
PowerSensor3: A Fast and Accurate Open Source
Power Measurement Tool

Steven van der Vlugt1 , Leon Oostrum2 , Gijs Schoonderbeek1 , Ben van Werkhoven3,2 ,
Bram Veenboer1 , Krijn Doekemeijer4 , John W. Romein1

1ASTRON (Netherlands Institute for Radio Astronomy), Dwingeloo, the Netherlands
{vlugt, schoonderbeek, veenboer, romein}@astron.nl

2Netherlands eScience Center, Amsterdam, the Netherlands, l.oostrum@esciencecenter.nl
3Leiden University, Leiden, the Netherlands, b.van.werkhoven@liacs.leidenuniv.nl

4Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, k.doekemeijer@vu.nl

Abstract—Power consumption is a major concern in data
centers and HPC applications, with GPUs typically accounting
for more than half of system power usage. While accurate power
measurement tools are crucial for optimizing the energy efficiency
of (GPU) applications, both built-in power sensors as well as
state-of-the-art power meters often lack the accuracy and tem-
poral granularity needed, or are impractical to use. Released as
open hardware, firmware, and software, PowerSensor3 provides
a cost-effective solution for evaluating energy efficiency, enabling
advancements in sustainable computing. The toolkit consists of
a baseboard with a variety of sensor modules accompanied by
host libraries with C++ and Python bindings. PowerSensor3
enables real-time power measurements of SoC boards and PCIe
cards, including GPUs, FPGAs, NICs, SSDs, and domain-specific
AI and ML accelerators. Additionally, it provides significant
improvements over previous tools, such as a robust and modular
design, current sensors resistant to external interference, sim-
plified calibration, and a sampling rate up to 20 kHz, which is
essential to identify GPU behavior at high temporal granularity.
This work describes the toolkit design, evaluates its performance
characteristics, and shows several use cases (GPUs, NVIDIA
Jetson AGX Orin, and SSD), demonstrating PowerSensor3’s
potential to significantly enhance energy efficiency in modern
computing environments.

Index Terms—

I. INTRODUCTION

Power consumption is among the largest expenses in data
centers and is estimated at 1-1.5% of global electricity use [1].
The recent surge in training Large Language Models (LLMs),
consuming around 29.3 terawatt-hours per year—equivalent to
Ireland’s energy consumption [2]—has prompted companies
like Amazon, Google, and Microsoft to invest billions in
nuclear energy [3] to meet this demand. The Frontier super-
computer, the world’s first exascale supercomputer, consumes
22.7 MW continuously [4]. Supercomputing was found to be
responsible for 59.8% of the carbon emissions of the average
astronomer in Australia, 3.6 times as much as air travel [5].
As less than 15% of the world’s energy comes from renewable

This work received funding from the European Union through
the RADIOBLOCKS (101093934) and MCSA-RISE Cloudstars
(101086248) projects, the Dutch Research Council (NWO) through
the DAS-6 (621.018.201), CORTEX (NWA.1160.18.316), OffSense
(OCENW.KLEIN.209) and MLS (OCENW.KLEIN.561) grants, and from the
Netherlands eScience Center through the RECRUIT (ETEC.2020.025) grant.
K. Doekemeijer is funded by the VU PhD innovation program.

sources [6], it is crucial that we investigate how to improve
the energy efficiency of these systems and applications that
run on them, and reduce our carbon footprint.

Over the past decade, large improvements in the energy
efficiency of data center cooling and power provisioning have
been significant enough to nearly offset the growth of IT
device energy use [1, 7]. As such, the crucial next step is to
understand and improve energy expenditure within computer
systems. Modern systems rely on many peripheral devices,
including network interface controllers (NICs) and solid state
drives (SSDs) that all require power. Among the peripheral
devices, Graphics Processing Units (GPUs) stand out as the
primary computing platform for nearly all large-scale AI
and HPC applications [8, 9], delivering 99% of the compute
performance in modern supercomputers [10], and consuming
>64% of the total power of these systems [11]. To advance
energy efficiency research, it is critically important to develop
fast, accurate, and openly accessible methods for measuring
the power consumption of computer components.

Many software-based methods have been developed to
effectively reduce energy consumption in computing sys-
tems. For example, dynamic voltage and frequency scaling
(DVFS) [12–15], power-aware scheduling [16, 17], power
capping [18], and energy-efficient algorithm design [19–22]
can significantly lower power usage without compromising
performance. For instance, power-aware scheduling algorithms
can optimally divide work between CPU and GPU depending
on specific task properties [16, 23, 24], or generate optimized
schedules for GPU kernels executing concurrently [17]. Addi-
tionally, code-level optimizations, such as compiler [25, 26]
and function-level [11, 22] tuning, can lead to substantial
energy savings. However, implementing these methods ef-
fectively requires fast (sub-millisecond) and accurate power
measurements at a fine-grained level, for example down to
single GPU kernels or even during the execution of individual
operations. Without precise measurement tools, it is challeng-
ing to assess the impact of optimizations and guide further
improvements in energy efficiency.

This paper presents PowerSensor3, a tool that measures
the instantaneous power consumption of SoC development
boards and PCIe cards like GPUs, FPGAs, domain-specific

1

https://orcid.org/0000-0001-6834-4860
https://orcid.org/0000-0001-8724-8372
https://orcid.org/0000-0001-9482-1253
https://orcid.org/0000-0002-7508-3272
https://orcid.org/0000-0001-9607-1142
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0002-1915-5067

accelerators for AI and ML, and NICs, at 20 kHz (sub-
millisecond) time scale. PowerSensor3 includes several im-
portant improvements over PowerSensor2 [27] and other non-
commercial and commercially available power measurement
tools, including:

• A modular design with a base board that supports up to
4 sensor board modules.

• A variety of sensor boards, with different connectors and
sensors (e.g., 8-pin PCIe power, USB-C, high-current and
low-current boards with terminal blocks).

• Support for measuring both voltages and currents.
• An increased sampling rate from 2.8 kHz to 20 kHz

through the use of a faster microcontroller.
• The use of current sensors that are hardly sensitive to

changes of the external magnetic field.
• Simplified, one-time calibration procedure through a

command-line utility.
• The base board and sensor boards are released as open

hardware [28] (CERN-OHL-P v2) and the firmware and
host library are released as open-source software [29]
(Apache-2.0).

• Cost-efficient design, a complete PowerSensor3 with 3
sensor boards costs less than C 100 in components.

This paper is structured as follows. Section II provides
background and discusses related work. Section III describes
the PowerSensor3 design and implementation. Section IV
characterizes its performance, and in Section V, we describe
some application use cases. Finally, Section VI discusses the
application and extendibility and Section VII concludes.

II. BACKGROUND AND RELATED WORK

Various methodologies exist for measuring power con-
sumption within computer systems. This section provides a
comprehensive overview of the power measurement tools that
have been utilized and discussed in the scientific literature.

Several researchers have used commercially available tools
to measure whole system power, seeking to improve the energy
efficiency of GPU applications. However, these tools generally
have very low sampling rates, for example the Watts Up Pro
operates at 1 Hz [12, 13, 20, 30], Cray PMDB at 10 Hz [31], or
Yokogawa WT230 at 10 Hz [32, 33]. While measuring whole
system power might give a realistic view of power consump-
tion for the whole application, measuring power consumption
of components in isolation can give insights needed to improve
efficiency in critical parts of the application.

For CPUs, several software packages exist to monitor
power consumption by reading from built-in sensors. Intel’s
Running Average Power Limit (RAPL) provides a number of
performance counters to read energy consumption of CPUs
and DRAM, with a time frequency of 1 kHz [34]. LIKWID
also provides the likwid-powermeter tool, which builds on
top of RAPL and allows to measure power consumption on
architectures from Intel, AMD, ARM, and IBM.

However, many PCIe devices such as SSDs, domain specific
accelerators or NICs do not have built-in power measurement
tools, and thus require external power measurement. And as

such researchers have been developing their own custom-built
power measurement devices for measuring power of such
components [27]. One challenge with power measurement
of PCIe devices is that PCIe devices receive power from
different sources. Up to 75 W of power could be delivered
via the PCIe slot, 10 W of which via the 3.3 V rail, the rest at
12 V. Devices that need more than 75 W can receive additional
power at 12 V from the power supply unit through, possibly
multiple, 6-pin, 8-pin or 12-pin PCIe connectors, or from the
host motherboard using the 8-pin EPS connector. As such,
measuring the power consumption of PCIe devices requires
measuring current across multiple power cables. Moreover,
voltages cannot be assumed to be stable under load, therefore
the voltage needs to be measured for every power cable as
well.

A. GPU on-board power measurement

NVIDIA has been shipping an internal power sensor in both
server-grade and consumer-grade GPUs as part of the Kepler
architecture [35], starting with the NVIDIA Tesla K20. While
the properties of NVIDIA’s current sensor have been studied
widely [36–38], only a few studies have used AMD’s built-
in current sensor and reported on its accuracy and sampling
frequency. Wu et al. [39] reported that the AMD Radeon HD
7970 estimates the chip-wide dynamic power and updates the
power estimates every millisecond. Schieffer et al. [40] report
to have used a sampling frequency as low as 10 ms on the
AMD MI250X GPU, but did not state the lower bound.

