computing environments. These
tools enable researchers and practitioners to investigate the perfor-
mance, efficiency, and scalability of datacenter architectures and
management policies without the prohibitive cost and complex-
ity associated with deploying real-world infrastructures [10, 16, 62].

Niels Thiele

Contemporary datacenter simulators predominantly employ
discrete-event simulation (DES) as their underlying methodology. In
DES, system behaviour is modelled as a sequence of discrete, time-
stamped events, thereby enabling efficient simulation of large-scale
systems [62]. Simulator architectures typically encompass represen-
tations of physical infrastructure (e.g., servers, racks, switches), vir-
tualized resources (e.g., virtual machines, containers), and application-
level workloads. A generic model is depicted in figure 1. For in-
stance, platforms such as CloudSim and OpenDC adopt a hierarchi-
cal modelling approach, where physical hosts manage virtualized
components that in turn execute user-defined tasks [10, 62].

Batch HPC
Bag of Tasks

Virtualization and
Serverless (FaaS)

O_O
Sk || |2 g
o o

Spark / TensorFlow |} HPC Tasks

App Managers

Application
Function

Workload

VM / Container

f ~ f
%) 4
-] Workload and j
= Resource Manager
i £
I‘=
[0}
[
Q Application
g Application Function
3 VM / Container
(= Operating System Hypervisor
Host (Bare-metal) Host
Cluster Cluster

Figure 1: "Generic model for datacenter operation.” [62]

The primary motivation for utilizing simulation lies in its ability
to support the design, testing, and optimization of cloud systems in a
flexible and cost-effective manner. Datacenter simulators are widely
used for evaluating resource scheduling and allocation strategies, in-
vestigating energy-aware provisioning techniques, analysing work-
load behaviours, and conducting capacity planning studies under
varying operational scenarios [10, 16]. Furthermore, simulators
provide a controlled environment conducive to reproducible experi-
mentation and serve as valuable pedagogical tools in both academic
and industrial settings [62]. Different implementations of datacen-
ter simulators - or in the case of CloudSim its extensions - focus
on different aspects of datacenters. So provides CloudSim a gen-
eral cloud datacenter implementation, with CPU and memory [17].
CloudSim’s extension NetworkCloudSim implements Networking
capabilities for Datacenters [28]. GreenCloud also simulates net-
working in a datacenter environment, with the additional focus
of energy-awareness [47]. secCloudSim focuses on security in the
cloud, in particular authentication [76], which is, in fact, an exten-
sion of the iCanCloud simulator [67].

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

Simulation offers several advantages over analytical modelling
and real-world experimentation. First, it significantly reduces the
financial and operational costs associated with deploying physical
test beds, particularly when exploring large-scale scenarios. Sec-
ond, it enhances experimental reproducibility by allowing users to
replicate simulation runs under identical input conditions. Third,
it enables scalability by supporting the modelling of vast datacen-
ter topologies and high volumes of concurrent workloads, which
could be achieved with analytical models, but not with real-world
datacenters. Fourth, simulators offer a high degree of flexibility,
allowing for rapid prototyping and evaluation of alternative archi-
tectures or policy configurations. Finally, simulation can offer a
higher flexibility, with the ability to highlight different aspects of
datacenters and combine them, which is more difficult to achieve
in analytical modelling. [62]

Simulation models employed in datacenter simulators differ
based on their level of abstraction and specific application purposes.
A significant number of these simulators utilize discrete-event sim-
ulation, wherein system changes are represented as a sequence of
events occurring between components over time. The discrete na-
ture of this approach assumes that no changes occur between two
successive events[62], in contrast to continuous simulation models,
which presume ongoing change over time. One possible explanation
is the discrete nature of the sampled data that has been obtained
from real-world datacenter. Discrete-event simulation is adopted by
simulators such as CloudSim [17], OpenDC [62], and Het-Sim [41],
among others. Alternative modelling approaches include analytical
models, which abstract the simulation into mathematical formula-
tions; this technique is employed by, for example, MERPSYS [22]
and PyPassT [68].

The network model captures the communication behaviour be-
tween simulated components. Simplified models treat bandwidth
as a static, shareable resource, while more elaborate simulators
incorporate datacenter network topologies (e.g., fat-tree, Jellyfish)
and routing strategies. These models are essential for analysing
congestion and identifying communication bottlenecks [10].

Resource scheduling and load balancing policies play a critical
role in simulation accuracy. Simulators typically include built-in
policies such as time-shared and space-shared scheduling, and of-
ten support user-defined extensions. These mechanisms determine
how virtual machines and tasks are mapped to physical resources,
influencing key performance metrics such as latency, throughput,
and energy consumption [16].

Workload representation in simulations can be based on syn-
thetic models or real-world traces. Common workload parameters
include task arrival rates, resource demands, duration, and spatial
or temporal distributions. Some simulators, such as CloudAna-
lyst, support the modelling of geographically distributed users and
time-varying usage patterns, which are particularly relevant for
web-scale applications [16].

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

2.2 GPUs

Graphics Processing Units (GPUs) have evolved from dedicated
hardware for rendering graphics into powerful accelerators for high-
performance computing (HPC) and artificial intelligence (AI). Their
inherently parallel architecture makes them particularly well-suited
for data-intensive workloads, outperforming traditional Central
Processing Units (CPUs) in many computational scenarios [61, 69].

In the earliest stages of GPU development, the primary function
of graphics processors was limited to rendering basic graphical
elements such as dots and lines. Foundational concepts like ver-
tex transformation and the graphics pipeline emerged during this
period. Over the course of roughly six evolutionary phases, GPU
programmability has increased significantly. A major milestone
occurred in 1999 with the release of the Nvidia GeForce 256, the
first configurable GPU. The introduction of APIs such as DirectX
simplified development, shifting from hardware state modelling
to programmable shaders. This marked the transition from fixed-
function to fully programmable hardware, leading to the emer-
gence of specialized processors for tasks such as audio and video
(de)compression. According to Peddie et al., the current era is de-
fined by the use of mesh shaders, which integrate multiple shader
types into a unified shader architecture, emphasizing their individ-
ual strengths [69].

The GPU processing pipeline consists of several stages. Initially,
data is transferred from the system’s main memory into the GPU’s
memory. This is followed by the execution of kernels—small pro-
grams that run concurrently across thousands of cores. Threads are
distributed to cores, and data flows through the hierarchical mem-
ory structure. Upon completion, the processed data is transferred
back to the system’s main memory [55].

Terminology for GPU components can vary across different
frameworks [55, 69]. This study adheres to the terminology used
within the CUDA programming model for consistency. Despite the
diversity in nomenclature, GPU architectures generally follow a
hierarchical structure, as illustrated in Figure 2.

Cores
Shaders
Processor element (PE)

GPU

Figure 2: Structured GPU component overview [69]

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
339
340
341
342
343

345

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

At the highest level of abstraction in CUDA, the grid represents
the complete problem space, composed of multiple blocks. Each
block contains a group of threads and is independently assigned
to a Streaming Multiprocessor (SM). Within an SM, threads from
a block are executed in parallel. SMs consist of cores that are or-
ganized into groups of 32 threads called warps. A warp executes
the same instruction across different data points simultaneously.
Threads are mapped to individual cores, which represent the funda-
mental computational units of the GPU [55]. An overview of GPU
components is shown in Figure 3.

GPU-to GPU links

P
L
L

Display

<TOEmMET OmMO-<
morrTmaIm-—HZ—

"g?g:’;ifr" Video processor & CODEC

PCle to system

PC system

Figure 3: Component overview of a GPU [69]

Similar to computational units, the memory architecture of a
GPU is also hierarchically organized. At the top of the hierarchy is
global memory, which serves as the GPU’s main memory. It has a
large capacity and high latency, and is accessible by all threads. It
is typically used for storing large datasets shared across the entire
GPU. The next tier is shared memory, which is faster and lower
in latency. It is accessible to all threads within the same block and
facilitates intra-block communication and temporary storage dur-
ing computation. At the lowest level are registers, which are the
fastest memory units and are private to individual threads. If the
required data exceeds the capacity of registers, local memory is
used instead. Local memory is slower than registers but faster than
global memory [55].

Cloud computing relies heavily on virtualization to enable re-
source sharing across users [95]. Various techniques have been de-
veloped to support GPU virtualization in cloud environments. One
approach is full GPU pass-through, where an entire physical GPU
is allocated to a single virtual machine (VM) or container. Another
technique involves software-based sharing of a single physical GPU
among multiple VMs or containers. A third method, introduced by
Nvidia, employs hardware-assisted separation, enabling a physical
GPU to be partitioned into multiple isolated instances capable of
running distinct workloads concurrently.

Niels Thiele

2.3 CPUvs. GPUs

The main difference between a CPU and GPU lies in the purpose
of use, as well as in the design philosophy. CPUs are designed to
support a large range of tasks and have a more general purpose.
Typically, they sequentially execute multiple tasks, ranging from
running an operating system process, executing complex logic,
managing input and output operations, and processing everyday
applications, such as web browsing [55].

The vendor- and design-generation-independent architecture of
CPUs, consists of various components. A control unit (CU) orches-
trates the functioning of the CPU. The memory of the computer,
the arithmetic/logic unit (ALU), and input and output devices are
given the instructions by the CU. The ALU performs the operations
that are of arithmetic or logical nature. To temporarily keep data
and instructions within the CPU, small and fast storage is used, the
so-called registers. Frequently accessed data and instructions are
kept within the cache. An overview can be seen in figure 4

ALU ALU ALU
Control
ALU ALU ALU
10 Cache

Figure 4: High-level CPU architecture overview[55]

GPUs come generally in one of the two following flavours, inte-
grated or discrete. Integrated GPUs are within the same die as the
CPU, and access the same RAM as the CPU. They come at the cost
of fewer cores and therefore less computation power, compared to
a discrete GPU. An architecture overview can be seen in figure 5.
Discrete GPUs are connected via PCle to the CPU and have their
own main memory. [30]

As aforementioned, is the architecture of a GPU built around
the philosophy of a high degree of parallelism, by employing many
cores with fewer capabilities.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

Excavator CPU Accelerated Processing Unit (APU)

ni:l-l:l' P _ Unified Mem. Controller
'L1 cache L1 Cache |; N 1wz

L Dcam $4

GCN GPU < | Graphics Northbridge DDR
[Compuc Ut <= b /10MMUW2 DR

: Compute Unit (64 Streaming Processors)

Compu.te Unit Scheduler | L1
‘ L2 Cache : ‘ Registers | D D D |:| |:|- =1 | Cache

Figure 5: "Architecture of an integrated GPU" [30]

3 STUDY DESIGN

This systematic literature review adopts the methodology proposed
by Carrera-Rivera et al. [18]. The process involves formulating
research questions, identifying appropriate keywords and their syn-
onyms, constructing search queries, and gathering sources from
selected academic libraries. Inclusion, exclusion, and quality assess-
ment criteria are defined to filter the results. Due to the limited
number of relevant studies retrieved in the initial iteration, an
additional semi-structured search was conducted. The extracted
information is subsequently analysed and presented, structured
according to the individual research questions. The details of each
methodological step are described in the following subsections.

3.1 Research Questions

This literature review seeks to address the following research ques-
tions:

RQ1 What are the primary application domains and com-
putational use cases of GPU deployment in datacen-

ters, and what operational and computational challenges

do they introduce?

RQ2 Which existing datacenter simulators represent GPUs
as resource, and what aspects do they cover?
This primary research question is answered by identifying
and characterizing relevant simulators, including their in-
tended use cases and the terminology they employ. To nar-
row down the general question of modelled aspects, the
following questions are stated:

RQ2.1 What is the intended use case of the Datacenter simulator?
What terminology is introduced? What is the Architecture
of the Simulator?

RQ2.2 Which simulation approach is used for the Datacenter sim-
ulator? In which format is the input provided for the simu-
lation?

RQ2.3 To what level of detail are GPUs modelled as infrastructure
components, and how are they integrated into the simulation
process?

RQ3 Which operational and computational challenges in-
troduced by GPU use are not yet fully addressed by
current datacenter simulators?

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

The goal of this research questions is to disclose aspects of
present challenges, that can be filled in future works.

3.2 Search Strategy

To capture the state of the art in this domain, various literature
search techniques are available, including snowballing, systematic
mapping, undirected search, and systematic literature review (SLR)
[18, 46]. While undirected and snowballing approaches can be ef-
fective, they often lack structure and reproducibility, increasing the
risk of missing relevant publications. In contrast, a systematic liter-
ature review ensures a transparent, repeatable process and helps
mitigate these issues [65]. For this literature survey, a mixed ap-
proach has been chosen. First a systematic literature review was
conducted, then a semi-structured, snowball-like second search was
executed.

For this study, the Article Information Parser (AIP)l, developed
by the AtLarge Research Group? at VU Amsterdam, was employed
to ensure reproducibility. AIP integrates data from DBLP [4], Seman-
tic Scholar [7], and AMiner [2] into a unified PostgreSQL database
[1].

The SQL search query, shown in Figure 6, retrieves the title,
the abstract, the venue, and the year the article was published in,
and the DOL The results are then joined with the colon-separated
list of authors of the article. To narrow down the search results, a
filter was constructed by using relevant keywords derived from the
research questions in the ‘WHERE' clause. These keywords, reflect
different datacenter applications combined with simulation-related
terms. They cover different aspects of datacenter use cases, such as
cloud, grid and high-performance computing or plainly datacenter
and simulation. To cover a broad spectrum of terms simulation,
simulator and their related forms are abbreviated to "simulat", to
perform a substring match. It was also attempted to cover different
spelling variations of the other keywords.

A relevance score is computed based on the presence of tar-
get keywords in the title and abstract, prioritizing GPU-related
works. If the title or abstract includes the terms "GPU modelling" 3
points are assigned, while for only mentioning "GPU" in the title
2 points are assigned. 2 points were also given for "heterogenous
computing”, "heterogenous resources", "accelerator-aware", "GPU",
"graphics processor" or "graphics processing unit" in the abstract.
If the title matches "data_center_simulat" or "cloud%sim" - where
the underscores mask one character and the percent symbol any
number of characters - then 1 additional point is given. The results
are ordered by the descending relevance score.

The query also calculates a relative citation index (total citations
divided by publication years) to measure a publication’s academic
impact. To supplement citation data missing from the AIP dataset,
values were retrieved via the Crossref API® using a custom Python
script, available on GitHub®.

Uhttps://github.com/atlarge-research/AIP
Zhttps://atlarge-research.com
Shttps://api.crossref.org/swagger-ui/index.html#/Works/get_works
“https://github.com/noleu/literature_study

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

https://github.com/atlarge-research/AIP
https://atlarge-research.com
https://api.crossref.org/swagger-ui/index.html#/Works/get_works
https://github.com/noleu/literature_study

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

WITH author_agg AS (
SELECT app.paper_id, STRING_AGG(a.name, ', ') AS authors
FROM author_paper_pairs app
JOIN authors a ON app.author_id = a.id
GROUP BY app.paper_id)
SELECT
p.title,
p.abstract,
p.venue,
p.year,
p.doi,
aa.authors,

0 as relative_citation_index,

(CASE
WHEN p.title ILIKE '% GPU modeling%'
OR p.abstract ILIKE '% GPU modeling%' THEN 3
WHEN p.title ILIKE '% GPU%'
OR p.title ILIKE '%heterogeneous computing%'
OR p.abstract ILIKE '%heterogeneous computing¥%'
THEN 2
WHEN p.abstract ILIKE '%accelerator-aware%'
OR p.abstract ILIKE '%heterogeneous resources%’
THEN 2
WHEN p.abstract ILIKE '% GPU%'
OR p.abstract ILIKE '%graphics processor%’
OR p.abstract ILIKE '%graphics processing unit%'
THEN 1
else 0
END +
CASE
WHEN p.title ILIKE '%data_center_simulat%' THEN 1
WHEN p.title ILIKE '%cloud%sim%' THEN 1
ELSE @
END
) as relevance_score

FROM publications p
JOIN author_agg aa ON p.id = aa.paper_id
WHERE p.year >= 2015
AND (
(p.title ILIKE '%data_centre_simulat%'
OR p.title ILIKE '%data_center_simulat%'
OR p.title ILIKE '%cloud_simulat%'
OR p.title ILIKE '%cloudsim%’
OR p.title ILIKE '%cloud_computing_simulat%'
OR (p.title ILIKE '%grid_computing_simulat%'
OR p.title ILIKE '%grid_compute_simulat%')
OR p.title ILIKE '%
high_performance_computing_simulat%’
OR p.title ILIKE '%HPC_simulat%')
)
ORDER BY relevance_score DESC;

Figure 6: SQL Query used to identify relevant literature.

