
Memory-Efficient
WebAssembly Containers

Matthijs Jansen, Maciej Kozub
Alexandru Iosup, Daniele Bonetta

m.s.jansen@vu.nl

https://atlarge-research.com/mjansen/

Open-source Code

Containers

2

Container
Source
Code

Libraries

Language

Host OS

Host HW

Containers are an isolation mechanism
- Portable, maintainable
- Easy to scale and operate
- Isolation for performance, security

Cont. Runtime

CNCF 2024 Annual Survey

3

The production standard

80% uses Kubernetes

The new normal

Over 90% uses containers

Container Downsides

4

But: Containers add overhead
- CPU
- Memory
- Storage
- Network

Result:
- Slower code
- Increased cost
- Increased energy use

Container
Source
Code

Libraries

Language

Host OS

Host HW

Cont. Runtime

Duplicated

Extra

Efficiency with WebAssembly

5

WASM: Stack-based VM
- Near native performance
- Low resource overhead
- Portable

1. Source Code

4. WASM Runtime
5. Machine Code

C

Rust

Python

Go

x86 ARM

3. WASM Module

*.wasm

2. Compiler
C-to-WASM
(e.g., Clang)

Wasmer

WasmEdge

Containerize WebAssembly

6

WebAssembly modules can be packaged and distributed as containers

- OCI compliant
- No base image

WASM containers can run side-by-side with non-WASM containers

WebAssembly on Kubernetes

7

WASM containers have less overhead than non-WASM containers

WASM containers are compatible with Kubernetes (OCI)

WASM containers should be the better choice for Kubernetes
Right?

WASM Inefficiency

8

Current WASM overhead exceeds non-WASM container overhead!

Research Objective

9

Improve the memory footprint of WASM containers
(1) compared to existing WASM runtimes
(2) compared to non-WASM containers

(1) What is the (WASM) container landscape?

(2) How to create a new WASM runtime integration

(3) Evaluation

Physical Machine

Deploying Containers - Low Level

10

Container Container Container

Low-level Container Runtime
runC crun youki gvisor kata

Low-level: Create, start, stop, delete container with system calls

In green: Only runtimes that currently support WASM

Physical Machine

Deploying Containers - High Level

11

Container Container Container

Low-level Container Runtime
runC crun youki gvisor kata

High-level: Manage images, networking, volume mounting, logging

High-level Container Runtime
containerd CRI-O Docker

Physical Machine

Deploying Containers - WASM

12

WASM
Container

WASM
Container

WASM
Container

Low-level Container Runtime

WASM: Different runtimes to manage WASM

 High-level Container Runtime

WASM Runtime
WasmEdge WASMER WASMtime

ctrd-runwasi

Container runtimes
support only these

Worker node

Deploying Containers - Kubernetes

13

WASM
Container

WASM
Container

WASM
Container

Low-level Container Runtime

 High-level Container Runtime

WASM Runtime

Kubelet

Kubernetes control plane
SchedulerDatabase

Improving WASM integration

14

The WASM container runtime stack:
1. High-level container runtime
2. Low-level container runtime
3. WebAssembly runtime

- Currently, only WasmEdge, WASMER, WASMtime
supported by container runtimes

- Existing benchmarks show that
WAMR has better performance
and lower memory footprint

Improving WASM integration

15

The WASM container runtime stack:
1. High-level container runtime
2. Low-level container runtime

- crun and youki already support WASM
- Or bypass lower-level with RunWASI?

3. WebAssembly runtime: WAMR

crun: Faster than youki

crun: Full container support (POSIX, syscalls), unlike RunWASI

Improving WASM integration

16

1. High-level container runtime
- Need to support OCI for crun and CRI for Kubernetes
- containerd is industry standard outside of OpenShift (CRI-O)

WASM
Container

Low-level Container Runtime

High-level Container Runtime

WASM Runtime WAMR

containerd

crun

WASM
Container

Evaluation: Memory Usage crun

17

- Deploy 10 / 100 / 400 WASM containers
- Average per-container memory overhead (OS)
- Empty Python application

At least 40.0%
less memory!

Most efficient
crun integration

Evaluation: Memory Usage RunWASI

18

- Compared to containerd RunWASI
- RunWASI performs better than low-level runtime alternatives
- Later: RunWASI startup time does not scale

At least 10.9%
less memory!

Most efficient
WASM integration

Evaluation: Memory Usage non-WASM

19

- Compared to Python Debian-slim container

At least 16.4%
less memory!

Outperforms
non-WASM
containers

Evaluation: Memory Usage Summary

20

Our containerd + crun + wamr integration outperforms all

Evaluation: Start-up Time

21

For 10 containers: Rank 3/9

-11.5%

+2.7%

Evaluation: Start-up Time

22

For 400 containers: Rank 4/9
Mixed results compared to 10 → On average no performance loss

-6.9%

+18.8%

Conclusion

23

New WASM integration with lowest memory footprint
Comparable startup time to alternatives

We make WASM competitive with traditional containers