An evident advantage of utilizing these built-in sensors
is their widespread availability. However, there are two sig-
nificant drawbacks. Firstly, a persistent issue with vendor-
based APIs for reading the GPU internal power sensor is
that they typically return only averaged power consumption
values [37]. Notably, NVIDIA has addressed this with driver
update 530 (May 2023), which extends their API to support
instantaneous power readings [38]. Secondly, the use of on-
board power measurement in GPUs is hindered by low sam-
pling frequencies. Even with the capability for instantaneous
power readings, new values are provided at a frequency of
approximately 10 Hz on NVIDIA GPUs [38].

The issues with on-board power measurement in GPUs have
forced researchers in GPU energy efficiency to artificially
increase the execution time of their GPU kernels by several or-
ders of magnitude to allow for enough samples to be collected
and to overcome the effects of averaged power readings and
low sampling rates [14, 18, 22, 41]. There are several down-
sides to such approaches, as evaluating power consumption
in different settings or for different software implementations
consumes large amounts of time and energy, and the measured
execution itself can be less realistic compared to real execution
scenarios.

B. External power measurement tools

Several researchers have used current clamps to determine
GPU power consumption [16, 42, 43] without documenting the
achieved accuracy and sampling rate. Timm et al. [44] also

2

used a current clamp to determine GPU power consumption
and mentioned a sampling rate of 10 kHz.

PowerMon2 [45] is a custom-built power monitoring device
for voltage and current measurements with a 1 kHz sampling
frequency and a relatively low, -6.6% / +6.8%, current mea-
surement accuracy. It also uses a difficult to obtain custom
implementation and cannot handle 150 W PCIe power cables.
Another tool, PowerInsight [46], measures both voltages and
currents, but has a sample rate of less than 1 kHz. Conse-
quently, it cannot capture the detail required to conduct precise
PCIe power measurements. The exact sample rate is not given
in the paper. Finally, NVIDIA has also produced the power
measurement device Power Capture Analysis Tool (PCAT),
which is not for sale nor is its design documented. The PCAT
documentation suggests a sampling rate of 10 Hz1.

In addition to research-oriented PCIe power sensors, several
commercial options are available. Most prominent are PMD
($ 60) and Powenetics V2 (C 975). The Powenetics V2 is
expensive and has a sampling rate of up to 1 kHz according to
their website. PMD was recently used by Yang et al. [38] to
perform a large study of the accuracy of power measurements
reported by NVML on over 70 different GPUs. They mention
that while PMD has an internal sampling frequency of 34 kHz,
PMD’s (Windows-only) host library limits updates to a sam-
pling frequency of 10 Hz. Yang et al. [38] developed their
own data logger to achieve a sampling frequency of 5 kHz.
To the best of our knowledge, their data logger is not openly
available.

III. DESIGN AND IMPLEMENTATION

To measure power for modern PCIe accelerators, it is
essential to monitor both PCIe slot power (3.3 V and 12 V,
up to 75 W) and up to two external power connections (up
to 600 W) for PCIe gen 5 and 6. Accurate measurement
requires monitoring voltage and current for each power supply
with isolation to prevent coupling between the device and the
sensors. Modern accelerators, like GPUs, need fast sensors due
to their high processing speeds and low kernel execution times.
In order to reduce power loss over cables, the sensor must
be close to the accelerator, installed within the server. This
imposes size and safety constraints, requiring stable connectors
and ensuring no contact with other components in a noisy
environment. The PowerSensor3 is designed to meet the needs
of PCIe gen 4, 5, and 6 accelerators. Its flexible design makes
it suitable for high-power PCIe devices (e.g., GPUs) as well
as lower-power or standalone devices such as SoC boards.

A. Hardware Design

The core of the PowerSensor3 system is a baseboard that
accommodates the “Black Pill” STM32F411 microcontroller
module and up to four sensor modules. The STM32F411 [47]
was selected due to its ability to sample up to sixteen analog
inputs, enabling the support of four sensor modules, its USB
data transfer capabilities, and the availability of software

1https://developer.nvidia.com/nvidia-power-capture-analysis-tool

development tools. To cater to different power ranges and
connectivity, several different sensor modules are developed.
The designs are open-source and can be modified to meet
a specific power range, accuracy or connector type. This
modular approach allows users to select the most appropri-
ate power monitoring sensors for their specific applications.
Additionally, a small display is integrated into the baseboard
to show instantaneous power consumption.

Fig. 1 illustrates an example of the PowerSensor3 in oper-
ation. In this example, the PowerSensor3 is equipped with a
PCIe sensor module that measures the power supplied to the
PCIe card via the external power input as well as two sensor
modules to measure the 3.3 V and 12 V PCIe slot power. By
utilizing a modified riser card, where the power connections
for both 3.3 V and 12 V are interrupted and routed through
two sensor modules, it is possible to measure the power
consumption of both the slot and the external connection
without affecting the PCIe signal integrity.

GPU

PCIe Riser Card

Black Pill

10A

PSU

PS3
USB-C to

Monitor System12V

12V

3.3V

12V

3.3V / 12V

20A

10A

Power to sensor
Power to DUT

Fig. 1: Schematic of a PowerSensor3 measurement setup.

Each sensor module measures both voltage and current. To
mitigate the effect of ground loops on the measurements, the
circuit connected to the Device Under Test (DUT) is isolated
from the measurement logic connected to the microcontroller.
This isolation is achieved using a differential Hall sensor, the
Melexis MLX91221 [48], for current measurement, and an
optically isolated voltage sensor, Broadcom ACPL-C87B [49],
for voltage measurement. The Hall sensor family supports a
variety of pin compatible devices with different current ranges.

The resistance loss in both the power and return paths of
the power sensor, which can cause measurement inaccuracies
and affect the power delivered to the DUT, is a critical design
parameter. To minimize resistance, the sensor is designed to
be compact. To reduce the impact of voltage loss within the
sensor and the connecting wire to the DUT, a remote sense
connector is integrated into the sensor module. This allows for
the measurement of voltage directly at the DUT rather than at
the input port.

PowerSensor3 currently comes with five different designs
for sensor modules:

• 20 A PCIe 8-pin: With a connector for easy integration
with the external power connector on PCIe cards.

• 10 A: Designed to measure power between the PCIe slot
and the PCIe card.

3

• USB-C: Suitable for USB-powered systems.
• 20 A: General-purpose power measurement for medium

power applications, with terminal block connectors.
• 50 A High-Current: For high-power applications.

These sensor modules can be combined in various configu-
rations within a single setup, providing a comprehensive and
adaptable power measurement solution. Fig. 2 shows a 3D
rendering of a populated PowerSensor3 module. The design
of the baseboard and sensor modules has been made available
[28].

Fig. 2: 3D rendering of PowerSensor3 with PCIe 8-pin, 20 A, 10 A,
USB-C sensor modules, “Black Pill” module and display.

The analog signals from the sensor modules are passed
to the STM32F411, where the 10 most significant bits of
the Analog to Digital Converter (ADC) are utilized. The
bandwidth of the current and voltage sensors is well above
the ADC’s output sample rate of 20 kSamples/s. The maximum
time resolution of the current sensor is specified at 300 kHz,
while the maximum time resolution of the voltage sensor is
100 kHz.

The measured power is calculated with:

P = (U + Eu) · (I + Ei)

where U +Eu is the combination of the voltage and the error
in the voltage reading, and I + Ei is the combination of the
current and the error in the current reading. This gives the
error in the power reading as:

Ep =
√
(U · Ei)2 + (I · Eu)2 + (Ei · Eu)2

This formula shows that for small loads, the noise is dominated
by the error in the current reading, while for low voltage high
current sensors, the noise is dominated by the error in the
voltage reading.

The error in the current reading (Ei) consists of the error
due to the quantization noise of the ADC, combined with the
sensitivity of the Hall sensor and inherent noise of the Hall
sensor. Among these factors, the noise in the Hall sensor,
which is 115 mArms for the 10 A sensor, is the dominant
factor, resulting in a peak-to-peak error of 4.1 Wpp.

The error in the voltage reading (Eu) is caused by quanti-
zation noise and the inherent amplifier noise. The noise on the
voltage reading is increased due to the voltage divider. For a
12 V / 10 A sensor module, the noise on the voltage at high
currents is estimated to be 0.2 Wpp.

Table I provides an overview of the theoretical worst case
accuracy of the sensor modules.

TABLE I: Theoretical worst case accuracy of PowerSensor3 modules.

Module Voltage Current Power
12 V / 10 A ± 28.6 mV ± 0.35 A ± 4.2 W
3.3 V / 10 A ± 19.9 mV ± 0.35 A ± 1.2 W
USB-C (20 V / 10 A) ± 28.6 mV ± 0.35 A ± 7.0 W
Ext (12 V / 20 A) ± 28.6 mV ± 0.41 A ± 5.0 W

B. Firmware Design

This section details the firmware design using the
STM32F411 microcontroller. Its primary function is to read
current and voltage sensors at a high, constant rate and transmit
the data to the host via USB. The ADC continuously reads the
sensors, and the DMA controller transfers the values to RAM.
Once all sensor data is in RAM, an interrupt is generated. The
interrupt handler reads the sensor values, adds metadata, and
creates a data package for the host. A main loop checks for
data to be sent and transmits it as needed.