Niels Thiele

In addition to the structured AIP-based search, a semi-structured
query process using Google Scholar® was conducted. A prelimi-
nary list of datacenter simulators was assembled based on prior
literature reviews [44, 63, 64, 79, 96] and simulators identified in
prior work as candidates for GPU integration [31, 42, 45, 77, 101].
For each simulator, Google Scholar was queried using the format
"$NAME_OF_SIMULATOR" GPU, replacing $NAME_OF _SIMULATOR
with the simulator’s name (e.g., CloudSim, PICS). The first page
of results for each query was reviewed to identify any additional
relevant publications.

A second snowballing-based search has been conducted to an-
swer research question RQ2. With the use of Google Scholars cited
by function, follow-up articles were identified and their content
scanned. Articles that are not using the simulator were then not fur-
ther considered. This search was conducted, to identify topics that
had not been covered in the article introducing the simulator. The
articles found in this search are not accounted for in the statistics.

3.3 Selection Criteria

To ensure high quality and relevance of the included studies, the
following inclusion and exclusion criteria were applied:

I1 The abstract indicates that the study implements or models
GPUs in a datacenter/cloud/grid/HPC simulator or explores
GPU-related aspects such as power consumption or compu-
tational performance.

I2 The full text contains evidence of datacenter simulations
incorporating GPU-enabled infrastructure.

E1 Studies that are not peer-reviewed (e.g., preprints) are ex-
cluded to maintain quality standards.

E2 Publications not in English or German are excluded due to
time and accuracy constraints related to translation.

E3 Duplicate entries across the datasets are removed.

E4 Studies focused solely on other datacenter topics (e.g., VM mi-
gration, load balancing) without specific reference to GPUs
or heterogeneous resources are excluded.

E5 Studies published before 2015 are excluded, as 10 years of
publication time are sufficient to cover state-of-the-art im-
plementations, and pioneers of the field.

Shttps://scholar.google.com

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

https://scholar.google.com

811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846

859
860
861
862
863

864

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

3.4 Data Extraction

The selection and screening process was conducted in multiple
rounds:

(1) Initial filtering: The AIP database was queried, and relative
citation indices were computed. Articles with a relevance
score of 0 were discarded.

(2) Abstract screening: Remaining articles were screened based
on their abstracts. Articles that clearly did not meet the inclu-
sion criteria were excluded. Ambiguous cases were marked
for further review.

(3) Full-text screening: For articles flagged as undecided, a
more detailed skim of the full text was performed to deter-
mine inclusion.

(4) Semi-structured search: Articles identified via the Google
Scholar search underwent the same abstract and full-text
screening procedure.

(5) Data synthesis: The content of the included studies was
summarized, and key findings were extracted and catego-
rized by research question.

Table 1 summarizes the number of articles retained and excluded
at each stage of the screening process. Initially, the AIP dataset
contained over 18 million entries. After filtering out duplicates and
irrelevant entries (e.g., those with a relevance score of 0), abstract
and full-text screening reduced the dataset to three selected articles.
The semi-structured search added three more, bringing the total
to six. Across all search iterations, approximately 500 article titles,
abstracts, and previews were reviewed for potential inclusion. The
articles that have been rejected, mostly matched the exclusion
criteria E4, covering datacenter simulation, however a different
aspect.

l Phase H Rejected [Undecided [Selected ‘
Abstract Screening 185 96 2
Full-Text Screening 280 0 3

Table 1: Selection status at the end of each screening round.

Only for the articles about Cloudy [86], GPUCloudSim [85],
Het-Sim [41], and MERPSYS[22] could follow-up work be found.
The search for GPUCloudSim, revealed 32 citations of the origi-
nal work, Het-Sim has 2 citations, and MERPSYS has 40 citations.
While reading the articles it became clear, that 1 citation accounted
for GPUCloudSim, actually uses Cloudy. Summarizing work such
as reviews and surveys were not included in the data extraction
process.

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

4 GPUS IN DATACENTER AND THEIR
OPERATIONAL AND COMPUTATIONAL
CHALLENGES

This section of the literature survey covers the answers to Research
Question RQ1 "In which scientific and industrial domains are GPUs
deployed within datacenters, and what computational problems do
they address?". In the first section, we discuss application domains
in which GPUs play an important role. In the second half of this
section, the operational and computational problems arising from
the use of GPUs in datacenters will be discussed.

4.1 Applications of GPUs in Datacenters
Across Domains

Graphics Processing Units (GPUs) have become indispensable in
modern datacenters due to their massive parallelism and perfor-
mance benefits across a diverse array of workloads. Their adoption
spans several critical domains, from research applications, such
as mathematical simulation, to user-facing applications such as
media streaming. In this subsection of the literature survey, these
application domains are discussed in more detail.

4.1.1 Deep learning and Al. GPUs have become indispensable in
Al workloads, particularly for accelerating both the training and
inference phases of deep learning (DL) models. During the train-
ing process, DL models undergo iterative computations involving
forward and backward propagation, as well as parameter updates,
which are inherently parallel and computationally intensive. GPUs
are well-suited for such operations due to their high throughput
capabilities and support for distributed training schemes, such as
PyTorch’s ‘DistributedDataParallel’ and TensorFlow’s ‘MultiWork-
erMirroredStrategy‘ [100]. To reduce training time for large-scale
datasets and complex architectures, training workloads are typically
deployed across multiple GPUs. These workloads exhibit distinct
characteristics, including gang scheduling, exclusive resource allo-
cation, and sensitivity to hardware placement—particularly in rela-
tion to interconnect technologies like PCle and NVLink [36, 100]. As
such, GPU-accelerated datacenters enable the efficient development
and deployment of DL models across various domains, including
computer vision, natural language processing, and reinforcement
learning, where resource heterogeneity and communication over-
head significantly impact performance [36].

In the context of inference workloads, GPUs offer the computa-
tional efficiency necessary to meet stringent service-level objectives,
such as sub-100ms response times for real-time applications in per-
sonalized recommendation, facial recognition, and language trans-
lation. Inference tasks are typically latency-sensitive and resource-
light, but must be capable of scaling dynamically in response to fluc-
tuating query loads. To maintain low-latency and high-throughput
operation, inference workloads frequently utilize batching mech-
anisms and performance-aware scheduling strategies. However,
traditional CPU-oriented orchestrators often fail to accommodate
the temporal and resource-specific requirements of GPU-based
inference. Studies have demonstrated that GPU-aware orchestra-
tion layers—such as Knots—can enhance both resource utilization
and energy efficiency by leveraging real-time GPU telemetry and

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

945
946
947
948
949

959

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

1002

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

topology-aware scheduling decisions [97]. These insights under-
score the critical role of GPUs in ensuring both the computational
scalability of DL training and the responsiveness of Al inference
services.

4.1.2 User Facing Services. GPUs are increasingly deployed in dat-
acenters to meet the performance demands of User-Facing ser-
vices such as real-time translation, voice recognition, and web
search. These services typically involve latency-sensitive deep learn-
ing inference tasks, where the end-to-end response time must be
within strict Quality-of-Service (QoS) targets, often ranging be-
tween 100-300 ms [102]. For example, applications like Apple Siri
or Google Translate rely on deep neural networks (DNNs) accel-
erated by GPUs to provide real-time responses to user queries.
The adoption of GPUs for such services is motivated not only by
their high computational throughput, but also by their ability to
maintain responsiveness under varying workloads. However, these
services tend to follow diurnal usage patterns, leaving GPU re-
sources underutilized during off-peak times. This has prompted
efforts to co-locate user-facing services with throughput-oriented
batch applications to improve resource utilization without violating
QoS constraints [102].

To address the challenges of co-locating such workloads, new
scheduling mechanisms and runtime systems have been proposed.
For instance, C-Laius, a runtime system designed for spatial multi-
tasking GPUs, dynamically allocates “just-enough” computational
resources to user-facing tasks to meet their latency targets while
assigning the remaining GPU capacity to batch jobs. Unlike tradi-
tional time-sharing models that queue tasks sequentially, spatial
multitasking allows simultaneous execution of kernels from dif-
ferent applications. C-Laius predicts task performance, monitors
progress, and reallocates resources at runtime to prevent QoS vi-
olations due to contention for shared resources such as memory
bandwidth and Streaming Multiprocessors (SMs). Evaluation on
NVIDIA RTX 2080Ti GPUs demonstrated that C-Laius could in-
crease GPU utilization by up to 35.9% while ensuring that no QoS
violations occur in multi-tenant scenarios [102]. Similarly, Knots, an
extension of Kubernetes, introduces GPU-awareness in orchestra-
tion by monitoring GPU-specific metrics to reduce queuing delays
and ensure SLA compliance for latency-critical user services [97].

4.1.3 Batch and HPC Simulations. Batch and high-performance
computing (HPC) workloads represent another significant category
where GPUs are extensively utilized in datacenter environments.
These workloads include scientific simulations, weather forecasting,
data analytics, and computational modelling, all of which benefit
from GPUs’ high arithmetic throughput and parallel processing
capabilities. Compared to user-facing services, batch and HPC jobs
are typically throughput-oriented and less sensitive to latency, en-
abling better scheduling flexibility. For example, organizations like
Facebook have built large-scale GPU clusters tailored for machine
learning (ML) workloads, supporting deep neural network training,
gradient-boosted decision trees, and logistic regression tasks [99].
Such systems rely on telemetry and performance profiling tools
to monitor and optimize the execution of resource-intensive batch
jobs at scale.

Niels Thiele

A notable trend in this domain is the use of GPU virtualization to
enhance resource utilization and management efficiency. Technolo-
gies like NVIDIA GRID vGPU and rCUDA allow multiple virtual
machines to share GPU resources either through direct or medi-
ated pass-through, making it possible to consolidate workloads
and reduce idle times [39, 51]. This is particularly advantageous in
HPC settings, where GPU underutilization is a persistent challenge
due to fragmented job resource requirements. Studies indicate that
virtual GPU systems can maintain near-native performance while
enabling features like live migration, suspend/resume, and dynamic
resource allocation. In some experiments, datacenters using vir-
tualized GPUs achieved significant throughput gains and energy
savings, especially when combining long-running batch jobs with
short, opportunistic workloads on the same physical hardware [39].
These advances are pivotal for scaling HPC workloads in modern
cloud and hybrid datacenter environments.

4.1.4 Microservices and Cloud Services. Microservices and modu-
lar cloud services are increasingly leveraging GPUs to accelerate
specific components of complex applications, particularly in media
processing, machine learning inference, and data analytics. With
the shift from monolithic to microservice architectures, cloud ap-
plications are decomposed into smaller, independently deployable
components that can scale and execute concurrently. This approach
aligns well with GPU-enabled spatial multitasking, where multiple
application components share the same GPU through logical parti-
tioning of resources such as Streaming Multiprocessors (SMs) and
memory. For instance, applications like real-time video analytics or
Al-driven content enhancement often consist of chained compo-
nents—decoding, enhancement, and inference—each of which can
be offloaded to the GPU [81]. By assigning GPU compute slices to
individual microservices, platforms can increase throughput while
maintaining responsiveness.

Supporting microservices with GPUs introduces significant sched-
uling and data movement challenges. In synchronous microservice
chains, components depend on the timely delivery of intermediate
results, and inefficient GPU resource sharing can lead to bottlenecks
and queuing delays. To address these issues, recent research pro-
poses dynamic resource management policies that monitor online
performance and adapt GPU allocations in real time. These systems
can categorize components based on workload characteristics and
dynamically reallocate streaming multiprocessors (SMs) to balance
resource utilization and reduce input loss or latency spikes [81].
Complementing this approach, He et al. [33] introduce DxPU, a
disaggregated GPU infrastructure tailored for cloud environments,
which addresses the scalability and flexibility limitations of conven-
tional server-centric GPU deployments. Traditional architectures
statically attach GPUs to host servers, resulting in underutilization
and increased maintenance complexity. DxPU decouples GPU re-
sources from physical hosts by utilizing proxies at the host and the
GPU side, enabling more granular and efficient resource provision-
ing across microservice-based workloads.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139

1140

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

4.2 Operational and Computational Challenges

Even though GPUs bring significant benefit, compared to a CPU-
only approach, through their high degree of parallelization and
throughput, some challenges also arise from the use of them. These
challenges cover the aspects, among others, resource management
and scheduling, power and energy concerns, and fault-tolerance.
In this subsection, the computational and operational challenges,
will be discussed.

4.2.1 Resource Management and Scheduling. Resource manage-
ment and scheduling are significantly more complex for GPUs than
for CPUs due to fundamental differences in architecture, usage
patterns, and orchestration tooling. Unlike CPUs, which are well-
supported by mature schedulers that offer fine-grained resource
allocation (e.g., per-core scheduling), GPUs are typically managed as
coarse-grained, monolithic resources. For instance, schedulers like
Kubernetes and Mesos allocate GPUs at the device level, giving an
entire GPU to a single container or virtual machine regardless of ac-
tual demand. This leads to inefficient utilization, particularly when
the GPU-bound application does not saturate the GPU’s compute
and memory capacity. Furthermore, containers often overestimate
their GPU resource requirements, exacerbating underutilization
and causing queuing delays that impact latency-sensitive workloads
[97].

Another complicating factor is the lack of real-time GPU visibil-
ity and dynamic control in current orchestration systems. While
CPUs benefit from extensive support for metrics such as load, mem-
ory usage, and task affinity, GPUs lack similar integration in con-
tainer orchestrators. For example, Kubernetes does not natively
support preemption or fine-grained load balancing for GPU-bound
tasks, and cannot easily query GPU-specific telemetry like Stream-
ing Multiprocessor (SM) utilization, memory pressure, or PCle
bandwidth consumption [97]. This blind spot makes it difficult
for orchestration systems to schedule GPU workloads intelligently,
especially in environments where GPU and CPU tasks must co-exist
or when different workloads (e.g., batch and real-time inference) are
competing for limited GPU resources. Without GPU-aware sched-
uling extensions or custom resource managers, the system risks
both performance degradation and energy inefficiency.

Simulation-based evaluation can play a vital role in improv-
ing GPU scheduling strategies. By using datacenter simulators
that support GPU modelling, researchers can prototype and assess
alternative resource management policies—such as fine-grained
SM allocation, workload-aware scheduling, or preemption strate-
gies—without risking service disruption or hardware inefficiency.
This enables systematic exploration of how orchestration frame-
works could better accommodate GPU-specific metrics and sharing
mechanisms under varied workload mixes.

4.2.2 Virtualization and Disaggregation. Virtualization and disag-
gregation present more challenges for GPUs than for CPUs due
to architectural and software limitations that hinder flexible re-
source sharing. While CPUs are already well-supported in virtual-
ized environments with fine-grained control over core and mem-
ory allocation, GPUs typically require full-device pass-through
virtual machines, limiting their sharing potential. For instance, in
pass-through mode, a GPU is exclusively assigned to a single VM,

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

preventing concurrent use by multiple tenants and leading to under-
utilization [51]. Although mediated pass-through technologies like
NVIDIA GRID vGPU introduce shared access by partitioning GPU
memory and scheduling compute time slices, these solutions are
constrained by static vGPU profiles and limited to one vGPU per
VM. Moreover, the scheduling mechanisms—such as Fixed Share or
Equal Share—lack dynamic adaptability, often resulting in subopti-
mal GPU cycle distribution across workloads [51].

