Vrije Universiteit Amsterdam Universiteit van Amsterdam
VRIJE X

V U % UNIVERSITEIT ll
AN° AMSTERDAM X

Master Thesis

Understanding Service Reliability of
Large Language Models:
An Empirical Characterization on
Operator and User Reports

Author: Yiren Bai (2797993)

1st supervisor: Prof. dr. ir. Alexandru Iosup
daily supervisor: ~ MSc. Xiaoyu Chu
2nd reader: Prof. dr. ir. Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

October 1, 2025

Abstract

Large Language Model (LLM) services, such as ChatGPT, Claude, and DeepSeek-R1, are
increasingly embedded in daily workflows and applications. As their usage scales, ensur-
ing service reliability has become a critical challenge. Existing research predominantly
relies on official incident reports, which often lack granularity and overlook user-centered
perspectives. This study addresses this gap by systematically analyzing both operator-
and user-reported failure data to evaluate LLM service reliability from multiple angles. A
structured data pipeline is developed to collect, preprocess, and semantically classify fail-
ures from official status pages and third-party reporting platforms. After transforming the
collected datasets into a unified data format, the analysis explores failure-recovery char-
acteristics, temporal patterns, cross-source correlations, and reporting consistency across
four prominent LLM providers. A total of 28 observations are derived, including findings
such as: (1) ChatGPT recovers the slowest from failures, as it has the highest median
recovery duration in both the operator and user reports. DeepSeek has the longest me-
dian failure interval on the operator side, while Claude shows the longest on the user
side; (2) DeepSeek exhibits the largest discrepancy between operator and user reports, in
terms of both median recovery durations and median failure intervals; (3) both operator-
and user-reported failures display clear periodic and diurnal patterns across services, oc-
curring more frequently on weekdays than on weekends and peaking during the working
hours of each service’s primary user region; and (4) ChatGPT and Claude show relatively
strong alignment between operator and user reports in terms of failure periods, though for
different reasons: ChatGPT due to high operator coverage, and Claude due to accurate
user reporting and closely aligned user detection. These insights demonstrate the value
of integrating heterogeneous failure signals for a more comprehensive understanding and
evaluation of reliability, and provide a foundation for future work on predictive failure
modeling and user-aware, real-time reliability monitoring systems.

ii

Contents

List of Figures

List of Tables

1

Introduction

1.1 Research Background
1.2 Problem Statement
1.3 Research Questions
1.4 Research Contributions
1.5 Research Structure

Method for Analyzing Operator and User Reports

2.1 Data Collection e
2.2 Data Process e e e e e e
2.3 Data Analysis

Failure-Recovery Modeling

3.1 Impact of Failure Type on Recovery Time
3.2 Impact of Failure Severity on Recovery Time
3.3 MTTR and MTBF Analysis
3.4 Comparative Analysis of Failure Patterns
3.5 Summary of Failure-Recovery Modeling

Temporal Patterns of Failures

4.1 Temporal Trends L
4.2 Temporal Distributions o
4.3 Auto-correlations L
4.4 Summary of Temporal Patterns

Correlation Analysis of Failures

5.1 Correlation Between Operator and User Reported Failures
5.2 Co-occurrence of Failures
5.3 Summary of Correlation Analysis

Consistency Analysis Between Sources

6.1 Consistency of Failure Types
6.2 Consistency of Failure Periods,
6.3 Summary of Consistency Analysis

Threats To Validity

Related Work
8.1 LLM Workloads
8.2 Failure Characterization e

Conclusion

iii

49|

40|

03]

60|

List of Figures

2.1

2.2
2.3

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

5.1

6.1

6.2

6.3

6.4
6.5

Data pipeline for collecting operational reports of LLM services, integrating
both official operator reports and user reports from third-party reporting
platforms and social media to enable comprehensive reliability analysis.
Directory structure of LLM service operational reports.
Visualization of a segment of user report volume over time for ChatGPT,
spanning 01:00 to 05:00 on April 26, 2025. The gray shaded area indicates
the period identified as user-reported downtime.
Median recovery time by failure type across LLM services. The left plot
shows results based on operator reports, while the right plot shows results
based on user reports.
Recovery time distributions by failure type across LLM services, compar-
ing operator- and user-reported failures to highlight differences in recovery
patterns.o e
Recovery time distributions by failure impact level across LLM services,
based on operator reports. L.
Distributions of mean time to recovery (MTTR) and mean time between
failures (MTBF) across four major LLM services, based on operator and
user reports. The horizontal axis is logarithmic.
ECDFs of MTTR and MTBF across LLM services, based on operator and
user reports. A curve closer to the upper left indicates shorter durations,

suggesting faster recovery (for MTTR) or more frequent failures (for MTBF).

Temporal trends in LLM service failures based on operator and user reports,
showing daily and weekly failure counts across different service providers.
Temporal distributions of LLM service failures, comparing operator and
user reports. Each row presents three complementary views: weekday vs.
weekend, daily distribution across the week, and hourly failure patterns.
The failure time is consistently defined as the calendar day, week, and hour
of the failure’s start time.o
Auto-correlations with the numbers of failures aggregated at different time
granularities, based on operator and user reports. The shaded blue area
indicates the 95% confidence interval; points outside this band suggest sta-
tistically significant correlations.
Co-occurrence of failures across LLM services based on operator and user
reports. Left: number of co-occurring failures in the same day. Right:
conditional probability of one service failing given another fails.
Consistency of failure types between operator and user reports across LLM
services, evaluated through match rates and joint distributions.
Failure periods reported by operators versus users for ChatGPT, plotted
by date and hour of the day. Different colors indicate operator-reported
impact levels and user-reported failures.
Failure periods reported by operators versus users for Claude.
Failure periods reported by operators versus users for DeepSeek.
Failure periods reported by operators versus users for Character.Al

v

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

2.10

2.11

2.12

2.13
3.1

3.2
5.1

6.1

Fields and example entries from the operator report summary dataset. . . .
Fields and example entries from the operator report detail dataset.
Fields and example entries from the DownDetector comments dataset. . . .
Fields and example entries from the DownDetector tweets dataset.
Fields and example entries from the DownForEveryoneOrJustMe dataset.
Fields and example entries from the Twitter/X dataset.
Summary of collected datasets. Legend: D=day(s).
Fields and example entries from the final operator report dataset.
Sample entries from the processed DownDetector comments dataset, show-
ing report timestamps, inferred failure types, and comment weights.
Sample time series entries from the processed user report dataset aggregated
at one-minute intervals.
Sample entries from the processed DownDetector tweets dataset with report
timestamps and inferred failure types.
Sensitivity analysis results across different parameter combinations for mov-
ing average window size and detection threshold.

User-perceived failure periods with the most frequently reported failure types.

Comparative failure metrics of LLM services based on operator reports.
Legend: h = hour(s), d = day(s), bits = entropy units measuring failure type
diversity; higher values indicate greater variability. The best-performing
service for each metric is bolded. o 0oL
Comparative failure metrics of LLM services based on user reports.
Pearson and Spearman correlation coefficients between user-reported is-
sue volumes (aggregated in 5-minute bins) and official incident acknowl-
edgements for each LLM service. Asterisks denote statistical significance:
*» < 0.05, *p < 0.01, **p<0.001.,
Consistency-related metrics summarizing the overlap and timing alignment
between operator and user reports. Legend: m = minute(s).

11Ol

11Ol

20

29

46

1 Introduction

LLMs, such as OpenAI’s ChatGPT [29], Anthropic’s Claude [7], and DeepSeek-R1 [14],
have rapidly become foundational technologies powering a broad spectrum of applica-
tions—from conversational assistants and coding support tools to enterprise automation
and decision-making systems [33, [I§]. The widespread integration of LLMs into mission-
critical tasks has substantially heightened the importance of ensuring their operational
reliability. Unlike many traditional cloud services, where failure states are typically cap-
tured using binary availability metrics such as uptime or downtime [25], LLM services
tend to exhibit more complex and less easily quantifiable failure behaviors [35]. While
partial degradations and performance variability are not unique to LLMs, they become
significantly more pronounced due to the model-dependent nature of LLM workloads and
the multi-layered infrastructure on which these systems rely. Such failures often involve in-
termittent disruptions, functional inconsistencies—such as semantically incorrect outputs
or degraded feature modules despite nominal service availability—or delayed responses,
all accompanied by highly unpredictable recovery durations [26]. As a result, they can
lead to subtle yet substantial impacts on both user experience and operational reliability.

However, existing research often falls short in addressing these complexities. First,
current studies primarily rely on operator reports [12], which offer a provider-side view
of system status but lack access to large-scale, structured user reports. This limits the
ability to understand how failures manifest from the user perspective. Second, there is
a lack of effective tools and methodologies to systematically collect, characterize, and
compare operator and user reports. This leads to fragmented data sources and hinders
cross-perspective reliability analysis. Third, the current understanding of LLM service
failures remains limited [37]. Many studies focus on coarse-grained metrics such as uptime
or error rates [38], while overlooking subtler forms of degradation, including response-
quality issues such as hallucinations [22], transient latency spikes, and inconsistencies in
feature-level functionality. These issues often vary in scope and impact across different
user groups, making them difficult to detect and quantify using operator-side data alone.

To address these limitations, this study conducts a multi-perspective operational analysis
of LLM service reliability. The analysis is based on a custom-built data collection and
processing pipeline that gathers operator and user reports from four major LLM providers,
including OpenAl, Anthropic, and DeepSeek, as well as from three third-party reporting
platforms. The resulting datasets include 530 operator reports spanning 18 months and
over 160,000 user reports collected over a 3-month period. Based on these datasets, the
study performs several types of analysis, including failure-recovery modeling, temporal
pattern analysis, correlation analysis, and consistency analysis between the two sources.
The results reveal three key findings. First, ChatGPT has the slowest recovery from
failures, with both operator and user reports showing the highest median recovery time.
In terms of failure intervals, DeepSeek exhibits the longest median interval on the operator
side, while Claude shows the longest on the user side. Second, failures reported by both
operators and users exhibit clear periodic and diurnal patterns across services, occurring
more frequently on weekdays and peaking during the working hours of each service’s
primary user region. Third, ChatGPT and Claude demonstrate relatively strong alignment
between operator and user reports. These findings offer broader insights into the reliability
characteristics of LLM services.

This study offers significant practical implications for industry, academia, and society.
For service providers, the findings support improved incident detection, enabling more
effective and timely responses and fostering proactive reliability management. From an
academic perspective, this work lays the groundwork for future research in predictive
reliability modeling, resilience benchmarking, and comparative evaluations of LLM-driven
service reliability. For society, particularly for non-technical users, the study provides
clearer insights into service disruptions, helping them better understand the behavior
and limitations of LLM services. Together, these contributions not only advance the
understanding of LLM reliability but also support the broader goal of developing more
robust and user-centric LLM services.

1.1 Research Background

The widespread adoption of LLMs has significantly transformed various industries. Unlike
traditional software services, LLMs are typically deployed as cloud-based APIs, enabling
users to leverage their capabilities without managing the underlying infrastructure. For ex-
ample, OpenAl’s ChatGPT is hosted on Microsoft Azure [40], while Anthropic’s Claude [2]
and Google’s Gemini [32] operate on Google Cloud Platform (GCP). However, this reliance
on remote inference introduces new challenges in maintaining service reliability. As these
models become integral to critical applications, understanding their operational stability
and failure characteristics becomes essential.

LLM Service Reliability and Evaluation Approaches Service reliability is a core
concern for cloud-based computing, extending beyond basic uptime metrics such as avail-
ability percentages and Service Level Agreements (SLAs) to encompass performance sta-
bility, resilience to failures, and rapid recovery. In traditional cloud environments, disrup-
tions primarily result from predictable causes like hardware failures, network outages, or
software bugs, which are typically managed using redundancy, failover mechanisms, and
load balancing [16].

LLM services introduce unique challenges not encountered in conventional cloud sys-
tems. Due to real-time model inference requirements, each user query consumes signif-
icant computational resources dynamically, resulting in service performance fluctuations
even under stable infrastructure conditions [24]. Unlike deterministic traditional services,
the dynamic and probabilistic nature of LLM inference often results in disruptions that
manifest as degraded response quality, increased latency, or intermittent access failures,
rather than outright service outages. Additionally, external dependencies—such as cloud
storage solutions, vector databases, and model-serving infrastructures—complicate relia-
bility management. Resource allocation optimizations designed to meet real-time demand
can inadvertently trigger transient disruptions during rapid scaling events or traffic surges.
Consequently, LLM service reliability is shaped not only by infrastructure stability, but
also by inference optimization strategies, model architecture decisions, and resource allo-
cation constraints.

Evaluating LLM service reliability remains a complex task, as industry practices con-
tinue to evolve without standardized methodologies. Most service providers define SLAs
primarily in terms of availability metrics, while aspects such as degraded response quality
or intermittent disruptions are often overlooked. Major LLM providers, including Ope-

nAl, Anthropic, and Google DeepMind, employ internal observability pipelines to monitor
infrastructure health, API request patterns, and system performance metrics. These sys-
tems typically include real-time dashboards and automated alerts to facilitate rapid de-
tection and mitigation of service degradations. However, such internal tools are generally
inaccessible to external users, limiting independent evaluations of service reliability. To
complement provider-side monitoring, third-party platforms such as DownDetector and
DownForEveryoneOrJustMe aggregate real-time user reports, offering valuable insights
into externally observable service failures.

Additionally, academic and industry researchers have developed synthetic benchmarking
frameworks to systematically evaluate the reliability of LLM services. These frameworks
typically issue standardized queries to LLMs and record metrics such as response latency
and error rates [38]. While benchmarking offers structured and quantitative insights, its
effectiveness is often constrained by provider-imposed rate limits, which can introduce
sampling bias and limit reproducibility.

Although each of the aforementioned approaches contributes valuable perspectives, their
fragmentation underscores the need for more comprehensive and multi-perspective method-
ologies—particularly those that leverage both operator and user reports—to enable holistic
evaluations of service reliability.

LLM Service Failure Types LLM service failures exhibit diverse characteristics that
distinguish them from those of conventional cloud-based applications. Rather than mani-
festing solely as complete service outages, these failures often involve complex, multi-stage
degradation patterns. Drawing on recent empirical studies [35], LLM service failures can
be broadly grouped into the following categories:

Authentication failures prevent users from logging into LLM platforms or accessing API
services. These failures often manifest as Login Fuailed or Invalid Credentials errors. They
may result from authentication system outages, rate-limiting mechanisms that mistakenly
block legitimate access, or unexpected changes in authentication policies. Since authen-
tication services are often decoupled from model inference, such failures may occur even
when the core LLM remains functional.

Request errors occur when users submit queries to an LLM service but receive error
responses such as HTTP 500 (Internal Server Error), 502 (Bad Gateway), 503 (Service
Unavailable), or 504 (Gateway Timeout). These failures typically result from backend
server overload, misconfigured routing policies, or crashes in the model-serving infras-
tructure. While transient failures may be resolved through automatic retries, persistent
failures often indicate deeper stability issues within the service architecture.

High response latency is another common failure type, in which response times signifi-
cantly exceed normal levels. Users may experience prolonged wait times or even timeouts
without receiving a response. Latency spikes often stem from resource contention, ineffi-
cient model inference pipelines, or increased computational overhead caused by dynamic
scaling strategies. Unlike outright service failures, latency-related issues degrade the user
experience in subtler ways and may not always be reflected in operator reports.

Partial feature failures occur when certain functionalities within an LLM service become
unavailable, even though the core model remains operational. For example, multimodal
capabilities, fine-tuned models, or API-integrated plugins may cease functioning due to
isolated microservice outages or deployment inconsistencies. These failures disproportion-

ately affect users who rely on specific features, leading to fragmented perceptions of service
reliability across different customer segments.

Major outages represent large-scale service failures in which all API endpoints and user
interfaces become inaccessible. These failures may stem from cloud infrastructure disrup-
tions, catastrophic software bugs, or breakdowns in distributed model-serving clusters.
Unlike partial feature failures, major outages typically affect all users simultaneously and
often trigger official incident reports from service providers.

The failure-recovery process for LLM services typically follows a structured sequence that
includes investigation, issue identification, repair implementation, post-repair monitoring,
and root cause analysis [I12]. However, due to the probabilistic nature of model inference
and the reliance on distributed cloud infrastructure, recovery times can be unpredictable,
and failures may recur under high-load conditions. As LLM adoption continues to expand,
understanding these failure types is essential for improving service resilience and ensuring
stable user experiences.

1.2 Problem Statement

While understanding and evaluating LLM service reliability from multiple perspectives
has become essential, significant challenges persist in both data collection and analysis,
limiting meaningful insights into failure patterns and service stability. This study aims
to address two key challenges: the lack of comprehensive, structured failure data and the
absence of standardized analytical approaches tailored to assessing service reliability.

Lack of Comprehensive Failure Data Evaluating LLM service reliability requires
a unified data format that makes operator and user reports comparable, enabling com-
prehensive reliability assessments. Currently, failure data is fragmented across multiple
sources, each presenting distinct challenges for integration and consistency:

Operator reports sometimes use inconsistent terminology across providers and generally
lack sufficient granularity. For example, two providers may describe the same type of
failure in different ways—one using a vague label such as Degraded performance, while
another offers a more specific description like Flevated latency—creating ambiguity. Fur-
thermore, providers typically aggregate incident reports across services, subscription tiers,
and geographic regions, obscuring insights into localized issues. For instance, an outage
affecting only specific components or users in particular geographic areas may be inade-
quately reflected in broadly summarized reports.

User reports from third-party platforms like DownDetector present a different set of
challenges. These reports are often unstructured, brief, or ambiguous—for example, vague
descriptions such as ChatGPT is down or not working without context. Extracting struc-
tured and accurate failure types from such free-text data requires the semantic capabilities
of LLMs; basic natural language processing (NLP) techniques are typically insufficient.
Additionally, historical user-reported failures are often unavailable due to the data reten-
tion policies of reporting platforms such as DownForEveryoneOrJustMe, which typically
preserve only a fixed number of user reports—20 in this case—making longitudinal relia-
bility studies difficult, as the data cannot be reproduced.

Furthermore, collecting user reports introduces complexities related to false positives,
where users may mistakenly attribute personal connectivity issues or localized network

problems to LLM service failures. For example, complaints on social media about per-
ceived disruptions may actually stem from regional network conditions or client-side issues,
making it difficult to accurately identify genuine service failures. Such attribution errors
introduce noise into the dataset and complicate the reliable detection and classification of
actual disruptions.

Absence of Standardized Analytical Approaches Existing research [12] on LLM
service reliability primarily relies on operator reports published on official status pages.
While these reports provide valuable insights from the provider’s perspective—such as
incident timelines, affected components, and high-level failure causes—they often fail to
reflect the finer-grained, symptom-level disruptions experienced by end users. As discussed
earlier, operator reports frequently lack detail and geographic specificity, making them
inadequate for capturing the full scope of service behavior as experienced in real-world
usage contexts. Consequently, evaluations based solely on operator data offer a limited
and potentially skewed view of service reliability.

A more comprehensive understanding requires analyzing service disruptions from both
operator and user perspectives in parallel. This, in turn, necessitates standardized analyt-
ical approaches that can effectively accommodate heterogeneous data sources, align their
formats and semantics, and enable meaningful cross-source comparisons. However, such
methodologies remain largely absent in current literature [8]. For example, analyses that
evaluate the degree of alignment between overlapping failure periods in operator and user
reports, as well as identify patterns such as whether user-perceived failures systematically
precede official acknowledgments, are rarely conducted. Without such multi-perspective
evaluations, critical dimensions of reliability—such as service transparency, responsiveness,
and user-perceived impact—remain insufficiently addressed. This study seeks to bridge
that gap by introducing a set of comparative analytical approaches that incorporate both
operator and user reports, enabling more robust and multi-perspective evaluations of LLM
service reliability.

1.3 Research Questions

This research aims to provide a comprehensive operational analysis of LLM service relia-
bility by leveraging multi-source failure data from both service providers and users. Our
main question is: How to collect and understand LLM service reliability through
different sources of failure data? This main research question can be divided into the
following sub-questions (RQ):

RQ1l: How to collect, process, and unify operator- and user-reported fail-
ure data to support reliability analysis of LLM services?

This question aims to develop a standardized data pipeline capable of harmonizing het-
erogeneous reports across time zones, formats, and semantics. It involves data scraping,
timestamp normalization, semantic classification of failure types, and failure period ex-
traction to build structured datasets for analysis. (Section

RQ2: How to characterize failure recovery patterns across LLM services?