We use the STM32 low-level library through STM32duino2.
STM32duino provides a simple interface, integrating it into
the Arduino ecosystem, and as such facilitating firmware
development, compilation, and uploading through the widely-
adopted Arduino tools.

Ideally, the ADC would operate at the highest possible clock
speed, transmitting data directly to the host. However, the
data rate would exceed the capacity of the USB controller
on the Black Pill, which supports up to USB 1.1 full speed
(12 Mbit/s). Although a USB 2.0 controller can be added, we
opt to reduce the sampling rate instead, to minimize the cost
and complexity of the PowerSensor3 hardware.

Each sensor board contains a sensor pair with current and
voltage sensors. Within each pair the sensors are connected
to consecutive ADC channels, minimizing the time difference
between measurements. The ADC operates at a clock speed
of 24 MHz, with the CPU averaging several samples to reduce
the final sampling rate. The ADC is configured with a 10-bit
resolution and a sampling time of 15 clock cycles. Each bit
requires one cycle to read, resulting in a total ADC sampling
time of 25 clock cycles or 1.04µs. Reading 8 sensors (4
modules) and averaging 6 consecutive samples on the CPU
amounts to a 50µs interval, corresponding to a sampling rate
of 20 kHz. For each sensor, we transmit 2 bytes of data to the
host. With 10 bits per sensor value and 6 bits for metadata: the
sensor index, a marker, and one bit in each byte to differentiate
the first byte from the second.

The sensor data sent from the PowerSensor3 to the host is
preceded by a device timestamp. The timestamp is generated
after processing 3 out of the 6 samples to be averaged and
is stored as a 10-bit value in microseconds. Since there is
no room in the sensor data packets for the timestamp, it is
sent separately. To differentiate the timestamp data from sensor
data, a combination of the sensor and marker bits is used: a
real marker bit can only be set in the sensor data of sensor 0.
A marker bit set to one with a nonzero sensor index is unused
and can be repurposed for other data. For the timestamp, the
maximum sensor index of 7 (binary 111) is used.

2https://github.com/stm32duino

4

https://github.com/stm32duino

The firmware supports several options through the host:
• Start or stop streaming of sensor data.
• Send or receive configuration values (Section III-B1).
• Send a marker with the next sensor data.
• Send the firmware version as a string.
• Reboot the device, optionally to DFU mode which is used

for uploading new firmware.
1) Sensor configuration values: The PowerSensor3

firmware is generally agnostic to the type of sensor module
used. However, the host software must know how to convert
raw sensor values to accurate voltage and current readings.
These conversion values are stored on the device and
communicated to the host library, so the user does not need to
keep track of the specific sensors used. The STM32 supports
a virtual EEPROM implementation that stores data in flash
memory. The following data is stored for each sensor:

• Sensor name.
• Reference voltage.
• Sensitivity (current sensors) or gain (voltage sensors).
• Sensor state (enabled or disabled).
2) Display: PowerSensor3 is equipped with a compact

display for real-time visualization of sensor values when the
sensor is not in use by the host system. This display promi-
nently features the total power consumption, while individual
current, voltage, and power measurements for each sensor pair
are shown in smaller fonts.

The display is connected through an SPI interface, con-
trolled by the open-source Adafruit ST7735 library3. To
enhance display update speed and reduce CPU load, we
expanded the library with two features: 1) we enable DMA for
transferring the display buffer from RAM to the SPI controller,
and 2) we pre-compute graphics for all necessary characters
in all used color and size combinations, storing the resulting
fonts in the program memory. A Python script for automatic
font generation is included in the PowerSensor3 repository.

C. Software Design

The PowerSensor3 host library is implemented in C++, with
an optional Python wrapper4. The device is accessed via a
PowerSensor C++ class, which, upon initialization, connects
to the microcontroller and reads the sensor configuration
values. Methods are available to read or set these values. A
lightweight thread continuously receives sensor values from
the device, and the library internally tracks the cumulative
energy consumption measured by each sensor.

PowerSensor3 can operate in two modes: interval-based
and continuous, both of which can be active simultaneously.
In interval-based mode, the user requests sensor states at
two different times to calculate total energy consumption
and average power. This mode can be accessed through a
standalone executable or via the C++ or Python interface,
allowing precise control over the measurement period but
requiring source code modification. The standalone executable,

3https://github.com/adafruit/Adafruit-ST7735-Library
4implemented using pybind11, https://github.com/pybind/pybind11

Power Supply
Agilent N6705B

DUT
PowerSensor3

Electronic Load
Kniel E.Last

Currentmeter
Fluke 77

Voltmeter
Fluke 177

Fig. 3: Measurement setup for accuracy assessment.

psrun, connects to PowerSensor3, runs the provided appli-
cation (executable), and reports the total energy consumed
after execution. In continuous mode, PowerSensor3 records all
sensor data to a file at 20 kHz resolution. The library supports
custom marker characters in the output file, time-synced with
the microcontroller, to correlate timestamps with specific parts
of the application code.

The PowerSensor3 host library comes with three additional
executables for easier interfacing with the device:

psconfig reads or writes the sensor configuration values and
optionally reboots the device. After installing the firmware,
this tool is used to configure the device.

psinfo shows the configuration values of each enabled
sensor, as well as the latest measurements and the total power.

pstest measures and reports power and energy at increasing
intervals for testing purposes.

D. Calibration

The sensor modules are calibrated using a known power
supply, such as the system’s power supply unit or a laboratory
power supply. During calibration, the sensor modules are
unloaded (no power dissipation), and the voltages on the
voltage sensors are measured. By taking 128 k samples and
calculating the average current and voltage readings, the offset
error of the Hall current sensor and the gain error for the
voltage are determined. These corrections are then stored
in the microcontroller. Python scripts are available to guide
through this process. Based on the measurements described in
Section IV, calibration is only required once at production.

IV. EVALUATION

To verify the functionality of the PowerSensor3, the test
setup illustrated in Fig. 3 was utilized. A laboratory power
supply (Keysight N6705B) served as the power source for
the DUT. An electronic load (Kniel E.Last) was employed
for loads up to 10 A. The voltage at the sensor and current
through the load were measured using a Digital Multimeter
(Fluke 177 for the voltages and Fluke 77 for the current).
Data was captured using pstest.

A. Sensor accuracy assessment

To evaluate the sensor’s accuracy, a measurement was
conducted where the load current was swept in 1 A steps
from the minimum (-10 A) to the maximum current (+10 A).
At each step, 128 k samples were collected using the pstest
tool. This data allowed the determination of the accuracy and
variability of the current and voltage readings, and thus the
power calculation.

5

https://github.com/adafruit/Adafruit-ST7735-Library
https://github.com/pybind/pybind11

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Load current (A)

6

4

2

0

2

4

6

8
Po

w
er

 e
rro

r (
W

)

Absolute power errors excluding cables
3.3V 10A AVG
3.3V 10A peak
12V 10A AVG

12V 10A peak
Ext 12V 20A AVG
Ext 12V 20A peak

USB-C 20V 5A AVG
USB-C 20V 5A peak

Fig. 4: Power error for four types of sensors with dotted lines
indicating min and max values per measurement point.

TABLE II: Overview of error values for different samples rates for
0.5 A and 1 A loads.

Fs 0.5 A load 1 A load
min max p-p std min max p-p std

kHz W W Wpp Wrms W W Wpp Wrms

20 2.78 9.16 6.381 0.718 7.79 15.48 7.685 0.722
10 4.04 8.22 4.173 0.507 9.42 14.53 5.109 0.511
5 4.85 7.69 2.842 0.358 10.54 13.68 3.142 0.362
1 5.66 6.85 1.183 0.16 11.62 12.9 1.285 0.163

0.5 5.85 6.67 0.821 0.113 11.92 12.73 0.814 0.117

In Fig. 4, the results are shown. The continuous line
indicates the difference between the expected power and the
measured power. The dotted lines in this figure represent the
minimum and maximum difference within the 128 k samples
at each measurement point. As can be seen in this figure, the
accuracy of the 3.3 V sensor is better in comparison with the
12 V sensor, where the error in the current sensor is multiplied
by 12 instead of 3.3.

Detailed inspection of the data indicates that at low currents,
noise originates primarily from the current sensor, while
at higher currents, the voltage sensor noise becomes more
significant. Averaging the samples can reduce the noise but
also lowers the time resolution (Fs). Table II provides an error
overview for a 12 V, 10 A sensor with an 8 A load, where
blocks of samples are averaged. In the table, the minimum
and maximum values after averaging, the peak-to-peak range
between these two values, and the standard deviation are
shown.

B. Long term stability

The long-term stability of PCIe 8-pin sensor modules was
assessed using the setup in Fig. 3 with a 7.5 A load. Over
50 hours, 128 k samples were taken every 15 minutes using
pstest. Average, minimum, and maximum power values were
calculated for each point. Marginal fluctuations (± 0.09 W)
were observed in the average values, with more noise in
the minimum and maximum values. These results indicate
that the PowerSensor3 remains stable and does not require
recalibration after production.