Disaggregation, where GPUs are decoupled from the host server
and pooled for flexible access, introduces further complications.
Traditional PCle-based disaggregation architectures restrict the
scope to rack-scale deployments due to physical cable length and
bandwidth limitations. Emerging solutions like DxPU [33] aim to
overcome these constraints by virtualizing GPUs at the PCle trans-
action layer and enabling datacenter-scale pooling via networked
proxies. However, even these advanced systems face challenges
related to software compatibility, latency overhead, and limited
support for diverse GPU models and frameworks. For example,
while DxPU achieves less than 10% performance degradation in
most cases, maintaining high compatibility across software stacks
(e.g., CUDA, OpenGL) and managing dynamic workload migra-
tions remains difficult. Compared to CPU disaggregation, where
memory and I/O virtualization are mature, GPU disaggregation
demands specialized hardware-software co-design and remains a
nascent but critical area for scaling heterogeneous workloads in
cloud datacenters [33].

Simulators provide a test bed for evaluating emerging GPU virtu-
alization and disaggregation techniques. For example, architectural
trade-offs between pass-through, vGPU, and networked GPU mod-
els can be benchmarked in silico to understand their performance
implications, resource sharing efficiency, and compatibility con-
straints. This is particularly important for early-stage solutions like
DxPU, where real-world deployment remains complex and costly.

4.2.3 Sustainability. The integration of Graphics Processing Units
(GPUs) in datacenters has significantly influenced the sustainability
profile of these facilities. As GPU-intensive workloads—particularly
those in AI and high-performance computing—proliferate, they
drive up energy consumption dramatically. Studies show that Al
racks powered by GPUs can consume nearly seven times more
electricity than their CPU-based counterparts, leading to substan-
tial increases in heat generation and cooling demands [20]. This
elevated thermal output, if not addressed through advanced cooling
strategies, exacerbates operational inefficiencies and contributes
to higher carbon footprints. Consequently, the adoption of energy-
efficient cooling technologies such as direct-to-chip and immersion
cooling is essential to mitigate environmental impact, especially in
facilities running large-scale Al operations [52].

Beyond electricity usage, GPU-driven datacenters also pose chal-
lenges to water sustainability. Traditional cooling systems often
rely heavily on water, making datacenters significant contributors
to local water stress. However, innovations such as hybrid air-liquid
cooling and the use of non-potable water sources (e.g., seawater)
offer promising solutions. For example, studies demonstrate that
facilities employing seawater-based cooling can maintain a Water
Usage Effectiveness (WUE) of 0, essentially eliminating potable
water consumption for cooling purposes [52]. These developments

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
7
1172
1173
1174
1175
1176
177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

are crucial as the sector seeks to align with global climate goals
and regional regulations aimed at reducing both greenhouse gas
emissions and water consumption. Overall, the environmental im-
plications of GPU adoption in datacenters underscore the need for
integrated sustainability strategies that address both energy and
water usage holistically.

Sustainability strategies can be validated through simulation
before real-world implementation. Datacenter simulators allow
modelling the power consumption and cooling requirements of
various GPU deployment configurations. They can also incorpo-
rate cooling system models to evaluate how different strategies
(e.g., immersion vs. direct-to-chip cooling) impact the datacenter’s
energy usage and water footprint, offering valuable insights for
environmentally informed infrastructure planning.

4.24 Power and Energy Efficiency. The integration of GPUs in dat-
acenter deployments amplifies the importance of power and energy
efficiency, especially when compared to CPU-only systems. This
is primarily due to the substantially higher power consumption
and thermal output associated with modern GPUs. For instance,
contemporary GPUs such as the NVIDIA GA100 and GV100 can
consume up to 500W, and even more advanced models like the H100
can reach thermal design power (TDP) levels of 10.2 kW, signifi-
cantly exceeding that of most CPUs [13, 94]. These elevated power
demands challenge the capacity of existing cooling and power dis-
tribution infrastructures, especially in high-density deployment
scenarios typical for large-scale inference workloads. Moreover,
energy inefficiencies translate into increased operational expenses
and infrastructure stress, necessitating advanced scheduling and
resource management techniques that explicitly consider thermal
and power profiles [94].

Additionally, the interplay between GPU power consumption
and operational reliability further underscores the criticality of
energy-aware design. Studies have shown that higher GPU power
consumption correlates with increased temperatures and elevated
soft-error rates, particularly in large-scale, long-running scientific
computations [66]. Unlike CPUs, GPUs often exhibit greater ther-
mal variability and shorter retention in thermal equilibrium states,
leading to frequent transitions between thermal extremes and mak-
ing them more sensitive to inefficient power management. This not
only affects system stability but can also degrade performance due
to thermal throttling and error correction overheads. Consequently,
effective energy efficiency strategies for GPU deployments must ad-
dress not just power draw, but also the dynamic thermal behaviour
and its impact on performance and reliability [13, 66].

Simulated environments help quantify and mitigate the energy
inefficiencies introduced by GPU deployments. By modelling GPU
power profiles, workload characteristics, and thermal behaviour,
simulations can guide energy-aware scheduling and provisioning
strategies. Furthermore, what-if analyses can be conducted to as-
sess the trade-offs between performance and power draw across
different hardware and workload configurations.

4.2.5 Data Transfer and Memory Management. Data transfer and
memory management are more problematic with GPUs than with
CPUs primarily due to the separation between host (CPU) and
device (GPU) memory and the overhead incurred during data move-
ment over the PCle bus. In GPU-accelerated applications, especially

10

Niels Thiele

in microservice architectures, components often need to exchange
intermediate data, which requires frequent and costly transfers be-
tween CPU and GPU memory. This overhead becomes particularly
significant in synchronous microservice-based applications where
downstream components must wait for upstream results before
proceeding. The latency introduced by these transfers can degrade
the overall application throughput and response time, especially
when GPU memory is not efficiently reused or shared [81].

To mitigate these issues, recent research proposes shared memory-

based data exchange and kernel execution overlap to reduce PCle
congestion and enhance performance. For example, in microservice-
based object detection pipelines, using shared GPU memory instead
of UDP-based inter-component communication has demonstrated
up to 6x improvements in throughput [81]. Additionally, the default
memory management techniques in GPUs often rely on static parti-
tioning or time-sharing, which fails to adapt to varying workloads
with dynamic memory demands. In contrast, CPUs benefit from
unified memory spaces and OS-level paging mechanisms that are
better suited for complex, interdependent applications. The lack of
fine-grained, dynamic memory control in GPU environments limits
the scalability of multi-component applications, emphasizing the
need for enhanced GPU memory management strategies tailored
for modern cloud workloads.

Simulation can reveal the bottlenecks caused by data transfer
between CPU and GPU memory. This allows system designers to
prototype shared memory optimizations, overlapping computation
with data movement, or testing new architectural changes—such
as faster interconnects or memory hierarchies—before committing
to costly hardware changes.

4.2.6 Thermal Instability in GPUs: Operational Constraints and In-
frastructure Implications. The thermal design power (TDP) of GPUs
significantly exceeds that of CPUs, with modern GPUs reaching
700W and nearing 1000W, compared to CPUs at around 500W per
socket [21]. This elevated power density leads to more frequent and
extreme thermal states, creating substantial challenges for datacen-
ter infrastructure. GPUs exhibit faster and more frequent transitions
between hot and normal thermal states than CPUs, resulting in
highly dynamic thermal behaviour that is difficult to manage using
traditional cooling methods [66]. These conditions increase cooling
demands and heighten the risk of thermally induced soft errors and
reduced reliability.

To address these challenges, datacenters are adopting advanced
cooling technologies that go beyond conventional air cooling. These
include direct liquid cooling (DLC) with water or propylene glycol,
single-phase and two-phase immersion cooling, and microfluidic
systems, all offering superior thermal performance and sustainabil-
ity benefits [21, 75]. For instance, cold plate-based single-phase
liquid cooling has demonstrated thermal resistances as low as
0.015°C/W [75]. However, immersion and two-phase systems also
require considerations such as contamination risks and hardware
compatibility. As a result, cooling strategies must not only be effi-
cient but also adaptable to the rapidly shifting thermal demands of
high-power GPU deployments.

Thermal simulation is critical for evaluating cooling strategies
under GPU-intensive workloads. Simulators that incorporate ther-
mal models can be used to predict heat distribution, identify hotspots,

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

1416

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

and test the effectiveness of cooling technologies like immersion
cooling or microfluidic systems. This enables infrastructure en-
gineers to make data-informed decisions without risking service
interruption or hardware degradation.

4.2.7 Fault Tolerance Challenges in CPU-GPU Hybrid Systems.
GPU failures in heterogeneous systems can significantly disrupt
workloads, especially in domains like deep learning and high per-
formance simulations. A failed GPU may crash inference services
or halt distributed training, causing major performance losses and
service level violations due to the GPU’s central role in parallel
processing. CPUs typically cannot compensate for such failures, as
they lack the throughput needed for GPU-accelerated tasks. While
some dynamic load balancing strategies can redistribute tasks, the
performance penalty remains substantial. In contrast, CPU failures
are often less severe in such systems, as other CPUs may take over
control and orchestration duties more easily [56, 57, 98].

Host CPU failures, however, also have a critical impact on GPU
workloads. GPUs rely on the CPU for coordination, data transfers,
and memory management, including page fault servicing in sys-
tems using Unified Virtual Memory (UVM). If the host fails, GPU
execution may stall entirely, regardless of the GPU’s operational
status. Unlike CPU-only systems, which can often recover from
single-node failures using redundancy, heterogeneous CPU-GPU
systems are more fragile because of this interdependence. Even
advanced interconnects like NVLink cannot offset the loss of host-
side orchestration, leading to a complete halt of GPU workloads
[14, 91].

Simulation enables controlled exploration of failure scenarios in
heterogeneous systems. Fault injection models can be used to assess
the resilience of GPU-accelerated workloads to both GPU and host
CPU failures. These simulations help identify failure propagation
patterns, test redundancy mechanisms, and evaluate load balancing
approaches that might be impractical to test in live systems due to
risk or cost.

5 DESIGN OVERVIEW

In this and the next section, the contributions of this study are
presented: the results of the literature review. This section focuses
on answering research question RQ2, describing the different im-
plementations. First, an overview is provided of the selected sim-
ulators, including their intended purposes and a representative
subset of their features. This is followed by a comparative analysis
of their respective simulation approaches and the types of input
data they require. Finally, the level of granularity at which GPUs
are represented and integrated within the simulations is discussed.
A summary of these findings is provided in Table 2.

5.1 General overview of the simulators

Despite the relatively small number of datacenter simulators iden-
tified that support GPU simulation, their respective purposes and
feature sets vary significantly.

The authors of Cloudy [86] recognized a gap in the ease of
integrating libraries for integer linear programming and machine
learning, such as TensorFlow. Given the widespread use of Python

11

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

for such applications [25], it was selected as the language for im-
plementation. Rather than offering detailed implementations for all
simulation aspects, Cloudy provides abstract base classes designed
to be extended by the user. Nevertheless, example and default im-
plementations are available in the public repository®.

Cloudy’s simulation framework combines cloud component mod-
els with system control classes that govern their behaviour. The
App, Container, and Deployment classes represent applications and
their resource demands, while the Controller enforces operational
policies within clusters. Virtual infrastructure is abstracted through
the Vm, Pm, and DataCenter classes, representing virtual machines,
physical machines, and the overall cloud environment, respectively.
User behaviour and service demands are modelled using the User,
Action, and Request classes. System operation and resource man-
agement are implemented via the Os, Vmm, Vmp, and ControlPlane
classes, which coordinate application execution, VM allocation,
placement strategies, and policy enforcement. These components
collectively enable dynamic and adaptable cloud management.

DCSim [35], developed by Hu et al., is designed to study container-
related operations such as request handling, scheduling, execution,
communication, migration, and completion on heterogeneous com-
pute infrastructures. It employs SimPy [6] for discrete-event simu-
lation and Mininet [9] for network emulation.

An architectural overview is shown in Figure 7. DCSim consists
of five core modules: datacenter, network, container scheduling, dis-
crete event driver, and data collection and analysis. The datacenter
module manages hosts and workloads. A workload is defined as a
Jjob with a specified completion time, comprising at least one task.
Tasks are characterized by their resource requirements and may run
across multiple container instances, which may be CPU-, memory-,
or GPU-intensive. Runtime is determined by both instruction exe-
cution and communication time.

The network module utilizes Mininet objects defined by user
scripts, incorporating host, switch, and controller components to em-
ulate virtual network topologies and software-defined networking.
The container scheduling module handles placement and execution
strategies, and includes five predefined scheduling algorithms. The
event driver, based on SimPy, coordinates simulation time and flow,
as further detailed in Section 5.2. Lastly, the data collection and
analysis module logs metrics regarding hosts, containers, network
usage, and events.

®https://github.com/ahmad-siavashi/cloudy

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

https://github.com/ahmad-siavashi/cloudy

1497
1498
1499
1500

1501

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands Niels Thiele
Simulator Use Case Simulation Workload Level of Reference | Year
Name Approach Input Type Granularity
Python, Integer Number of
Cloudy Linear Programming Event-driven Model-based Instructions: [86] 2023
& Al libraries FLOPS
. . Number of
DCSim Contalngr—Schgduhng Event-driven Trace-based Instructions: [35] 2024
& Simulation
FLOPS
Cores of a Video card,
. GPU-support in . Co-running application
GPUCloudSim Cloud Simulator Event-driven Model-based interference, PCle Bandwidth, [85] 2019
GPU-virtualization-impact
Het-Sim High-level het.e FOBENCOUS | pvent-driven Unclear Numbe‘r of [41] 2018
datacenter simulation Instructions
HPC-/Cluster . Application- Number of Instructions 2017,
MERPSYS Simulation Analytical Model-based per time unit [22,73] 2016
Accurate, Performant,
Scalable, performance . - Number of Instructions
PyPassT ’ Anal 1 Appl - 201
yrass prediction Framework nalytica pplication-based per Cycle & Memory Access (8] 018
for parallel applications
. Special Case of Workload: .
WCSim Workflow of Bags of Tasks Event-driven Trace-based Boolean [26] 2023

Table 2: Summary of the results

Data Collection and Analysis

(Host Data J Network Data ¢

I

Datacenter

Host

GPU Server | (CPU Server

Container List

Finish
Complctcj cl|c2|..|cn

Workload

New Container

i (Running

Waiting

Deploy/Migrate

Discrete Event
Driven

Decision

Containef Schedule

Selection }—-' Placement

Monitoring

Figure 7: DCSim’s architecture as depicted in [35]

GPUCloudSim [85] extends the CloudSim [17] framework to in-
corporate GPU support in cloud datacenter simulation. The authors
identified a lack of GPU-aware simulators and proposed modular
extensions layered on top of the original Java-based CloudSim im-
plementation, without requiring changes to the base code. Figure 8
visualizes the multi-layered architecture.

The GPUCloudSim layer provides classes for modelling GPU-
enabled infrastructures. The interference layer enables simulation

12

of application co-location on GPUs. The performance layer captures
the performance impact of GPU virtualization techniques such as
API remoting, full and para-virtualization, and hardware-assisted
virtualization. Finally, the power-aware layer models GPU energy
consumption. The layers are depicted in figured 8.