This question focuses on how failures manifest and evolve by analyzing recovery dura-
tions, failure intervals, failure frequencies, and other related aspects through reliability
metrics such as MTTR and MTBF. The goal is to model failure behaviors and to eval-
uate and compare service robustness from both operator and user perspectives. (Section

RQ3: What temporal patterns emerge in LLM service failures, and how can
they inform proactive reliability strategies?

This question explores whether service failures exhibit temporal clustering or follow regu-
lar cycles across hourly, daily, or weekly intervals. To uncover such patterns, the analysis
applies methods including trend visualization, categorical time-based distributions, and
autocorrelation analysis. Identifying these temporal characteristics can provide valuable
insights for predicting failures and designing proactive reliability strategies. (Section

RQ4: How strongly correlated are operator and user-reported failure signals,
and what inter-service dependencies can the analysis identify?

This question examines the statistical relationship between operator-reported incidents
and user-reported failure volumes, as well as the co-occurrence of failures across different
services. It seeks to uncover potential operational entanglements or shared infrastructure
vulnerabilities and to evaluate whether user reports accurately reflect or even anticipate
official disclosures. (Section

RQ5: To what extent do operator reports align with user experiences, and
what does this reveal about provider reporting practices?

This question investigates the consistency between operator and user reports across two
key dimensions: failure types and failure periods. The analysis involves computing match
rates, generating heatmaps of type-to-type mappings, and comparing reported timelines
to identify both alignment and divergence patterns. These findings help evaluate the
coverage and granularity of provider reporting practices. (Section @

1.4 Research Contributions

Our study provides five research contributions (RC), including:

RC1 (Conceptual): We propose a data collection and analysis methodology for un-
derstanding LLM service reliability through multiple sources of failure reports. As part
of this methodology, we design a unified data processing pipeline that standardizes and
structures heterogeneous raw inputs, such as official incident records, user comments, and
social media posts, into analysis-ready datasets. The processing steps include deduplica-
tion, time zone normalization, failure type classification, and extraction of user-reported
failure periods. By transforming diverse and unstructured inputs into a unified format, the
methodology enables consistent cross-source comparisons and supports a more comprehen-
sive, user-centric evaluation of service reliability from both operator and user perspectives.

RC2 (Technical): We implement a data collection and analysis tool for processing and
characterizing LLM failure data. Using this tool, we collect 530 operator reports from four
major providers over an 18-month period, along with over 160,000 user reports from three
third-party platforms spanning 3 months. After data cleaning, we apply the semantic rea-
soning capabilities of LLMs in a few-shot setting to classify failure types from unstructured
incident descriptions and user comments. We also aggregate user reports into 1-minute
bins and apply a 7-minute moving average to infer failure periods. These steps transform
the raw inputs into a structured and unified format for downstream failure analysis.

RC3 (Conceptual): We propose four types of failure analysis on our collected datasets:
failure-recovery modeling, temporal pattern analysis, correlation analysis, and consistency
analysis. Each type targets a distinct dimension of service reliability. Failure-recovery
modeling quantifies robustness using metrics such as recovery duration, failure interval,
failure frequency, and availability percentage. Temporal analysis explores periodic and
diurnal failure patterns using categorical time-based distributions and autocorrelation
functions. Correlation analysis captures failure co-occurrence across services using a con-
ditional probability matrix. Finally, consistency analysis evaluates the alignment between
operator and user reports in both semantics and timing. Semantic consistency is measured
by failure type match rates, while temporal consistency is evaluated using metrics such as
the percentage of overlapping reports and the lead time of user-reported failures relative
to operator reports. This comprehensive analytical approach enables a multi-faceted un-
derstanding of LLM service reliability.

RC4 (Technical): We conduct 11 types of analysis and summarize 28 important ob-
servations to provide insights based on long-term failure data from prominent LLM ser-
vices. We find that: (1) ChatGPT recovers the slowest from failures, with the highest
median recovery duration reported by both the operator (1.07 hours) and the user (1.23
hours). DeepSeek has the longest median failure interval on the operator side (5.39 days),
while Claude shows the longest on the user side (1.07 days); (2) DeepSeek exhibits the
largest discrepancy between operator and user reports, in terms of both median recovery
durations (0.81-hour gap) and median failure intervals (4.6-day gap); (3) failures reported
by both operators and users display clear periodic and diurnal patterns across services,

occurring more frequently on weekdays and peaking during the working hours of each
service’s primary user region; and (4) ChatGPT and Claude show relatively strong align-
ment between operator and user reports in terms of failure periods, though for different
reasons: ChatGPT has a high operator coverage of 82.22%, while Claude shows accurate
user reporting at 74.00%, along with closely aligned user detection, with a median user
lead time of 3 minutes.

RC5 (Open Science): We will release the collected datasets and the relevant toolkit as
a contribution to open science.

1.5 Research Structure

The remainder of this study is structured as follows. Section [2]introduces the data sources
used in this work and outlines the data collection pipeline, processing steps, and four
types of analytical approaches. Section [3| presents a failure-recovery modeling approach to
characterize failure dynamics. Section [4] conducts temporal trend and distribution analy-
ses and applies auto-correlation techniques to uncover service-specific patterns in failure
occurrences. Section [5| examines the correlation between operator-reported timelines and
user-reported issue volumes, and analyzes co-occurring failures across services to iden-
tify potential interdependencies. Section [6] presents a consistency analysis to evaluate the
alignment between operator and user reports in terms of failure types and reported pe-
riods. Section [7] discusses threats to the validity of the study. Section [§ reviews related
work, and Section [J] concludes the study.

2 Method for Analyzing Operator and User Reports

The approach proposed in this research systematically addresses the identified challenges
by establishing a comprehensive data pipeline and analytical workflow tailored specifically
to LLM services. This pipeline integrates multiple data sources—including official op-
erator reports and user reports—and implements structured data collection, processing,
and analytical techniques designed to provide granular and actionable insights into the
reliability of LLM services.

2.1 Data Collection

This data pipeline, as illustrated in Fig. collects both official operator reports and
user reports from third-party reporting platforms (e.g., DownDetector and DownForEvery-
oneOrJustMe) as well as social media (e.g., Twitter/X). It covers four major providers
and their respective web-based chat services: OpenAI’s ChatGPT, Anthropic’s Claude,
DeepSeek’s DeepSeek, and Character.Al.

The API services of these LLM providers are not monitored in this study. This is
because there are insufficient user-reported failures to support comparative analysis. Most
API users are business clients, who typically reach out to customer support directly rather
than report issues through public platforms such as DownDetector or social media. As a
result, user-reported failure data for API services is sparse or unavailable. In contrast, the
web-based chat services of these LLM providers have significantly larger user bases, making
it much more likely that user-reported failures will be captured in sufficient quantity for
downstream analysis.

Operator Reports Incident reports from official LLM service providers are collected
from their status pages (e.g., status.openai.com, status.anthropic.com). Specialized scrap-
ing scripts extract all incident reports, generating two output formats per service: (i) a
consolidated CSV file containing summary information about all incidents and (ii) a de-
tailed JSON file preserving the complete incident report content. These reports contain
important information about failures, including impact levels (Full Outage, Partial Out-
age, Degraded Performance, and Maintenance), failure start times, recovery times, failure
types, and failure root causes (if available). All collected data is initially stored locally
before further processing.

User Reports To incorporate user perspectives on LLM service failures, three parallel
data collection streams have been developed:

e DownDetector: Two separate scraping solutions were implemented—one extracts
user comments from service-specific pages, and another collects social media reports
aggregated by DownDetector. These scripts run on a daily scheduled basis through
Airflow orchestrated in Docker containers, performing incremental data collection.
The collected data is stored in an AWS S3 bucket.

e DownForEveryoneOrJustMe: This platform presents unique challenges, as it
only displays the 20 most recent user reports at any given time. To capture histori-
cal data, a persistent monitoring solution was deployed on a GCP e2-micro instance,

5L —

LLM Service Status Pages Run One-time Operator Reports Scrapers Locally Local Storage

EQ‘ docker
com Run C & Social Media Reports Scrapers AWS S3 Bucket

on Airflow (hosted in Docker) —) :l)
Snowflake
D
| W W _
-1 - 1 1
. g = 1 1

inn GCP

Continuously Run Bucket
Periodic User Reports Scraper (every 30s-1h)
on GCP e2-micro Instance

,E-’

Twitter (X) Periodically Run Tweet Scraper Locally Local Storage

downforeveryoneorjustme.com

ol
|

Figure 2.1: Data pipeline for collecting operational reports of LLM services, integrating
both official operator reports and user reports from third-party reporting platforms and
social media to enable comprehensive reliability analysis.

using screen sessions to ensure continuous operation. The collection frequency dy-
namically adjusts between 30 seconds and 1 hour, based on observed update patterns
for each LLM service. All incremental data is stored in a dedicated GCP bucket.

e Twitter/X: While DownDetector includes some social media reports, it sometimes
fails to update in a timely manner, leading to fragmented updates. Therefore, a
dedicated Twitter scraping solution was developed to supplement this data. Due
to rate limitations and authentication requirements, this script requires periodic
manual execution with credential input. The script extracts incremental tweet data
related to LLM service experiences and stores it locally in service-specific files.

Dataset Overview After approximately three months of data collection, all datasets
have been aggregated into a Snowflake database for further processing and analysis. The
directory tree structure of these datasets is illustrated in Fig. [2.2] As the figure indicates,
the archive of operational reports for LLM services consists of six types of datasets.

For operator reports, two types of datasets were collected. One provides summary-level
information on incident reports for each LLM service, presented in Table The other
offers detailed records for each individual incident report, shown in Table

For user reports, the first source is DownDetector, which contributes two datasets: one
containing user comments about each LLM service, displayed in Table and another
capturing user reports from social media (i.e., tweets), outlined in Table The second

10

source is DownForEveryoneOrJustMe, where each LLM service has a dedicated dataset
of user reports, provided in Table The third source is Twitter/X, which also yields a
separate dataset of tweets for each LLM service, summarized in Table The dataset
scraped directly from Twitter/X primarily serves as a supplementary source to the Down-
Detector tweets dataset. Given the occasional omissions in DownDetector’s updates of
social media reports, manual scraping from Twitter/X is used as a fallback when neces-
sary.

Table presents a consolidated summary of the collected datasets, including both
operator and user reports.

11m_service_operational_reports

— operator_reports
report_detail

— character_ai.json

— chatgpt.json

— claude.json

— deepseek.json

L— incident_parser.log

report_summary

— character_ai.csv

— chatgpt.csv

— claude.csv

— deepseek.csv

L— incident_scraper.log

— user_reports

— downdetector

— comments
character_ai_downdetector_comments.csv
chatgpt_downdetector_comments.csv
claude_downdetector_comments.csv
deepseek_downdetector_comments.csv

— logs

downdetector_comments_2025-02-11.1log

downdetector_tweets_2025-02-11.1og

— tweets
character_ai_downdetector_tweets.csv
chatgpt_downdetector_tweets.csv
claude_downdetector_tweets.csv
deepseek_downdetector_tweets.csv

— downforeveryoneorjustme

— character_ai_downfor.csv

— chatgpt_downfor.csv

— claude_downfor.csv

— deepseek_downfor.csv

L— downfor.log

— tweets

— character_ai_tweets.csv

— chatgpt_tweets.csv

— claude_tweets.csv

— deepseek_tweets.csv

L— tweet_scraper.log

Figure 2.2: Directory structure of LLM service operational reports.

11

Table 2.1: Fields and example entries from the operator report summary dataset.

Field Example Entry
title Elevated errors on Claude.ai and the Anthropic Console
url https://status.anthropic.com/incidents/rv4qtngkedny

impact_level major

description This incident has been resolved.
start_time Mar 31, 2025 - 07:52 PDT
end_time Mar 31, 2025 - 09:18 PDT

Table 2.2: Fields and example entries from the operator report detail dataset.

Field Example Entry

basic_info.title Elevated errors on Claude.ai and the Anthropic Console
basic_info.impact_level major

affected_components claude.ai, console.anthropic.com, api.anthropic.com
timeline[0].status Resolved

timeline[0].content This incident has been resolved.

timeline[0].timestamp ~ Posted Mar 31, 2025 - 09:18 PDT

postmortem null

source_url https://status.anthropic.com/incidents/rv4qtngkedny
source_file claude

Table 2.3: Fields and example entries from the DownDetector comments dataset.

Field Example Entry

username Daniel Holida

datetime_string Monday, March 31, 2025 1:44 PM

timestamp 2025-03-31 13:44:00

content Oh god please don’t make me actually search for an answer on stackoverflow
likes 1

Table 2.4: Fields and example entries from the DownDetector tweets dataset.

Field Example Entry

username @rchitectopteryx
timestamp 2025-03-31 14:36:25
content Every morning, as the west coast. wakes up, ChatGPT becomes unusable.

12

Table 2.5: Fields and example entries from the DownForEveryoneOrJustMe dataset.

Field Example Entry
timestamp 2025-03-30T21:15:43.119%
country United States

issue_type Slow

Table 2.6: Fields and example entries from the Twitter/X dataset.

Field Example Entry

tweet_id 1906758818945437991

text Smfh ChatGPT is still down
created_at 2025-03-31 17:21:42+00:00
author_id 19307054

author_name can you lend a DEI a pencil?
author_username RodSteed

retweet_count 0

reply_count 0

like_count 1

lang en

Table 2.7: Summary of collected datasets. Legend: D=day(s).

Platform Dataset Content Service ‘ First Date Last Date Coverage [D] ‘ # of Reports
ChatGPT 2023-12-01 2025-05-18 535 179
Incident Summar Claude 2023-12-01 2025-05-18 535 227
nedent Summary: - nyoonSeek 2024-05-01 2025-05-18 383 37
Character. Al | 2023-12-01 2025-05-18 535 87
Status Pages
ChatGPT 2023-12-01 2025-05-18 535 179
Incident Detail Claude 2023-12-01 2025-05-18 535 227
naden ! DeepSeck 2024-05-01 2025-05-18 383 37
Character. Al | 2023-12-01 2025-05-18 535 87
ChatGPT 2025-01-02 2025-05-18 137 2,551
Comment Claude 2025-01-30 2025-05-18 109 18
oruments DeepSeek 2025-01-20 2025-05-18 110 57
Character.AT | 2025-01-04 2025-05-18 135 12,237
DownDetector
ChatGPT 2025-02-11 2025-05-18 97 2,966
Social Media Renorts Claude 2024-12-29 2025-05-18 141 1,006
octal Media RO pyoepSeek 2025-02-18 2025-05-18 90 406
Character.AT | 2024-10-24 2025-05-18 207 47
ChatGPT 2025-02-13 2025-05-18 95 38,160
Claude 2025-02-06 2025-05-18 102 1,900
DownForEveryoneOrJustMe User-Reported Issues DeepSeek 2025-02-12 2025-05-18 96 1377
Character.Al | 2025-02-13 2025-05-18 95 73,285
ChatGPT 2025-01-01 2025-05-18 138 10,740
) Claude 2025-01-01 2025-05-18 138 8,205
Twitter/X Tweets DeepSeck 2025-01-01 2025-05-18 138 6,000
Character.AT | 2025-01-01 2025-05-18 138 5,461

13

2.2 Data Process

To enable structured analysis, the collected data is processed and transformed into a
unified format. Depending on the source and structure of each dataset, different processing
strategies are applied. The details are outlined below.

2.2.1 Data Cleaning and Failure Type Extraction

Operator Report Datasets For the operator report summary dataset, timestamps
such as start_time and end_time are recorded in different time zones depending on the
specific provider. To ensure consistency across all datasets, these timestamps are converted
to Coordinated Universal Time (UTC), thereby establishing a unified temporal format for
downstream analysis.

The main task in processing the operator report detail dataset is to classify each incident
into a predefined failure type using an LLM in a few-shot setting. This approach leverages
the semantic reasoning capabilities of LLMs, enabling more accurate and context-aware
classification than traditional rule-based or keyword-based methods.

For each incident report, three key textual elements are extracted and concatenated
to form the classification input: the title subfield from the basic_info field, and all
content subfields from the timeline field that describe the incident’s progression. The
combined text captures all the necessary information about a given incident, such as
symptoms, root cause, and remediation efforts.

This input is then passed to the LLM (i.e., ChatGPT-40), which leverages its semantic
capabilities to infer the most appropriate failure type from the overall contextﬂ The
predefined classification categories align with those discussed in Section and follow the
logical sequence of a typical user interaction flow—ifrom initial access to actual usage. The
categories are as follows:

e Login: Users encounter issues while attempting to log in or sign up.
e Inaccessible: The entire service or specific features become unavailable.
e Slow: The service exhibits elevated latency or significantly degraded response times.

e Error Received: Users encounter explicit errors during usage, such as system
messages (e.g., Something went wrong) or technical error codes (e.g., HTTP 5xx).

e Others: Issues that do not clearly fall into any of the above categories, including
scheduled maintenance.

e Unknown: The operator report does not specify the type of issue.

After performing the classification task, the LLM generates an output dataset in CSV
format, consisting of three columns: url, affected_components, and failure_type.

Once both operator report datasets have been processed, the cleaned summary dataset
is merged with the aforementioned three-column output dataset using the url field as the
key. This produces a unified dataset, the structure of which is shown in Table

1See the Appendix for the full prompt used in the structured extraction process.

14

Table 2.8: Fields and example entries from the final operator report dataset.

Field Example Entry

title Elevated errors for ChatGPT
affected_components ChatGPT

impact_level Degraded performance
start_time 2025-02-19 18:42:00
end_time 2025-02-19 19:08:00
failure_type Error Received

DownDetector Dataset The DownDetector comments dataset consists of user feed-
back directly submitted on the DownDetector platform. Each entry in the dataset corre-
sponds to a single user comment regarding a specific LLM service, and includes a textual
description (content), a timestamp (timestamp), and a count of likes received from other
users (likes). To extract actionable signals from this dataset, as illustrated in Table
a multi-step data processing pipeline was designed.

First, the content column was processed using ChatGPT-40 with a carefully designed
few-shot prompt. This step aimed to identify the failure type perceived by the user in
each comment. Such classification aligns with that used for operator reports, consisting of
six categories: Login, Inaccessible, Slow, Error Received, Others, and Unknown. The
predicted failure type for each comment was stored in a new column named failure_type.

Next, the 1likes column was incorporated to reflect how many additional users resonated
with the reported issue. A new column, weight, was introduced to reflect the total number
of users affected by the same problem. It is defined as weight = likes + 1, where the
additional one accounts for the original commenter. This weighting scheme assumes that
a higher number of likes indicates broader user agreement with the reported issue.

Combining the original timestamp column (already normalized to UTC), the extracted
failure_type, and the computed weight, a processed dataset was constructed to cap-
ture temporal and categorical patterns in user-reported service failures. Each row in this
dataset, exemplified in Table represents a timestamped instance of perceived service
failure, along with its inferred failure type and the estimated number of affected users.

Table 2.9: Sample entries from the processed DownDetector comments dataset, showing
report timestamps, inferred failure types, and comment weights.

timestamp failure_type weight

2025-04-28 18:38:00 Slow 3
2025-04-28 18:40:00 Error Received
2025-04-28 19:41:00 Inaccessible
2025-04-28 21:10:00 Slow
2025-04-29 05:33:00 Error Received
2025-04-29 19:17:00 Slow
2025-04-29 20:29:00 Error Received

N~ = NN =

To identify periods of user-perceived service failure, the processed data was further

15

aggregated into one-minute intervals. For each minute, all entries within the corresponding
time window were grouped, and their weight values summed to compute a new column
report_count, representing the total number of user reports for that minute. This results
in a second-level dataset, illustrated in Table consisting of two columns: timestamp
(minute-level granularity) and report_count. This aggregated representation forms the
foundation for constructing a unified multi-source time series of user report counts for
subsequent analysis.

Table 2.10: Sample time series entries from the processed user report dataset aggregated
at one-minute intervals.

timestamp report_count

2025-04-28 18:38:00
2025-04-28 18:39:00
2025-04-28 18:40:00
2025-04-28 18:41:00
2025-04-28 18:42:00

OO = O W

The DownDetector tweets dataset contains user posts collected by DownDetector from
external social media platforms, primarily Twitter/X. Its processing pipeline closely fol-
lows that of the comments dataset. As before, the content column in the original dataset
was processed using ChatGPT-40 with a tailored few-shot prompt, enabling semantic anal-
ysis to identify the service failure type described in each post. The inferred failure types
were then stored in a new column named failure_type.