C. Step response

To measure the step response of the PowerSensor3, a 12 V
/ 10 A sensor, sampling at 20 kHz, is connected to the
electronic load. The load is configured to 8 A, with a frequency
modulation of 100 Hz and a modulation depth of 50%. The

6 7 8 9 10 11 12 13 14 15
Time (ms)

40

50

60

70

80

90

100

Po
w

er
 (W

)

7500 7750 8000 8250 8500
Time (s)

40

50

60

70

80

90

Po
w

er
 (W

)

PowerSensor3 step response

Fig. 5: Step response of PowerSensor3: load stepped from 3.3 A to
8 A plotted in ms scale (left) and µs scale (right).

results are shown in Fig. 5. The step response is clearly visible,
illustrating that the PowerSensor3 is well suited to measure
power transients, such as the start and stop of a GPU kernel.

V. APPLICATION CASE STUDIES

This section presents three use cases of PowerSensor3
demonstrating its capability to give highly-detailed insights
into the power consumption of peripheral and embedded
devices. The three case studies are: (1) discrete GPUs, (2)
SoC boards, and (3) SSDs.

A. GPUs

In this section, we illustrate the application of PowerSensor3
in monitoring the power consumption of GPU applications. We
have equipped multiple compute nodes in the DAS6 cluster
[50] with a PowerSensor3 with 3 sensor boards as shown in
Fig. 6(a). Two sensor boards for the 3.3 V and 12 V PCIe
power channels and one for the 12 V PSU power channel. The
PCIe power channels are intercepted using a modified PCIe
Gen 4 riser card as shown in Fig. 6(b). By removing a 0-
ohm resistor and attaching wires for each power channel, we
created measurement points for the power supplies without
compromising signal integrity. We consider two use cases.
First, we use PowerSensor3 to monitor the power consumption
of a single kernel executing on the GPU and compare the
results with the GPU’s internal power sensor using Power
Measurement Toolkit. Secondly, we use PowerSensor3 to
monitor the power consumption while automatically optimiz-
ing a realistic GPU application for both compute performance
and energy efficiency using Kernel Tuner.

1) Power Measurement Toolkit: The Power Measurement
Toolkit (PMT) is an open-source high-level software library
for measuring and monitoring power consumption across var-
ious hardware platforms [51]. Written in C++, PMT leverages
vendor-specific APIs to collect power usage data. For NVIDIA
GPUs, it uses NVML and, for AMD GPUs, ROCm SMI and
its successor AMD SMI are both supported, while for CPUs,
it utilizes the RAPL interface or LIKWID [52]. Additionally,
PMT supports profiling other architectures, such as AMD
FPGAs, and its modular design allows for straightforward
extension to new hardware.

6

(a) PowerSensor3 attached to an AMD W7700 GPU.

(b) Modified PCIe gen 4 riser card (Lenovo SR665), providing
measurement points for 3.3 V and 12 V.

Fig. 6: A node in the DAS6 [50] cluster computer equipped with a
PowerSensor3 to measure GPU power consumption.

PMT provides a unified interface for power measurement,
catering to both C++ and Python applications. PMT is partic-
ularly suited for high-performance computing researchers and
developers, who can use it to evaluate and optimize energy
efficiency, but it is equally valuable for a general-purpose
public requiring a simple yet effective software-based power
measurement tool.

Yang et al. examined over 70 GPUs across 12 architectural
generations and revealed significant inaccuracies in NVML
power readings, leading to severe under- or overestimates
of energy consumption [38]. Although mitigations were pro-
posed, these issues underline the need for more reliable alter-
natives. PMT addresses these concerns by offering support for
PowerSensor3, which provides accurate and consistent power
measurements without the caveats identified in NVML.

We compare the PowerSensor3 energy measurement with
NVML on an NVIDIA RTX 4000 Ada GPU in Fig. 7a
and with AMD SMI on an AMD W7700 GPU in Fig. 7b.
The measurement starts with a brief idle time, followed by
a synthetic load of fused multiply-add instructions. A two-
dimensional grid is used, where the x-dimension of the grid

is set according to the number of streaming multiprocessors
(SMs) or Compute Units (CU) on the NVIDIA and AMD
GPU, respectively. The y-dimension is set such that the kernel
runs for roughly two seconds.

On the NVIDIA RTX 4000 Ada GPU, energy consumption
initially spikes to approximately 95 W before increasing to
around 120 W. This behavior corresponds to the gradual ramp-
up of the clock frequency, which does not reach its peak
instantaneously. Distinct phases are visible in the energy pro-
file, corresponding to the sequential execution of thread blocks
along the y-dimension of the grid. The power dips between in-
dividual phases are made clearly visible by PowerSensor3, but
are missed by NVML. After the workload completes, the GPU
requires over a second to return to its idle power state. While
NVML’s instantaneous energy measurement aligns reasonably
well with PowerSensor3, its time resolution cannot capture
fine-grained GPU behavior. NVML’s ’legacy’ average power
measurement is limited to coarse-grained energy estimations
and completely inadequate to measure the kernel’s energy use
accurately.

On the AMD W7700 GPU, we compare PowerSensor3
with both ROCm SMI and AMD SMI APIs, which yields
identical results despite differences in their programming
interfaces. Unlike NVML, the built-in energy measurements of
the W7700 GPU closely match PowerSensor3, demonstrating
excellent accuracy. The energy profile reveals distinct phases
of the GPU’s power and frequency behavior: an initial spike to
the 150 W power limit is followed by a sharp drop, a ramp-up
phase with brief power overshoot, and eventual stabilization
at the power limit. Notably, the GPU returns to its idle power
state more rapidly than the NVIDIA GPU.

In conclusion, high-resolution energy measurement tools
like PowerSensor3 are critical for uncovering GPU behavior
that remains invisible to standard performance profilers, par-
ticularly in capturing transient power fluctuations that are not
detectable at lower sampling rates. Given the limited disclosure
from vendors regarding their built-in energy measurement
mechanisms, reliable external tools are essential to ensure
accurate and detailed energy analyses.

2) Kernel Tuner: We now use PowerSensor3 to provide
power measurements while automatically optimizing a real-
world GPU kernel for computational performance as well as
energy efficiency.

We use the Tensor-Core Beamformer [53] as an example
GPU application. Beamforming is a well-known technique
to combine signals from multiple receivers. The Tensor-Core
Beamformer has been developed for use in both radio astron-
omy and ultrasound imaging. The beamformer uses tensor
cores on NVIDIA GPUs or matrix cores on AMD GPUs
to perform complex matrix multiplications, which are not
supported by vendor libraries such as cuBLAS or CUTLASS.
In this case study, we use 16-bit input and output data with
M=4096 beams, N=4096 samples at a time, and K=4096
elements summed.

The Tensor-Core Beamformer can be automatically tuned
to achieve optimal performance on a specific GPU using

7

0 1 2 3 4 5
Time (s)

20

40

60

80

100

120
Po

we
r (

W
)

Energy measurement of a synthetic workload on a NVIDIA RTX 4000 Ada GPU
PowerSensor3
NVML instant
NVML average
Kernel execution

(a) NVIDIA’s NVML library provides two different energy measurements,
’instantaneous’ and ’average’. The former provides a better sampling rate.
High time-resolution energy measurements such as PowerSensor3 uncover
GPU behavior that is not visible with NVML.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

20

40

60

80

100

120

140

160

Po
we

r (
W

)

Energy measurement of a synthetic workload on a AMD W7700 GPU
PowerSensor3
AMD SMI
Kernel execution

(b) The AMD SMI and PowerSensor3 measurement closely align.

Fig. 7: Energy measurements for a synthetic GPU workload using
PowerSensor3 and vendor supplied software-based measurements.
The shaded area marks the kernel execution, and the insets highlight
specific GPU behavior uncovered by energy analysis of the workload.

Kernel Tuner [54]. Kernel Tuner is an open-source GPU auto-
tuner that allows users to define parameters in the code to be
tuned. The auto-tuner constructs a search space of all pos-
sible functionally-equivalent code variants and automatically
searches for the specific combination of tunable parameter
values that achieves the best performance. During the auto-
tuning process, Kernel Tuner performs many empirical mea-
surements to obtain the execution time and power consumption
of each variant. In a typical use case, the tuner compiles and
benchmarks several thousands of different code variants on the
GPU.

Kernel Tuner supports capturing the energy consumption
of GPU kernels [22], which is typically measured using on-
board current sensors, either using NVML on NVIDIA GPUs
or ROCm-SMI through PMT for AMD GPUs. However, as
explained in Section II and confirmed in Fig. 7a, NVIDIA’s on-
board current sensors typically have a time resolution of about
10 Hz, which is much too low to accurately capture the power
consumed by real-world GPU kernels, which typically take at
most a few tens of milliseconds. When using onboard current
sensors for power measurement, Kernel Tuner therefore first
executes the GPU kernel repeatedly to determine the execution
time, and then runs the kernel continuously for an extended
period, for example, 1 or 2 seconds, to collect sufficient
measurements from the on-board sensor. As the tuner typically
benchmarks several thousands of code variants, this means the

0.0 0.2 0.4 0.6 0.8
Energy efficiency (TFLOP/J)

0

10

20

30

40

50

60

70

80

Co
m

pu
te

 p
er

fo
rm

an
ce

 (T
FL

OP
/s

)

Tensor-Core Beamformer 16-bit 4kx4kx4k on RTX 4000 Ada
1485 MHz
1515 MHz
1560 MHz
1590 MHz
1635 MHz
1665 MHz
1710 MHz
1740 MHz
1785 MHz
1815 MHz
Pareto front

Fig. 8: Tuning results for the Tensor-Core Beamformer on the
NVIDIA RTX 4000 Ada.

tuning process is extended by several hours, which wastes both
time and energy.