~ Power-aware ™~
-
GPUCloudSim ™

e Performance-aware \\

GPUCloudSim b
/’// \\‘\

/ Interference-aware
GPUCloudSim
GPUCloudSim

CloudSim

Figure 8: "GPUCloudSim Architecture. Layers are added
gradually so that a GPU-enabled cloud computing data cen-
ter can be simulated based on research requirements. Upper
layers add new features to lower layers; hence, lower layers
can be used independently from upper layers" [85]

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

The main terminology is defined by CloudSim’s architecture,
which is visualized in figure 9. It comprises several fundamen-
tal components: Data Centers, overseeing multiple Hosts (physi-
cal machines) which allocate Virtual Machines (VMs) to execute
computational tasks. VMs host Cloudlets, representing application
workloads, and are managed by VmSchedulers using either space-
shared or time-shared allocation policies. The DatacenterBroker
(Cloud Broker) facilitates VM provisioning and workload distribu-
tion across cloud providers, while the CloudCoordinator manages
inter-cloud federation and resource sharing mechanisms. Addition-
ally, CloudSim integrates a NetworkTopology model to simulate
communication latencies and a PowerModel to assess energy con-
sumption. [17]

User code

Simulation
Specification

lou ser Application
Scenario Requi Configuration

’ User or Data Center Broker ‘

Scheduling
Policy

CloudSim

User
Interface

Cloudlet

Structures
M Cloudet
Services Execution

Virtual
Machine
WM
Management

Cloud W cPU Memory Storage Bandwidth
Services | [_Provisionin: Allocation Allocation Allocation Allocation
Cloud Events Cloud
Resources Handling Sersor Coordinator Deta Center
Network Message delay
e

CloudSim core simulation engine |

Figure 9: CloudSim Architecture Overview [17]

In contrast to previously named simulators, Het-Sim [41] fo-
cuses not on simulating the cloud environment, but a broader dat-
acenter environment. This simulator enables users to model a di-
versity of user requests on hosts with heterogeneous resources on
a high-level. The (theoretical) model on which Het-Sim is based,
starts on the highest-level with a datacenter, containing numbered
rack cabinets with shelves which are numbered as well. Each shelve
contains either a storage unit or a processing unit, each unit is iden-
tified by the tuple of rack and shelve number. A storage unit is
typically a hard disk as permanent data storage. A processing unit
has a type, which is either CPU, GPUs, application-specific FPGA
accelerator, or application specific integrated circuit (ASIC), and
is generally just referred to as accelerators. It manifested that the
majority of processing units are not CPUs, but other types of ac-
celerators. Communication within the datacenter can occur either,

13

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

within the same shelve (direct), the same rack (intra-rack) or be-
tween racks (inter-rack). The bandwidth is assumed to decrease
from direct communication over intra-rack communication and
ending with inter-rack communication. The computational element
of work in Het-Sim is a task. Each task has a type, describing the
work that is done. The type is any of the following: integer com-
puting (INT), floating-point computation which is inefficient on a
GPU (GPU-averse), floating-point computation which is efficient
on a GPU (GPU-Affine), memory-intensive computation (MEM),
I/O-intensive computation (I/O), arbitrary computation suitable for
an FPGA (ARB) or none of it and therefore unspecified (UNSPEC).
A set of typed tasks is a job, which can be scaled across multiple
processing units and is requested by a client. A workload combines
the job attributes with the information of the submitting user, and
the location of the stored input data. A schematic outline of Het-Sim
is given in figure 10.

Tasks queue

runping or cmplt’ed |tasks
- —
"-scheduling

= (o

workload = 2\
description & ’
TeetY

job and task

deployment
description

accelerators: busy on busy

Figure 10: "Schematic outline of Het-Sim" [41]

MERPSYS by Czarnul et al. [22] is the next simulator not focus-
ing on cloud simulation, but in this case, on high-performance com-
puting simulation of parallel applications on large-scale systems,
including systems of Volunteers. Parallel application paradigms
that are supported include Master-Worker, geometric parallelism aka
Single Program Multiple Data (SPMD), and divide-and-conquer. The
main element in MERPSYS is called a Component, and is the base
of all entities. Entities that can be connected, either by network
or system bus, have the base class Connectable. Connectables are
combined into machines or groups, which then form a cluster. A
group is connected through LAN or WAN. Components can also
either be Computational or Storage. Computationals can either be
CPUs, GPUs or Volunteer systems. Storage is either Memory, Disc,
or a DiscArray. Workloads in MERPSYS are generally application
models written in a Java-like language, their details are explained in
subsection 5.2. An overview of the class-diagram selection, can be
seen in figure 11. At least one aggregator with at least one compo-
nent and a network, and a specific computational model is required
for simulation. To simulate the application, it is suggested by the
authors to run a subset on a real cluster to calibrate the computation
model. As a simulation result, the execution time, the consumed
energy and the fault probability are returned.

CEREERRE))

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
v

18

9

20

21

22

23

24

25

27

28

29
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
177
1772

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

Niels Thiele

F-------
.

Figure 11: Selection of classes in MERPSYS [22]

PyPassT is another simulator not focusing directly on cloud
scenarios, but on simulation of High-performance-computing. The
foundation of the analytical simulation, is OpenACC annotated C-
code, which is then transformed into an PPT application model. To
achieve this, Obaida et al. have extended and then combined several
libraries, such as COMPASS[3] and PPT[8]. With PyPassT it is possi-
ble to simulate different hardware configurations, job scheduling tech-
niques, networking and MPI in the form of network topology and
interference by other applications and rate limiting asbackground
traffic. The actual simulation is then handled by PPT. An overview
of the prediction framework can be found in figure 12, and the
description of model generation can be found in 5.2.

OpenACC Annotated Static High Level
Application Source in C 7| Analysis inline IR
PPT Application
Model < PPT Transform

v

PPT Parallel Architecture |e

« Hardware Config

Interconnection Network « Job Scheduling
Models MPI « Task Mapping
Compute Node Model | Model « Background Traffic
CPU+Memory+GPU

Figure 12: "An overview of PyPassT prediction framework."
[68]

14

The main focus of WCSim [26] is to model a specific type of
workload called directed acyclic graph (DAG) of bags of tasks (DoB).
This new workload type combines the attributes of workflow tasks,
with dependencies between them and bags of tasks. The application
was developed under the assumptions that DoBs are launched on
VMs which are owned by Users, which are virtualized on physical
infrastructure. Physical infrastructure is composed of datacenters
being a set of processing servers. Processing servers are connected
by a 2-layer network. The first layer being the connection within a
datacenter and the second layer the connection between multiple
datacenters. Each connection is bidirectional. Further, a processing
server consists of CPU cores, RAM, and storage and can host one or
more GPUs and has an ID. Processing power is defined in "million
instructions per second"(MIPS), memory and storage are measured
in GB. Additionally, are costs associated with a PS for each unit
used by the respective resource. The unitization of a processing
server is divided into 8 brackets, increasing in steps of 25% ranging
from 0 to 200. For each bracket, the percent of simulation time
spent in that utilization bracket is given as output. The bracket (0,
25%] is considered idle time. As aforementioned, are users creating
computational demand through the submission of applications. The
assigned group and priority influence the scheduling decisions for
a user. Groups determine where tasks may be executed, either one
specific VM in one datacenter, marked as the home datacenter,
may migrate their tasks across different datacenters, or may use
cloud bursting. Cloud bursting describes the process of offloading
overloading applications to a public cloud. To use the infrastructure,
the user needs to spend credits stored in their wallet. An excerpt of
the UML class diagram can be seen in figure 13.

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910

1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

1968

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

VML i UserLoginEv Scheduler
;1: ;g; ;1: ;g; Extends
1
VM User Job Task I I
Scheduler_1 Scheduler_n
0..n] A 1 1 1.n A 1 1.n Extends
Hosts | T Own Launch | Contains. A
E‘ﬁ?ﬂﬂs Exieruta Exkerats Extends Extends
1 L
| Scheduler_1_1
Log 4 Component 1| FutureEventsList Event
Q' 1
1 Billing Wallet Kernel GlobalClock

Figure 13: An excerpt of the UML class diagram of WCSim [26]

5.2 Simulator’s control model & Input format

Similar to Gallia in Asterix & Obelix seems, the world of datacenter
simulator ruled by an event-driven simulation approach, with some
strongholds following an analytical approach. More diversity can
be seen other the hand in the matter of how simulation parameters
and especially workload is provided, including various file-formats.

Cloudy utilizes a queue system as the core component of the
simulation. In publish-subscribe-pattern, messages are exchanged
between various components involved in the simulation. The rel-
evance of an event message for a simulation component is deter-
mined by the message’s topic. The topics are concerning requests,
apps, containers, deployments among other things, and can be ex-
tended if required. The simulation input is given purely as python
code, defining physical infrastructure, virtual machines and appli-
cation and how and when they should be scheduled, finished by
the call to simulate the given scenario and report the results. This
model-like input, allows the definition of used threads per appli-
cation and their duration in cycles and giving that application a
name, such as NGINX. VMs have resource requests defined, in the
form of CPUs core, RAM in MB and a GPU compute engines and
memory blocks, and OS. Physical machines are defined with the
same parameters, with the exception that the OS is replaced with a
virtual machine monitor. The Virtual machine placement policy is
attached to the datacenter creation. The example of an input, given
by the authors, can be seen in Figure 14.

15

As indicated in, belongsDCSim also to the family of event-driven
datacenter simulators. It consists of 4 key components inherited
from SimPy. The environment, concerned with scheduling processes,
events, the progression of simulation, as well as the advancement
and completion of the simulation. A process implements a simula-
tion model, uses the standard python generator function to yield
events, which blocks the yielding process, until completion of said
event. An event is described as an asynchronous occurrence used
to control the operation, it can only be triggered once. The store
component models producer-consumer-relationships within the
system, helping to maintain dependency relationships. To start a
simulation, the user needs to provide the datacenter configuration,
including performance specification of the hosts, in a CSV format.
Additionally, in an INI format are the workload task flows and
simulation parameters provided. The network is defined in custom
python scripts.

The next event-driven datacenter simulator is GPUCloudSim,
due to the use CloudSim. GPUCloudSim just extends the abstract
class SimEntity, to create additional event-aware classes such as
GPUDataCenter and GPUDataCenterBroker. To model GPU-specific
events, the GPUCloudSimTags is implemented, but not further ex-
plained. GPUCloudSim takes the simulation definition in the form
of code. Neither the CloudSim nor the GPUCloudSim paper pro-
vide any detail about the simulation input, a code inspection of
the GPUCloudSim repository” revealed this detail. In the examples,
a datacenter with hardware specification, including the construc-
tion of videocards in their details. Further, the respective VMs and
Cloudlets are created via looping. Finally, the Simulation is started,
stopped and the cloudlets retrieved for further analysis.

https://git.ceit.aut.ac.ir/lpds/gpucloudsim

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048

https://git.ceit.aut.ac.ir/lpds/gpucloudsim

2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

2106

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

Niels Thiele

1 app = App(NAME=’Nginx’, LENGTH=(1, 1, 1))

2 vm = Vm(NAME=’WebServer’, CPU=1, RAM=1024, GPU=(2, 2), 0S=0sTimeShared)

3 vm.0S.schedule ([appl)

4 request = Request (ARRIVAL=0, VM=vm)

5 user = User (NAME=’Portal’, REQUESTS=[request])

6 pm = Pm(NAME=’HPE’, CPU=(2, 2), RAM=2048, GPU=((7, 8),), VMM=meSpaceShared)
7 datacenter = DataCenter (NAME=’Tehran’, HOSTS=[pm], VMP=VmpFirstFit)

¢ Simulation (NAME=’Example’, USER=user, DATACENTER=datacenter).run().report()

Figure 14: Example simulation input for Cloudy given by [86]

In figure 15, can the theoretical high-level view of Het-Sim’s
core component be seen, the time machine. While the simulation
is running, events are continuously pushed and popped onto the
queue. These events include the arrival of tasks, the completion of
computation and optionally the current utilisation of the simulated
system. It is mentioned that the simulation input consists of files
describing the workload and the deployment. No further informa-
tion is given on how the input is exactly structured, only that in
the future realistic workload traces should be supported.

deployment
wn
—
(U]
9 g
%)) t k wn
Io) asks queue "
o _— 2
Ny [|][]] 2
‘EE ‘T\ (L
© , o
head-of-line T
[0}
N
B et e T »
task selection unit selection

Figure 15: Theoretical model of Het-Sim’s time machine [41]

The simulation model of MERPSYS appears to be extendable via
coefficients in the simulation definition. Further details could not
be found in [22], but in [73]. Generally does, the MERPSYS appears
to be following an analytical approach, rather than an event-driven
approach. The functions compromising the computational model
utilize the number of threads, number of operations and parame-
ters of the hardware involved in the simulation. MERPSYS is used
via a Web application interface, where simulation infrastructure
is defined via a Graphical interface. The workload is defined via
Java-like pseudocode, defining the application model. The code con-
sists of computational blocks and communication blocks. Besides,
not mentioned parameters, are the parameters for the data size,
the computation type, a complexity function based on the input
size, and number of threads or processes used. The communica-
tion blocks can use the methods for point to point, one to one and

16

scatter communication, to model communication being similar to
MPI, Hadoop. Different software stacks - such as programming
languages - can be considered in the simulation, by naming them
in the respective blocks.

Just as MERPSYS, does PyPassT not follow an event-driven, but
rather an analytical approach. The computation time is calculated
by addition of instruction execution time and main memory access
timing at one core. The memory access timing is calculated via a
probabilistic state graph, forecast the chances of a code block to be
executed. Communication is included by letting the sending core
sleep for the predicted computation time at the remote core. The
given C source code with openAcc annotations is compiled into
a high-level inline intermediate representation, by static analysis.
The goal is to identify computation blocks, communication blocks,
memory access and GPU operations and model these blocks in
ASPEN(93] code. The ASPEN code consists of blocks which are
defined by flops, loads, stores, other memory operations, and intra-
and internode communication. The abstracted communication is
represented as MPI operations. The abstract code representation is
then transformed into a PPT model via the use of COMPASS++, an
extension of COMPASS to model computation and communication.
How other input, such as infrastructure, is required to be presented
is not further determined.

WCSim does not only close the list of simulators in this lit-
erature review, but also the long list of event-driven datacenter
simulators. The produced events can either be exogenous or endoge-
nous. Exogenous events are provided via the simulation input at
launch time and could be the booting of a processing server or
job submission by a user. The input is provided in 3 different files,
leading to a trace-based approach. All files are CSV-formatted, with
different extensions. The .dob extensions describes the submitted
workload, with an arrival time, the task owner, required resources,
number of tasks in this job, and the number of tasks that need to
be completed before this job can be started. The file with extension
.pas describes the Users during the simulation, their assigned home
datacenter, their group, the time the user will log onto the system.
When a file has the extension .inf, then it describes the infrastruc-
ture during simulation with WCSim. The description contains an
ID, the starting time, a family (of which the meaning is not further
elaborated), and the communication cost to each following instance.

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186

2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243

2244

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

5.3 Level of Granularity

As the different datacenter simulators vary in their feature sets
and intentions, so does the level of granularity of how GPUs are
considered in terms of hardware simulation. Further, do the simu-
lators differ in how they perceive GPUs, ranging from "yet another
CPU" to "a nearly independent system". Not only the information
provided by the article has been used for this subsection, but also
some code inspection, to clarify details. A high-level overview of
the findings can be seen in figure 16.

DCSim Cloudy
) - GPUCloudSim
‘ WCSim ‘ | Het-Sim ‘ MerpSys PyPassT
1] 1 1 H
= = : : ;
v Y
Yet
another Mearly
CPU Indepented
System

Figure 16: Approximate ranking of granularity levels simu-
lating GPUs in datacenter

Similar to the majority of the findings, does cloudy tend to be
closer to the "yet another CPU" end of the range, utilizing the num-
ber of FLOPs of Nvidia A100, the number of compute engines and
the number of memory blocks to define a GPU. A code inspection
revealed?®, that the GPU instructions cycles are not considered, to
determine if a task is finished, This could lead to an inaccuracy
during simulation, if some applications require less CPU cycles
than GPU cycles to complete.