Unlike the comments dataset, the tweets dataset does not include a likes column. As
a result, the processed dataset consists only of the original timestamp column and the
extracted failure type column, as illustrated in Table

To construct a second-level dataset reflecting the number of user reports per minute,
the processed data was aggregated at one-minute intervals. Since no weight values are
available, the report_count for each interval was computed as the total number of entries
within that minute. The resulting dataset shares the same structure as the one shown in
Table with columns timestamp and report_count.

Table 2.11: Sample entries from the processed DownDetector tweets dataset with report
timestamps and inferred failure types.

timestamp failure_type

2025-05-03 00:31:28 Error Received
2025-05-03 02:30:36 Inaccessible
2025-05-03 02:50:55 Error Received
2025-05-03 04:04:53 Slow
2025-05-03 04:44:16 Others
2025-05-03 06:00:19 Inaccessible
2025-05-03 08:40:11 Error Received

16

Twitter /X Dataset As a complement to the DownDetector tweets dataset, the Twit-
ter/X dataset follows the exact same processing pipeline as the DownDetector com-
ments dataset. This is because the structure and semantics of the relevant columns are
fully aligned: the text column in the Twitter/X dataset corresponds to content, the
created_at column corresponds to timestamp, and the like_count column corresponds
to 1likes in the DownDetector comments dataset.

Accordingly, the same steps were applied: first, the text column was semantically ana-
lyzed using ChatGPT-40 to infer the failure type, stored in a new column failure_type;
second, the 1ike_count values were used to compute a new weight column by adding one
to each value; and finally, these processed rows were aggregated at one-minute intervals to
produce a time series of user report counts. As a result, the processed Twitter/X dataset
has its own counterparts of Table and Table following the same data structure
and interpretation.

DownForEveryoneOrJustMe Dataset For the dataset collected from DownForEvery-
oneOrJustMe, no LLM-based semantic parsing is required, as the original data already
includes both the timestamp of each user-reported issue (timestamp) and the correspond-
ing failure type (issue_type). Therefore, unlike the DownDetector or Twitter/X datasets,
the data can be directly aggregated at one-minute intervals to count the number of user
reports, resulting in a time series dataset similar in structure to Table

Once the raw datasets from the three platforms have each been processed into time
series datasets representing user report counts over time, the final step is to merge them.
This is done by grouping all records by their timestamp and summing the report_count
values within each group. The result is a unified, minute-level dataset capturing the total
number of user reports across all sources, which serves as the foundation for identifying
periods of user-perceived service failure.

2.2.2 Inferring User-Reported Failure Periods

Identifying user-reported failure periods from this unified dataset presents a notable chal-
lenge due to the highly jagged nature of the original time series of user report counts.
With one-minute granularity, the data often alternates between sharp spikes and intervals
with zero reports, making it difficult to determine whether a failure is continuous or inter-
mittent. For example, given a detection threshold of 6 reports per minute, it is ambiguous
whether a sequence such as 6, 6, 5, 6, 6 should be treated as one continuous failure period
or whether the brief drop below the threshold should segment it into multiple episodes.

To address this, a moving average method is applied to smooth the time series, as
shown in Fig. This method includes two key parameters: the moving average window
size and the detection threshold, which defines the minimum report volume required to
classify a period as a failure. All time segments in the smoothed curve that remain above
the threshold are extracted as user-reported failure periods.

To choose the most appropriate parameter combinations that best reflect the time peri-
ods when users actually perceived service failures, a sensitivity analysis is applied. Since
no ground truth labels are available for user-reported failure periods, traditional evalua-
tion metrics such as accuracy or recall are not applicable. Instead, this study adopts a
fragmentation-based heuristic to evaluate different parameter combinations.

17

1
: 01:20 - 03:25

1 1
:03:45 - 04:12: Original
20 r _______________________________________ T I" ““““ 'T —— Moving Average (7 points)
g | A i
@]
i AR |
g 10 ! b :
- | e
o i A :
08 T LN e
0 : ; | |

04-26 01:00 04-26 01:30 04-26 02:00 04-26 02:30 04-26 03:00 04-26 03:30 04-26 04:00 04-26 04:30 04-26 05:00

Figure 2.3: Visualization of a segment of user report volume over time for ChatGPT,
spanning 01:00 to 05:00 on April 26, 2025. The gray shaded area indicates the period
identified as user-reported downtime.

The core idea is that inappropriate parameters may result in fragmented failure segments
that should have been detected as a single continuous period. To quantify the degree of
fragmentation in a sequence of detected user-reported failure periods, a fragmentation
score is introduced. Let P = {(s;, e;)}1~; denote the set of detected failure periods under
a given parameter setting, where s; and e; represent the start and end timestamps of the
i-th failure period, respectively. A mergeable pair is defined as any two consecutive periods
(€4, si+1) such that the gap between them satisfies:

Si+1 — €4 S 5 (1)

where § = 5 minutes is a predefined merge tolerance. Intuitively, if two failure periods
occur within 5 minutes of each other, they can be considered part of a single perceived
failure episode that was artificially split due to a short fluctuation in report volume.
Based on this definition, the fragmentation score is given by:

Number of mergeable pairs)

This score measures the proportion of potentially unnecessary splits among all con-
secutive pairs. A lower fragmentation score indicates that the detected failure periods
are more continuous and coherent, suggesting a better parameter setting for reflecting
user-perceived failures.

This metric is evaluated across various combinations of moving average window sizes
and detection thresholds. Table summarizes the results for ChatGPT’s user reports,
including the original number of detected failure periods and the number after merging
adjacent ones. As expected, parameter settings with smaller window sizes and lower
thresholds (e.g., window size = 5, threshold = 0.6) tend to produce a large number of short
segments, resulting in higher fragmentation. These settings are considered overly lenient,
as they capture numerous minor fluctuations and noise. In contrast, larger windows and
higher thresholds (e.g., window size = 9, threshold = 1.0) apply stricter criteria, thereby
reducing both the number and length of extracted segments.

The results show that for all window sizes, the fragmentation score consistently reaches
its minimum when the threshold is set to 0.8. Among these, both the (7, 0.8) and (9,
0.8) combinations achieve the lowest fragmentation score of 0.191, indicating that they
best capture coherent and continuous failure periods without over-fragmentation. To

Fragmentation Score =
n—1

18

determine which of the two should be selected as the final setting, the trade-off between
strictness and coverage is considered. While a larger window size of 9 imposes stricter
criteria and results in fewer detected failure periods (205 original, 166 after merging), the
slightly smaller window size of 7 yields more detected segments (273 original, 221 after
merging) and thus increases the likelihood of capturing potentially overlapping periods
with operator-reported failures. In this context, a more permissive setting (i.e., smaller
window size) is preferable, as it emphasizes recall over precision, ensuring that possible
failure events are not missed even if some borderline cases are included. Based on this
reasoning, the combination of window size = 7 and threshold = 0.8 is selected as the
optimal setting for extracting user-reported failure periods for ChatGPT.

Table 2.12: Sensitivity analysis results across different parameter combinations for moving
average window size and detection threshold.

window _size threshold fragmentation score original periods merged_periods

5 0.600 0.284 532 381
) 0.700 0.251 268 201
5 0.800 0.251 268 201
5 0.900 0.291 176 125
5 1.000 0.291 176 125
6 0.600 0.273 257 405
6 0.700 0.211 324 256
6 0.800 0.211 324 256
6 0.900 0.269 228 167
6 1.000 0.269 228 167
7 0.600 0.221 412 321
7 0.700 0.221 412 321
7 0.800 0.191 273 221
7 0.900 0.232 204 157
7 1.000 0.232 204 157
8 0.600 0.269 502 367
8 0.700 0.219 324 253
8 0.800 0.196 236 190
8 0.900 0.201 185 148
8 1.000 0.201 185 148
9 0.600 0.195 371 299
9 0.700 0.199 278 223
9 0.800 0.191 205 166
9 0.900 0.206 176 140
9 1.000 0.206 176 140

Finally, all extracted time segments are stored in a new dataset with two columns:
start_time and end_time, where each row represents a continuous failure period. For
each period, the most frequently reported failure type is identified by examining all user
reports that fall within the corresponding time window, based on the processed user report
datasets (i.e., Table[2.9]and Table[2.11)). This dominant failure type is then stored in a new
column, failure_type. The resulting dataset of user-reported failure periods is illustrated
in Table which includes three columns: start_time, end_time, and failure_type.

19

Table 2.13: User-perceived failure periods with the most frequently reported failure types.

start_time end_time failure_type

2025-04-30 02:16:54 2025-04-30 02:57:17 Error Received
2025-04-30 03:14:20 2025-04-30 04:56:09 Login
2025-04-30 08:33:17 2025-04-30 09:03:50 Error Received
2025-04-30 14:48:04 2025-04-30 16:13:46 Slow
2025-04-30 16:54:39 2025-04-30 17:39:08 Error Received

2.3 Data Analysis

This section conducts a multi-faceted analysis of the processed failure data to evaluate
the reliability of LLM services. It examines failure recovery patterns, temporal dynam-
ics, inter-source correlations, and the consistency between operator- and user-reported
failures. Each component addresses a distinct aspect of service failure behavior, ranging
from recovery efficiency and temporal regularities to reporting alignment and discrepan-
cies. Together, these analyses provide a quantitative foundation for comparing provider
performance and understanding the reliability characteristics of LLM services.

2.3.1 Failure-Recovery Modeling

To characterize how failures manifest and evolve in LLM services, this section models
key aspects such as recovery duration, failure interval, failure severity, and failure type.
Drawing on failure data from two perspectives, the analysis applies quantitative metrics,
including MTTR, MTBF, and others, to capture multiple dimensions of failure behavior.
The goal is to establish a robust foundation for comparing failure recovery patterns across
different LLM services and between the two reporting sources. This analysis addresses
RQ2] and presents the corresponding observations in Section

Impact of Failure Type and Severity on Recovery Time To analyze how different
failure types and impact levels relate to service recovery time, this subsection presents two
sets of analyses based on operator-reported and user-reported failure datasets (Table
Table . The recovery time of each failure is computed as the difference, in minutes,
between start_time and end_time. Failures with a zero duration or lasting longer than
72 hours are excluded to mitigate data noise and outliers.

First, the relationship between failure types and recovery durations is examined by
calculating the median recovery time per failure type for each LLM service, separately
for operator and user reports. The resulting data are visualized as grouped bar charts
(Figure , where each bar represents the median recovery time for a given failure type
and LLM service.

To further capture the variability of recovery durations within each failure type, Fig-
ure [3.2] presents a set of boxplots comparing the distribution of recovery times across
operator and user sources, broken down by LLM service and failure type. This visualiza-
tion highlights both central tendencies and dispersion patterns, facilitating a comparative
assessment of failure resolution behavior across services and reporting perspectives.

20

In addition to failure types, the relationship between failure impact level and recovery
time is analyzed based solely on operator-reported incidents, as user reports do not contain
impact information. Figure displays boxen plots of recovery durations grouped by
impact level and service, enabling the examination of how severity correlates with recovery
efficiency. Boxen plots are particularly well-suited for this analysis, as recovery times
tend to exhibit right-skewed, long-tailed distributions. This visualization provides a more
detailed view of the upper quantiles while maintaining a clean appearance.

MTTR and MTBF Analysis To assess the recovery efficiency and failure frequency
of LLM services, this subsection analyzes two widely used reliability metrics: Mean Time
to Recovery (MTTR) and Mean Time Between Failures (MTBF). These metrics are com-
puted separately using operator-reported and user-reported failure datasets (Table
Table [2.13]). For each dataset, recovery time is calculated as the duration between the
start and end timestamps of a failure event, while the time between failures is defined as
the duration from the end of one failure to the start of the next. Failures with extremely
long durations (greater than 10 days) are excluded to reduce noise.

Figure [3.4] presents the distributions of MTTR and MTBF across all LLM services
using horizontal boxplots with logarithmic scales. Each box represents either operator-
reported or user-reported statistics, grouped by service. This visualization highlights not
only the central tendencies of the recovery and failure spacing patterns, but also the
high degree of skewness present in both metrics. The use of a logarithmic axis enables
consistent comparison across values ranging from minutes to days. Vertical reference lines
are included to mark standard thresholds (e.g., 0.5 hours, 1 day) for easier interpretation.

To complement the boxplots, Figure|3.5|provides empirical cumulative distribution func-
tions (ECDFs) of MTTR and MTBF, separately plotted for operator and user datasets.
These ECDF plots enable fine-grained comparison of recovery and failure intervals across
services by showing what proportion of failures or inter-failure gaps fall below a given
threshold. Logarithmic axes are again applied to capture the wide range of observed val-
ues. This dual representation offers a robust and interpretable view of how quickly services
recover and how frequently failures occur under different reporting perspectives.

Comparative Analysis of Failure Patterns To conduct a comparative analysis of
the reliability and robustness of different LLM services, this work defines and computes a
suite of metrics that reflect multiple dimensions of system behavior during and between
service failures. These metrics are logically grouped to capture: (1) the duration and ef-
ficiency of recovery processes, (2) the temporal distribution and spacing between failures,
(3) overall failure frequency and diversity, (4) system-wide availability, and (5) specific
characteristics observable only from operator side, such as detection delay and the overall
severity of failures. Each metric is defined as follows.

Mean Time to Recovery (MTTR). MTTR refers to the average amount of time

required to restore a service after a failure has occurred. It measures the responsiveness
and effectiveness of the recovery process. Given a set of IV incident reports, each with a

21

(4)

start time ¢, .

. and an end time t(i)d, the MTTR is computed as:

en

1 i i
MTTR = N ; (térfd - tét?ﬂt) (3)

Median Failure Duration (MFD). MFD captures the median duration of failure
events, offering a robust central tendency measure that is less sensitive to extreme values.
For each incident, the duration is computed as (t e;) qd— té?art), and the MFD is the median

of these values across all incidents.

Tail [P95] Failure Duration (TFD). TFD represents the 95th percentile of failure
durations, characterizing the worst-case scenarios in terms of prolonged outages. It pro-
vides insight into the tail behavior of the system’s recovery performance and is useful for
risk assessment and SLA evaluation.

Mean Time Between Failures (Mean MTBF). MTBF indicates the average time
interval between the end of one failure and the start of the next. It reflects the system’s
reliability or uptime. For a chronologically ordered sequence of N incidents, the MTBF is
calculated as:

MTBF = - Nzl (t(” D@) (4)
N —1 P start end

Median Time Between Failures (Median MTBF). This metric computes the me-
dian time between the end of one incident and the start of the next, based on all adjacent
incident pairs. It provides a robust alternative to the mean MTBF that mitigates the
influence of extremely long or short intervals.

Tail [P95] Time Between Failures (TTBF). TTBF quantifies the 95th percentile
of time intervals between successive failures, offering insight into the longest stretches of
continuous service availability.

Failure Frequency. Failure frequency refers to the number of failure incidents observed
within the monitoring period. It serves as a basic but informative indicator of how often
the system experiences observable disruptions.

Failure Type Entropy. This metric captures the diversity of failure types by computing
the Shannon entropy over all observed failure categories. Let C' be the set of distinct
failure types and p; the proportion of failures belonging to type j, the entropy is given by:

H =3 pjlogp (5)
jec

As mentioned earlier, failure types are classified into six categories: Login, Inaccessible,
Slow, Error Received, Others, and Unknown. A higher entropy value indicates a more
heterogeneous distribution of failure types, suggesting a broader spectrum of issues.

22

Awvailability Percentage. Availability is computed as the fraction of total monitor-
ing time during which the service is not affected by any reported failure. It is calculated
as:

N () (4)
Availability = 1 — Zl:l(end start) (©)
Ttotal

where Tioa1 is the total duration of the observation period.

Average Failure Impact Level (Ordinal). This metric averages the ordinal impact
level labels associated with each operator-reported failure. By assigning numeric values
to impact levels (with higher numbers indicating greater severity), the overall severity of
failures can be assessed over time. This metric is only available from operator reports.

2.3.2 Temporal Pattern Analysis

Understanding when failures are most likely to occur is essential for diagnosing the causes
of service disruptions and designing effective mitigation strategies. This section explores
temporal patterns in LLM service failures by analyzing their distribution over time. Specif-
ically, it examines whether failures show periodic regularities, concentrate in specific time
windows, or display temporal clustering. The analysis considers multiple time granular-
ities, including daily, weekly, and hourly intervals, and applies techniques such as trend
visualization, categorical time-based distributions, and autocorrelation analysis. By re-
vealing patterns from both operator- and user-reported failures, this study investigates
whether temporal signals can provide reliability insights to support proactive service man-
agement and enhance user experience. This analysis addresses RQB| and presents the
corresponding observations in Section

Temporal Trends To analyze temporal trends in LLM service failures, this study com-
putes daily and weekly failure counts using both operator-reported and user-reported
failure datasets (Table Table [2.13)). Each failure event is counted based solely on its
reported start time. For the daily trend, a failure contributes one count to the calendar day
on which it began, regardless of its duration or whether it continued into subsequent days.
Similarly, for the weekly trend, each failure is assigned to the calendar week containing its
start time. This approach ensures that each failure is counted only once, using a consistent
timestamp anchor across temporal resolutions. The resulting time series are aligned and
plotted separately for operator and user reports, with one panel visualizing daily trends
and another visualizing weekly trends. This design facilitates comparative assessment of
failure frequency patterns across different temporal granularities and reporting sources.

Temporal Distributions To investigate whether service failures exhibit periodic pat-
terns, this subsection analyzes their distributions across multiple time-based partitions—
ranging from weekly cycles to intra-day variations—using both operator- and user-reported
failure datasets (Table Table [2.13)). The occurrence time of each failure is defined as
the calendar day or hour corresponding to its reported start time.

The first analysis compares failure frequencies between weekdays and weekends. Failures
are grouped by binary weekday category, allowing for an assessment of whether service in-
stability is more prevalent during workdays, which may experience higher usage demands.

23

To ensure comparability given the unequal number of weekdays (five) and weekends (two),
the comparison is based on the average number of failures per day within each category.

The second analysis examines failure distributions across individual weekdays (Monday
through Sunday), with the goal of identifying systematic patterns over the seven-day
weekly cycle—for example, whether certain days such as Fridays are more failure-prone.

The final analysis explores hourly variation by grouping failures according to the hour of
day in which they began. This component is motivated by user concerns about degraded
service quality during specific times of day—particularly morning hours in high-demand
regions such as the U.S. West Coast. Aggregating failures by hour enables the identification
of diurnal patterns in outage occurrence across different services.

Auto-correlations To examine whether service failures exhibit temporal self-dependency,
this subsection applies autocorrelation function (ACF) analysis to the time series of failure
occurrences. ACF measures the correlation of a time series with lagged versions of itself,
offering insight into whether the presence of a failure on a given day or week increases
the likelihood of another failure occurring at regular intervals. This can reveal latent
periodicities or persistence effects in service instability patterns.

For each LLM service, failure time series are constructed by aggregating the number of
failures per day and per week, using the start time of each failure as the temporal anchor.
Separate analyses are conducted for operator-reported and user-reported data (Table
Table . For daily autocorrelations, the time series is resampled at a one-day interval;
for weekly autocorrelations, it is resampled at a one-week interval. Missing dates or weeks
without reported failures are assigned zero counts to maintain a continuous timeline.

The number of lags used in the ACF plots is determined by the available time range
in each dataset. For operator-reported data, up to 80 daily lags and 50 weekly lags are
applied. In contrast, user-reported data spans only a three-month period and therefore
uses fewer lags—40 for daily and 8 for weekly autocorrelations. ACF plots are then
generated for each service and reporting perspective to visualize autocorrelation structures
over both short-term and long-term intervals.

2.3.3 Correlation Analysis

This section analyzes two types of correlation between operator and user perspectives.
The first examines the statistical relationship between user-reported issue volume and the
presence of official incidents, using correlation coefficients to quantify their association.
The second investigates failure co-occurrence to evaluate whether failures tend to align
across LLM services. Such exploration offer insights into the level of agreement between
reporting sources and the potential infrastructure interdependencies among services. This
analysis addresses RQM] and presents the corresponding observations in Section

Correlation Between User Reports and Official Incidents To quantify the rela-
tionship between user-reported issue volume and officially disclosed incidents, both Pear-
son and Spearman correlation coefficients were computed separately for each LLM service.
The time series were constructed at a 5-minute resolution. Within each window, the num-
ber of user reports was aggregated based on the user report count dataset (Table, and
a binary indicator was assigned to denote whether an official incident was active during

24

that interval, using the operator-reported failure datasets (Table|2.8). Pearson correlation
was used to measure linear dependence between the two signals, while Spearman correla-
tion assessed monotonic (rank-based) associations. Statistical significance was annotated
using standard asterisk notation: *p < 0.05, **p < 0.01, and ***p < 0.001.