We have integrated support for PowerSensor3 directly into
Kernel Tuner, which allows for instant capturing of the energy
consumption of GPU kernels. In this way, there is no need
for Kernel Tuner to continuously run the kernel for several
seconds, effectively saving hours of tuning time.

To auto-tune the Tensor-Core Beamformer for both energy
and time efficiency on the NVIDIA RTX 4000 Ada GPU, we
used the performance model presented in [22] to narrow down
the range of GPU clock frequencies to tune for. The other
tunable parameters that can be varied in the code are the thread
block dimensions, the number of submatrices (fragments) per
thread block and per warp, and the extent to which double
buffering in shared memory is applied. In total there are
512 different code variants, with 10 different GPU clock
frequencies, this amounts to an auto-tuning search space of
5120 configurations, that are averaged over 7 trials each.

Fig. 8 shows the energy efficiency in tera-flop per joule
(TFLOP/J) and compute performance in tera-flops per second
(TFLOP/s) of the code variants benchmarked during auto-
tuning the Tensor-Core Beamformer on the NVIDIA RTX
4000 Ada. Overall, we observe that performance and energy
efficiency are correlated. However, especially among the more
efficient configurations, there is a wider spread in both energy
and compute efficiency. The fastest Pareto optimal configura-
tion achieves a compute performance of 80.4 TFLOP/s at 0.83
TFLOP/J energy efficiency, whereas the most energy efficient
configuration is 12.7% more energy efficient, but also has a
21.5% slowdown compared to the fastest configuration. Over-
all, collecting all data points from Fig. 8 using PowerSensor3
took 2274.4 seconds, which would have taken about 7394
seconds if we had used the onboard power sensor instead.
Thus, thanks to PowerSensor3, we were able to perform this
experiment in 3.25x less time.

B. SoC boards (NVIDIA Jetson)

The NVIDIA Jetson series System-on-Chips contain a
tightly integrated CPU and GPU, and are used in GPU-
accelerated edge-computing systems. Fig. 9 shows an NVIDIA
Jetson AGX Orin development kit where the SoC module is
combined with a carrier board. The system is powered by a
USB-C connector, which is routed through PowerSensor3.

8

Fig. 9: NVIDIA Jetson AGX Orin with PowerSensor3 on the USB-C
power supply, the display shows the idle power.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Energy efficiency (TFLOP/J)

0

5

10

15

20

25

Co
m

pu
te

 p
er

fo
rm

an
ce

 (T
FL

OP
/s

)

Tensor-Core Beamformer 16-bit 4kx4kx4k on Jetson AGX Orin
408 MHz
510 MHz
612 MHz
714 MHz
816 MHz
918 MHz
1020 MHz
1122 MHz
1224 MHz
1300 MHz
Pareto front

Fig. 10: Tuning results for the Tensor-Core Beamformer on the
NVIDIA Jetson AGX Orin.

We repeat the same measurement as on the RTX 4000 Ada
(Fig. 8). The tuning results are shown in Fig. 10. The overall
behavior is similar to the RTX 4000 Ada. PowerSensor3 pro-
vides several advantages over the built-in sensor of the Jetson:
the time resolution of the built-in sensor is very limited (∼0.1
second), and similar to the RTX 4000 Ada we can perform this
experiment much faster with PowerSensor3. Additionally, the
built-in sensor only measures the power consumption of the
Jetson module, not including the carrier board that the module
is inserted into. With PowerSensor3, we are able to measure
the power consumption of the entire device.

C. SSDs

Apart from GPUs, another major power consumer in data
centers is data storage [56], with power usage estimates
ranging from 10% [57, 58] to as much as 25–30% [59]. In
order to reduce the power utilization of storage, it is important
to understand the power contribution of individual hardware
components, such as individual SSDs. However, storage de-
vices do not report their power usage and rely on external
sensors. In this section, we demonstrate that the PowerSensor3
is an effective external sensor for modern storage devices.

Numerous investigations have been conducted to measure
SSD power consumption, categories related to this work are:

Fig. 11: The NVMe to PCIe adapter with the Samsung 980 PRO
1 TB M.2 SSD [55] in a modified PCIe (gen 3) riser card, providing
measurement points for 3.3 V and 12 V.

• Individual flash chips and SATA drives [60–63].
• Whole system energy of software on NVMe [64–67].
• Analysis of NVMe SSDs, using a custom external sen-

sor [58], which samples at 1 kHz.

However, these studies either do not measure power of indi-
vidual SSDs, lack standardized tooling, can not measure at
the desired granularity, or do not apply to NVMe flash SSDs.
PowerSensor3 allows for a standardized approach for SSDs
with a configurable granularity in sample frequency (sub-
milliseconds to seconds).

For evaluation we use a Samsung 980 PRO 1 TB M.2
SSD with the hardware setup visualized in Fig. 11. The
Supermicro system (SYS-2029GP-TR) used in this set-up does
not easily provide access to PCIe slot power. Therefore, we
use an additional PCIe 3.0 riser card, modified similar to the
situation described for GPU measurements, providing mea-
surement points for the PCIe 3.3 V and 12 V power channels.
We use the state-of-the-practice fio workload generator [68]
with direct I/O and the io uring engine with recommended
performance optimizations [69]. As demonstrative workloads,
we use random reads at various request sizes and use a long-
running random write workload.

First, we evaluate the impact of I/O request size for ran-
dom reads on bandwidth and power. It is well-known that
larger requests typically lead to increased SSD bandwidth and
power [58, 61] as more work can be done in parallel. To
reproduce these observations, we run 10 second long random
read workloads at request sizes ranging from 1–4096 KiB
(∆1 KiB). In Fig. 12a, we plot the read request size on the
x-axis, and the average power usage and bandwidth on the
y-axes. We confirm that power and bandwidth both increase
with the request size (expected) until the device is saturated.

Second, we evaluate the bandwidth and power for a longer-
running (>20 minute) random write workload. Flash SSDs
(with a block interface) are known to suffer from perfor-
mance variability when consistently writing randomly, which
is largely due to an SSD-internal process known as garbage
collection (GC). GC issues reads and writes that interfere
with reads and writes issued by the host, which leads to
performance variability. Past studies have observed that this
variability does not necessarily translate to similar trends in
SSD power [61, 63]. Such discrepancies have implications for

9

0 1024 2048 3072 4096
Request size (KiB)

0
1
2
3
4
5
6
7

Po
we

r (
W

)
Power

0

1000

2000

3000

Re
ad

 b
an

dw
id

th
 (M

iB
/s

)

Random reads
Bandwidth

(a) Random reads, mean per request size.

0 5 10 15 20
Time (m)

0
1
2
3
4
5
6
7

Po
we

r (
W

)

Power

0

250

500

750

1000

W
rit

e
ba

nd
wi

dt
h

M
iB

/s
)

Random writes
Bandwidth

(b) Random writes, mean over time.

Fig. 12: Power and bandwidth results for the Samsung 980 PRO benchmarking: (a) random reads; (b) random writes.

host-managed solutions that attempt to reduce SSD power or
estimate SSD power usage, since bandwidth is not an accurate
indicator of power. We evaluate if these observations also hold
for the evaluated SSD. We first format the NVMe SSD, then
precondition with 128 KiB sequential writes, and lastly issue
random 4 KiB writes until the SSD is in steady-state. Fig. 12b
shows the power and bandwidth (y-axes) over time (x-axis)
for the random writes, using a granularity of one second
for both power and bandwidth. We observe that bandwidth
is highly variable, but power increases to 5 W at the first
bandwidth descend, and remains relatively stable afterward.
We thus confirm that bandwidth is not indicative of power
consumption. Therefore, to accurately evaluate SSD power for
a given workload, we recommend using an external sensor.

To conclude, the PowerSensor3 allows us to reproduce prior
SSD energy measurements, but with the added advantage that
the sensor is standardized and can be installed within servers
(deployment flexibility). While we have evaluated our storage
workloads at 1 ms granularity, the PowerSensor3 is able to
measure at sub-millisecond granularity (e.g., >1 kHz) which
will be evaluated in more detail in future work.

VI. DISCUSSION

Calibration and ease of use: The calibration and evaluation
of the sensors, as described in this work, follow standard
procedures for such devices. Calibration is required only once
during production, ensuring long-term reliability and accuracy.
The source code repository includes comprehensive docu-
mentation detailing the productions and calibration process,
making it accessible for users to understand and implement,
when they wish to produce their own hardware. Despite the
open nature of the device and accompanying software, we
acknowledge that not everyone may be able to manufacture
the device independently. To address this, we have started an
initiative to explore if we can provide fully assembled and
calibrated devices, allowing for broader accessibility and ease
of use of the PowerSensor3 technology [70].