In the summary of related work, it is stated that DCSim uses
FLOPs as the metric for GPU specification. In the evaluation sec-
tion of the same article, the GPU is defined by the number of cores
and a single-digit inter representing the GPU speed. A public code
repository could not be found, but two other simulators with the
same name, one datacenter simulator? and one high-energy physics
workload simulator'?. Therefore, DCSim is placed with uncertainty
on coarse end of simulation granularity, leading to "yet another
CPU".

GPUCloudSim defines one end of the given range of classifica-
tion. GPUs in GPUCloudSim form "a nearly independent system".
On the top abstraction level is a videocard placed, which is the com-
ponent attached to a physical host, via high-speed PCIe. The PCle
connection interface is shared by all videocards which are attached
to the same host. In a video card are one or more GPUs placed.
Multiple Streaming multiprocessors, which are "Single Instructions
Multiple Data" cores, form a GPU. Virtual machines have a vir-
tual GPU (vGPU) attached, they are implemented via CloudSims Pe
class. How the processing power is shared among resident vGPUs is
defined via the implementation of the abstract class VgpuScheduler.

8https://github.com/ahmad- siavashi/cloudy/blob/212b5addbd694edfogb1d8874797e2b4253d9f0/

src/policy/os.py#L15
“https://github.com/digs-uwo/dcsim/tree/master
1Ohttps://github.com/HEPCompSim/DCSim

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

Per host exists a VideoCardAllocationPolicy determining the provi-
sioning policy of video cards to vGPUs, this is an abstract class. The
provisioning policy of PCle bandwidth needs to be implemented via
the abstract class VideoCardBwProvisioner. The mapping of vGPUs
onto physical GPUs is determined by implementing a policy in
the abstract class PgpuSelectionPolicy. The virtualization overhead
can be modelled via the PerformanceModel interface, an interface
of a scheduler for this layer is provided via PerformanceScheduler.
Power-awareness of videocard is created via the VideoCardPower-
Model interface. Allocation of processing power in the form of Pe is
defined via the abstract class PeProvisioner. GDDR Ram provision-
ing policies are represented by the GpuGddramProvisioner abstract
class, and how the bandwidth to that GPU memory is allocated
can be provided via GPUBwProvisioner. How vGPUs execute their
tasks is defined with GpuTaskScheduler abstract class. Interference
of co-running GPU tasks, can be modelled by implementing the
Interference model interface. From this high-level description, one
can get an intuition of how many aspects of a GPU are consid-
ered in GPUCloudSim, and how many more ways own models can
be incorporated. Some default implementations for the respective
models and policies have been provided, their details are omitted
in this systematic literature review.

The perspective on GPUs in Het-Sim is on the opposite end
of the spectrum, than GPUCloudSim, and considers GPUs as "yet
another CPU" or as Kanellou et al. call it an accelerator. [41] So
are GPUs defined via their amount of FLOPs, which should be sig-
nificantly higher than of CPUs. The processing speed is the main
factor of determining the completion of a task on a processing unit
and is calculated by the number of operations, that a task requires,
divided by the affinity mapping. The affinity mapping is the number
of operations per time unit an accelerator can perform.

Similar to the majority of simulators, are GPUs not simulated in
great detail in MERPSYS. Given by the general and overview-like
description in [22] and the formulas in [73], is that GPUs are also
seen "yet another CPU". In the given computation model are the
number of instructions multiplied by the time needed to execute a
single instruction. The time per instruction, varies depending on
if less threads than cores are used, with the minimal time. A time
overhead is added if hyperthreading is used, and a linear increase
in time is assumed for each instruction if more threads than cores
are needed. The level of detail in the simulation may vary with the
chosen computational model; however, it is not clear how such a
computational model can be defined. Or if it is pre-defined as the
hardware.

After reading the article about PyPassT the reader was left with
the impression that the usage of GPUs in PyPassT falls close to "yet
another CPU". This impression was created due to displaying the
GPU as an example of an accelerator and not explicitly (enough)
mentioning the difference in treatment of CPUs and GPUs. A code
inspection on the PPT repository!! revealed that the simulation
is actually closer to the end of "a nearly independent system", by

Uhttps://github.com/lanl/PPT/blob/9fd25471a9623f301ab0e15f9459f647cda7d32a/
code/hardware/processors_new.py#L2423

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324

https://github.com/ahmad-siavashi/cloudy/blob/212b5addbd694edf08b1d88747f97e2b4253d9f0/src/policy/os.py#L15
https://github.com/ahmad-siavashi/cloudy/blob/212b5addbd694edf08b1d88747f97e2b4253d9f0/src/policy/os.py#L15
https://github.com/digs-uwo/dcsim/tree/master
https://github.com/HEPCompSim/DCSim
https://github.com/lanl/PPT/blob/9fd25471a9623f301ab0e15f9459f647cda7d32a/code/hardware/processors_new.py#L2423
https://github.com/lanl/PPT/blob/9fd25471a9623f301ab0e15f9459f647cda7d32a/code/hardware/processors_new.py#L2423

2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381

2382

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

considering GPU cycles, memory access in the advancement of the
simulation. This allows a (cycle) accurate simulation of the given
parallel application.

In the article of WCSim itself it is mentioned that GPUs are
supported as part of the infrastructure, however an analysis of the
code!? revealed that the GPUs of the simulated infrastructure have
the data type boolean!3. Meaning that the GPUs can be signalled to
be existing, but have no input on the acceleration power, nor on the
advancement of simulation workload. Therefore, is GPU support
in WCSim considered to be not implemented.

6 COVERED AND REMAINING CHALLENGES

This section of the literature study presents the findings related
to Research Question 3, which addresses unresolved challenges in
GPU deployments within datacenter simulations. As outlined in
Section 3, a secondary snowballing search was conducted to identify
articles based on the original datacenter simulator implementations.
This section builds on the challenges identified and discussed in
Section 4.2 in response to Research Question 1. It examines which
of these challenges have already been addressed by the datacenter
simulators identified through Research Question 2 (Section 5). These
addressed challenges are discussed first, followed by the remaining
open problems, each accompanied by a brief motivation.

6.1 Problems Addressed Through Experiments

Section 5 offered an overview of the supported features, intended
use cases, and simulation approaches of the respective datacenter
simulators. This subsection outlines the experiments and use cases
previously explored, hereafter collectively referred to as experi-
ments for simplicity. All articles introducing a datacenter simulator
include at least one experiment, which can generally be classified
into one of three categories: “proof of accuracy”, “comparison to
other simulators”, or “use case demonstration”.

Both MERPSYS [22] and PyPassT [68] fall into the “proof of
accuracy” category. In their respective evaluations, the authors
compare simulation outcomes against results from executing the
same applications on actual hardware. In the case of MERPSYS,
three applications—each representing a distinct parallel program-
ming paradigm—are developed: Master-Worker!4, Geometric Single
Program Multiple Data, and Divide-and-Conquer. The experiment
does not involve GPUs as a hardware component. Obaida et al.
evaluate PyPassT [68] in three steps: firstly, by assessing the sim-
ulator’s accuracy in predicting resource utilisation (FLOPS, loads,
stores) and runtime; secondly, by verifying the simulator’s runtime
prediction in scenarios involving GPU usage; and thirdly, by val-
idating the accuracy of predicted byte transfers for different MPI
commands.

Both Cloudy [86] and WCSim [26] present experiments compar-
ing their simulators to other datacenter simulators. In both cases,

12There was no public repository given in the article, a search revealed nearly identical
repositories from different authors of this study. The newer one has been chosen.
Bhttps://github.com/GersonCavalheiro/WCSim/blob/
d9e32eb36db05fc65e36f31falb00ec97f1613b3/host.cpp#L19

4Name is adjusted

18

Niels Thiele

CloudSim is used as a baseline for comparison—CloudSim Plus for
WCSim, and the original CloudSim for Cloudy. WCSim additionally
includes SimGrid in the comparative analysis. Dos Santos et al.
compare the simulation and execution times of WCSim with those
of other simulators across 100, 1000, and 10000 tasks, executed on
two different hardware configurations. Cloudy evaluates execution
time, CPU utilisation, and memory usage of the host system during
the simulation of an Alibaba Cluster trace. This simulation excludes
GPUs due to the absence of GPU support in CloudSim. It is possible
that GPUCloudSim was not selected for comparison because both
Cloudy and GPUCloudSim were authored by Siavashi et al.

The published introductions of DCSim [35], GPUCloudSim [85],
Het-Sim [41], and WCSim [26] all include demonstrations of use
cases relevant to their respective simulators. Each article compares
various schedulers, including at least one newly adapted variant
of a pre-existing scheduler. These schedulers pursue different opti-
misation objectives, tailored to the intended use case. For example,
DCSim aims to co-locate dependent containers; GPUCloudSim ex-
amines the interaction between GPU and host allocation; Het-Sim
considers task preferences to varying degrees, with one scheduler
attempting to minimise the distance between computation and data;
and WCSim analyses the cost implications of offloading tasks to
the cloud. Additionally, GPUCloudSim evaluates its scalability in
terms of application and infrastructure size. Notably, the WCSim
experiments do not incorporate GPUs.

6.2 Problems Addressed Through Follow-Up
Work

Some simulators discussed in this study have been extended through
subsequent publications. To account for these developments and
avoid mistakenly identifying previously addressed issues as open
challenges, a follow-up literature search was conducted. This sec-
tion discusses such follow-up work where applicable. No follow-up
work was identified for DCSim, PyPassT, or WCSim. The citations of
Het-Sim [32, 54] do not include practical usage or extensions of the
simulator. Citations of MERPSYS often express an intent to transfer
prior insights into the simulator, as seen in [48, 49, 72, 74, 78].

For Cloudy, a follow-up study [88] proposes an Integer Linear
Programming-based scheduler aimed at reducing GPU fragmenta-
tion through migration, leveraging NVIDIA’s Multi-Instance GPU
(MIG) technology.

Follow-up studies using GPUCloudSim as a platform mostly fo-
cus on the implementation of various scheduling algorithms. Smith
et al. [90] develop a thermal-aware scheduling algorithm to reduce
datacenter energy consumption, combining GPUCloudSim with
CloudSim Plus. Siavashi et al. introduce GPU API remoting and a
scheduler named gVMP [87], also examining network traffic over-
heads. Zhao et al. [103] propose a scheduling firework algorithm
optimising VM placement with respect to energy consumption.
Kulkarni et al. [50] develop a scheduler that considers GPU memory
during task placement, optimising both make span and energy use.
Gao et al. [27] implement a grey wolf-based scheduling algorithm
targeting electricity cost reduction in cloud gaming datacenters.

2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

https://github.com/GersonCavalheiro/WCSim/blob/d9e32eb36db05fc65e36f31fa1b00ec97f1613b3/host.cpp#L19
https://github.com/GersonCavalheiro/WCSim/blob/d9e32eb36db05fc65e36f31fa1b00ec97f1613b3/host.cpp#L19

2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519

2520

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

6.3 Remaining Problems

Building on the discussion in Section 4.2 addressing Research Ques-
tion 1, this subsection outlines and motivates the open challenges
identified in the reviewed literature.

6.3.1 Interplay Between Scheduling and GPU Allocation. While
some studies have explored the relationship between GPU alloca-
tion at the host level and workload scheduling at the datacenter
level, these remain limited. The use-case demonstrations in GPU-
CloudSim [85] include different datacenter-level scheduling and
GPU allocation policies, but the applied strategies—Breadth-First
Search and Depth-First Search—are relatively rudimentary. The
authors conclude that GPU selection policies had minimal impact
due to GPU overprovisioning relative to workload demands. Fur-
ther developments in this area, such as those by Siavashi et al. [88],
aim to reduce GPU fragmentation, yet additional combinations of
datacenter- and host-level allocation policies are still unexplored
[38]. Overall, GPU allocation remains underrepresented in datacen-
ter simulators. A deeper understanding of its effects can lead to
improvements in performance, cost-efficiency, and energy usage
[53, 100].

6.3.2 Carbon Footprint. Although datacenters contribute an esti-
mated 1-2% of global carbon emissions [15], none of the reviewed
simulators consider carbon footprint in their models. Incorporating
both embodied and operational carbon costs of ICT infrastructure
could inform decisions on whether to retain existing hardware
deployments or upgrade to newer, potentially more sustainable
configurations.

6.3.3 Thermal Modelling. Thermal effects—key to sustainability
and energy consumption—are largely absent from current simu-
lators. Only one study [90] considers GPU thermal output when
designing a scheduler. None of the simulators reviewed can perform
thermal modelling natively; the aforementioned study required the
integration of multiple CloudSim extensions. Future research should
encompass thermal effects alongside other environmental concerns
such as water usage to present a more comprehensive and realistic
simulation environment [29].

6.3.4 Failure Modelling. The reviewed simulators lack experimen-
tal evaluations involving failure scenarios—be it GPU, host, or
component-level failures—despite growing research interest in fail-
ure characteristics of GPU-intensive workloads, such as AI [34, 37].
Integrating failure modelling capabilities would enable more robust
investigations under varying reliability conditions.

6.3.5 Integration of Challenges. While each of the above challenges
warrants investigation in its own right, datacenters are complex
systems composed of interacting components. A holistic approach
that simultaneously addresses multiple challenges could yield in-
sights that isolated investigations cannot [89, 92]. Although it may
be technically feasible to achieve such integration by combining
existing CloudSim extensions, doing so often requires in-depth
programming knowledge and may involve updating unmaintained
codebases. A simulator that natively supports a subset of these chal-
lenges would enhance usability and accessibility for researchers
[82].

19

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

7 RELATED WORK

Several surveys and systematic literature reviews have examined
the modelling of computing systems and datacenter simulation.
Most of these studies analyse a subset of simulators and offer guid-
ance primarily for end-users [10, 16, 60, 70, 80, 84], often supple-
mented by popularity rankings based on citations in academic
literature [58]. Other reviews focus on specific aspects of simula-
tion, such as energy and power consumption [24, 40, 59].

A comprehensive overview of energy modelling in datacenter
components is provided by Dayarathna et al. [24]. Their survey
introduces energy models for a wide range of components, from
low-level hardware such as single-core CPUs and various storage
types, to higher-level abstractions including operating systems, vir-
tualization technologies, and data-intensive applications. While the
coverage is extensive, the focus is solely on energy consumption
rather than the modelling of the components themselves, which is
the focus of the present study.

Makaratzis et al. [59] examine how five different simulators rep-
resent hardware components during workload execution. However,
their work does not provide a systematic characterization of the
identified models. Moreover, the study is limited to CPUs, storage,
networking, and energy aspects, with no discussion of GPU mod-
elling.

The survey by Bambrik [16] offers a broad analysis of the fea-
tures found in various cloud simulators. In addition to discussing
architectural characteristics and the motivations behind simulator
development, it presents varying levels of implementation detail, de-
pending on the relevance to each simulator. Although informative,
the survey does not classify or compare implementation strategies,
and GPU modelling is not addressed, as it falls outside the scope of
their investigation.

Ismail’s work [40] extends the findings of Makaratzis et al. [59]
by analysing which IT (e.g., CPU, memory, servers) and non-IT
components (e.g., cooling, lighting, heating) are incorporated into
energy models within datacenter simulators. However, further func-
tional or architectural modelling aspects of these simulators are
not discussed.

Mansouri et al. [60] conduct a broad evaluation of 33 datacen-
ter simulators to guide researchers and practitioners in selecting
appropriate tools. Their analysis considers simulator features, archi-
tectural design, and supported models. Nonetheless, architectural
discussions are largely limited to high-level structural descriptions,
typically presented through figures or brief textual summaries. The
study serves primarily as a user’s guide, rather than a developer-
oriented resource.

Sanjalawe et al. [80] present a similar guide with a narrower fo-
cus on fewer simulators. While this work provides a more detailed
examination compared to [60], it still omits modelling details of
individual components. The emphasis remains on performance and
usability from an end-user perspective, rather than on simulator

2599
2600

2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

development.