Co-occurrence of Failures To investigate whether service outages tend to occur simul-
taneously across different LLM services, a co-occurrence analysis was conducted based on
daily failure events. The analysis was performed separately for the operator-reported and
user-reported failure datasets (Table Table , both of which provide timestamped
records of service disruptions.

For each service, the set of failure dates was extracted by using only the reported
start_time of each incident to determine the day of failure. A day was considered a
failure day for a given service if any failure began on that date.

Let S; and S; denote two services. A co-occurrence count matrix C' was computed,
where each element C;; represents the number of calendar days on which both S; and
S; experienced a failure. This symmetric matrix captures the raw overlap in failure days
between service pairs.

To further analyze directional dependencies, a conditional probability matrix P was
calculated, where each element P;; denotes the probability that service S; experiences a
failure on a day, given that service S; fails on that day. This is formally defined as:

|Ds; N Ds,|
Bj:P(Si‘Sj):W (7)
S

where Dg, denotes the set of failure days for service Sj.

In the resulting heatmap visualizations, the rows (y-axis) represent the conditional target
service S;, the columns (x-axis) represent the conditioning service S, and the cells display
P(S; | S;) as percentages. This formulation provides a comparative view of inter-service
failure correlations and potential operational dependencies.

2.3.4 Consistency Analysis

Because consistency between operator disclosures and user experiences is essential for
comprehensively evaluating LLM service reliability, this section investigates the alignment
between operator- and user-reported failures across two dimensions. First, it examines
whether the failure types acknowledged by service providers correspond to those perceived
and reported by users. Second, it evaluates the extent to which the failure periods reported
by LLM providers match user-reported timelines. The results of these comparisons reveal
varying levels of consistency across providers, which may reflect differences in monitoring
practices, disclosure policies, or responsiveness to user feedback. This analysis addresses
RQP| and presents the corresponding observations in Section [6}

Consistency of Failure Types To evaluate the consistency of failure type classifica-
tions between operator and user reports, this subsection introduces two complementary
analyses, both using operator-reported failure datasets (Table and raw user report
datasets (Table . The goal is to assess the extent to which user-perceived failure types
align with the categories reported by LLM service providers.

25

The first analysis calculates the match rate for each service. For every operator-reported
failure window, the most frequently reported failure type among all temporally overlap-
ping user reports is identified. If this dominant user-reported type matches the operator-
assigned failure type, it is counted as a match. The match rate is then computed as
the percentage of such matches relative to the total number of operator-reported fail-
ures. This metric offers a high-level summary of the agreement between user and operator
perspectives across services.

The second analysis provides a more detailed view of the mapping between operator and
user classifications. For each service, a confusion matrix is constructed using operator-
reported failure windows with corresponding user-reported issues. Within each window,
the most frequently reported user failure type is paired with the operator-reported failure
type, and the frequency of each type-to-type pairing is recorded. The resulting heatmaps
reveal common agreement patterns and recurrent misalignments between the two sources.
Collectively, these analyses enable an assessment of classification consistency and potential
gaps in mutual understanding of failure types.

Consistency of Failure Periods To evaluate the alignment between operator- and
user-reported failure periods, this subsection compares the temporal overlap of failure
windows across the two sources. For each LLM service, a side-by-side timeline visualiza-
tion is constructed, displaying operator-reported and user-reported failures along a shared
calendar axis. Operator-reported failure windows are color-coded by impact level, while
user-reported failure windows are rendered as parallel bars in a uniform color. This layout
facilitates visual inspection of overlaps, discrepancies, and potential reporting lags between
the two perspectives.

In addition to visual inspection, the analysis incorporates quantitative comparisons us-
ing consistency-related metrics, such as the percentage of overlapping reports and the lead
or lag time of user-reported failures relative to corresponding operator reports. By system-
atically comparing operator and user perspectives, this study aims to uncover reporting
discrepancies and identify providers whose official disclosures closely reflect user-reported
issues. It also highlights services where user feedback deviates significantly from operator
acknowledgments. These findings offer insight into the consistency and responsiveness of
provider-side reporting in relation to actual user experience.

26

3 Failure-Recovery Modeling

This section models and compares the failure recovery characteristics of major LLM ser-
vices using both operator and user reports, aiming to reveal patterns in failure behavior
across services and between data sources. The analysis includes: (1) how recovery time
varies across failure types and impact levels; (2) analysis and comparison of MTTR and
MTBF distributions across services; and (3) comparative evaluation of failure metrics
across all services and perspectives.

3.1 Impact of Failure Type on Recovery Time

Observation #1: In operator reports, Slow failures generally show the longest median
recovery durations. Averaged across services, the median recovery time for this failure type
is 115.5 minutes, compared to 64.8 for Login, 60.8 for Inaccessible, and 67.3 for Error
Received failures.

Observation #2: Operator reports exhibit greater variability in median recovery dura-
tions, both within and across failure types (average within-type variance: 1585 minutes®;
across-type: 1839 minutes®). In contrast, user reports show much lower variability (631
minutes® within-type; 377 minutes? across-type), indicating more consistent user percep-
tions of recovery durations.

Figure presents the median recovery durations for four major failure types across
operator and user reports. In operator data, Slow failures generally incur the longest
recovery times (Observation . For example, Character.Al reports a median duration of
183 minutes for Slow failures—2.5x as long as its Inaccessible and Error Received failures
(both 72 minutes) and nearly 2x that of Login (94 minutes). The only exception to this
trend is observed in ChatGPT, where Inaccessible failures reach 139 minutes, nearly 2x its
Slow duration of 71 minutes. This pattern suggests that Slow failures may involve more
complex performance degradations or backend bottlenecks that are harder to isolate and
resolve than access-related issues such as Login or Inaccessible failures.

Operator-reported medians also demonstrate greater variability both within and across
services (Observation . For instance, DeepSeek’s operator reports range from just 15
minutes for Inaccessible failures to 105 minutes for Slow—a 7x difference. In contrast,
user-reported recovery durations exhibit a relatively narrow range across both failure
types and services, with most values falling between 50 and 70 minutes. An exception
is DeepSeek’s Login failures, where the user-reported median reaches 135 minutes—1.9x
its Slow duration (70 minutes). This divergence between operator and user data likely
reflects differences in reporting granularity and visibility. Operators track recovery from
the system’s perspective, often with fine-grained logs tied to specific components. Users,
however, may not perceive the recovery until full functionality is restored on the inter-
face level. As a result, users tend to report recovery durations in a more compressed and
homogeneous range, even when underlying failure types vary substantially.

27

Operator Reports User Reports

B ChatGPT
Claude

w
o
o

N
o
o

139

309
.
B DeepSeek
183 I Character.Al
lo 135
12
o4 103 a0 o2
76 72 71 60657272 68 7074 g3 70 6 s
3950I I I 45 45 51 g9 48
1 s | Iin
Login Inaccessible Slow Error Others Unknown Login Inaccessible Slow Error
Received Received

Median Recovery Time (minutes)
=)
o

Failure Type

Figure 3.1: Median recovery time by failure type across LLM services. The left plot shows
results based on operator reports, while the right plot shows results based on user reports.

Observation #3: Slow and Error Received failures tend to show higher dispersion in
recovery time distributions, characterized by broader interquartile ranges, with average
IQRs of 77 and 93 minutes, respectively, and more frequent outliers across both sources
and services.

Observation #4: Claude exhibits larger discrepancies between operator and user recov-
ery time distributions across failure types (average IQR: 117 vs. 29 minutes), whereas
ChatGPT displays more consistent patterns between the two sources (111 vs. 112 min-
utes, respectively).

Figure further reveals the dispersion patterns underlying these medians. Slow and
Error Received failures generally exhibit broader interquartile ranges and more frequent
outliers compared to Login and Inaccessible (Observation . For example, Claude’s op-
erator reports show wide spreads for both types, with upper whiskers extending beyond
300 minutes and multiple outliers—unlike the much tighter and more contained distribu-
tions observed for Login and Inaccessible failures. This observation suggests that Slow
and Error Received failures may correspond to more operationally heterogeneous incident
classes. Depending on root causes, such failures can either be addressed quickly (e.g.,
through cache clearing or request rerouting) or escalate into protracted service degrada-
tions. In contrast, Login and Inaccessible failures may stem from more easily identifiable
and resolvable subsystems, leading to more consistent recovery durations.

The comparison between operator and user distributions also highlights differences in
failure reporting consistency across services (Observation. Claude exhibits the most pro-
nounced divergence: operator distributions are wide and skewed across most failure types,
while user reports remain tightly clustered—for instance, Claude’s operator-reported Slow
failures have a long right tail, whereas user reports center closely around 51 minutes. In
contrast, ChatGPT shows much stronger alignment between sources, as the operator and
user distributions display similar box lengths, whisker ranges, and frequencies of outliers.
These discrepancies may reflect differences in user reporting practices. One possible ex-
planation is that Claude’s relatively smaller user base leads to sparser reporting during
incidents, with user submissions only capturing part of the full recovery window. As a
result, user-side recovery durations appear shorter and more concentrated than those in

28

operator reports. By comparison, ChatGPT’s internal and external reporting appear more
aligned, likely because its larger user population generates denser feedback that more fully
captures the recovery timeline.

ChatGPT Claude
—_~ o]
4’500 ° B o [Operator
5 R o [User
£ 400 ¢ o
S ° °
o o o
g 300 .
I_ [}
> 200 o
= o
o
8 100 2
8 = ™
0
DeepSeek Character.Al

m
9 500 o ©
g o
E 400 °
© 300 8
£
= o © ©

200 © ° o g
. m: :

o
Q 100 o = —
3 — = %% i % %
X = ° .
Login Inaccessible Slow Error Others Unknown Login Inaccessible Slow Error Others Unknown
Received Received
Failure Type

Figure 3.2: Recovery time distributions by failure type across LLM services, comparing
operator- and user-reported failures to highlight differences in recovery patterns.

3.2 Impact of Failure Severity on Recovery Time

Observation #5: Across all services, failures labeled as Degraded Performance tend to
exhibit the most dispersed recovery time distributions, as evidenced by up to five bozen lay-
ers, with the top edge reaching the 93.75th percentile, and frequent outliers. In contrast,
Full Outage failures are more concentrated around the median, showing only the main in-
terquartile box (25%-75%), which is likely a result of their lower distributional spread.

Figure [3.3| shows recovery time distributions categorized by failure impact level across
the four LLM services, based on operator reports. As illustrated, recovery times for fail-
ures labeled as Degraded Performance are not only longer on average but also substantially
more variable—especially for ChatGPT and Claude. For instance, Claude’s Degraded Per-
formance incidents display a notably wide spread, with the uppermost box segment near
the 93.75th percentile approaching 500 minutes and a dense concentration of outliers.
ChatGPT exhibits a similar pattern, though with a slightly narrower range.

29

In contrast, Full Outage incidents—despite being ostensibly more severe—tend to ex-
hibit shorter and more tightly distributed recovery durations. This is particularly evident
in Claude and DeepSeek, where Full Outage recovery durations are often centered under
100 minutes. One possible explanation is that full outages trigger faster, more coordinated
response efforts due to their visibility and broader impact, whereas degraded states may
take longer to diagnose and resolve due to their ambiguous symptoms or localized scope.

Across services, this pattern is consistent: Degraded Performance incidents show higher
variance and longer tails, while Full Outage incidents appear more contained (Observa-
tion . This suggests that failures labeled as degraded may span a wide spectrum of un-
derlying issues—some transient, others prolonged. Such incidents are often characterized
by ambiguous or intermittent symptoms, localized degradation, or unclear system bound-
aries, making it harder for operators to detect, diagnose, and prioritize them promptly.
Meanwhile, full outages typically involve system-wide service disruption, where the im-
pact is immediate, clearly visible, and broadly recognized. This clarity often enables faster
detection, standard triage procedures, and more decisive mitigation workflows, resulting
in shorter and more consistent recovery durations.

—~ 500 . Impact Level 5
$. [Degraded performance 5
-5 o ° [Partial outage
< 400 o) B Full outage
.é ° o
S
® 300
£ o O
(o : °
2200 ° ¢ o 8 22
G>) [
O o
S 100 FR
- =
0 o

ChatGPT Claude DeepSeek Character.Al

Figure 3.3: Recovery time distributions by failure impact level across LLM services, based
on operator reports.

30

3.3 MTTR and MTBF Analysis

Observation #6: ChatGPT recovers the slowest from failures, with the highest median
MTTR reported by both the operator (1.07 hours) and the user (1.23 hours).
Observation #7: DeepSeck exhibits the largest discrepancy in median MTTR between
operator and user reports (0.81-hour difference), whereas ChatGPT demonstrates the high-
est alignment (0.16-hour difference).

Observation #8: DeepSeek is the most reliable service on the operator side, with the
lowest median MTTR (0.40 hours) and the highest median MTBF (5.39 days), whereas
Claude ranks highest in user-side reliability (median MTTR: 0.82 hours; median MTBF:
1.07 days).

Observation #9: DeepSeek also exhibits the largest divergence in median MTBFE between
operator and user reports (4.6-day difference), whereas Claude shows the highest consis-
tency (0.11-day difference).

Figure presents the distribution of MTTR across services and data sources. Among
the four services, ChatGPT stands out with the longest recovery durations overall: both
operator- and user-reported median MTTRs are the highest (1.07h and 1.23h, respec-
tively), suggesting consistently slow recovery performance (Observation @ However,
from an alignment perspective, ChatGPT displays the closest match (0.16h difference)
in median MTTRs between perspectives (Observation .

At the other end of the spectrum, DeepSeek shows the shortest operator-reported
MTTR (0.40h) but a nearly longest user-reported MTTR (1.21h), revealing a notable
misalignment between official reports and user perception (Observation . This 0.81-
hour gap—the widest among all services—suggests that user-facing availability does not
always reflect backend service recovery timelines.

Figure shows the distribution of MTBEF across services. From the operator perspec-
tive, DeepSeek presents a much higher median MTBF (5.39d) than other services, along
with the lowest median MTTR (0.40h), indicating infrequent and quickly resolved failures.
This suggests that it is the most reliable service (Observation . However, this operator-
reported reliability is not fully reflected in user reports. Median MTBF of DeepSeek drops
sharply to 0.79 days from the user perspective, marking a 4.6-day difference between the
two sources—the largest discrepancy across all services (Observation E[) This gap may
be explained by DeepSeek’s open-source nature: users often encounter “server busy” mes-
sages during periods of high traffic and report such instances as failures, even though these
events are typically not logged as incidents by the operator. As a result, user-perceived
disruptions occur more frequently than officially recorded failures, leading to a significant
divergence in median MTBF's.

Looking at the user side, Claude ranks highest in median MTBF (1.07d), and also shows
the lowest median MTTR (0.82h), suggesting that users experience fewer and shorter
failures. Together, these indicate that Claude has the best user-side reliability (Observa-
tion . Additionally, Claude exhibits the highest agreement in median MTBF between
operator and user reports (0.96d and 1.07d, respectively). The small 0.11-day difference
implies consistency in failure intervals between internal system records and external user
experience (Observation @

ChatGPT, while moderately stable from the operator side (1.43d), shows a much shorter

31

median MTBF from the user perspective (0.16d), which may be due to its larger user base,
increasing the likelihood that minor disruptions are noticed and reported.

0.5h 3h 1d 10d 0.5d 3d 10d 30d

ChatGPT - Operator)7 h—mmecis o ChatGPT - Operator [THE e emes
ChatGPT - User AT e e ChatGPT - User [0t .
Claude - Operator P51 o0 iose o Claude - Operator {Tops
Claude - User e o o Claude - User T .
DeepSeek - Operator +——{0f0 1~ DeepSeek - Operator 5p9 - »
DeepSeek - User ——— {0 DeepSeek - User —{OJETh =
Character.Al - Operator o oo . Character.Al - Operator +———————{ 15, }—tem
Character.Al - User 4--"0 * Character.Al - User ([Of0 e
107" 10° 10’ 10° 10° 107 107 10° 10’
Failure Duration [hours] Time Between Failures [days]
(a) MTTR distributions across LLM services. (b) MTBEF distributions across LLM services.

Figure 3.4: Distributions of mean time to recovery (MTTR) and mean time between
failures (MTBF) across four major LLM services, based on operator and user reports.
The horizontal axis is logarithmic.

Observation #10: On the operator side, DeepSeek resolves failures most quickly (60.61%
of durations < 0.5 hours) and experiences the longest intervals between them (47.22% of
intervals > 7 days), as reflected by its steep MTTR ECDF and right-shifted MTBF ECDEF.
In contrast, ChatGPT and Claude recover more slowly and exhibit more frequent failures.
Observation #11: From the user perspective, Claude exhibits the fastest recovery (70.59%
of durations < 1 hour) and the longest failure intervals (52.00% of intervals > 1 day).
ChatGPT again shows slower recovery and more frequent user-reported failures.

Figure presents empirical cumulative distribution functions (ECDFs) for MTTR and
MTBF across the four services, offering a fine-grained view of failure recovery and re-
currence patterns. From the operator perspective, DeepSeek exhibits the fastest recovery
performance. As shown in Fig. 60.61% of its failures are resolved within just 0.5
hours, and 87.88% within 3 hours (Observation [L0). Claude and ChatGPT recover signif-
icantly more slowly: at the 0.5-hour mark, only 31.72% of Claude’s incidents and 25.70%
of ChatGPT’s are resolved (Observation . However, the gap narrows considerably at
the 3-hour mark—ChatGPT reaches 82.12%, while Claude lags slightly behind at 79.30%.
Character.Al falls between these extremes, with 50.00% of cases resolved in 0.5 hours and
85.00% within 3 hours.

The operator-side MTBF distributions (Fig. further differentiate reliability pat-
terns. DeepSeek again stands out: only 38.89% of its operator-reported failures occur
within 1 day, and 47.22% occur after 7 days—suggesting high service stability (Observa-
tion . In contrast, Claude and ChatGPT show much steeper ECDFs, indicating more
frequent failures: 52.49% of Claude’s failures and 38.73% of ChatGPT’s occur within just
1 day, rising to 94.57% and 90.17%, respectively, within 7 days (Observation. Charac-
ter.Al exhibits a more moderate pattern, with 43.37% of failures occurring within 1 day
and 71.08% within 7 days. These trends reinforce DeepSeek’s robust service reliability,
while highlighting the relatively frequent failures encountered by Claude and ChatGPT.

In user-perceived recovery (Fig. , Claude exhibits the steepest ECDF curve, with
70.59% of user-reported failures resolved within 1 hour and 92.16% within 3 hours—
demonstrating the fastest user-side recovery across all services (Observation. DeepSeek

32

and Character.Al follow, with 46.43% and 51.19% of failures resolved within 1 hour, and
92.86% and 86.90% resolved within 3 hours, respectively. ChatGPT again trails behind:
only 76.38% of its failures are resolved within 3 hours, and the curve rises more gradually
over time (Observation [L1)).

The user-side MTBF distributions (Fig reveal similar contrasts. Claude’s curve
remains the steepest, with only 48.00% of failure intervals within 1 day (Observatio,
but it rises rapidly to 98.00% within 7 days—suggesting that 50% of the intervals are
tightly concentrated within a 1-7 day range. In contrast, ChatGPT shows an earlier
rise: 85.71% of failure intervals are under 1 day, and all fall within 7 days, indicating
that ChatGPT experiences failures at a higher frequency (Observation . DeepSeek
again displays the widest spread, with 55.56% of failure intervals under 1 day and 85.19%
within 7 days. Character.Al lies between, with 72.29% of intervals in 1 day and all within
7 days. These results indicate that Claude has the most consistent failure pattern from the
user’s perspective, with most failures recurring within a narrow time frame. In contrast,
ChatGPT and DeepSeek show different distributions: ChatGPT’s failures tend to recur
more quickly, while DeepSeek’s failures are more spread out over time.