Extendibility of PowerSensor3: The current design of
PowerSensor3 allows to measure up to four different power
supplies to a device, which can range from GPU cards and SoC
boards to custom boards with ASICs. The provided software

is compatible with any host system running Linux, offering
flexibility and adaptability to various use cases. Both the
hardware and software can be tailored to specific requirements
such as different power ranges, sensor accuracy, connectors
types and form factor. We encourage others to make their
sensor boards available under an open hardware license and to
open pull requests on the hardware and software repositories.

VII. CONCLUSION

The application case studies presented in Section V illustrate
that PowerSensor3 offers an open, cost-efficient solution for
fine-grained, high-frequency power measurements on a variety
of peripheral devices. Thus, enabling a deeper understanding
of system-level energy consumption and guiding effective
optimization strategies.

For the NVIDIA RTX 4000 Ada GPU, PowerSensor3
reveals previously undetected behavior, outperforming built-
in sensors. For the AMD W7700 GPU, it shows comparable
time and amplitude accuracy to the built-in sensor, which
specifications are not well documented. PowerSensor3 also
reduced the Tensor-Core Beamformer application auto-tuning
time by 3.25x compared to NVIDIA’s internal sensor.

Additionally, PowerSensor3 works with SoC boards like
the NVIDIA Jetson AGX Orin, which lacks total system
power reporting. The power consumption of PowerSensor3
itself is minimal, measured in milliwatts, which is negligible
compared to SoC boards. Alternatively, the PowerSensor3 can
be powered separately, eliminating the need to draw power
from the monitored system.

A case study with a PCIe SSD demonstrated that PowerSen-
sor3 uncovers behavior not observable from bandwidth metrics
alone, proving its utility for PCIe devices without built-in
sensors.

PowerSensor3 allows developers and researchers to use
energy as a metric for software optimization and evaluate the
efficiency of new hardware platforms. PowerSensor3 can play
a pivotal role in reducing the energy footprint of large-scale
AI, HPC, and data center operations.

ACKNOWLEDGMENT

We would like to thank Quinten Twisk for his work on an
early prototype of PowerSensor3.

10

REFERENCES

[1] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating
global data center energy-use estimates,” Science, vol. 367, no. 6481,
pp. 984–986, 2020.

[2] A. de Vries, “The growing energy footprint of artificial intelligence,”
Joule, vol. 7, no. 10, pp. 2191–2194, 2023.

[3] “Hungry for Energy, Amazon, Google and Mi-
crosoft Turn to Nuclear Power,” 2024. [On-
line]. Available: https://www.nytimes.com/2024/10/16/business/
energy-environment/amazon-google-microsoft-nuclear-energy.html

[4] “Top500,” 2024. [Online]. Available: https://top500.org
[5] A. R. Stevens, S. Bellstedt, P. J. Elahi, and M. T. Murphy, “The

imperative to reduce carbon emissions in astronomy,” Nature Astronomy,
vol. 4, no. 9, pp. 843–851, 2020.

[6] H. Ritchie, M. Roser, and P. Rosado, “Renewable Energy
(Last revised Jan 2024),” Our World in Data, 2020,
https://ourworldindata.org/renewable-energy.

[7] A. Shehabi, S. J. Smith, E. Masanet, and J. Koomey, “Data center growth
in the united states: decoupling the demand for services from electricity
use,” Environmental Research Letters, vol. 13, no. 12, p. 124030, 2018.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[9] S. Heldens, P. Hijma, B. V. Werkhoven, J. Maassen, A. S. Belloum, and
R. V. Van Nieuwpoort, “The landscape of exascale research: A data-
driven literature analysis,” ACM Computing Surveys (CSUR), vol. 53,
no. 2, pp. 1–43, 2020.

[10] “Frontier: OLCF’s Exascale Future,” 2018. [Online]. Available:
https://www.olcf.ornl.gov/2018/02/13/frontier-olcfs-exascale-future/

[11] M. Stachowski, A. Fiebig, and T. Rauber, “Autotuning based on fre-
quency scaling toward energy efficiency of blockchain algorithms on
graphics processing units,” The Journal of Supercomputing, vol. 77, pp.
263–291, 2021.

[12] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher, and Z. Zong,
“Effects of dynamic voltage and frequency scaling on a K20 GPU,” in
2013 42nd International Conference on Parallel Processing. IEEE,
2013, pp. 826–833.

[13] X. Mei, L. S. Yung, K. Zhao, and X. Chu, “A measurement study of
GPU DVFS on energy conservation,” in Proceedings of the Workshop
on Power-Aware Computing and Systems, 2013, pp. 1–5.

[14] D. C. Price, M. A. Clark, B. R. Barsdell, R. Babich, and L. J. Greenhill,
“Optimizing performance-per-watt on GPUs in high performance com-
puting,” Computer Science-Research and Development, vol. 31, no. 4,
pp. 185–193, 2016.

[15] S. Akiki, Z. Yang, C. Liu, J. Tang, and S. Liu, “Energy-Aware Auto-
matic Tuning of Many-Core Platform via Gradient Descent,” in 2018
IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
Trusted Computing, Scalable Computing & Communications, Cloud &
Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018,
pp. 1199–1203.

[16] T. Katagiri, C. Luo, R. Suda, S. Hirasawa, and S. Ohshima, “Energy
optimization for scientific programs using auto-tuning language ppOpen-
AT,” in 2013 IEEE 7th International Symposium on Embedded Multicore
Socs. IEEE, 2013, pp. 123–128.

[17] J. Guerreiro, A. Ilic, N. Roma, and P. Tomás, “Multi-kernel auto-
tuning on GPUs: Performance and energy-aware optimization,” in 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. IEEE, 2015, pp. 438–445.

[18] A. Krzywaniak and P. Czarnul, “Performance/energy aware optimization
of parallel applications on gpus under power capping,” in International
Conference on Parallel Processing and Applied Mathematics. Springer,
2019, pp. 123–133.

[19] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008, p. 4.

[20] S. Huang, S. Xiao, and W.-c. Feng, “On the energy efficiency of graphics
processing units for scientific computing,” in 2009 IEEE International
Symposium on Parallel & Distributed Processing. IEEE, 2009, pp. 1–8.

[21] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra, “A
step towards energy efficient computing: Redesigning a hydrodynamic

application on CPU-GPU,” in 2014 IEEE 28th International Parallel
and Distributed Processing Symposium. IEEE, 2014, pp. 972–981.

[22] R. Schoonhoven, B. Veenboer, B. Van Werkhoven, and K. J. Batenburg,
“Going green: optimizing GPUs for energy efficiency through model-
steered auto-tuning,” in 2022 IEEE/ACM International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE, 2022, pp. 48–59.

[23] L. Li and C. Kessler, “MeterPU: a generic measurement abstraction
API enabling energy-tuned skeleton backend selection,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 3. IEEE, 2015, pp. 154–159.

[24] E. M. Garzón, J. Moreno, and J. A. Martı́nez, “An approach to optimise
the energy efficiency of iterative computation on integrated GPU–CPU
systems,” The Journal of Supercomputing, vol. 73, no. 1, pp. 114–125,
2017.

[25] R. Nobre, L. Reis, and J. M. Cardoso, “Compiler phase ordering as an
orthogonal approach for reducing energy consumption,” arXiv preprint
arXiv:1807.00638, 2018.

[26] J. Pallister, S. J. Hollis, and J. Bennett, “Identifying compiler options to
minimize energy consumption for embedded platforms,” The Computer
Journal, vol. 58, no. 1, pp. 95–109, 2015.

[27] J. W. Romein and B. Veenboer, “PowerSensor 2: A Fast Power Mea-
surement Tool,” in 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2018, pp. 111–113.

[28] G. Schoonderbeek, S. van der Vlugt, J. Romein, and L. Oostrum,
“Powersensor3 hardware,” Mar. 2025. [Online]. Available: https:
//doi.org/10.5281/zenodo.15039399

[29] L. Oostrum, J. Romein, B. van Werkhoven, Q. Twisk, G. Schoonderbeek,
and S. van der Vlugt, “Powersensor3,” Nov. 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.14216576

[30] W. Jia, E. Garza, K. A. Shaw, and M. Martonosi, “GPU performance and
power tuning using regression trees,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 12, no. 2, pp. 1–26, 2015.

[31] H. Anzt, B. Haugen, J. Kurzak, P. Luszczek, and J. Dongarra, “Ex-
periences in autotuning matrix multiplication for energy minimization
on GPUs,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 17, pp. 5096–5113, 2015.

[32] I. Grasso, P. Radojkovic, N. Rajovic, I. Gelado, and A. Ramirez,
“Energy efficient HPC on embedded SoCs: Optimization techniques for
mali GPU,” in 2014 IEEE 28th International parallel and distributed
processing symposium. IEEE, 2014, pp. 123–132.

[33] P. Schiffmann, D. Martin, G. Haase, and G. Offner, “Optimizing a RBF
interpolation solver for energy on heterogeneous systems,” in Parallel
Computing is Everywhere. IOS Press, 2018, pp. 287–296.

[34] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “RAPL
in action: Experiences in using rapl for power measurements,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems (TOMPECS), vol. 3, no. 2, pp. 1–26, 2018.

[35] NVIDIA. (2012) NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110/210. [Online]. Available: https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/
NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[36] J. Lang and G. Rünger, “High-resolution power profiling of GPU
functions using low-resolution measurement,” in European Conference
on Parallel Processing. Springer, 2013, pp. 801–812.