Alaei et al. [12] offer a focused survey on heterogeneous CPU-
GPU architectures and associated simulators. Their work begins
with an introduction to GPU functionality and proceeds to identify
key challenges in heterogeneous systems, such as shared resource
management, task scheduling, and energy efficiency. Notably, the
survey reviews five cycle-accurate simulators and evaluates them
against these challenges, concluding with design recommendations
for simulator implementation. Among existing literature, this study
is most closely related to the present work. The key distinction lies
in scope: while Alaei et al. focus on cycle-accurate GPU simula-
tors that could potentially be extended to multi-node datacenter
settings, this study directly investigates datacenter simulators with
GPU modelling as a central concern.

Although prior studies—such as [24, 59]—address certain aspects
of component modelling in datacenters, there remains a significant
gap in developer-oriented overviews and discussions of design
decisions. This systematic literature review aims to bridge that gap
and provide an up-to-date understanding of the current state of
datacenter modelling, particularly regarding GPU integration.

8 CONCLUSION

In this systematic literature review, the different designs decisions
of datacenter simulators implementing GPU-enabled simulations.
The respective purpose of the simulators have been studied, an
introduction to their terminology, as well as the simulation model
and the input requirements have been described. Finally, the differ-
ent level considered details in the simulating the hardware and the
influence of GPUs in the simulation process have been ranked.

To identify datacenter simulators with simulated GPUs, a sys-
tematic literature search has been conducted with the use of AIP.
Due to limited results, a keyword-based search along existing data-
center simulator implementations has been conducted with Google
Scholar. Approximately 500 articles have been screened, from which
7 made it into the final selection.

The findings showcase, that only a few datacenter simulators
have the desired implementations. Despite the small number show
the implementations a diverse set of design decisions. Ranging from
cycle-accurate modelling to a boolean representation of GPUs in
the simulated hardware. The majority based their GPU-simulation
design on the number of instructions or floating-point operations.
Inspecting the publicly available code repositories suggests a non-
complete implementation of a selection of simulators.

While progress in GPU modelling for datacenter simulators is
evident, the challenges outlined in this literature review suggest
that the field remains in an early stage of maturity. The lack of
coordination across scheduling layers, limited architectural fidelity,
and the tendency to address isolated aspects rather than system-
wide interactions point to clear limitations in current approaches.
These gaps highlight the potential for more integrated and modular
simulation frameworks that can better reflect the complexity of

20

Niels Thiele

modern heterogeneous infrastructures. By addressing these issues,
future work can support more realistic and flexible experimentation,
helping to bridge the divide between simulation-based research
and the practical needs of operational datacenters.

Interested readers could use this guide to either extend their
existing datacenter simulator with GPU-support in simulation, or
implement a new one filling a gap that the existing implementations
have not done yet. Further, could this survey be the foundation to
test the difference implementations extensively to showcase their
difference in behaviour and test the made claims by the authors. A
different spin on the last idea is to select one or two simulators and
implement various multi-objective scheduling algorithms.

2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738

2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

REFERENCES

[1] [n.d.]. AIP/docs/pdfs/5C_group_final_report.pdf at master -

5C_group_final_report.pdf
[2] [n.d.]. AMiner - Al-----. https://www.aminer.cn/

[3] [n.d.]. COMPASS | Proceedings of the 29th ACM on International Conference

on Supercomputing. https://dl.acm.org/doi/abs/10.1145/2751205.2751220

[4] [n.d.]. dblp: How can I download the whole dblp dataset? https://dblp.uni-

trier.de/faq/How+can+I+download+the+whole+dblp+dataset.html
[5] [nd].

programme

[6] [n.d.]. Overview — SimPy 4.1.2.dev8+g81c7218 documentation. https://simpy.

readthedocs.io/en/latest/
[7] [n.d.]. Semantic Scholar Academic Graph API | Semantic Scholar.
//www.semanticscholar.org/product/api
2024. lanl/PPT. https://github.com/lanl/PPT
06T22:52:06Z.
[9] 2025. mininet/mininet.
2011-04-21T17:46:06Z.

=

[10] Mohamed Abu Sharkh, Ali Kanso, Abdallah Shami, and Peter Ohlén. 2016.
Building a cloud on earth: A study of cloud computing data center simulators.
Computer Networks 108 (Oct. 2016), 78-96. https://doi.org/10.1016/j.comnet.

2016.06.037
[11

[12

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.8318.
[13

//doi.org/10.1016/j.future.2023.07.011
[14

Optim. 21, 1 (Jan. 2024), 14:1-14:24. https://doi.org/10.1145/3632953
[15

3630626

=
&

00273-1
(17

spe.995 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.995.
[18

2022.101895
(19

https://doi.org/10.1016/].seja.2024.100068

™
=

https://doi.org/10.15680/[JIRSET.2025.1402015
[21

2577-1000.

[22] Pawel Czarnul, Jarostaw Kuchta, Mariusz Matuszek, Jerzy Proficz, Pawel Ros-
ciszewski, Michal Wojcik, and Julian Szymanski. 2017. MERPSYS: An envi-
ronment for simulation of parallel application execution on large scale HPC
systems. Simulation Modelling Practice and Theory 77 (Sept. 2017), 124-140.

https://doi.org/10.1016/j.simpat.2017.05.009
[23

atlarge-
research/AIP. https://github.com/atlarge-research/AIP/blob/master/docs/pdfs/

Digital Decade - Policy programme | Shaping Europe’s digital fu-
ture. https://digital-strategy.ec.europa.eu/en/policies/digital-decade-policy-

https:
original-date: 2017-10-

https://github.com/mininet/mininet original-date:

Baris Aksanli, Jagannathan Venkatesh, and T. S Rosing. 2012. Using Datacenter
Simulation to Evaluate Green Energy Integration. Computer 45, 9 (Sept. 2012),
56-64. https://doi.org/10.1109/MC.2012.249 Conference Name: Computer.

Mohammad Alaei and Fahimeh Yazdanpanah. 2025. A Survey on Heterogeneous
CPU-GPU Architectures and Simulators. Concurrency and Computation: Practice
and Experience 37, 1 (2025), e8318. https://doi.org/10.1002/cpe.8318 _eprint:

Ghazanfar Ali, Mert Side, Sridutt Bhalachandra, Nicholas J. Wright, and Yong
Chen. 2023. An automated and portable method for selecting an optimal GPU
frequency. Future Generation Computer Systems 149 (Dec. 2023), 71-88. https:

Tyler Allen, Bennett Cooper, and Rong Ge. 2024. Fine-grain Quantitative Anal-
ysis of Demand Paging in Unified Virtual Memory. ACM Trans. Archit. Code

Thomas Anderson, Adam Belay, Mosharaf Chowdhury, Asaf Cidon, and Irene
Zhang. 2023. Treehouse: A Case For Carbon-Aware Datacenter Software. SIGEN-
ERGY Energy Inform. Rev. 3, 3 (Oct. 2023), 64-70. https://doi.org/10.1145/3630614.

Ilyas Bambrik. 2020. A Survey on Cloud Computing Simulation and Modeling.
SN Computer Science 1, 5 (Aug. 2020), 249. https://doi.org/10.1007/542979-020-

Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. 2011. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience 41, 1 (2011), 23-50. https://doi.org/10.1002/

Angela Carrera-Rivera, William Ochoa, Felix Larrinaga, and Ganix Lasa. 2022.
How-to conduct a systematic literature review: A quick guide for computer
science research. MethodsX 9 (Jan. 2022), 101895. https://doi.org/10.1016/j.mex.

Michael Chrysostomou, Nicholas Christofides, and Stelios Ioannou. 2024. Turn-
ing weakness into strength - A feasibility analysis and comparison of datacenter
deployment in hot and cold climates. Solar Energy Advances 4 (Jan. 2024), 100068.

Cloud Infrastructure Engineering, Oracle Corporation, Raleigh, USA, Kr-
ishna Chaitanya Sunkara, Krishnaiah Narukulla, and Core Platform Engineer-
ing, Roku, San Jose, USA. 2025. Power Consumption and Heat Dissipation
in AI Data Centers: A Comparative Analysis. International Journal of In-
novative Research in Science, Engineering and Technology 14, 02 (Feb. 2025).

Robert Curtis, Tim Shedd, and Emily B. Clark. 2023. Performance Comparison of
Five Data Center Server Thermal Management Technologies. In 2023 39th Semi-
conductor Thermal Measurement, Modeling & Management Symposium (SEMI-
THERM). 1-9. https://doi.org/10.23919/SEMI-THERM59981.2023.10267908 ISSN:

Ala Darabseh, Mahmoud Al-Ayyoub, Yaser Jararweh, Elhadj Benkhelifa, Mladen
Vouk, and Andy Rindos. 2015. SDDC: A Software Defined Datacenter Experi-
mental Framework. In 2015 3rd International Conference on Future Internet of

21

[24

[25

[26]

[27

[28

[29]

[30]

[31

[32

[33

[34]

[35

[36

[37

[38

[39

[40

[41

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

Things and Cloud. 189-194. https://doi.org/10.1109/FiCloud.2015.127

Miyuru Dayarathna, Yonggang Wen, and Rui Fan. 2016. Data Center Energy
Consumption Modeling: A Survey. IEEE Communications Surveys & Tutorials
18, 1(2016), 732-794. https://doi.org/10.1109/COMST.2015.2481183 Conference
Name: IEEE Communications Surveys & Tutorials.

Mrs Smita Desai and Ms Shreya Desai. 2017. Python and Machine Learning.
(2017). https://www.academia.edu/download/117517675/10848.pdf

Maicon Anca dos Santos, Gabriel J. A. Grabher, Matheus F. Kovaleski, Claudio
F.R. Geyer, and Gerson Geraldo H. Cavalheiro. 2023. WCSim: A Cloud Comput-
ing Simulator with Support for Bag of Tasks Workflows. In 2023 IEEE 35th Inter-
national Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD). 230-241. https://doi.org/10.1109/SBAC-PAD59825.2023.00032
ISSN: 2643-3001.

Yonggiang Gao, Lin Wang, and Jiantao Zhou. 2019. Cost-Efficient and Quality
of Experience-Aware Provisioning of Virtual Machines for Multiplayer Cloud
Gaming in Geographically Distributed Data Centers. IEEE Access 7 (2019),
142574-142585. https://doi.org/10.1109/ACCESS.2019.2944405

Saurabh Kumar Garg and Rajkumar Buyya. 2011. NetworkCloudSim: Modelling
Parallel Applications in Cloud Simulations. In 2011 Fourth IEEE International
Conference on Utility and Cloud Computing. 105-113. https://doi.org/10.1109/
UCC.2011.24

Wedan Emmanuel Gnibga, Andrew A. Chien, Anne Blavette, and Anne Cécile
Orgerie. 2024. FlexCoolDC: Datacenter Cooling Flexibility for Harmonizing
Water, Energy, Carbon, and Cost Trade-offs. In Proceedings of the 15th ACM
International Conference on Future and Sustainable Energy Systems (e-Energy '24).
Association for Computing Machinery, New York, NY, USA, 108-122. https:
//doi.org/10.1145/3632775.3661936

Younghwan Go, M. Jamshed, Younggyoun Moon, Changho Hwang,
and KyoungSoo Park. 2017. APUNet: Revitalizing GPU as Packet
Processing Accelerator. https://www.semanticscholar.org/paper/
APUNet%3A-Revitalizing- GPU-as-Packet-Processing- Go-Jamshed/
bb3e259eae0d70d7bc53746baedf6a4e01861b31

Mohamed Hadi Habaebi, Yacine Merrad, Md Rafiqul Islam, Elfatih A A Elsheikh,
F M Sliman, and Mokhtaria Mesri. 2023. Extending CloudSim to simulate
sensor networks. SIMULATION 99, 1 (Jan. 2023), 3-22. https://doi.org/10.1177/
00375497221105530 Publisher: SAGE Publications Ltd STM.

Adel Hatami-Marbini, John Otu Asu, and Pegah Khoshnevis. 2024. Environmen-
tal performance assessment in the transport sector using nonparametric frontier
analysis: A systematic literature review. Computers & Industrial Engineering
189 (March 2024), 109968. https://doi.org/10.1016/j.cie.2024.109968

Bowen He, Xiao Zheng, Yuan Chen, Weinan Li, Yajin Zhou, Xin Long, Pengcheng
Zhang, Xiaowei Lu, Linquan Jiang, Qiang Liu, Dennis Cai, and Xiantao Zhang.
2023. DxPU: Large-scale Disaggregated GPU Pools in the Datacenter. ACM Trans.
Archit. Code Optim. 20, 4 (Dec. 2023), 55:1-55:23. https://doi.org/10.1145/3617995
Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant
Patil, and Yanjing Li. 2023. Understanding and Mitigating Hardware Failures in
Deep Learning Training Systems. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (ISCA ’23). Association for Computing
Machinery, New York, NY, USA, 1-16. https://doi.org/10.1145/3579371.3589105
Jinlong Hu, Zhizhe Rao, Xingchen Liu, Lihao Deng, and Shoubin Dong. 2024.
DCSim: Computing and Networking Integration based Container Schedul-
ing Simulator for Data Centers. https://doi.org/10.48550/arXiv.2411.13809
arXiv:2411.13809 [cs].

Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang.
2021. Characterization and Prediction of Deep Learning Workloads in Large-
Scale GPU Datacenters. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1-15. https://doi.
org/10.1145/3458817.3476223 arXiv:2109.01313 [cs].

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang, Qiaoling
Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo, Yonggang Wen, and
Tianwei Zhang. 2024. Characterization of Large Language Model Development
in the Datacenter. https://doi.org/10.48550/arXiv.2403.07648 arXiv:2403.07648
[cs].

Jiahua Huang, Weiwei Lin, Wentai Wu, Yang Wang, Haocheng Zhong, Xinhua
Wang, and Keqin Li. 2025. On Efficiency, Fairness and Security in AI Accelerator
Resource Sharing: A Survey. ACM Comput. Surv. 57, 9 (April 2025), 221:1-221:35.
https://doi.org/10.1145/3721427

Sergio Iserte, Javier Prades, Carlos Reafio, and Federico Silla. 2021. Im-
proving the management efficiency of GPU workloads in data centers
through GPU virtualization. ~Concurrency and Computation: Practice and
Experience 33, 2 (2021), e5275. https://doi.org/10.1002/cpe.5275 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5275.