10m 0.5h 3h 10h 24h 10d 1d 7d 30d
(R ——reS ., : 1.0 — chatepT ;
—— Claude i f b i —— Claude]
0.8 —— DeepSeek | f | i i 0.8~ DeepSeek i
— CharacterAl i i i i i —— Character.Al |
n et 8 T " |
8 06 oo : 8 06 !
o4 ! a W o4 |
0.2 SRt T | 0.2 ;
0.0 R, : 0.0 |
107" 10° 10’ 10° 10° 107 10" 10 10’
MTTR [hours] MTBF [days]
(a) MTTR - Operator (b) MTBF - Operator
10m 0.5h 1h 3h 10h 24h 1d 7d 30d
10— ChatGPT i 1.0 — chaepT | !
—— Claude i i —— Claude ! |
0.8 —— DeepSeek i i 0.8 —— DeepSeek i i
—— Character.Al ! ! —— Character.Al | !
5 ' . 1.
8 06 : : & 0.6 | |
“oa4 . Wo4 .
0.2 — 0.2 L
0.0 ! i i 0.0 i i
107" 10° 10’ 10° 107 10" 10° 10’
MTTR [hours] MTBF [days]
(¢) MTTR - User (d) MTBF - User

Figure 3.5: ECDFs of MTTR and MTBF across LLM services, based on operator and
user reports. A curve closer to the upper left indicates shorter durations, suggesting faster
recovery (for MTTR) or more frequent failures (for MTBF).

33

3.4 Comparative Analysis of Failure Patterns

Observation #12: DeepSeek exhibits a large discrepancy in the mean—median MTTR
gap between operator and user reports (21.984-hour vs. 0.022-hour difference), suggesting
that a few extremely prolonged failures were reported by the operator but perceived as
intermittent disruptions by users.

Observation #13: ChatGPT shows the largest entropy gap between operator and user
reports (0.702-bit difference), indicating that users tend to report failures of certain types.
Observation #14: Character.Al’s low failure frequency (0.165/day) in operator reports
coexists with a relatively high average failure impact level (1.942), suggesting that failures
are infrequent but severe when they do occur.

Observation #15: In terms of failure frequency and service availability, Character.Al
is the most reliable service from the operator perspective (0.165/day, 98.699%), whereas
DeepSeek ranks highest on the user side (0.293/day, 98.497%).

Table and Table integrate multiple failure metrics, including recovery duration,
failure frequency, availability, impact severity, and failure type diversity, across both oper-
ator and user perspectives. The analysis reveals marked differences not only across services
but also between how reliability is measured internally versus perceived externally.

A pronounced divergence is observed in DeepSeek’s reported recovery durations. The
operator-side mean MTTR is 22.384 hours, while the median MTTR is only 0.4 hours,
yielding a huge gap of 21.984 hours, the largest among all services. In contrast, user reports
show a mean MTTR of 1.230 hours and a median of 1.208 hours, resulting in a minimal
gap of 0.022 hours. This suggests that a few exceptionally long incidents reported by the
provider were not perceived by users as continuous disruptions (Observation . These
incidents likely manifested as intermittent symptoms—such as repeated server busyness
or region-specific unavailability—that fragmented the user experience. By comparison,
Claude’s operator-reported MTTR shows a more balanced distribution (mean: 2.600h;
median: 1.050h), and ChatGPT likewise maintains a modest gap (2.504h vs. 1.067h),
reinforcing that DeepSeek’s asymmetry is uniquely severe.

Differences in failure type diversity further illustrate perception gaps. Among all ser-
vices, ChatGPT exhibits the largest entropy difference between operator and user re-
ports—1.444 bits vs. 0.742 bits, a gap of 0.702 bits (Observation . This reflects a user
tendency to report various encountered issues under specific failure types—particularly
Error Received—whereas the provider tends to describe failures more precisely. Other
services display smaller entropy gaps: Claude (1.029 vs. 0.978 = 0.051 bits), DeepSeek
(1.165 vs. 1.234 = 0.069 bits), and Character.AI (1.400 vs. 1.234 = 0.166 bits).

Another revealing asymmetry appears in Character.Al’s failure pattern. It shows the
highest operator-reported availability at 98.699% and a relatively low failure frequency of
0.165 failures/day. However, the average failure impact level (ordinal) is relatively high
at 1.942 (Observation . This pattern suggests that although Character.Al rarely expe-
riences failures, when disruptions do occur, they tend to be high-impact events, possibly
affecting major components or leading to full outages. In contrast, ChatGPT’s average im-
pact level is the lowest (1.458), and Claude reports a moderate 1.584. These results point
to contrasting failure patterns: Character.Al maintains high uptime but may be more
vulnerable to severe disruptions, whereas ChatGPT experiences failures more frequently,

34

though with less severe impact.

A clear distinction emerges when comparing failure frequency and availability across ser-
vices. From the operator side, DeepSeek reports the lowest failure frequency (0.099/day),
but surprisingly also shows the lowest availability (91.763%). As mentioned earlier, this
suggests the presence of extremely large outliers in operator-reported downtime. Charac-
ter.Al, by contrast, combines relatively low failure frequency (0.165/day) with the highest
availability across all services (98.699%), reflecting rare and short-lived incidents (Obser-
vation [15). ChatGPT (0.338/day, 96.472%) and Claude (0.471/day, 94.899%) fall in the
middle, with Claude showing the most frequent failures among services, but still maintain-
ing reasonably high availability, likely due to faster recovery. From the user perspective,
the rankings shift. DeepSeek stands out in user-side reliability, with the lowest failure
frequency (0.293/day) and the highest availability (98.497%) (Observation [1F]). However,
Character.Al shows a notable decline in user-perceived reliability—its failure frequency
increases 5.8x to 0.951/day, and availability drops to 92.597%, suggesting that many
user-facing issues go unreflected in operator reports. ChatGPT performs worst on the
user side, with a striking 1.426 failures per day and availability falling to 86.421%, indi-
cating that ChatGPT users frequently experience and report issues.

Table 3.1: Comparative failure metrics of LLM services based on operator reports. Legend:
h = hour(s), d = day(s), bits = entropy units measuring failure type diversity; higher values
indicate greater variability. The best-performing service for each metric is bolded.

Metric ChatGPT Claude DeepSeek Character.Al
Mean Time to Recovery (MTTR) [h] 2.504 2.600 22.384 2.056
Median Failure Duration (MFD) [h] 1.067 1.050 0.400 0.525
Tail [P95] Failure Duration (TFD) [h] 7.677 8.163 118.927 7.663
Mean Time Between Failures (Mean MTBF) [d] 2.951 2.069 9.370 6.076
Median Time Between Failures (Median MTBF) [d] 1.431 0.960 5.393 1.885
Tail [P95] Time Between Failures (TTBF) [d] 8.039 7.413 29.666 21.064
Failure Frequency [failures/day] 0.338 0.471 0.099 0.165
Failure Type Entropy [bits] 1.444 1.029 1.165 1.400
Availability Percentage [%)] 96.472 94.899 91.763 98.699
Avg. Failure Impact Level (Ordinal) 1.458 1.584 2.600 1.942

Table 3.2: Comparative failure metrics of LLLM services based on user reports.

Metric ChatGPT Claude DeepSeek Character.Al
Mean Time to Recovery (MTTR) [h] 2.285 1.179 1.230 1.869
Median Failure Duration (MFD) [h] 1.233 0.817 1.208 0.925
Tail [P95] Failure Duration (TFD) [h] 6.938 4.500 2.899 5.548
Mean Time Between Failures (Mean MTBF) [d] 0.584 1.697 3.438 0.981
Median Time Between Failures (Median MTBF) [d] 0.160 1.066 0.789 0.698
Tail [P95] Time Between Failures (TTBF) [d] 2.757 4.396 10.135 3.491
Failure Frequency [failures/day] 1.426 0.552 0.293 0.951
Failure Type Entropy [bits] 0.742 0.978 1.234 1.234
Availability Percentage [%)] 86.421 97.291 98.497 92.597

35

3.5 Summary of Failure-Recovery Modeling

This section addresses RQ2| by modeling failure recovery behaviors across LLM services
using both operator and user reports. The analysis explores how failure types, impact
levels, and reporting perspectives shape recovery durations, and highlights service-specific
patterns and cross-source differences revealed through multiple failure metrics.

3.5.1 Key Observations

In operator reports, failures of type Slow have the longest median recovery duration (115.5
minutes), followed by Login (64.8), Inaccessible (60.8), and Error Received (67.3) (Obser-
vation . Variability in median recovery durations is higher in operator reports, both
within and across failure types (average within-type variance: 1585 minutes?; across-type:
1839), compared to user reports (631 and 377 respectively) (Observation [2). Slow and
Error Received failures show high dispersion in recovery time distributions, with average
IQRs of 77 and 93 minutes (Observation. Claude has the largest operator—user IQR gap
across failure types (average IQR: 117 vs. 29 minutes), while ChatGPT is more aligned
(111 vs. 112) (Observation[d). In terms of failure impact level, recovery time distributions
are most dispersed for Degraded Performance failures (Observation .

ChatGPT has the highest median MTTR from both perspectives (1.07 hours operator,
1.23 hours user) (Observation @ DeepSeek shows the largest median MTTR gap between
sources (0.81 hours), while ChatGPT shows the smallest (0.16 hours) (Observation [7)).
DeepSeek also exhibits the largest median MTBF gap (4.6 days), whereas Claude is the
most consistent (0.11 days) (Observation E[) Despite these cross-source discrepancies,
DeepSeek ranks highest in operator-side reliability (median MTTR: 0.40 hours; median
MTBF: 5.39 days), whereas Claude performs best in user reports (0.82 hours and 1.07
days, respectively) (Observation [g).

ECDFs further support these trends: 60.61% of DeepSeek’s operator-reported failures
are resolved within 0.5 hours, and 47.22% of its failure intervals exceed 7 days (Observa-
tion; Claude leads in user-side recovery, with 70.59% of failures resolved within 1 hour
and 50.00% of intervals falling within 1-7 days (Observation [L1)).

Finally, based on multiple failure metrics, DeepSeek exhibits a substantial discrepancy in
the mean—-median MTTR gap between operator and user reports (21.984 vs. 0.022 hours),
suggesting mismatched perceptions of prolonged operator failures (Observation. Chat-
GPT has the largest failure type entropy gap between sources (0.702 bits) (Observa-
tion [13). Character.Al shows low failure frequency on the operator side (0.165/day) but
high average failure impact (1.942) (Observation . In terms of availability, Charac-
ter.Al ranks highest from the operator perspective (98.699%), whereas DeepSeek leads
from the user side (98.497%) (Observation [15).

3.5.2 Use Cases Derived from Observations

Prioritized Incident Triage. Based on Observation [I] different failure types exhibit
varying recovery durations, which can guide triage prioritization during incident response.
For example, when a Slow failure is detected, which typically has the longest median
recovery time, teams may initiate escalation procedures such as notifying senior engineers

36

or postponing non-critical deployments. This targeted response can help mitigate the risk
of prolonged service degradation and support faster recovery.

Enhancing Duration Estimation with Stable User Signals. Based on Observa-
tion [2 the lower variability in user-reported recovery durations across and within failure
types suggests that these signals can serve as a stable baseline for estimating incident
durations. Their consistency also enables providers to cross-validate internal estimates
and detect potential outliers in operator reports, supporting more robust diagnostics and
post-incident analyses.

SLA-Aware Runtime Decision-Making. Based on Observations [6] and
differences in recovery durations and failure intervals across LLM services can guide SLA-
aware runtime decisions based on service-specific reliability characteristics. For exam-
ple, applications that require rapid recovery may select Claude as the preferred backend
during time-sensitive operations, whereas systems relying on ChatGPT might introduce
additional redundancy or buffering due to its slower recovery. In contrast, DeepSeek’s
strong reliability from the operator perspective may allow for more aggressive runtime
optimizations without compromising availability.

Monitoring Cross-Perspective Discrepancies as Diagnostic Signals. Based on
Observations [7] and [9] large differences in median MTTR or MTBF between operator and
user reports, such as those observed in DeepSeek, reflect inconsistencies in perceived reli-
ability between the two perspectives. While such discrepancies do not indicate which side
is more accurate, they serve as useful diagnostic indicators for evaluating the completeness
and accuracy of internal failure detection and duration estimation. By defining thresholds
for acceptable cross-perspective gaps, providers can trigger internal audits when discrep-
ancies persist or exceed predefined limits, thereby improving visibility into potential blind
spots or misalignments in failure reporting practices.

Outlier-Aware Incident Attribution. Based on Observation large gaps between
the mean and median M'TTR in operator reports, as seen in DeepSeek, suggest the presence
of rare but extremely prolonged failures. When users do not perceive these incidents as
continuous disruptions, it indicates fragmentation in how the failures are experienced. To
improve attribution accuracy, reliability teams can adopt outlier-aware attribution logic
that avoids treating all prolonged failures as continuous outages by default. Instead,
this logic incorporates user-perceived impact to distinguish between genuinely persistent
failures and intermittent disruptions. Such differentiation enables more accurate SLA
evaluations and more effective root cause analysis.

Monitoring Entropy Gaps for Perception Shifts. Based on Observation the
high entropy gap between operator and user failure type distributions, as seen in Chat-
GPT, reflects a divergence between cause-based classification by providers and symptom-
based reporting by users. Rather than attempting to reconcile the two sources, providers
can monitor entropy gaps as a signal for shifts in user perception. For example, a sudden

37

increase in entropy gap may indicate that users are disproportionately reporting a spe-
cific symptom, even if underlying failure types have not changed. This can help detect
perception-driven anomalies, such as increased sensitivity to latency or misleading fron-
tend messages (e.g., Ul prompts or terminology). Additionally, persistent entropy spikes
may inform post-incident reviews by highlighting mismatches between user experience
and internal attribution. Tracking such metrics over time supports a more user-aware
understanding of reliability.

Service-Specific Resilience Engineering. Based on Observations [14]and distinct
reliability patterns across services, such as infrequent but high-impact failures in Charac-
ter.Al and high user-side availability in DeepSeek, suggest that a one-size-fits-all resilience
strategy is suboptimal. Instead, engineering teams can develop service-specific strategies.
For instance, fast rollback procedures or preemptive scaling may be more suitable for ser-
vices prone to rare but severe failures, whereas cost-efficient deployments or lightweight
fallback mechanisms may suffice for services with stable operational performance.

38

4 Temporal Patterns of Failures

This section examines the temporal characteristics of failures in major LLM services using
both operator and user reports. The goal is to uncover when failures tend to occur and
how temporal patterns differ across services and perspectives. The analysis includes: (1)
temporal trends in daily and weekly failure counts; (2) distributions of failures across
weekdays, days of the week, and hours of the day; and (3) auto-correlation patterns to
evaluate short- and medium-range periodicity in failure occurrences.

4.1 Temporal Trends

Observation #16: ChatGPT exhibits the most consistent gap between operator and user
failure counts, with user reports exceeding operator reports on nearly all days (mean daily
gap: 2 failures) and every week (mean weekly gap: 14).

Observation #17: Claude shows the opposite pattern: operator-reported failures fre-
quently outnumber user reports, particularly in weekly aggregates (mean weekly gap: 3).
Observation #18: Across services, user reports exhibit greater short-term wvolatility
(mean daily variance: 1.30 failures®), whereas operator reports are more stable and pe-
riodic (mean daily variance: 0.87).

Figure [4.1] illustrates the evolution of failure counts over time for each service, comparing
operator and user reports on both daily and weekly scales. Several consistent patterns
emerge across services, reflecting fundamental differences in monitoring granularity, re-
porting mechanisms, and user behavior.

The most persistent discrepancy is observed in ChatGPT. As shown in Figld.1a] user
reports significantly outnumber operator reports across nearly all days and weeks, with the
gap remaining consistently wide over time (Observatio. This suggests that many user-
perceived issues are not formally recorded in official reports—either due to localization,
transient frontend disruptions, or the operator’s reporting threshold. Given ChatGPT’s
large user base, even small-scale incidents may generate a disproportionate volume of user
feedback, amplifying the apparent mismatch between perspectives.

Claude presents a contrasting pattern in Fig[. 1D where operator-reported failures fre-
quently exceed user reports, especially on the weekly level (Observatio. The relatively
low volume and variance in user reports can be partially attributed to Claude’s much
smaller user base compared to ChatGPT. As of May 2025, Claude receives approximately
3.3 million daily visits [39], whereas ChatGPT sees an estimated 122.6 million daily active
users [27]—roughly 37 times higher. This substantial difference in scale naturally results
in a far lower volume of user-generated failure feedback for Claude, even if the underlying
service reliability were comparable. Consequently, many minor or localized issues may go
unreported by users, leading to a flatter and sparser reporting trend from the user side.

A more structural difference emerges when comparing the overall shape of operator
and user reporting timelines. Across all services, user reports exhibit sharper fluctua-
tions—spikes and drops occurring over short intervals—whereas operator reports appear
more periodic and stable, often following smoother weekly cycles (Observatio. This
temporal volatility indicates that user feedback is more reactive and sensitive to visible,
real-time disruptions, while operator reports likely result from post-hoc confirmation and

39

aggregation processes. The result is a temporal desynchronization that reinforces the value
of incorporating both perspectives for a complete view of service reliability.

Daily Weekly Daily Weekly
@ »
8 25 8 10
=220 =28
© T
W15 L
9] 5}
g0 5 4
2 a
£S5 £ ?
S S
Zo Zo
Apr08 Apri5 Apr22 Apr29 May06 May13 w1 2 w3 4 w5 w6 Apr08 Apr15s Apr22 Apr29 May06 May13 Wi 2 w3 /4 w5 W6
AprO7 Aprid Apr21 Apr28 May05 May12 AprO7 Apri4 Apr21 Apr28 May0s May12
Operator Reports User Reports Operator Reports User Reports
(a) ChatGPT (b) Claude
Daily Weekly Daily Weekly
« »
3y B 125
2 =100
T g ke
b s
5] 15}
4 e
5 5 50
g, o
£ £ 25
S S
Zo Z o0
Feb1l Feb18 Feb25 Mar04 Mar1i Mar18 w1 w2 w3 wa W5 we Apros Apri5 Apr22 Apr29 May06 May13 w1 w2 w3 wa w5 w6
Feb10 Feb17 Feb24 Mar03 Mar10 Mar17 AprO7 Apr14 Apr21 Apr28 May05 May 12
Operator Reports User Reports Operator Reports User Reports
(c¢) DeepSeek (d) Character.AlI

Figure 4.1: Temporal trends in LLM service failures based on operator and user reports,
showing daily and weekly failure counts across different service providers.

4.2 Temporal Distributions

Observation #19: Operator-reported failures exhibit periodic patterns across all services,
occurring more frequently on weekdays than on weekends. ChatGPT, Claude, and Char-
acter. Al failures peak between 13:00 and 00:00 UTC (06:00-17:00 PDT), while DeepSeek
peaks between 01:00 and 10:00 UTC (09:00-18:00 CST), reflecting diurnal patterns that
are geographically distinct but consistently aligned with regional working hours.
Observation #20: User-reported failures largely mirror operator-side temporal patterns,
showing higher frequencies on weekdays and clear peaks during regional daytime hours.
However, short-term hourly variance differs by service: for ChatGPT, user reports fluctu-
ate more sharply than operator reports, whereas the opposite is observed for Claude.

Figure depicts temporal distributions of failure reports across different time resolu-
tions—weekdays versus weekends, days of the week, and hours of the day—captured from
both operator and user perspectives. The results reveal consistent periodic patterns as
well as subtle differences between reporting sources.

Fig[d.2a] shows that operator-reported failures generally occur more frequently on week-
days than weekends across all services (Observation . Notably, Character.Al is an
exception to this trend, showing almost no difference between weekdays and weekends.
However, it still experiences the most failures on Wednesdays and Thursdays (Fig. ,
indicating that incidents remain concentrated within the workweek. Meanwhile, Claude
and ChatGPT show broader weekday dominance, with the majority of failures occurring
from Monday through Friday. At the hourly level (Fig. , all four services display
clear diurnal patterns, though with distinct regional signatures. ChatGPT, Claude, and
Character.Al failures cluster between 13:00 and 00:00 UTC, corresponding to 06:00-17:00

40

PDT—typical US working hours, aligning with their primary user base. DeepSeek’s fail-
ures peak earlier, between 01:00 and 10:00 UTC (i.e., 09:00-18:00 CST), consistent with
daytime hours in East Asia. These differences suggest that operator-side incidents are
more likely to occur during peak usage periods in different regions, reflecting instability
caused by user load or service deployments, which are typically scheduled during local
working hours.