[37] M. Burtscher, I. Zecena, and Z. Zong, “Measuring GPU power with the
K20 built-in sensor,” in Proceedings of Workshop on General Purpose
Processing Using GPUs, 2014, pp. 28–36.

[38] Z. Yang, K. Adamek, and W. Armour, “Accurate and Convenient Energy
Measurements for GPUs: A Detailed Study of NVIDIA GPU’s Built-
In Power Sensor,” in 2024 SC24: International Conference for High
Performance Computing, Networking, Storage and Analysis SC. IEEE
Computer Society, 2024, pp. 307–323.

[39] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou,
“GPGPU performance and power estimation using machine learning,” in
2015 IEEE 21st international symposium on high performance computer
architecture (HPCA). IEEE, 2015, pp. 564–576.

[40] G. Schieffer, D. A. De Medeiros, J. Faj, A. Marathe, and I. Peng, “On
the rise of AMD matrix cores: Performance, Power Efficiency, and Pro-
grammability,” in 2024 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2024, pp. 132–143.

[41] R. S. Chen and J. K. Hollingsworth, “Angel: A hierarchical approach to
multi-objective online auto-tuning,” in Proceedings of the 5th Interna-
tional Workshop on Runtime and Operating Systems for Supercomputers,
2015, pp. 1–8.

11

https://www.nytimes.com/2024/10/16/business/energy-environment/amazon-google-microsoft-nuclear-energy.html
https://www.nytimes.com/2024/10/16/business/energy-environment/amazon-google-microsoft-nuclear-energy.html
https://top500.org
https://www.olcf.ornl.gov/2018/02/13/frontier-olcfs-exascale-future/
https://doi.org/10.5281/zenodo.15039399
https://doi.org/10.5281/zenodo.15039399
https://doi.org/10.5281/zenodo.14216576
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[42] D. Q. Ren, “Algorithm level power efficiency optimization for CPU–
GPU processing element in data intensive SIMD/SPMD computing,”
Journal of Parallel and Distributed Computing, vol. 71, no. 2, pp. 245–
253, 2011.

[43] R. Suda, L. Cheng, and T. Katagiri, “A mathematical method for online
autotuning of power and energy consumption with corrected temperature
effects,” Procedia Computer Science, vol. 18, pp. 1302–1311, 2013.

[44] C. Timm, F. Weichert, P. Marwedel, and H. Müller, “Design space ex-
ploration towards a realtime and energy-aware GPGPU-based analysis of
biosensor data,” Computer Science-Research and Development, vol. 27,
no. 4, pp. 309–317, 2012.

[45] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Powermon: Fine-
grained and integrated power monitoring for commodity computer sys-
tems,” in Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon).
IEEE, 2010, pp. 479–484.

[46] J. H. Laros, P. Pokorny, and D. DeBonis, “Powerinsight-a commodity
power measurement capability,” in 2013 International Green Computing
Conference Proceedings. IEEE, 2013, pp. 1–6.

[47] STMicroelectronics, “Datasheet STM32F411xC STM32F411xE,”
2024. [Online]. Available: https://www.st.com/en/
microcontrollers-microprocessors/stm32f411/documentation.html

[48] Melexis, “Datasheet MLX91221 Integrated Current Sensor IC,” 2024.
[Online]. Available: https://www.melexis.com/en/product/MLX91221/
0-50A-isolated-3-3V-integrated-hall-current-sensor

[49] Broadcom, “Datasheet ACPL-C87B Precision Optically
Isolated Voltage Sensor,” 2024. [Online]. Available:
https://www.broadcom.com/products/optocouplers/industrial-plastic/
isolation-amplifiers-modulators/isolation-amplifiers/acpl-c87b

[50] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra,
C. Snoek, and H. Wijshoff, “A Medium-Scale Distributed System
for Computer Science Research: Infrastructure for the Long Term,”
Computer, vol. 49, no. 5, pp. 54–63, 2016.

[51] S. Corda, B. Veenboer, and E. Tolley, “PMT: Power Measurement
Toolkit,” in 2022 IEEE/ACM International Workshop on HPC User
Support Tools (HUST). IEEE, 11 2022, pp. 44–47. [Online]. Available:
https://ieeexplore.ieee.org/document/10027520/

[52] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” Pro-
ceedings of the International Conference on Parallel Processing Work-
shops, pp. 207–216, 2010.

[53] L. Oostrum, B. Veenboer, R. Rook, M. Brown, P. Kruizinga, and
J. W. Romein, “The Tensor-Core Beamformer: A High-Speed Signal-
Processing Library for Multidisciplinary Use,” in 39th IEEE Interna-
tional Parallel & Distributed Processing Symposium (IPDPS). IEEE,
2025.

[54] B. van Werkhoven, “Kernel Tuner: A search-optimizing GPU code auto-
tuner,” Future Generation Computer Systems, vol. 90, pp. 347–358,
2019.

[55] Samsung, “NVMe SSD 980 Pro Data sheet Rev 2.1,”
https://download.semiconductor.samsung.com/resources/data-sheet/
Samsung-NVMe-SSD-980-PRO-Data-Sheet Rev.2.1.pdf, Accessed:
2024-12-02.

[56] V. Rao and A. A. Chien, “Understanding the Operational Carbon
Footprint of Storage Reliability and Management,” HotCarbon, 2024.

[57] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United states data
center energy usage report,” 2016.

[58] D. Xie, T. Stavrinos, K. Zhu, S. Peter, B. Kasikci, and T. Anderson,
“Can Storage Devices be Power Adaptive?” in Proceedings of the 16th
ACM Workshop on Hot Topics in Storage and File Systems, 2024, pp.
47–54.

[59] H. Cao, S. Bergman, S. Sun, Y. A. Zhou, X. Li, J. Gao, Z. Cheng, and
J. Zhang, “Answering the Call to ARMs with PACER: Power-Efficiency
in Storage Servers,” MSST, 2024.

[60] M. Bjorling, P. Bonnet, L. Bouganim, and B. P. Jónsson, “uFLIP:
Understanding the Energy Consumption of Flash Devices,” Bulletin of
the Technical Committee on Data Engineering, vol. 33, no. 4, pp. 48–54,
2010.

[61] S. Cho, C. Park, Y. Won, S. Kang, J. Cha, S. Yoon, and J. Choi, “Design
Tradeoffs of SSDs: From Energy Consumption’s Perspective,” ACM
Transactions on Storage (TOS), vol. 11, no. 2, pp. 1–24, 2015.

[62] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing Flash Memory: Anomalies,
Observations, and Applications,” in Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, 2009, pp.
24–33.

[63] E. Seo, S.-Y. Park, and B. Urgaonkar, “Empirical Analysis on Energy
Efficiency of Flash-based SSDs,” in HotPower, 2008.

[64] B. Harris and N. Altiparmak, “Ultra-Low Latency SSDs’ Impact on
Overall Energy Efficiency,” in 12th USENIX Workshop on Hot Topics in
Storage and File Systems, HotStorage 2020, July 13-14, 2020, A. Badam
and V. Chidambaram, Eds. USENIX Association, 2020. [Online].
Available: https://www.usenix.org/conference/hotstorage20/presentation/
harris

[65] ——, “When Poll is More Energy Efficient than Interrupt,” in
Proceedings of the 14th ACM Workshop on Hot Topics in Storage
and File Systems, ser. HotStorage ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 59–64. [Online].
Available: https://doi.org/10.1145/3538643.3539747

[66] S. Sundar, W. Simpson, J. Higdon, C. Whitaker, B. Harris, and N. Al-
tiparmak, “Energy Implications of IO Interface Design Choices,” in
Proceedings of the 15th ACM Workshop on Hot Topics in Storage and
File Systems, 2023, pp. 58–64.

[67] C. Whitaker, S. Sundar, B. Harris, and N. Altiparmak, “Do We Still Need
IO Schedulers for Low-latency Disks?” in Proceedings of the 15th ACM
Workshop on Hot Topics in Storage and File Systems, 2023, pp. 44–50.

[68] Jens Axboe, “Fio,” https://github.com/axboe/fio, Accessed: 2024-12-02.
[69] Z. Ren and A. Trivedi, “Performance Characterization of Modern Stor-

age Stacks: POSIX I/O, Libaio, SPDK, and io uring,” in Proceedings
of the 3rd Workshop on Challenges and Opportunities of Efficient and
Performant Storage Systems, 2023, pp. 35–45.