Azlan Ismail. 2020. Energy-driven cloud simulation: existing surveys, simulation
supports, impacts and challenges. Cluster Computing 23, 4 (Dec. 2020), 3039-
3055. https://doi.org/10.1007/s10586-020-03068-4

Eleni Kanellou, Nikolaos Chrysos, and Angelos Bilas. 2018. A Flexible Datacenter
Simulator. Procedia Computer Science 136 (Jan. 2018), 72—-81. https://doi.org/10.
1016/j.procs.2018.08.239

2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876

https://github.com/atlarge-research/AIP/blob/master/docs/pdfs/5C_group_final_report.pdf
https://github.com/atlarge-research/AIP/blob/master/docs/pdfs/5C_group_final_report.pdf
https://www.aminer.cn/
https://dl.acm.org/doi/abs/10.1145/2751205.2751220
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset.html
https://dblp.uni-trier.de/faq/How+can+I+download+the+whole+dblp+dataset.html
https://digital-strategy.ec.europa.eu/en/policies/digital-decade-policy-programme
https://digital-strategy.ec.europa.eu/en/policies/digital-decade-policy-programme
https://simpy.readthedocs.io/en/latest/
https://simpy.readthedocs.io/en/latest/
https://www.semanticscholar.org/product/api
https://www.semanticscholar.org/product/api
https://github.com/lanl/PPT
https://github.com/mininet/mininet
https://doi.org/10.1016/j.comnet.2016.06.037
https://doi.org/10.1016/j.comnet.2016.06.037
https://doi.org/10.1109/MC.2012.249
https://doi.org/10.1002/cpe.8318
https://doi.org/10.1016/j.future.2023.07.011
https://doi.org/10.1016/j.future.2023.07.011
https://doi.org/10.1145/3632953
https://doi.org/10.1145/3630614.3630626
https://doi.org/10.1145/3630614.3630626
https://doi.org/10.1007/s42979-020-00273-1
https://doi.org/10.1007/s42979-020-00273-1
https://doi.org/10.1002/spe.995
https://doi.org/10.1002/spe.995
https://doi.org/10.1016/j.mex.2022.101895
https://doi.org/10.1016/j.mex.2022.101895
https://doi.org/10.1016/j.seja.2024.100068
https://doi.org/10.15680/IJIRSET.2025.1402015
https://doi.org/10.23919/SEMI-THERM59981.2023.10267908
https://doi.org/10.1016/j.simpat.2017.05.009
https://doi.org/10.1109/FiCloud.2015.127
https://doi.org/10.1109/COMST.2015.2481183
https://www.academia.edu/download/117517675/10848.pdf
https://doi.org/10.1109/SBAC-PAD59825.2023.00032
https://doi.org/10.1109/ACCESS.2019.2944405
https://doi.org/10.1109/UCC.2011.24
https://doi.org/10.1109/UCC.2011.24
https://doi.org/10.1145/3632775.3661936
https://doi.org/10.1145/3632775.3661936
https://www.semanticscholar.org/paper/APUNet%3A-Revitalizing-GPU-as-Packet-Processing-Go-Jamshed/bb3e259eae0d70d7bc53746baedf6a4e01861b31
https://www.semanticscholar.org/paper/APUNet%3A-Revitalizing-GPU-as-Packet-Processing-Go-Jamshed/bb3e259eae0d70d7bc53746baedf6a4e01861b31
https://www.semanticscholar.org/paper/APUNet%3A-Revitalizing-GPU-as-Packet-Processing-Go-Jamshed/bb3e259eae0d70d7bc53746baedf6a4e01861b31
https://doi.org/10.1177/00375497221105530
https://doi.org/10.1177/00375497221105530
https://doi.org/10.1016/j.cie.2024.109968
https://doi.org/10.1145/3617995
https://doi.org/10.1145/3579371.3589105
https://doi.org/10.48550/arXiv.2411.13809
https://doi.org/10.1145/3458817.3476223
https://doi.org/10.1145/3458817.3476223
https://doi.org/10.48550/arXiv.2403.07648
https://doi.org/10.1145/3721427
https://doi.org/10.1002/cpe.5275
https://doi.org/10.1007/s10586-020-03068-4
https://doi.org/10.1016/j.procs.2018.08.239
https://doi.org/10.1016/j.procs.2018.08.239

2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933

2934

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

(42]

[43]

S
=t

~
&

[47

[48

[50

(51

o
&,

[53

[54

(55

(56

[57

(58]

o
20,

[60]

[61

Gabor Kecskeméti. 2015. Scheduler hierarchies to aid peta-scale cloud sim-
ulations with DISSECT-CF. Krakow, Poland, 71-82. http://www.nesus.eu/
proceedings

Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
2020. Accel-Sim: An Extensible Simulation Framework for Validated GPU
Modeling. In 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). 473-486. https://doi.org/10.1109/ISCA45697.2020.00047
Khaled M Khalil, M Abdel-Aziz, Taymour T Nazmy, and Abdel-Badeeh M Salem.
2017. CLOUD SIMULATORS - AN EVALUATION STUDY. International Journal
6,1(2017).

In Kee Kim, Wei Wang, and Marty Humphrey. 2015. PICS: A Public IaaS Cloud
Simulator. In 2015 IEEE 8th International Conference on Cloud Computing. 211-
220. https://doi.org/10.1109/CLOUD.2015.37 ISSN: 2159-6190.

Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey,
and Stephen Linkman. 2009. Systematic literature reviews in software engineer-
ing — A systematic literature review. Information and Software Technology 51, 1
(Jan. 2009), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009

Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. 2012. GreenCloud:
a packet-level simulator of energy-aware cloud computing data centers. The
Journal of Supercomputing 62, 3 (Dec. 2012), 1263-1283. https://doi.org/10.1007/
$11227-010-0504-1

Tomasz Kolodziej and Pawel Rosciszewski. 2021. Towards Scalable Simulation
of Federated Learning. In Neural Information Processing, Teddy Mantoro, Minho
Lee, Media Anugerah Ayu, Kok Wai Wong, and Achmad Nizar Hidayanto (Eds.).
Springer International Publishing, Cham, 248-256. https://doi.org/10.1007/978-
3-030-92307-5_29

Adam Krzywaniak, Pawel Czarnul, and Jerzy Proficz. 2022. DEPO: A dy-
namic energy-performance optimizer tool for automatic power capping for
energy efficient high-performance computing. Software: Practice and Expe-
rience 52, 12 (2022), 2598-2634. https://doi.org/10.1002/spe.3139 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3139.

Ashwin Kumar Kulkarni and B. Annappa. 2021. GPU-aware resource manage-
ment in heterogeneous cloud data centers. The Journal of Supercomputing 77,
11 (Nov. 2021), 12458-12485. https://doi.org/10.1007/s11227-021-03779-4
Uday Kurkure, Hari Sivaraman, and Lan Vu. 2018. Virtualized GPUs in High
Performance Datacenters. In 2018 International Conference on High Performance
Computing & Simulation (HPCS). 887-894. https://doi.org/10.1109/HPCS.2018.
00142

Imran Latif, Muhammad Mubashar Ashraf, Umaima Haider, Gemma Reeves,
Alexandrina Untaroiu, Fabio Coelho, and Denis Browne. 2025. Advancing
Sustainability in Data Centers: Evaluation of Hybrid Air/Liquid Cooling Schemes
for IT Payload Using Sea Water. IEEE Transactions on Cloud Computing 13, 1
(Jan. 2025), 184-197. https://doi.org/10.1109/TCC.2024.3521666

Francesco Lettich, Emanuele Carlini, Franco Maria Nardini, Raffaele Perego, and
Salvatore Trani. 2024. Power- and Fragmentation-aware Online Scheduling for
GPU Datacenters. https://doi.org/10.48550/arXiv.2412.17484 arXiv:2412.17484
[cs].

Danyang Li, Jie Song, Hui Liu, and Jingqing Jiang. 2024. Simulators for Con-
versing Power to Thermal on Green Data Centers: A Review. Energies 17, 22
(Jan. 2024), 5631. https://doi.org/10.3390/en17225631 Number: 22 Publisher:
Multidisciplinary Digital Publishing Institute.

Ming Li, Zigian Bi, Tianyang Wang, Yizhu Wen, Qian Niu, Junyu Liu, Benji Peng,
Sen Zhang, Xuanhe Pan, Jiawei Xu, Jinlang Wang, Keyu Chen, Caitlyn Heqi
Yin, Pohsun Feng, and Ming Liu. 2024. Deep Learning and Machine Learning
with GPGPU and CUDA: Unlocking the Power of Parallel Computing. https:
//doi.org/10.48550/arXiv.2410.05686 arXiv:2410.05686 [cs].

Heting Liu, Zhichao Li, Cheng Tan, Ronggiu Yang, Guohong Cao, Zherui Liu,
and Chuanxiong Guo. 2022. Prediction of GPU Failures Under Deep Learning
Workloads. https://doi.org/10.48550/arXiv.2201.11853 arXiv:2201.11853 [cs].
Shuo Liu, Bin Zou, Lamei Zhang, and Shulei Ren. 2020. Heterogeneous
CPU+GPU-Accelerated FDTD for Scattering Problems With Dynamic Load
Balancing. IEEE Transactions on Antennas and Propagation 68, 9 (Sept. 2020),
6734-6742. https://doi.org/10.1109/TAP.2020.2990486

Theo Lynn, Anna Gourinovitch, James Byrne, P. J. Byrne, Sergej Svorobej, Kon-
stantinos Giannoutakis, David Kenny, and John P. Morrison. 2017. A preliminary
systematic review of computer science literature on cloud computing research
using open source simulation platforms.. In Proceedings of the 7th International
Conference on Cloud Computing and Services Science (CLOSER 2017). ScitePress,
Porto, Portugal. https://doi.org/10.5220/0006351805650573

Antonios T. Makaratzis, Konstantinos M. Giannoutakis, and Dimitrios Tzovaras.
2018. Energy modeling in cloud simulation frameworks. Future Generation
Computer Systems 79 (Feb. 2018), 715-725. https://doi.org/10.1016/j.future.2017.
06.016

N. Mansouri, R. Ghafari, and B. Mohammad Hasani Zade. 2020. Cloud computing
simulators: A comprehensive review. Simulation Modelling Practice and Theory
104 (Nov. 2020), 102144. https://doi.org/10.1016/j.simpat.2020.102144
Tshilidzi Marwala. 2024. CPUs Versus GPUs. In The Balancing Problem in the
Governance of Artificial Intelligence, Tshilidzi Marwala (Ed.). Springer Nature,

22

[62

[63

[64

[65

[66

[67

(68

[69

[70

(71

[72

[73

[74

[75

[76

[77

[78

]

]

]

]

]

]

Niels Thiele

Singapore, 137-152. https://doi.org/10.1007/978-981-97-9251-1_9

Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob
Burley, Jaro Bosch, Erwin van Eyk, Laurens Versluis, Vincent van Beek, and
Alexandru Iosup. 2021. OpenDC 2.0: Convenient Modeling and Simulation of
Emerging Technologies in Cloud Datacenters. In 2021 IEEE/ACM 21st Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid). 455-464.
https://doi.org/10.1109/CCGrid51090.2021.00055

Neo Motlhabane, Naison Gasela, and Michael Esiefarienrhe. 2018. Comparative
Analysis of Cloud Computing Simulators. In 2018 International Conference on
Computational Science and Computational Intelligence (CSCI). 1309-1316. https:
//doi.org/10.1109/CSCI46756.2018.00254

Preethi Josephina Mudialba. 2016. A Study on the Fundamental Properties,
Features and Usage of Cloud Simulators. In 2016 International Conference on
Platform Technology and Service (PlatCon). 1-5. https://doi.org/10.1109/PlatCon.
2016.7456782

Mahmood Niazi. 2015. Do Systematic Literature Reviews Outperform Informal
Literature Reviews in the Software Engineering Domain? An Initial Case Study.
Arabian Journal for Science and Engineering 40, 3 (March 2015), 845-855. https:
//doi.org/10.1007/513369-015-1586-0

Bin Nie, Ji Xue, Saurabh Gupta, Christian Engelmann, Evgenia Smirni, and
Devesh Tiwari. 2017. Characterizing Temperature, Power, and Soft-Error Be-
haviors in Data Center Systems: Insights, Challenges, and Opportunities. In
2017 IEEE 25th International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS). 22-31. https:
//doi.org/10.1109/MASCOTS.2017.12 ISSN: 2375-0227.

Alberto Nuiiez, Jose L. Vazquez-Poletti, Agustin C. Caminero, Gabriel G. Castafié,
Jesus Carretero, and Ignacio M. Llorente. 2012. iCanCloud: A Flexible and
Scalable Cloud Infrastructure Simulator. Journal of Grid Computing 10, 1 (March
2012), 185-209. https://doi.org/10.1007/s10723-012-9208-5

Mohammad Abu Obaida, Jason Liu, Gopinath Chennupati, Nandakishore Santhi,
and Stephan Eidenbenz. 2018. Parallel Application Performance Prediction
Using Analysis Based Models and HPC Simulations. In Proceedings of the 2018
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-
PADS ’18). Association for Computing Machinery, New York, NY, USA, 49-59.
https://doi.org/10.1145/3200921.3200937

Jon Peddie. 2022. What is a GPU? In The History of the GPU - Steps to Invention,
Jon Peddie (Ed.). Springer International Publishing, Cham, 333-345. https:
//doi.org/10.1007/978-3-031-10968-3_7

David Perez Abreu, Karima Velasquez, Marilia Curado, and Edmundo Monteiro.
2020. A comparative analysis of simulators for the Cloud to Fog continuum.
Simulation Modelling Practice and Theory 101 (May 2020), 102029. https://doi.
org/10.1016/j.simpat.2019.102029

Jason Power, Joel Hestness, Marc S. Orr, Mark D. Hill, and David A. Wood. 2015.
gem5-gpu: A Heterogeneous CPU-GPU Simulator. IEEE Computer Architec-
ture Letters 14, 1 (Jan. 2015), 34-36. https://doi.org/10.1109/LCA.2014.2299539
Conference Name: IEEE Computer Architecture Letters.

Jerzy Proficz. 2020. Process arrival pattern aware algorithms for acceleration of
scatter and gather operations. Cluster Computing 23, 4 (Dec. 2020), 2735-2751.
https://doi.org/10.1007/s10586-019-03040-x

Jerzy Proficz and Pawel Czarnul. 2016. Performance and Power-Aware Modeling
of MPI Applications for Cluster Computing. In Parallel Processing and Applied
Mathematics, Roman Wyrzykowski, Ewa Deelman, Jack Dongarra, Konrad Kar-
czewski, Jacek Kitowski, and Kazimierz Wiatr (Eds.). Springer International
Publishing, Cham, 199-209. https://doi.org/10.1007/978-3-319-32152-3_19
Jerzy Proficz, Piotr Sumionka, Jarostaw Skomial, Marcin Semeniuk, Karol
Niedzielewski, and Maciej Walczak. 2020. Investigation into MPI All-Reduce
Performance in a Distributed Cluster with Consideration of Imbalanced Pro-
cess Arrival Patterns. In Advanced Information Networking and Applications,
Leonard Barolli, Flora Amato, Francesco Moscato, Tomoya Enokido, and Makoto
Takizawa (Eds.). Springer International Publishing, Cham, 817-829. https:
//doi.org/10.1007/978-3-030-44041-1_72

Gamal Refai-Ahmed, Md Malekkul Islam, H. Kabbani, T. Cader, Husam Alissa,
and Hoa Do. 2022. Holistic Understanding of Best Engineering Practice to
Extend Cooling Limit of Next Generations of GPU. In 2022 IEEE 24th Electronics
Packaging Technology Conference (EPTC). 890-897. https://doi.org/10.1109/
EPTC56328.2022.10013227

Ubaid Ur Rehman, Amir Ali, and Zahid Anwar. 2014. secCloudSim: Secure
Cloud Simulator. In 2014 12th International Conference on Frontiers of Information
Technology. 208-213. https://doi.org/10.1109/FIT.2014.47

Yifei Ren, Himanshu Agrawal, Nasim Ferdosian, and Reza Nejabati. 2023. Py-
CloudSim: Modernized Cloud Computing Simulation Framework with the In-
corporation of SFC. In 2023 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN). 92-98. https://doi.org/10.1109/NFV-
SDN59219.2023.10329606 ISSN: 2832-2231.