User-reported failures broadly mirror these temporal trends. Like operator data, week-
day volumes consistently exceed weekend levels across all services (Fig, and most
user reports occur during local daytime hours (Fig. However, a closer examination of
short-term hourly variance reveals service-specific differences (Observation [20)). For Chat-
GPT, user-side distributions fluctuate more sharply than operator-side ones, with spikes
at 13:00 UTC followed by sudden drops at 14:00 UTC, likely driven by high user sensitivity
to transient disruptions. In contrast, Claude displays the opposite pattern: its operator-
reported failures show greater temporal variability, while user reports are relatively smooth
and consistent. Character.Al and DeepSeek, meanwhile, exhibit similar smoothness from
both perspectives. These asymmetries suggest that temporal reporting variance is not a
general property of users versus operators, but rather depends on service-specific frontend
conditions, monitoring granularity, and user population scale.

40 —e— ChatGPT —e— ChatGPT —e— ChatGPT
~—e— Claude 50 —e— Claude 20 —e— Claude
$ 35 —e— DeepSeek $ —o— DeepSeek g —e— DeepSeek
5 30 —e— Character.Al 5 40 =o— CharacterAl 5 —e— Character.Al
= = 215
w 25 [N 30 [
u— u— —
220 2 210
8 15 3 20 2
g hd g £ 5
=1
210 o~ Z 10 z
5T
0
Weekdays Weekends Mon Tue Wed Thu Fri Sat Sun 012345678 91011121314151617181920212223
(a) Weekday vs. Weekend (Operator) (b) Day of Week (Operator) (¢) Hour of Day (Operator)
25 17.5
20.0
15.0
2175 220 3
— _
2150 3 5125
= =
L 125 o 15 100
[Y
100 ° 5 .
o © 10 o
275 2 o
: \ € g 50
=1
3 50 35 =
25 ’
0.0 0 : 0.0
Weekdays Weekends Mon Tue Wed Thu Fri Sat Sun 012345678 91011121314151617181920212223
(d) Weekday vs. Weekend (User) (e) Day of Week (User) (f) Hour of Day (User)

Figure 4.2: Temporal distributions of LLM service failures, comparing operator and user
reports. Each row presents three complementary views: weekday vs. weekend, daily dis-
tribution across the week, and hourly failure patterns. The failure time is consistently
defined as the calendar day, week, and hour of the failure’s start time.

41

4.3 Auto-correlations

Observation #21: Operator-reported failures exhibit short-range temporal dependencies
with service-specific periodicity. ChatGPT and Claude show clear 1-week periodicity, while
Character. Al displays isolated peaks at lags of 4 and 5 weeks, suggesting possible monthly
auto-correlations.

Observation #22: User-reported failures exhibit weaker periodicity across services. Only
ChatGPT shows strong 7-day periodicity, while DeepSeek and Character. Al display short-
range daily auto-correlations.

Figure presents the ACFs of operator- and user-reported failure counts, highlight-
ing temporal dependencies such as weekly periodicity. Each subplot combines daily and
weekly views to capture correlation structures across short and medium time scales. From
the operator perspective, ChatGPT exhibits the most extensive auto-correlations. Its daily
ACF (Fig contains significant lags at 1, 6, 7, 8, 28, 29, 46, and 56 days, while the
weekly ACF shows a clear peak at lag 1, reflecting a 7-day periodicity. Claude (Fig
has significant daily auto-correlations at lag 1, 21, and 28, along with a weekly peak at
lag 1. DeepSeek (Fig shows only short-range signals in the daily ACF—at lag 1, 13,
and 19—and no significant lags in the weekly ACF. Character.Al (Fig presents three
scattered significant daily lags at 26, 29, and 38, along with two isolated peaks at lag 4
and 5 in the weekly ACF, suggesting possible monthly auto-correlations (Observation .

From the user side, ChatGPT again stands out with clear temporal structure. Its
daily ACF (Fig shows continuous short-range dependencies at lags 1 through 7, and
the weekly ACF also has a strong peak at lag 1, indicating a robust 7-day periodicity
(Observatio. In contrast, Claude (Fig shows no significant auto-correlation at
any lag in either ACF. DeepSeek (Fig has short-term memory only, with significant
lags at day 1 and 2, and no weekly auto-correlations. Character.Al (Fig. displays
minimal user-side memory, with a single significant daily lag at 1, and no weekly signal.

While several services, particularly ChatGPT, exhibit clear short-term and weekly auto-
correlations, the observed periodicity is generally shallow and fragmented, with most sig-
nificant lags being sparse or isolated. This limits the utility of these patterns for predicting
future service failures. Even in the case of ChatGPT, where multiple consecutive lags and
weekly signals appear on both operator and user sides, the available signals—though of-
fering some predictive potential—remain weak and unstable, limiting their effectiveness
for robust forecasting. Reliable failure prediction would require stronger and more stable
indicators, complemented by more advanced modeling approaches.

42

Daily (Lags=80) Weekly (Lags=50) Daily (Lags=40) Weekly (Lags=12)

1.0 1.0 1.0 1.0
05 05 0.5 0.5
I«TT T?«Y PR X)R) [1
0.0 0.0 ll‘x‘“‘lll T 0.0 0.0 s l l l l l I
-0.5 -0.5 -0.5 -0.5
-1.0 -1.0 -1.0 -1.0
0 20 40 60 80 0 20 40 0 10 20 30 40 0 5 10
(a) ChatGPT - Operator (b) ChatGPT - User

Daily (Lags=80) Weekly (Lags=50) Daily (Lags=40) Weekly (Lags=12)

1.0 1.0 1.0 X
05 05 05 05 ‘
0.0 0.0 0.0 0.0 ‘3T ll"lhy

-0.5 -0.5 -0.5 -0.5

-1.0 -1.0 -1.0 -1.0
0 20 40 60 80 0 20 40 0 10 20 30 40 0 5 10

(c¢) Claude - Operator (d) Claude - User
1.0 Daily (Lags=80) 1.0 Weekly (Lags=50) 10 Daily (Lags=40) 10 Weekly (Lags=12)
0.5 05 0.5 0.5 [
0.0 0.0 0.0 0.0 e T I

[T

-0.5 -0.5 -0.5 -0.5

-1.0 -1.0 -1.0 -1.0
0 20 40 60 80 0 20 40 0 10 20 30 40 0 5 10

(e) DeepSeek - Operator (f) DeepSeek - User

Daily (Lags=80) Weekly (Lags=50) Daily (Lags=40) Weekly (Lags=12)

1.0 1.0 1.0 .
0.5 0.5 0.5 0.5 ‘ [
0.0 0.0 0.0 0.0 T & T

-0.5 -0.5 -05 -05
-1.0 -1.0 -1.0 -1.0
0 2 40 60 80 0 20 40 0 10 20 30 40 0 5 10
(g) Character.Al - Operator (h) Character.AI - User

Figure 4.3: Auto-correlations with the numbers of failures aggregated at different time
granularities, based on operator and user reports. The shaded blue area indicates the 95%
confidence interval; points outside this band suggest statistically significant correlations.

4.4 Summary of Temporal Patterns

This section addresses RQ3| by analyzing temporal patterns in failure occurrences across
services and sources. The analysis focuses on inter-source discrepancies, time-of-day and
day-of-week variations, and periodic structures in both operator and user-reported failures.

4.4.1 Key Observations

ChatGPT exhibits the most consistent inter-source discrepancy, with user-reported fail-
ures exceeding operator counts nearly every day (mean daily gap: 2 failures) and every
week (mean weekly gap: 14) (Observation . In contrast, Claude shows the opposite
pattern, where operator-reported failures often outnumber user reports (mean weekly gap:
3) (Observation . Across all services, user reports exhibit greater short-term volatil-

43

ity in failure counts, with a mean daily variance of 1.30 failures?, compared to 0.87 for
operator reports (Observation [18).

Operator reports show a consistent weekday—weekend cycle, with failures occurring more
frequently on weekdays than on weekends, along with service-specific diurnal patterns.
ChatGPT, Claude, and Character.Al failures peak between 06:00 and 17:00 PDT, while
DeepSeek failures peak between 09:00 and 18:00 CST. These peaks align with typical
daytime hours in each service’s primary user regions (Observation. User reports largely
mirror these temporal distributions, also peaking during local working hours. However,
the magnitude of hourly fluctuations varies: ChatGPT user reports are more volatile than
operator reports, whereas Claude shows the reverse pattern (Observation .

Periodicity analysis reveals short-range dependencies in operator data. ChatGPT and
Claude display clear 7-day cycles, while Character.Al shows longer periodicity with peaks
at lags of 4 and 5 weeks (Observation . User-side periodicity is less pronounced: only
ChatGPT maintains a strong 7-day cycle, while DeepSeek and Character.Al exhibit weaker
short-range daily dependencies (Observation .

4.4.2 TUse Cases Derived from Observations

Monitoring Persistent Reporting Gaps for Reliability Blind Spots. Based on
Observations [16| and services like ChatGPT and Claude exhibit persistent and direc-
tionally consistent discrepancies in daily and weekly failure counts between operator and
user reports. These sustained gaps may reflect under-reporting or monitoring blind spots
on one side. Providers can track these gaps over time as reliability signals. Internal reviews
can be triggered when the discrepancies exceed service-specific thresholds or persist across
multiple days or weeks. Gap magnitudes can be quantified and visualized in reliability
dashboards, or integrated into alerting systems that automatically flag abnormal patterns
when they deviate from historical baselines.

Volatility-Aware Alert Thresholds. Observation [18|shows that user-reported failure
volumes are more volatile than operator-reported ones on short timescales. This discrep-
ancy suggests that uniform alerting thresholds may not suit both perspectives. For exam-
ple, alert systems based on user data may require adaptive smoothing or volatility-aware
thresholding to avoid false positives during normal fluctuations. Conversely, operator-side
monitoring can prioritize trend detection over spike sensitivity. Designing alert logic that
respects source-specific volatility improves responsiveness while reducing noise.

Temporal Modeling for Proactive Failure Detection. Based on Observations
and the clear periodic and diurnal patterns observed in both operator- and user-
reported failures provide a foundation for time-aware failure prediction. Historical failure
volumes can be used to train temporal models that highlight high-risk time windows
for each service. These models enable proactive mitigation by performing stricter pre-
deployment checks, temporarily increasing system redundancy, or lowering alert thresholds
to detect issues more quickly during periods of elevated risk. Such time-aware actions help
improve preparedness and reduce downtime.

44

5 Correlation Analysis of Failures

This section investigates correlations between failures across services and perspectives to
evaluate the extent of alignment and interdependence. The analysis includes: (1) the
temporal correlation between user-reported issue volumes and official incident acknowl-
edgements; and (2) the co-occurrence of failures across services, from both operator and
user perspectives.

5.1 Correlation Between Operator and User Reported Failures

Observation #23: All services exhibit statistically significant correlations between 5-
minute user-reported issue volumes and official incidents, although the overall strength of
alignment is weak and varies across services (Pearson: 0.060-0.315; Spearman: 0.058-0.147).
Among the services, Character.Al shows the largest discrepancy (0.203) between its Pear-
son (0.315) and Spearman (0.112) coefficients.

Table[5.1] presents Pearson and Spearman correlation coefficients between user-reported is-
sue volumes and the timing of official incident acknowledgements. All four services exhibit
statistically significant correlations (p < 0.001), confirming that user reporting activity is
meaningfully aligned with periods of operator-confirmed incidents (Observation [23)).

Despite the statistical significance, the absolute strength of correlation varies consid-
erably. Character.AI shows the highest Pearson correlation (0.315), suggesting that user
activity is more strongly synchronized with official incident timelines for this service. Chat-
GPT and Claude follow with moderate correlations (0.192 and 0.162 respectively), while
DeepSeek stands out with the weakest relationship (0.060), indicating a limited coupling
between user-reported issue volumes and official incidents.

The Spearman correlations follow a similar pattern, though values are slightly lower
overall. Notably, Character.Al shows a steep drop from Pearson (0.315) to Spearman
(0.112) (Observation , suggesting that this alignment is not consistent over time. The
correlation is likely inflated by a few days when user reports spiked dramatically and
happened to coincide with operator-reported failures. On most days, however, the rela-
tionship appears weak or unstable, indicating that the observed correlation is driven by
rare, extreme events rather than a steady underlying pattern. In contrast, the other ser-
vices show only minor differences between Pearson and Spearman values, suggesting that
their alignment is less dependent on outliers and more reflective of persistent trends.

These results indicate that while user volumes can serve as a useful indicator for official
incidents, the reliability of this signal varies by service. In particular, the weak correlations
observed for DeepSeek highlight the need for service-specific calibration when integrating
user reporting into real-time failure detection or alerting systems.

45

Table 5.1: Pearson and Spearman correlation coefficients between user-reported issue
volumes (aggregated in 5-minute bins) and official incident acknowledgements for each
LLM service. Asterisks denote statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

Service Pearson Correlation Spearman Correlation
ChatGPT 0.192*** 0.139***
Claude 0.162*** 0.147***
DeepSeek 0.060*** 0.053***
Character.Al 0.315*** 0.112***

5.2 Co-occurrence of Failures

Observation #24: On the operator side, failure co-occurrence is most prominent between
ChatGPT and Claude, which share 58 incident days and exhibit elevated conditional prob-
abilities (40.56% and 36.71%). In contrast, DeepSeek shows minimal co-occurrence with
other services, indicating a high degree of operational independence.

Observation #25: User-reported failures reveal strong cross-service co-occurrence, espe-
cially between ChatGPT and Character.Al, which share 34 failure days and exhibit mutual
conditional probabilities exceeding 60%. While potential shared infrastructure may con-
tribute, the large and active user bases of both services likely increase the likelihood of
detecting and reporting even minor degradations on the same day.

To evaluate potential dependencies between LLM services, Figure[5.1|presents co-occurrence
matrices derived from both operator-reported and user-reported failures. Specifically, the
analysis examines the number of shared failure days and the conditional probability that
one service experiences a failure given that another service fails on the same day.

On the operator side, the most notable co-occurrence is observed between ChatGPT
and Claude (Observation [24). These two services share 58 incident days (Figl5.1a)), and
their conditional failure probabilities reach 40.56% (Claude given ChatGPT) and 36.71%
(ChatGPT given Claude), respectively (Fig. No other service pair shows compara-
ble values. In contrast, DeepSeek shares only 7 incident days with ChatGPT and 10 with
Claude, and the conditional probability of DeepSeek failing given an incident in ChatGPT
or Claude remains low (4.90% and 6.33%, respectively), suggesting a high degree of op-
erational independence. Although the reverse is substantially higher—24.14% (ChatGPT
given DeepSeek) and 34.48% (Claude given DeepSeek)—this merely reflects the rarity of
DeepSeek failures rather than any strong mutual dependency.

User-reported failures reveal a different pattern. ChatGPT and Character.Al share 34
user failure days (Figl5.1d), with 61.82% of ChatGPT’s user failures and 65.38% of Charac-
ter.AI’s co-occurring with the other (Fig, forming the strongest user-side alignment
(Observation . This strong co-occurrence likely reflects the large and highly active user
bases of both services, which increase the chance of detecting and reporting even minor
degradations, leading to more frequent overlap in reported failures. Another notable pair is
Claude and Character.Al, which share 24 co-occurring days, with conditional probabilities
of 61.54% (Character.Al given Claude) and 46.15% (Claude given Character.AI). Addi-
tionally, ChatGPT and Claude—already the most aligned pair in operator reports—show

46

strong user-side co-occurrence as well, with 26 shared user failure days and conditional
probabilities of 66.67% and 47.27%. This cross-source consistency may suggest underlying
infrastructure-level coupling or shared service dependencies between the two providers.
However, as the conditional probabilities on both sides remain in the 40-60% range, these
results indicate possible but not definitive operational entanglement.

=
&
E 58 7 12 140
[8)
120
S
2 58 10 21 100
[$)
- 80
x
3
‘% 7 10 29 5| | o
j°d
Qa
2 -40
8
S 12 21 5 57
E =20
[8)
ChatGPT Claude DeepSeek Character.Al

(a) Co-occurrence failures in days count based on opera-
tor reports.

—
& 8 %
&
(@]
° 40
E 5 24
[&]

30
X
[0}
[
2 8 5 21 9
()
8 -20
<
g
S 34 24 9 | .
&
o

ChatGPT

Claude DeepSeek Character.Al

(¢) Co-occurrence failures in days count based on user
reports.

100

ChatGPT

Claude

- 40

8.39 13.29 17.24

Character.Al DeepSeek

ChatGPT Claude DeepSeek Character.Al

(b) Conditional probabilities (%) of co-occurrence fail-
ures based on operator reports. Notes: y-axis = service
A, x-axis = service B, cells = P(A | B).

100

=
o
8l 100.00 66.67 %
5

80
_ch 70
3
©
© 60
2 -
2 1455 12.82
8 -40
<_£_ -30
2
B 6182 61.54
g -20
S}

ChatGPT

Claude DeepSeek Character.Al

(d) Conditional probabilities (%) of co-occurrence fail-
ures based on user reports. Notes: y-axis = service A,
x-axis = service B, cells = P(A | B).

Figure 5.1: Co-occurrence of failures across LLM services based on operator and user
reports. Left: number of co-occurring failures in the same day. Right: conditional proba-
bility of one service failing given another fails.

47

5.3 Summary of Correlation Analysis

This section addresses RQM] by analyzing both the statistical correlation between the pres-
ence of operator-reported incidents and user-reported issue volumes, and the co-occurrence
of failures across services.

5.3.1 Key Observations

All services exhibit statistically significant correlations between user-reported issue vol-
umes and official incidents. However, the overall strength of alignment is weak and varies
across services. Pearson correlation coefficients range from 0.060 to 0.315, and Spearman
from 0.053 to 0.147 (Observation [23). While other services show similar Pearson and
Spearman values, Character.Al displays the largest discrepancy (0.203), with a Pearson
coefficient of 0.315 and a Spearman of 0.112. This suggests that the alignment may be
driven by a few large spikes in user volume rather than consistent temporal patterns.

On the operator side, failure co-occurrence is most notable between ChatGPT and
Claude, which share 58 failure days and exhibit elevated conditional probabilities of 40.56%
and 36.71% respectively (Observation . This pattern may reflect shared infrastructure
or synchronized deployment events. In contrast, DeepSeek shows minimal overlap with
other services, indicating greater operational independence.

From the user perspective, cross-service co-occurrence is even stronger. ChatGPT and
Character.Al share 34 user-reported failure days, with mutual conditional probabilities
exceeding 60% (Observation . Besides potential infrastructure interdependencies, a
more observable explanation based on the user reports is the large and active user bases
of both services, which increase the likelihood of failure reports. With higher reporting
frequency, the chance of failures being recorded on the same day across services also rises,
including minor disruptions that may not be formally acknowledged by operators.

5.3.2 Use Cases Derived from Observations

Using Cross-Service Failure Dependencies for Operational Decision-Making.
Based on Observations[24]and 25, ChatGPT, Claude, and Character.Al exhibit substantial
cross-service failure co-occurrence, though with different source perspectives: operator-side
for ChatGPT and Claude, and user-side for ChatGPT and Character.Al. These patterns
suggest that some services may be partially interdependent or simultaneously exposed
to shared risks, such as common infrastructure components or synchronized deployments.
Providers can monitor co-occurrence rates to detect such hidden dependencies and support
more informed operational planning. For instance, when failure co-occurrence is high, LLM
providers can coordinate release schedules or infrastructure changes across the services they
operate to reduce the risk of cascading disruptions. They can also establish fallback or
isolation mechanisms to contain the impact of failures when interdependencies are present.

48

6 Consistency Analysis Between Sources

This section evaluates the consistency between operator and user reports, aiming to assess
the extent to which the two perspectives agree on both failure types and timelines. The
analysis includes: (1) the alignment of failure type classifications between sources; and (2)
the temporal consistency of reported failure periods.

6.1 Consistency of Failure Types

Observation #26: Claude exhibits the highest failure type match rate (81.8%), reflecting
strong alignment between operator- and user-reported failure types. In contrast, Charac-
ter.AI shows the lowest match rate (6.5%), primarily because most of its operator reports
do not specify a concrete failure type and are therefore labeled as Unknown.
Observation #27: The most frequent mismatch occurs when operator-reported failures
are misclassified by users as Error Received, which accounts for an average of 62.7% of
all misclassified cases across services. This suggests that user reports tend to be symptom-
based rather than cause-based, or that certain failures inherently manifest through multiple
observable symptoms.