[70] NWO, “NWO Take-Off phase 1 grant: Commercial Feasibility of
PowerSensor (CFPS),” 2024. [Online]. Available: https://doi.org/10.
61686/FRXJD41196

[71] S. van der Vlugt, L. Oostrum, G. Schoonderbeek, B. van Werkhoven,
B. Veenboer, K. Doekemeijer, and J. W. Romein, “Powersensor3
results,” Mar. 2025. [Online]. Available: https://doi.org/10.5281/zenodo.
15037451

[72] S. van der Vlugt, L. Oostrum, G. Schoonderbeek, B. van
Werkhoven, B. Veenboer, K. Doekemeijer, and J. Romein,
“ispass-2025-powersensor3-ssd-data,” Mar. 2025. [Online]. Available:
https://doi.org/10.5281/zenodo.15019311

[73] A. NLeSC. (2025) PowerSensor3 Documentation. [Online]. Available:
https://powersensor3.readthedocs.io/en/latest/

12

https://www.st.com/en/microcontrollers-microprocessors/stm32f411/documentation.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f411/documentation.html
https://www.melexis.com/en/product/MLX91221/0-50A-isolated-3-3V-integrated-hall-current-sensor
https://www.melexis.com/en/product/MLX91221/0-50A-isolated-3-3V-integrated-hall-current-sensor
https://www.broadcom.com/products/optocouplers/industrial-plastic/isolation-amplifiers-modulators/isolation-amplifiers/acpl-c87b
https://www.broadcom.com/products/optocouplers/industrial-plastic/isolation-amplifiers-modulators/isolation-amplifiers/acpl-c87b
https://ieeexplore.ieee.org/document/10027520/
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf
https://www.usenix.org/conference/hotstorage20/presentation/harris
https://www.usenix.org/conference/hotstorage20/presentation/harris
https://doi.org/10.1145/3538643.3539747
https://github.com/axboe/fio
https://doi.org/10.61686/FRXJD41196
https://doi.org/10.61686/FRXJD41196
https://doi.org/10.5281/zenodo.15037451
https://doi.org/10.5281/zenodo.15037451
https://doi.org/10.5281/zenodo.15019311
https://powersensor3.readthedocs.io/en/latest/

APPENDIX

Appendix containing Artifact description.

A. Abstract

In this work, we introduce the PowerSensor3, a novel
tool comprising custom-developed hardware, firmware, and
software components.

The hardware architecture of the PowerSensor3 includes
a base board and a sensor board, both of which have been
meticulously designed and released as open hardware un-
der the CERN Open Hardware License (CERN-OHL-P v2)
at https://doi.org/10.5281/zenodo.15023417 [28]. This open
hardware approach ensures transparency, reproducibility, and
the potential for community-driven enhancements.

Complementing the hardware, the firmware and host soft-
ware for the PowerSensor3 have been developed and re-
leased as open-source software under the Apache License
2.0 at https://doi.org/10.5281/zenodo.7941162 [29]. This open-
source software framework facilitates seamless integration
with existing systems and promotes collaborative development.

To validate the performance and accuracy of the PowerSen-
sor3, we conducted extensive evaluations using the Power
Measurement Toolkit (PMT) [51] and KernelTuner [54]. These
tools were employed in conjunction with a Tensor Core Beam-
former application [53] and storage benchmarks, enabling
comprehensive analysis and benchmarking.

The results and findings from these evaluations are made
available at https://doi.org/10.5281/zenodo.15037450 [71] and
https://doi.org/10.5281/zenodo.15019310 [72], both licensed
with Apache 2.0. By providing access to these results, we
aim to foster further research and development in the field of
power measurement.

B. Description

PowerSensor3 hardware

PowerSensor3 firmware

pstestpsconfigPython CPP

On board vendor sensors

Vendor tools

Vendor interfaces

System under test

Power Measurement Toolkit (PMT)

KernelTuner

psrun

Fig. 13: Overview of components involved in the PowerSensor3
design and evaluation.

Fig. 13 illustrates the organization of the various compo-
nents in the PowerSensor3 hardware and software stack:

System Under Test (SUT): The SUT, which can be a
CPU, GPU, SoC, or other hardware components, often comes
equipped with its own sensors, tools, and interfaces which
can be compared to or combined with the PowerSensor3

measurements. These sensors, tools and interfaces are not part
of this work, but are (when available) used in comparison to
our PowerSensor3.

PowerSensor3 hardware: The PowerSensor3 hardware
[28], shown in blue in Fig. 13, consists of the baseboard
and sensor modules. The baseboard houses the STM32F411
microcontroller and supports up to four sensor modules, which
can be customized to measure different power ranges and
types of connectivity. Fig. 14 illustrates an example of the
PowerSensor3 in operation. In this example, the PowerSensor3
is equipped with a PCIe sensor module that measures the
power supplied to the PCIe card via the external power
input as well as two sensor modules to measure the 3.3 V
and 12 V PCIe slot power. A modified riser card, where the
power connections for both 3.3 V and 12 V are interrupted
and routed through two sensor modules, enables to measure
the power consumption of the PCIe slot. The PowerSensor3
hardware design has been released as open hardware under
the CERN Open Hardware License (CERN-OHL-P v2) at
https://doi.org/10.5281/zenodo.15023417 [28].

GPU

PCIe Riser Card

Black Pill

10A

PSU

PS3
USB-C to

Monitor System12V

12V

3.3V

12V

3.3V / 12V

20A

10A

Power to sensor
Power to DUT

Fig. 14: Schematic of a PowerSensor3 measurement setup for PCIe
devices.

PowerSensor3 firmware and software: The PowerSensor3
firmware and software [29], depicted in green in Fig. 13,
play a vital role in the system’s functionality. The firmware
is programmed onto the PowerSensor3 hardware, enabling it
to process and transmit power measurement data. The host
system interacts with the hardware through the PowerSensor3
software, which provides a user-friendly interface for config-
uring, monitoring, and analyzing power consumption data. For
easy use, the executable psrun can be used with a command
line interface to report the power utilization of an existing
application. For measurements with very high time resolution,
Python and CPP interfaces are offered for integration with
user applications. The PowerSensor3 firmware and software
have been released as open-source software under the Apache
License 2.0 at https://doi.org/10.5281/zenodo.7941162 [29].

Power Measurement Toolkit (PMT) and KernelTuner:
PMT [51] and KernelTuner [54], shown in orange in Fig. 13,
are versatile tools that can be used with both vendor-specific
sensors and the PowerSensor3. PMT is designed for com-
prehensive power measurement and analysis across various
devices, while KernelTuner facilitates the optimization of GPU

13

https://doi.org/10.5281/zenodo.15023417
https://doi.org/10.5281/zenodo.7941162
https://doi.org/10.5281/zenodo.15037450
https://doi.org/10.5281/zenodo.15019310
https://doi.org/10.5281/zenodo.15023417
https://doi.org/10.5281/zenodo.7941162

kernel performance across a broad range of parameters. These
tools enhance the capability to evaluate and fine-tune the
power consumption and efficiency of the SUT. PMT and Ker-
nelTuner are not part of this work, but are used in evaluation
of our PowerSensor3. We have contributed the PowerSensor3
specific extensions of PMT and Kernel Tuner back to these
projects.

For evaluation of PowerSensor3 with Kernel Tuner we
carefully selected representative kernels that align with real-
world high-performance GPU workloads where power effi-
ciency is a critical concern. While vendor-provided reference
implementations (e.g., CUTLASS and cuBLAS) may serve
as performance baselines, our goal was to analyze power
behavior in a use case from our application domains. The
speedup achieved in tuning these specific kernels with Kernel
Tuner are similar with the PowerSensor3 and the vendor
tooling, however the tuning itself required 3.25× less time
with PowerSensor3.

Evaluation results and SSD dataset: The results presented
in this work [71] and the supplementary SSD dataset [72]
provide valuable insights into the performance and accuracy
of the PowerSensor3. These datasets are made available for
evaluation purposes and include detailed examples on how
to effectively utilize the PowerSensor3 for various applica-
tions. By sharing these results, we aim to support further
research and development in power measurement technologies.
The results and findings from these evaluations are made
available at https://doi.org/10.5281/zenodo.15037450 [71] and
https://doi.org/10.5281/zenodo.15019310 [72].

Documentation: The installation and use of the PowerSen-
sor3 hardware, firmware and software is documented at: https:
//powersensor3.readthedocs.io/en/latest/ [73] and described in
readme files in the individual repositories. Fig. 15 shows an
example of assembly instructions as found in the hardware
repository and Fig. 16 shows a fully assembled PowerSensor3
with three sensor modules populated.

Hardware dependencies: The PowerSensor3 firmware and
software depend on the PowerSensor3 hardware.

Software dependencies: Software dependencies are de-
scribed in the PowerSensor3 documentation [73] and are man-
aged through git submodules and cmake files in the repository,
the hardware design works with KiCAD and the software has

been designed for Linux.
How to contribute: We encourage others to contribute to

the development of PowerSensor3. Possible forms of contri-
butions include: integration of the PowerSensor3 library with
your software, pull requests for extensions to the hardware,
firmware, software and documentation and design of your own
sensor boards, made available under an open hardware license.

Fig. 15: Assembly instructions for the PowerSensor3 baseboard and
sensor modules.

Fig. 16: Assembled PowerSensor3 baseboard with three sensor mod-
ules populated.

14

https://doi.org/10.5281/zenodo.15037450
https://doi.org/10.5281/zenodo.15019310
https://powersensor3.readthedocs.io/en/latest/
https://powersensor3.readthedocs.io/en/latest/

	Introduction
	Background and Related Work
	GPU on-board power measurement
	External power measurement tools

	Design and Implementation
	Hardware Design
	Firmware Design
	Sensor configuration values
	Display

	Software Design
	Calibration

	Evaluation
	Sensor accuracy assessment
	Long term stability
	Step response

	Application case studies
	GPUs
	Power Measurement Toolkit
	Kernel Tuner

	SoC boards (NVIDIA Jetson)
	SSDs

	Discussion
	Conclusion
	References
	Appendix
	Abstract
	Description