Pawel Rosciszewski, Michat Iwanski, and Pawel Czarnul. 2019. The impact
of the AC922 Architecture on Performance of Deep Neural Network Training.
In 2019 International Conference on High Performance Computing & Simulation
(HPCS). 666-673. https://doi.org/10.1109/HPCS48598.2019.9188164

2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014

http://www.nesus.eu/proceedings
http://www.nesus.eu/proceedings
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1109/CLOUD.2015.37
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1007/978-3-030-92307-5_29
https://doi.org/10.1007/978-3-030-92307-5_29
https://doi.org/10.1002/spe.3139
https://doi.org/10.1007/s11227-021-03779-4
https://doi.org/10.1109/HPCS.2018.00142
https://doi.org/10.1109/HPCS.2018.00142
https://doi.org/10.1109/TCC.2024.3521666
https://doi.org/10.48550/arXiv.2412.17484
https://doi.org/10.3390/en17225631
https://doi.org/10.48550/arXiv.2410.05686
https://doi.org/10.48550/arXiv.2410.05686
https://doi.org/10.48550/arXiv.2201.11853
https://doi.org/10.1109/TAP.2020.2990486
https://doi.org/10.5220/0006351805650573
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1016/j.simpat.2020.102144
https://doi.org/10.1007/978-981-97-9251-1_9
https://doi.org/10.1109/CCGrid51090.2021.00055
https://doi.org/10.1109/CSCI46756.2018.00254
https://doi.org/10.1109/CSCI46756.2018.00254
https://doi.org/10.1109/PlatCon.2016.7456782
https://doi.org/10.1109/PlatCon.2016.7456782
https://doi.org/10.1007/s13369-015-1586-0
https://doi.org/10.1007/s13369-015-1586-0
https://doi.org/10.1109/MASCOTS.2017.12
https://doi.org/10.1109/MASCOTS.2017.12
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1145/3200921.3200937
https://doi.org/10.1007/978-3-031-10968-3_7
https://doi.org/10.1007/978-3-031-10968-3_7
https://doi.org/10.1016/j.simpat.2019.102029
https://doi.org/10.1016/j.simpat.2019.102029
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1007/s10586-019-03040-x
https://doi.org/10.1007/978-3-319-32152-3_19
https://doi.org/10.1007/978-3-030-44041-1_72
https://doi.org/10.1007/978-3-030-44041-1_72
https://doi.org/10.1109/EPTC56328.2022.10013227
https://doi.org/10.1109/EPTC56328.2022.10013227
https://doi.org/10.1109/FIT.2014.47
https://doi.org/10.1109/NFV-SDN59219.2023.10329606
https://doi.org/10.1109/NFV-SDN59219.2023.10329606
https://doi.org/10.1109/HPCS48598.2019.9188164

3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072

A Systematic Review of GPU Modelling Approaches in Datacenter Simulators

[79] Dilshad Hassan Sallo and Gabor Kecskemeti. 2021. A Parallel Event System for
Large-Scale Cloud Simulations in DISSECT-CF. Acta Cybernetica 25, 2 (Aug.
2021), 469-484. https://doi.org/10.14232/actacyb.287937 Number: 2 Publisher:

University of Szeged.
(80

4948.
(81

99-117. https://doi.org/10.1109/TCC.2024.3511548

[82] Muhammad Asim Shahid, Muhammad Mansoor Alam, and Mazliham Mohd
Su’ud. 2023. A Systematic Parameter Analysis of Cloud Simulation Tools in
Cloud Computing Environments. Applied Sciences 13, 15 (Jan. 2023), 8785.
https://doi.org/10.3390/app13158785 Number: 15 Publisher: Multidisciplinary

Digital Publishing Institute.
(83

Environment.

[84] S.R. Shishira, A. Kandasamy, and K. Chandrasekaran. 2018. Comparative Study
of Simulation Tools and Challenging Issues in Cloud Computing. In Smart Secure
Systems — IoT and Analytics Perspective, Guru Prasadh Venkataramani, Karthik
Sankaranarayanan, Saswati Mukherjee, Kannan Arputharaj, and Swamynathan
Sankara Narayanan (Eds.). Springer, Singapore, 3-11. https://doi.org/10.1007/

978-981-10-7635-0_1

[85] Ahmad Siavashi and Mahmoud Momtazpour. 2019. GPUCloudSim: an extension
of CloudSim for modeling and simulation of GPUs in cloud data centers. The
Journal of Supercomputing 75, 5 (May 2019), 2535-2561. https://doi.org/10.1007/

$§11227-018-2636-7
(86

3665148/v1 ISSN: 2693-5015.

[87] Ahmad Siavashi and Mahmoud Momtazpour. 2023. gVMP: A multi-objective
joint VM and vGPU placement heuristic for API remoting-based GPU virtual-
ization and disaggregation in cloud data centers. J. Parallel and Distrib. Comput.

172 (Feb. 2023), 97-113. https://doi.org/10.1016/j.jpdc.2022.10.008

[88] Ahmad Siavashi and Mahmoud Momtazpour. 2025. A Multi-Objective Frame-
work for Optimizing GPU-Enabled VM Placement in Cloud Data Centers with
Multi-Instance GPU Technology. https://doi.org/10.48550/arXiv.2502.01909

arXiv:2502.01909 [cs].
[89

and Service Management (IM). 400-406.
7987304
[90

1946-0759.

o
2

//doi.org/10.1016/j.anucene.2019.106957
[92

2010), 95-102. https://doi.org/10.1145/1899928.1899941

[93] Kyle L. Spafford and Jeffrey S. Vetter. 2012.

ysis. IEEE, 1-11.
?casa_token=FpHVsuqa208AAAAA:efiNHkO6-qhG_1BcMYprZWU8-
P9tjJ560ULL5SLDss09uPOrm2Liu0d3NN_VeB-3TV{LbeQ3SGaz]Q

[94] Jovan Stojkovic, Chaojie Zhang, ifligo Goiri, Esha Choukse, Haoran Qiu, Rodrigo
Fonseca, Josep Torrellas, and Ricardo Bianchini. 2025. TAPAS: Thermal- and
Power-Aware Scheduling for LLM Inference in Cloud Platforms. https://doi.

org/10.48550/arXiv.2501.02600 arXiv:2501.02600 [cs].
[95

//doi.org/10.1007/s12065-018-0195-8

Yousef Sanjalawe and Salam Al-E’mari. 2023. Cloud Computing Simulators: A
Review. In 2023 24th International Arab Conference on Information Technology
(ACIT). 1-14. https://doi.org/10.1109/ACIT58888.2023.10453820 ISSN: 2831-

Hoda Sedighi, Daniel Gehberger, Amin Ebrahimzadeh, Fetahi Wuhib, and
Roch H. Glitho. 2025. Efficient Dynamic Resource Management for Spatial
Multitasking GPUs. IEEE Transactions on Cloud Computing 13, 1 (Jan. 2025),

S. Shanmugapriya and N. Priya Lowast. 2024. Examination of Cloud Simulation
Platforms and Implementation of Load Balancing in CloudAnalyst. Indian
Journal of Science and Technology 17, 33 (Aug. 2024), 3424-3436. https://doi.
0rg/10.17485/1JST/v17i33.1751 Publisher: The Indian Society of Education and

Ahmad Siavashi and Mahmoud Momtazpour. 2023. Cloudy: A Python-based
Simulator for Modern Cloud Environments. https://doi.org/10.21203/rs.3.rs-

Manoel C. Silva Filho, Raysa L. Oliveira, Claudio C. Monteiro, Pedro R. M. Inacio,
and Mario M. Freire. 2017. CloudSim Plus: A cloud computing simulation
framework pursuing software engineering principles for improved modularity,
extensibility and correctness. In 2017 IFIP/IEEE Symposium on Integrated Network
https://doi.org/10.23919/INM.2017.

Matthew Smith, Luke Zhao, Jonathan Cordova, Xunfei Jiang, and Mahdi
Ebrahimi. 2023. Energy-Efficient GPU-Intensive Workload Scheduling for Data
Centers. In 2023 International Conference on Machine Learning and Applications
(ICMLA). 1735-1740. https://doi.org/10.1109/ICMLA58977.2023.00263 ISSN:

Peitao Song, Zhijian Zhang, Qian Zhang, Liang Liang, and Qiang Zhao. 2020.
Implementation of the CPU/GPU hybrid parallel method of characteristics
neutron transport calculation using the heterogeneous cluster with dynamic
workload assignment. Annals of Nuclear Energy 135 (Jan. 2020), 106957. https:

Vijayaraghavan Soundararajan and Kinshuk Govil. 2010. Challenges in building
scalable virtualized datacenter management. SIGOPS Oper. Syst. Rev. 44, 4 (Dec.

Aspen: A domain specific
language for performance modeling. In SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Anal-
https://ieeexplore.ieee.org/abstract/document/6468530/

Ningning Sun, Yong Li, Lihua Ma, Wenyong Chen, and Dunn Cynthia. 2019.
Research on cloud computing in the resource sharing system of university
library services. Evolutionary Intelligence 12, 3 (Sept. 2019), 377-384. https:

23

[96] Pericherla S. Suryateja. 2016.

[97

[98

[99

[100

[101

[102

[103

]

]

Literature Survey - AtLargeGroup, 2025, Amsterdam, Netherlands

A Comparative Analysis of Cloud Sim-
ulators. International Journal of Modern Education & Computer Sci-
ence 8, 4 (2016). https://www.researchgate.net/profile/Pericherla-
Suryateja/publication/301241369_A_Comparative_Analysis_of Cloud
Simulators/links/579352e608aed51475bcfc29/A- Comparative- Analysis- of-
Cloud-Simulators.pdf

Prashanth Thinakaran, Jashwant Raj, Bikash Sharma, Mahmut T. Kandemir,
and Chita R. Das. 2018. The Curious Case of Container Orchestration and
Scheduling in GPU-based Datacenters. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC ’18). Association for Computing Machinery, New
York, NY, USA, 524. https://doi.org/10.1145/3267809.3275466
Harshavardhana A. Uranakara, Shivam Barwey, Francisco E. Hernandez Pérez,
Vijayamanikandan Vijayarangan, Venkat Raman, and Hong G. Im. 2023. Accel-
erating turbulent reacting flow simulations on many-core/GPUs using matrix-
based kinetics. Proceedings of the Combustion Institute 39, 4 (Jan. 2023), 5127~
5136. https://doi.org/10.1016/j.proci.2022.07.144

Lukasz Wesolowski, Bilge Acun, Valentin Andrei, Adnan Aziz, Gisle Dankel,
Christopher Gregg, Xiaoqiao Meng, Cyril Meurillon, Denis Sheahan, Lei Tian,
Janet Yang, Peifeng Yu, and Kim Hazelwood. 2021. Datacenter-Scale Analysis
and Optimization of GPU Machine Learning Workloads. IEEE Micro 41, 5 (Sept.
2021), 101-112. https://doi.org/10.1109/MM.2021.3097287

Zhisheng Ye, Wei Gao, Qinghao Hu, Peng Sun, Xiaolin Wang, Yingwei Luo,
Tianwei Zhang, and Yonggang Wen. 2024. Deep Learning Workload Scheduling
in GPU Datacenters: A Survey. ACM Comput. Surv. 56, 6 (Jan. 2024), 146:1-146:38.
https://doi.org/10.1145/3638757

Muhammad Zakarya, Lee Gillam, Ayaz Ali Khan, and Izaz Ur Rahman. 2021.
PerficientCloudSim: a tool to simulate large-scale computation in heterogeneous
clouds. The Journal of Supercomputing 77, 4 (April 2021), 3959-4013. https:
//doi.org/10.1007/s11227-020-03425-5

Wei Zhang, Quan Chen, Ningxin Zheng, Weihao Cui, Kaihua Fu, and M. Guo.
2021. Toward QoS-Awareness and Improved Utilization of Spatial Multitasking
GPUs. IEEE Trans. Comput. 71 (March 2021), 866-879. https://doi.org/10.1109/
TC.2021.3064352

Hui Zhao, Fanxin Meng, Nanzhi Feng, Quan Wang, Bo Wan, and Jing Wang.
2021. An Energy-Efficient Task Scheduling Strategy Based on Improved Fire-
works Algorithm in Heterogeneous Cloud. In 2021 IEEE 23rd Int Conf on High
Performance Computing & Communications; 7th Int Conf on Data Science & Sys-
tems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud
& Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). 197-204.
https://doi.org/10.1109/HPCC-DSS-SmartCity- DependSys53884.2021.00052

3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
31
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152

https://doi.org/10.14232/actacyb.287937
https://doi.org/10.1109/ACIT58888.2023.10453820
https://doi.org/10.1109/TCC.2024.3511548
https://doi.org/10.3390/app13158785
https://doi.org/10.17485/IJST/v17i33.1751
https://doi.org/10.17485/IJST/v17i33.1751
https://doi.org/10.1007/978-981-10-7635-0_1
https://doi.org/10.1007/978-981-10-7635-0_1
https://doi.org/10.1007/s11227-018-2636-7
https://doi.org/10.1007/s11227-018-2636-7
https://doi.org/10.21203/rs.3.rs-3665148/v1
https://doi.org/10.21203/rs.3.rs-3665148/v1
https://doi.org/10.1016/j.jpdc.2022.10.008
https://doi.org/10.48550/arXiv.2502.01909
https://doi.org/10.23919/INM.2017.7987304
https://doi.org/10.23919/INM.2017.7987304
https://doi.org/10.1109/ICMLA58977.2023.00263
https://doi.org/10.1016/j.anucene.2019.106957
https://doi.org/10.1016/j.anucene.2019.106957
https://doi.org/10.1145/1899928.1899941
https://ieeexplore.ieee.org/abstract/document/6468530/?casa_token=FpHVsuqa2o8AAAAA:efiNHkO6-qhG_1BcMYprZWU8-p9tjJ56oULL5SLDss09uPOrm2Liu0d3NN_VeB-3TVfLbeQ3SGazJQ
https://ieeexplore.ieee.org/abstract/document/6468530/?casa_token=FpHVsuqa2o8AAAAA:efiNHkO6-qhG_1BcMYprZWU8-p9tjJ56oULL5SLDss09uPOrm2Liu0d3NN_VeB-3TVfLbeQ3SGazJQ
https://ieeexplore.ieee.org/abstract/document/6468530/?casa_token=FpHVsuqa2o8AAAAA:efiNHkO6-qhG_1BcMYprZWU8-p9tjJ56oULL5SLDss09uPOrm2Liu0d3NN_VeB-3TVfLbeQ3SGazJQ
https://doi.org/10.48550/arXiv.2501.02600
https://doi.org/10.48550/arXiv.2501.02600
https://doi.org/10.1007/s12065-018-0195-8
https://doi.org/10.1007/s12065-018-0195-8
https://www.researchgate.net/profile/Pericherla-Suryateja/publication/301241369_A_Comparative_Analysis_of_Cloud_Simulators/links/579352e608aed51475bcfc29/A-Comparative-Analysis-of-Cloud-Simulators.pdf
https://www.researchgate.net/profile/Pericherla-Suryateja/publication/301241369_A_Comparative_Analysis_of_Cloud_Simulators/links/579352e608aed51475bcfc29/A-Comparative-Analysis-of-Cloud-Simulators.pdf
https://www.researchgate.net/profile/Pericherla-Suryateja/publication/301241369_A_Comparative_Analysis_of_Cloud_Simulators/links/579352e608aed51475bcfc29/A-Comparative-Analysis-of-Cloud-Simulators.pdf
https://www.researchgate.net/profile/Pericherla-Suryateja/publication/301241369_A_Comparative_Analysis_of_Cloud_Simulators/links/579352e608aed51475bcfc29/A-Comparative-Analysis-of-Cloud-Simulators.pdf
https://doi.org/10.1145/3267809.3275466
https://doi.org/10.1016/j.proci.2022.07.144
https://doi.org/10.1109/MM.2021.3097287
https://doi.org/10.1145/3638757
https://doi.org/10.1007/s11227-020-03425-5
https://doi.org/10.1007/s11227-020-03425-5
https://doi.org/10.1109/TC.2021.3064352
https://doi.org/10.1109/TC.2021.3064352
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00052

	Abstract
	1 Introduction
	2 Background
	2.1 Datacenter Simulator
	2.2 GPUs
	2.3 CPU vs. GPUs

	3 Study Design
	3.1 Research Questions
	3.2 Search Strategy
	3.3 Selection Criteria
	3.4 Data Extraction

	4 GPUs in Datacenter and their operational and computational challenges
	4.1 Applications of GPUs in Datacenters Across Domains
	4.2 Operational and Computational Challenges

	5 Design Overview
	5.1 General overview of the simulators
	5.2 Simulator's control model & Input format
	5.3 Level of Granularity

	6 Covered and Remaining Challenges
	6.1 Problems Addressed Through Experiments
	6.2 Problems Addressed Through Follow-Up Work
	6.3 Remaining Problems

	7 Related Work
	8 Conclusion
	References