To evaluate the consistency of failure types between two sources, Figl6.1] presents a com-
parison based on the most frequent user-reported failure type within each operator-defined
failure window. Figl6.1a]summarizes the overall match rate across services, while Fig.
provides a detailed breakdown of operator—user failure type mappings.

Match rates vary substantially across services. Claude exhibits the highest degree of
consistency, with an 81.8% match rate between operator- and user-side labels (Observa-
tion . This alignment is further supported by the joint distribution matrix (Fig,
where a majority of failures are classified as FError Received by both sides. In contrast,
Character.Al shows the lowest match rate (6.5%), as the majority of its operator reports
contain only vague descriptions such as Investigating an issue, resulting in failure types
labeled as Unknown (Observation . Meanwhile, users frequently label the same inci-
dents as Inaccessible or Slow, which are clearly more specific. This highlights the limited
diagnostic information provided in Character.AD’s official incident reports, which hinders
category-level alignment with user perceptions.

ChatGPT also shows a relatively high match rate of 68.9%. Given a sufficient number of
operator-reported incidents and the substantial volume of user reports, this figure provides
a stable and reliable estimate of cross-source consistency.

The match rate for DeepSeek is 40.0%, which is relatively low compared to other services.
However, this figure should be interpreted with caution due to the small sample size. Only
five failures were officially recorded for DeepSeek during the 13-week data collection period,
of which two were aligned with the dominant user-reported failure type. While the result
is numerically accurate, it may not reliably reflect broader consistency patterns.

Beyond overall alignment, common patterns of mismatch also emerge. In particular,
users often classify operator-reported failures—such as Login or Slow—as Error Received,
making it the most frequent user-side label across services (Fig. This suggests that
user reports tend to reflect observable symptoms (e.g., error messages) rather than un-
derlying causes, or simply default to the most common category without distinguishing

49

between more specific failure types. Another source of mismatch involves the frequent
confusion between FError Received and Slow, which may occur when operator-reported
failures simultaneously involve both latency and elevated error rates [30, 28]. Depending
on user’s interaction context, the same underlying issue may be perceived as either a delay
or an explicit error, leading to divergent user classifications (Observatio.

° ChatGPT Claude
1 00 ’% Error Received 0 3 Error Received 2 2
§ 3 0 0 3 0 0
Inaccessible Inaccessible
— 80 81.8% §
o
o\ % Login 5 2 0 Login 0 2 0
~ L
o
% 60 §_ Slow 2 1 2 Others 1 0 0
el oin Slow wed gin Slow
% 40 i Re + [2iC Rec®! v
[&) ° DeepSeek Character.Al
=1 Q
© e Login 0 0 1 0
E 20 g Inaccessible 2
=
2
) Slow 0 0 0 1
PT qude « N
\\| See yer- S
‘(\a‘G c\ eeP (aC! = Slow
C D cnal a(!; Unknown 3 15 0 1
&
(a) Bar chart of match rates for each LLM . Roco®® cessD® Log® e s oss® Log g0t
. . . Al i\
service, reflecting the proportion of operator- User Reported Type User Reported Type

reported failures whose failure types match
the most frequently reported user failure (b) Heatmaps showing the joint distribution of operator- and user-
types in the same time window. reported failure types for each LLM service.

Figure 6.1: Consistency of failure types between operator and user reports across LLM
services, evaluated through match rates and joint distributions.

6.2 Consistency of Failure Periods

Observation #28: ChatGPT and Claude show relatively strong alignment between oper-
ator and user reports, though for different reasons: ChatGPT due to high operator coverage
(82.22%), and Claude due to accurate user reporting (74.00%) and closely aligned user
detection (median lead time: 3 minutes). In contrast, DeepSeek and Character.Al exhibit
weaker consistency, with lower overlap rates between the two sources.

Table[6.I]summarizes the consistency-related statistics between operator- and user-reported
failures across services. Each metric in the table captures a specific aspect of this cross-
source alignment. The first three metrics report the number of operator-reported incidents
(# of Operator Reports), the number of user-reported failure periods (# of User Reports),
and the number of temporally overlapping periods (# of Overlapping Reports). The next
two metrics—Coverage of Operator and Coverage of User—measure the proportion of op-
erator and user reports, respectively, that have an overlapping period in the other source.
The final two metrics, Mean User Lead Time and Median User Lead Time, quantify the
average and median number of minutes by which user-reported failures precede (or lag
behind) the corresponding operator reports. These metrics jointly characterize not only
the extent of agreement between sources, but also the temporal sensitivity and reporting
behavior of each.

50

Table 6.1: Consistency-related metrics summarizing the overlap and timing alignment
between operator and user reports. Legend: m = minute(s).

Metric ChatGPT Claude DeepSeek Character.Al
of Operator Reports 45 74 4 40
of User Reports 127 50 12 83
of Overlapping Reports 37 37 2 20
Coverage of Operator [%] 82.22 50.00 50.00 50.00
Coverage of User [%] 29.13 74.00 16.67 24.10
Mean User Lead Time [m] 72.86 -1.12 14.71 78.13
Median User Lead Time [m] 31.55 3.00 14.71 43.50

For ChatGPT (Fig. , the consistency between sources is relatively high (Obser-
Vatio. Among the 45 operator-reported incidents, 82.2% overlap with at least one
user-perceived failure period. Despite the user reports being more numerous (127 in to-
tal), only 29.1% correspond to officially reported incidents. This asymmetry suggests
that while most operator-reported failures are noticeable to users, a large portion of user-
reported issues remain unacknowledged by the provider. This may be primarily due to
users’ heightened sensitivity to degraded performance, which may not always meet the op-
erator’s threshold for a status update. On average, users report failures 73 minutes earlier
than the corresponding official acknowledgment, with a median lead time of 31.6 minutes.
This indicates that ChatGPT users often act as early detectors of emerging issues.

Further analysis of the overlapping incident descriptions reveals that operator-reported
failures also perceived by users often involve highly visible and widely used components
such as Web, Login, Search, and File uploads. These failures are more likely to impact
a broad portion of the user base and therefore generate substantial user feedback. In
contrast, operator-reported incidents not detected by users often involve more specialized
or less commonly used components. These include outages in legacy or experimental
models such as 03-mini, failures affecting only enterprise users, disruptions in Temporary
chat (primarily used by free users), or issues with ChatGPT Voice. What these failures
share is limited visibility—they do not affect the general user population and, as a result,
are less likely to be reflected in user reports.

KT e

AT 26 07 16 ook 03 A2 21 30 09 18
202502 202502 202503 202503 202503 20250 202504 20250 202504 20250° 202590°

NN
o o

Hour of Day

o » ®

B Operational Degraded performance = Partial outage Bl Full outage mm User-reported failure

Figure 6.2: Failure periods reported by operators versus users for ChatGPT, plotted by
date and hour of the day. Different colors indicate operator-reported impact levels and
user-reported failures.

o1

Claude (Fig. exhibits a distinct pattern. It has more operator-reported incidents
(74) than user-perceived failures (50), yet 74.0% of user reports overlap with official in-
cidents. This suggests that Claude users are relatively accurate in detecting provider-
acknowledged failures (Observatio. However, only 50.0% of operator-reported inci-
dents are reflected in user reports, which may be attributed to the overall low reporting
volume—Ilikely a result of Claude’s relatively small user base and the fact that most users
primarily interact with the default, up-to-date chat models, such as Claude 3.7 Sonnet.

This interpretation is supported by the content of the overlapping incidents, which
largely involve core functionalities or widely used components. In contrast, many un-
matched operator-reported incidents pertain to more specialized features, such as long
context requests, issues with receiving magic login links, or failures in optional backup
models available via the web interface, such as Claude 3.5 Haiku. These components are
less likely to be used by the general population and thus may not trigger sufficient user re-
ports. Furthermore, due to the much smaller user base, some unmatched operator-reported
incidents even involve the default model, Claude 3.7 Sonnet. In such cases, elevated error
rates were observed in the model. However, if only a small number of users were active
at the time—or if the disruption was short-lived—there may not have been sufficient user
feedback to form a user-reported failure period.

The mean user lead time is nearly zero at -1.1 minutes, with a median of +3 minutes,
indicating near-simultaneous perception of failures between users and the provider.

KA EATATREE

09 18
7_07.5‘“1 2025027 25080 25° 50 202595 20250°™

Hour of Day
oo NN
5 & 8

o &

202503

B Operational Degraded performance mm Partial outage Em Full outage Hm User-reported failure

Figure 6.3: Failure periods reported by operators versus users for Claude.

For DeepSeek, the number of reports is much smaller: only 4 operator-reported incidents
and 12 user-reported failures during the observation period (excluding one outlier incident
that spanned 19 days, from 2025-02-08 to 2025-02-26, and overlapped with multiple user-
reported failures, as shown in Fig. [6.4]). Half of the official incidents (2) were matched
by user-reported failure periods, while only 16.7% of user reports correspond to officially
acknowledged incidents (Observatio. This low user-side coverage may be partially
explained by the fact that users often report issues upon receiving a Server is busy message,
which the provider usually does not acknowledge as a formal incident, as this is a common
occurrence for open-source models under high demand.

The mean and median lead times are both 14.7 minutes, suggesting a mild tendency for
users to detect issues earlier—though the small sample size limits the generalizability of
this pattern. Furthermore, all operator incident descriptions are nearly identical, simply
stating DeepSeek Web/API Service Not Available, leaving no room to infer component-
level patterns from either matched or unmatched incidents.

92

N

N
53

4
>
816
—
012
=
38 !
T
a4
0
?.07.5-07— 2025 022 2075 030 025 03 2025 032 20250 03 2025 0% 2025 042 2025 083 2025 050 202595 A8
B Operational Degraded performance mm Partial outage Bl Full outage Hm User-reported failure

Figure 6.4: Failure periods reported by operators versus users for DeepSeek.

Character.Al (Fig. demonstrates moderate misalignment. Of its 40 operator-reported
incidents, only 50.0% were picked up by users, while just 24.1% of the 83 user-reported
failures matched operator data (Observatio. The user lead time is substantial: on av-
erage, users report failures 78.1 minutes earlier than the corresponding operator reports,
with a median lead time of 43.5 minutes. This suggests either delayed response from the
provider or stricter thresholds for acknowledging an incident.

Most operator reports adopt vague phrasing such as “Investigating an issue,” offering
little detail. Still, a few operator-reported incidents that were detected by users contain
clear descriptions, referring to general degradation or login issues. These types of failures
are more likely to prompt widespread user response. Since no consistent pattern can
be discerned from the operator side, unmatched user reports were further examined and
found to be dominated by Slow (66%) and Inaccessible (24%) types, indicating high user
sensitivity to service latency and availability.

KRR RRR T

7_07_5.07- 2025 022 2025 030 2025 03V 2025 032 2025 050 2025 05

Hour of Day
b NN
N o o

o &

B Operational Degraded performance mm Partial outage Bl Full outage Em User-reported failure

Figure 6.5: Failure periods reported by operators versus users for Character.Al.

93

6.3 Summary of Consistency Analysis

This section addresses RQP| by evaluating the consistency between operator and user re-
ports in terms of failure types and temporal alignment of failures. The analysis reveals
service-specific differences in how closely user reports align with official incident descrip-
tions and timelines.

6.3.1 Key Observations

Claude demonstrates the strongest agreement in failure type classification, with a match
rate of 81.8% between operator- and user-reported failure types. In contrast, Charac-
ter.Al shows the lowest match rate (6.5%), primarily due to its frequent lack of detailed
descriptions in official incident reports, leading to failure types being extracted as Un-
known (Observation [26)). Across services, the most common misclassification involves
users labeling operator-reported failures as Error Received, which accounts for 62.7% of
all mismatches. This pattern suggests that users tend to report based on perceived symp-
toms rather than root causes, or that certain failures inherently manifest through multiple
observable symptoms (Observation .

Beyond failure classification, source alignment also varies in terms of temporal overlap
and coverage. ChatGPT and Claude demonstrate relatively high cross-source consistency,
though for different reasons (Observation[28)). ChatGPT benefits from a high proportion of
overlapping failure periods relative to the number of operator-reported incidents (82.22%)
and early user detection, with a median lead time of 31.55 minutes. In contrast, Claude
achieves strong alignment primarily through accurate user reporting, as reflected by a
high overlap rate relative to the number of user reports (74.00%). DeepSeek and Charac-
ter.Al, however, exhibit weaker consistency between sources (Observation , with fewer
overlapping failure periods and lower agreement in failure type classification.

6.3.2 Use Cases Derived from Observations

Leveraging Consistency-Related Metrics for Reliability Strategy Design. Based
on Observation [28] alignment between operator and user reports varies across services. For
services with high operator coverage like ChatGPT, most operator-reported failures are
also perceived by users, indicating that the incidents captured by internal systems largely
reflect user-visible issues. This alignment makes it more feasible to automate incident
workflows, such as updating real-time dashboards, syncing status via APIs, or publishing
reports to official status pages, without requiring additional user-side confirmation. In
contrast, for services with high user coverage like Claude, user feedback can serve as a
reliable external signal to complement internal monitoring, especially when certain failures
go undetected by operators.

Lead time characteristics further enhance these strategies. When user reports signifi-
cantly precede official acknowledgements (e.g., 31.55 minutes for ChatGPT), this early-
warning capacity can inform provisional alerts or preemptive traffic rerouting. When user
detection closely aligns with operator timing (e.g., 3-minute lead in Claude), user feedback
can serve as a confirmation layer to validate internal detection and reduce false positives.

54

7 Threats To Validity

This section outlines key threats to the validity of this study, categorized according to the
characteristics and limitations of the data sources used, the methods employed for failure
classification, and the overall scope of the analysis.

Threats to Data Completeness The 24-hour user report monitoring script was de-
ployed on a GCP instance to continuously collect data from DownForEveryoneOrJustMe.
However, GCP instances may be vulnerable to bot attacks or unexpected downtime. In
the event of such disruptions, a temporal gap can arise between the onset of the downtime
and the recovery, during which user-reported failures may be missed. As a result, the
collected user report data cannot be guaranteed to be 100% complete.

Threats to Label Accuracy from LLM-based Extraction This study relies on
LLMs such as ChatGPT-40 to semantically classify failure types from semi-structured op-
erator reports and structured user reports containing text columns. Although the classifi-
cation prompts were designed in a zero-shot or few-shot format with detailed instructions
and consistent schemas, the LLM-based processing remains inherently opaque. There is
no deterministic guarantee that the inferred labels fully capture the intended semantics,
particularly in ambiguous cases. Furthermore, since this approach operates as a black
box, verifying classification correctness is difficult without extensive human validation. To
partially mitigate this, manual spot-checking was performed on sampled outputs; however,
full-scale verification remains infeasible given the dataset size.

Threats from Operator Report Inconsistencies Operator-provided incident re-
ports sometimes suffer from imprecision and inconsistency, which pose challenges for down-
stream failure analysis. First, several reports do not specify a time zone [4], making it
difficult to determine the precise start and end times of an incident. Second, in some cases,
the reported date or time is factually incorrect [6]. Third, failure type descriptions are
sometimes vague, or even not specified. For example, some reports only use ambiguous
titles such as Errors for logins and requests [3), [5], while others—especially those from
Character. AI—provide no meaningful description at all and contain only generic phrases
like Investigating an issue [9]. Finally, inconsistencies are occasionally observed between
the timeline field and the free-text write-up of an incident. In particular, OpenAl’s
status page sometimes presents conflicting start and end times between these two fields,
requiring manual adjudication [31].

Threats from User Data Ambiguity User reports are inherently noisy, informal, and
may reflect localized network problems or client-side issues rather than actual service-wide
failures. Although semantic classification via LLMs was employed to extract structured
failure types, the original user-generated content remains subjective and occasionally am-
biguous. Additionally, third-party platforms like DownForEveryoneOrJustMe only retain
the most recent 20 reports, limiting the recoverability of historical data.

Threats from Scope Limitation This study focuses exclusively on the reliability of
web-based chat services and does not include other components such as API services. For

95

example, API-related issues are not covered due to the limited availability of user-reported
failures that specifically reference API usage, as discussed in Section The sparsity of
such data makes it difficult to conduct meaningful failure pattern analysis at the API
level. As a result, the findings presented in this work pertain only to the end-user-facing
chat services of major LLM providers and may not generalize to other service components
offered by these providers.

o6

8 Related Work
8.1 LLM Workloads

Recent advances in LLMs have led to diverse usage scenarios across pretraining, adap-
tation, and inference. Each of these stages introduces distinct workload patterns with
varying computational demands, scheduling behaviors, and resource footprints. Under-
standing these workload characteristics has become essential for optimizing LLM system
design, benchmarking, and operational management. This section reviews key studies that
characterize LLM workloads across different stages of the model lifecycle, from foundation
model training to production-level inference and workload modeling.

Training Workloads Large-scale training of foundational language models demands
extensive computational resources, advanced parallelization techniques, and scalable dis-
tributed infrastructure. Prior studies have examined how these demands manifest as
system-level workloads. A recent survey by Duan et al. [I5] explores strategies for ef-
ficient training across multiple nodes and GPUs, including pipeline parallelism, tensor
parallelism, and data parallelism, while addressing bottlenecks such as communication
overhead and memory constraints. These training workloads are characterized by high
GPU utilization, long job durations, and coordinated orchestration across clusters, form-
ing the foundation of LLM workload analysis.

Adaptation Workloads Beyond pretraining, modern LLM applications frequently in-
volve adaptation workloads such as fine-tuning, instruction tuning, or retrieval-augmented
generation (RAG). These workloads introduce new system behaviors including irregular
batch sizes, varied context lengths, and frequent data I/O for external knowledge integra-
tion. For example, Lewis et al. [23] introduce RAG as a hybrid architecture combining
LLMs with document retrieval, resulting in increased latency variability and I/O-bound
patterns. Additionally, recent studies on parameter-efficient tuning (e.g., LoRA [20] and
adapters [19]) suggest a shift toward more lightweight and fine-grained tuning workloads
with lower memory demands but higher variability. These adaptation phases are essential
to modeling realistic and emerging LLM use cases in production systems.

Inference Workloads LLM inference workloads pose distinct challenges related to la-
tency, throughput, and GPU memory fragmentation, especially in multi-tenant or real-
time serving environments. Vellaisamy et al. [36] systematically evaluate inference work-
loads on CPU-GPU coupled architectures, highlighting the performance implications of
interconnect bandwidth, memory swapping, and kernel-level execution delays. Comple-
menting this, Chitty-Venkata et al. [I0] introduce LLM-Inference-Bench, a comprehensive
benchmarking suite that evaluates the inference performance of various LLMs across multi-
ple Al accelerators and inference frameworks, such as vLLM, TensorRT-LLM, DeepSpeed-
MII, and llama.cpp. Their study provides detailed insights into the trade-offs between
latency and throughput under different batching and scheduling strategies, contributing
to a better understanding of inference workload characteristics.

o7

Real-world LLM Workload Modeling Recent research has shifted toward holistic
workload characterization, combining multiple LLM usage stages and real production
traces. Hu et al. [21] analyze GPU traces over six months from a large-scale Al lab, un-
covering temporal and resource usage patterns in real-world LLM development. Building
upon this, Xiang et al. [41] propose a data-driven workload generator based on produc-
tion traffic traces, capable of replicating realistic model serving scenarios across diverse
task types. These contributions enable workload modeling beyond synthetic benchmarks
and lay the foundation for reproducible system evaluation, scheduling policy design, and
capacity planning in LLM deployment.

Taken together, these studies provide a comprehensive view of LLM workloads as they
manifest across training, adaptation, inference, and real-world deployment. By identifying
workload-specific performance bottlenecks, temporal dynamics, and system constraints,
prior research has laid a solid foundation for downstream investigations into LLM service
reliability. In particular, the characterization of workload heterogeneity and operational
complexity directly informs this study’s analysis of failure patterns, offering critical context
for understanding the underlying causes and manifestations of service-level disruptions in
LLM systems.

8.2 Failure Characterization

Failure characterization spans multiple layers of LLM system architecture, from underly-
ing hardware components to user-facing services. At the hardware layer, several studies
have investigated reliability issues in large-scale HPC infrastructures. For example, Cui
et al. [13] provide a fine-grained characterization of GPU failures by analyzing two and
a half years of error logs in a large-scale AI/HPC system. The study identifies the GPU
System Processor (GSP) as the most failure-prone components, and challenges conven-
tional assumptions by demonstrating that GPU memory is significantly more reliable than
other GPU hardware components. In parallel, George et al. [I7] characterize large-scale
disk failures in HPC environments using over 5,000 failure records, analyzing them across
temporal, spatial, and relational dimensions to inform storage system reliability. Chu et
al. [11] further explore the operational characteristics of ML jobs on HPC clusters, show-
ing that they tend to produce higher failure rates, longer runtime, and greater thermal
stress compared to generic jobs. Together, these studies establish foundational insights
into system-level failure behavior under intensive LLLM workloads.

Moving up to the application layer, failure analysis has increasingly focused on observ-
able behaviors and failure types in user-facing software systems. Anandayuvaraj et al. [1]
propose a novel LLM-based pipeline that extracts and summarizes software failure events
from news sources, offering an automated view of how failures manifest in public reports.
Tie et al. [35] conduct an empirical user study in web development contexts, identifying
nine categories of LLM failures grounded in real-world software engineering tasks and user
interactions. Talluri et al. [34] characterize failures in cloud, web, and gaming services by
collecting and analyzing reports from both users and operators. Their multi-source dataset
enables a cross-layer analysis of service reliability, revealing that high-level user facing ser-
vices exhibit fewer failures than low-level infrastructure services—likely due to their use of
fault-tolerance mechanisms. While these efforts contribute valuable taxonomies and anal-
ysis methods, they primarily focus on traditional web-scale services and do not address

o8

the unique characteristics of failures in LLM-based applications.

Focusing specifically on LLM services, recent work has begun to systematically investi-
gate their operational failure behaviors. Chu et al. [I2] conduct an empirical characteri-
zation of outages and failure-recovery in public LLM services, analyzing failure recovery
statistical properties, temporal patterns, co-occurrence, and the impact range of outage-
causing incidents. Building on this foundation, Battaglini-Fischer et al. [§] introduce an
open-source framework for collecting and analyzing incident reports across multiple LLM
providers. Their platform facilitates structured data collection, incident analysis, and fail-
ure visualization. Complementing these system-level analyses, Yu et al. [42] present a
comprehensive taxonomy of LLM system failures across six architectural layers, derived
from a survey of 160 papers and repositories. While these studies provide valuable in-
frastructure and conceptual tools for LLM failure research, they are primarily built on
data from official operator channels, and lack the complementary perspective offered by
user-generated failure reports.

This gap—between operator-reported failure data and user-experienced service disrup-
tions—remains insufficiently addressed. No prior work systematically integrates both op-
erator and user reports to develop a comprehensive characterization of LLM service failures
and recovery behaviors. This study seeks to fill that gap by combining heterogeneous data
sources, enabling a more complete understanding of LLM service reliability through a
multi-perspective analysis.

99

9 Conclusion

This study systematically investigates the reliability of LLM services by collecting and
analyzing failure data from both operator and user perspectives. Unlike prior research
that primarily relies on official incident reports, this work incorporates heterogeneous
data sources, including official status pages and third-party user reporting platforms, to
provide a more comprehensive and multi-perspective view of service failures.

A structured data pipeline was developed to collect and process failure reports into a uni-
fied data format. Based on the processed data, four analytical dimensions were explored:
(1) failure-recovery modeling characterizes failure recovery patterns from both operator
and user perspectives; (2) temporal analysis uncovers trends, as well as periodic and diur-
nal patterns in failure occurrences; (3) correlation analysis evaluates the extent to which
user-reported volumes reflect the timing of officially acknowledged incidents and identifies
failure co-occurrence patterns across services; and (4) consistency analysis quantifies the
alignment between the two perspectives in terms of failure types and failure periods.

Based on these four types of analysis, this study summarizes a total of 28 important ob-
servations, which capture a broad spectrum of insights, including discrepancies in recovery
durations and failure intervals, variations in temporal patterns, cross-service dependencies,
and the degree of alignment between reporting perspectives. Together, these analyses and
their corresponding findings address the research questions and highlight the importance
of incorporating user-side signals into evaluations of LLM service reliability.

By systematically analyzing failure data from different sources, this study reveals both
discrepancies and alignment patterns across LLM services and between reporting per-
spectives. It also contributes standardized tools for multi-source failure data collection
and analysis, provides new empirical insights into LLM service failure behavior, and lays
the groundwork for future work on predictive failure modeling and user-aware, real-time
reliability monitoring systems.

During the entire research process, several non-trivial challenges were encountered.
Among them, the most significant arose in the early stages of data collection and process-
ing, which was the most time-consuming phase of the project. For instance, the diversity
and frequent changes in web interfaces across platforms required the use of platform-
specific scraping strategies tailored to different page structures. In the data processing
stage, using LLMs to extract failure types from free text required extensive experimenta-
tion with prompt designs to identify the one that produced the most accurate results. Sim-
ilarly, inferring user-reported failure periods involved testing different smoothing methods
and tuning key parameters, such as the moving average window size, to precisely capture
the periods during which users perceived service failures.

Overcoming these challenges significantly improved relevant technical skills. For exam-
ple, web scraping skills were strengthened through the implementation of various platform-
specific strategies. Additionally, practical experience was gained in building and managing
large-scale data pipelines for both data collection and processing, enhancing the ability to
design systems capable of handling real-world, noisy data. Finally, a deeper understand-
ing of LLM services’ operational behavior and reliability characteristics was developed,
supporting future work involving the use and evaluation of LLMs.

60

Appendix

Structured Incident Report Extraction Protocol

We define a high-precision, semantically grounded protocol for extracting structured in-
formation from LLM service incident reports, obtained from official provider status pages.
Each incident record is represented as a JSON object. The goal is to convert these records
into a unified tabular dataset containing six key fields: title, affected_components,
impact_level, start_time, end time, and failure type. All fields must be extracted
via per-entry human-like reading and interpretation, without use of heuristic rules, tem-
plates, regular expressions, or keyword triggers.

e Title: Directly extracted from the basic_info.title field.

o Affected Components: Directly extracted from the affected_components field,
and preserved as a list.

e Impact Level: Mapped from basic_info.impact_level using the following stan-
dardization:

— "none", "minor" — Degraded performance

— "major" — Partial outage

— "critical" — Full outage

e Start and End Time: These fields represent the actual time interval of the incident.
The extraction process must follow a strict semantic-first principle:

1. All timeline.content entries must be read to determine whether any natural
language expression conveys a bounded time range (e.g., “from ... through
.7, “between ... and ...”, or equivalent).

2. If such temporal expressions are present, the start_time and end_time must
be extracted from them using semantic interpretation, with proper timezone
normalization.

3. Only if no content conveys a clear start and end time semantically may the
timestamps be derived from the earliest and latest values in timeline.timestamp.

Time normalization requirements:

— All times must be converted to the UTC timezone and formatted as YYYY-MM-DD
HH:MM:SS.

— Timezones such as CST (UTC+8), PDT (UTC-7), and others must be correctly
resolved based on textual context.

— If the text specifies UTC explicitly (e.g., “18:00 UTC on April 8”), the resulting
datetime object must be timezone-aware (i.e., not naive).

e Failure Type: This field denotes the underlying user-visible symptom category and
must be assigned based solely on semantic understanding of the incident’s title and
timeline.content. The valid categories are:

61

— Login — user cannot log in or sign up

Inaccessible — the service or specific features are unavailable
— Slow — latency or performance degradation
— Error Received — users encounter errors while interacting with the system

— Others — identifiable incidents that do not fit the above

Unknown — no failure symptoms are clearly stated or inferable

The classifier must not rely on any form of keyword detection or pattern match-
ing. Misclassification due to the presence of misleading terms (e.g., interpreting
“Errors when logging in” as Error Received rather than Login) is unacceptable.
The interpretation must be context-sensitive and human-level.

Failure of Methodological Consistency: Any extraction that skips the semantic judg-
ment step, falls back to timestamp prematurely, uses keyword presence to drive classi-
fication, or produces inconsistent type decisions across semantically equivalent cases is
considered invalid, even if the final values appear superficially correct.

62

References

1]

[12]

D. Anandayuvaraj, M. Campbell, A. Tewari, and J. C. Davis. FAIL: Analyzing
Software Failures from the News Using LLMs. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ASE 24, pages 506—
518, New York, NY, USA, Oct. 2024. Association for Computing Machinery.

Anthropic. Anthropic Partners with Google Cloud. https://www.anthropic.com/
news/anthropic-partners-with-google-cloud, 2023.

Anthropic. Incident: Elevated error rates in Claude.ai and Console. https://status.
anthropic.com/incidents/t39s5hjpbs9v, 2024.

Anthropic. Incident: Elevated errors for requests to the Anthropic API. https:
//status.anthropic.com/incidents/j5cdq83mncqv, 2024.

Anthropic. Incident: Errors on Claude.ai and Console for logins and requests. https:
//status.anthropic.com/incidents/cm416m2m0Op83, 2024.

Anthropic. Incident: Outage affecting account creation and document upload. https:
//status.anthropic.com/incidents/0dv5d8qb9gy2, 2024.

Anthropic. Release notes of Claude. https://docs.anthropic.com/en/release-
notes/claude-apps, 2025.

S. Battaglini-Fischer, N. Srinivasan, B. L. Szarvas, X. Chu, and A. Iosup. FAILS:
A Framework for Automated Collection and Analysis of LLM Service Incidents. In
Companion of the 16th ACM/SPEC International Conference on Performance Engi-
neering, pages 187-194, May 2025. arXiv:2503.12185 [cs].

Character.Al. Incident: Investigating an issue. https://status.character.ai/
incidents/s2ncd1s90d480, 2025.

K. T. Chitty-Venkata, S. Raskar, B. Kale, F. Ferdaus, A. Tanikanti, K. Raffenetti,
V. Taylor, M. Emani, and V. Vishwanath. LLM-Inference-Bench: Inference Bench-
marking of Large Language Models on AI Accelerators, Oct. 2024. arXiv:2411.00136
[cs].

X. Chu, D. Hofstatter, S. Ilager, S. Talluri, D. Kampert, D. Podareanu, D. Duplyakin,
I. Brandic, and A. Iosup. Generic and ML: Workloads in an HPC Datacenter: Node
Energy, Job Failures, and Node-Job Analysis. In 2024 IEEE 30th International Con-
ference on Parallel and Distributed Systems (ICPADS), pages 710-719, Oct. 2024.
ISSN: 2690-5965.

X. Chu, S. Talluri, Q. Lu, and A. Iosup. An empirical characterization of outages
and incidents in public services for large language models. In M. Litoiu, E. Smirni,
A. V. Papadopoulos, and K. Wolter, editors, Proceedings of the 16th ACM/SPEC
International Conference on Performance Engineering, ICPE 2025, Toronto, ON,
Canada, May 5-9, 2025, pages 69-80. ACM, 2025.

63

https://www.anthropic.com/news/anthropic-partners-with-google-cloud
https://www.anthropic.com/news/anthropic-partners-with-google-cloud
https://status.anthropic.com/incidents/t39s5hjpbs9v
https://status.anthropic.com/incidents/t39s5hjpbs9v
https://status.anthropic.com/incidents/j5cdq83mncqv
https://status.anthropic.com/incidents/j5cdq83mncqv
https://status.anthropic.com/incidents/cm416m2m0p83
https://status.anthropic.com/incidents/cm416m2m0p83
https://status.anthropic.com/incidents/0dv5d8qb9gy2
https://status.anthropic.com/incidents/0dv5d8qb9gy2
https://docs.anthropic.com/en/release-notes/claude-apps
https://docs.anthropic.com/en/release-notes/claude-apps
https://status.character.ai/incidents/s2ncdls90d80
https://status.character.ai/incidents/s2ncdls90d80

[13]

[20]

[21]

S. Cui, A. Patke, Z. Chen, A. Ranjan, H. Nguyen, P. Cao, S. Jha, B. Bode,
G. Bauer, C. Narayanaswami, D. Sow, C. D. Martino, Z. T. Kalbarczyk, and R. K.
Iyer. Characterizing GPU Resilience and Impact on AI/HPC Systems, Mar. 2025.
arXiv:2503.11901 [cs].

DeepSeek. GitHub repository of DeepSeek-R1. https://github.com/deepseek-
ai/DeepSeek-R1, 2025.

J. Duan, S. Zhang, Z. Wang, L. Jiang, W. Qu, Q. Hu, G. Wang, Q. Weng, H. Yan,
X. Zhang, X. Qiu, D. Lin, Y. Wen, X. Jin, T. Zhang, and P. Sun. Efficient Train-
ing of Large Language Models on Distributed Infrastructures: A Survey, July 2024.
arXiv:2407.20018 [cs].

P. T. Endo, M. Rodrigues, G. E. Goncalves, J. Kelner, D. H. Sadok, and C. Curescu.
High availability in clouds: systematic review and research challenges. Journal of
Cloud Computing, 5(1):16, Oct. 2016.

A. George, M. Wang, J. Hanley, G. W. Ransom, J. Bent, and C. Zimmer. From failure
to insight: Analyzing disk breakdowns in large-scale hpc environments. In SC24-
W: Workshops of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 484-495, 2024.

A. Handler, K. R. Larsen, and R. Hackathorn. Large language models present new
questions for decision support. International Journal of Information Management,
79:102811, Dec. 2024.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. D. Laroussilhe, A. Gesmundo,
M. Attariyan, and S. Gelly. Parameter-Efficient Transfer Learning for NLP. In

Proceedings of the 36th International Conference on Machine Learning, pages 2790—
2799. PMLR, May 2019. ISSN: 2640-3498.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.
LoRA: Low-Rank Adaptation of Large Language Models, Oct. 2021. arXiv:2106.09685
[cs].

Q. Hu, Z. Ye, Z. Wang, G. Wang, M. Zhang, Q. Chen, P. Sun, D. Lin, X. Wang,
Y. Luo, Y. Wen, and T. Zhang. Characterization of Large Language Model De-
velopment in the Datacenter. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24), pages 709-729, Santa Clara, CA, Apr. 2024.
USENIX Association.

A. Kulkarni, Y. Zhang, J. R. A. Moniz, X. Ge, B.-H. Tseng, D. Piraviperumal,
S. Swayamdipta, and H. Yu. Evaluating Evaluation Metrics — The Mirage of Hallu-
cination Detection, Apr. 2025. arXiv:2504.18114 [cs].

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kiittler,
M. Lewis, W.-t. Yih, T. Rocktéschel, S. Riedel, and D. Kiela. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information
Processing Systems, volume 33, pages 9459-9474. Curran Associates, Inc., 2020.

64

https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1

[24]

[25]

[26]

[27]

[28]

B. Li, Y. Jiang, V. Gadepally, and D. Tiwari. LLM Inference Serving: Survey of
Recent Advances and Opportunities, July 2024. arXiv:2407.12391 [cs].

M. R. Mesbahi, A. M. Rahmani, and M. Hosseinzadeh. Reliability and high avail-
ability in cloud computing environments: a reference roadmap. Human-centric Com-
puting and Information Sciences, 8(1):20, July 2018.

S. Milova. Failure Modes of Large Language Models. June 2023. Accepted: 2023-07-
24T22:55:05Z Publisher: Univerzita Karlova, Fakulta socidlnich véd.

NerdyNav. 107+ ChatGPT Statistics and User Numbers (May 2025). https://
nerdynav.com/chatgpt-statistics/7utm_source=chatgpt.com, 2025.

OpenAl. Elevated API and ChatGPT Latency and Error Rate. https://status.
openai.com/incidents/01JMYB51KQVDVWS4HVVSNEMKI9, 2024.

OpenAl. Chatgpt overview. https://openai.com/chatgpt/overview/, 2025.

OpenAl. Chatgpt search is seeing elevated failures and high latency. https://
status.openai.com/incidents/01JVF6PIJNOJWIYNGSO6BVYSH7Z, 2025.

OpenAl Incident: Increased errors for ChatGPT. https://status.openai.com/
incidents/01JMYB40J9DVRID13RJINIWSSWV, 2025.

Premier Cloud. Simplify complex tasks with Gemini on Google Cloud. https://
premiercloud.com/gemini-google-cloud/, 2025.

S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz. The Programmer’s
Assistant: Conversational Interaction with a Large Language Model for Software
Development. In Proceedings of the 28th International Conference on Intelligent User
Interfaces, IUI ’23, pages 491-514, New York, NY, USA, Mar. 2023. Association for
Computing Machinery.

S. Talluri, D. Niewenhuis, X. Chu, J. Kyselica, M. Cetin, A. Balgavy, and A. Iosup.
Cloud Uptime Archive: Open-Access Availability Data of Web, Cloud, and Gaming
Services, Apr. 2025. arXiv:2504.09476 [cs].

J. Tie, B. Yao, T. Li, S. I. Ahmed, D. Wang, and S. Zhou. LLMs are Imperfect, Then
What? An Empirical Study on LLM Failures in Software Engineering, Nov. 2024.
arXiv:2411.09916 [cs].

P. Vellaisamy, T. Labonte, S. Chakraborty, M. Turner, S. Sury, and J. P. Shen.
Characterizing and Optimizing LLM Inference Workloads on CPU-GPU Coupled
Architectures, Apr. 2025. arXiv:2504.11750 [cs].

J. Vendrow, E. Vendrow, S. Beery, and A. Madry. Do Large Language Model Bench-
marks Test Reliability?, Feb. 2025.

Y. Wang, Y. Chen, Z. Li, Z. Tang, R. Guo, X. Wang, Q. Wang, A. C. Zhou, and
X. Chu. Towards efficient and reliable 1lm serving: A real-world workload study.
arXiv e-prints, pages arXiv—2401, 2024.

65

https://nerdynav.com/chatgpt-statistics/?utm_source=chatgpt.com
https://nerdynav.com/chatgpt-statistics/?utm_source=chatgpt.com
https://status.openai.com/incidents/01JMYB51KQVDVWS4HVVSN6MK99
https://status.openai.com/incidents/01JMYB51KQVDVWS4HVVSN6MK99
https://openai.com/chatgpt/overview/
https://status.openai.com/incidents/01JVF6PJN0JWJYNGS06BVYSH7Z
https://status.openai.com/incidents/01JVF6PJN0JWJYNGS06BVYSH7Z
https://status.openai.com/incidents/01JMYB40J9DVR9D13RJN1W5SWV
https://status.openai.com/incidents/01JMYB40J9DVR9D13RJN1W5SWV
https://premiercloud.com/gemini-google-cloud/
https://premiercloud.com/gemini-google-cloud/

[39] K. Wiggers. ChatGPT isn’t the only chatbot that’s gaining users.
https://techcrunch.com/2025/04/01/chatgpt-isnt-the-only-chatbot-
thats-gaining-users/, 2025.

[40] Wikipedia. ChatGPT. https://en.wikipedia.org/wiki/ChatGPT, 2025.

[41] Y. Xiang, X. Li, K. Qian, W. Yu, E. Zhai, and X. Jin. ServeGen: Workload Char-
acterization and Generation of Large Language Model Serving in Production, May
2025. arXiv:2505.09999 [cs].

[42] G. Yu, G. Tan, H. Huang, Z. Zhang, P. Chen, R. Natella, and Z. Zheng. A Survey
on Failure Analysis and Fault Injection in Al Systems, June 2024. arXiv:2407.00125
[cs].

66

https://techcrunch.com/2025/04/01/chatgpt-isnt-the-only-chatbot-thats-gaining-users/
https://techcrunch.com/2025/04/01/chatgpt-isnt-the-only-chatbot-thats-gaining-users/
https://en.wikipedia.org/wiki/ChatGPT

	List of Figures
	List of Tables
	Introduction
	Research Background
	Problem Statement
	Research Questions
	Research Contributions
	Research Structure

	Method for Analyzing Operator and User Reports
	Data Collection
	Data Process
	Data Analysis

	Failure-Recovery Modeling
	Impact of Failure Type on Recovery Time
	Impact of Failure Severity on Recovery Time
	MTTR and MTBF Analysis
	Comparative Analysis of Failure Patterns
	Summary of Failure-Recovery Modeling

	Temporal Patterns of Failures
	Temporal Trends
	Temporal Distributions
	Auto-correlations
	Summary of Temporal Patterns

	Correlation Analysis of Failures
	Correlation Between Operator and User Reported Failures
	Co-occurrence of Failures
	Summary of Correlation Analysis

	Consistency Analysis Between Sources
	Consistency of Failure Types
	Consistency of Failure Periods
	Summary of Consistency Analysis

	Threats To Validity
	Related Work
	LLM Workloads
	Failure Characterization

	Conclusion

