Memory-Efficient

WebAssembly Containers

Matthijs Jansen, Macie] Kozub
Alexandru losup, Daniele Bonetta

|J\@)|‘ m.s.jansen@vu.nl

@Large Research '-I.'-?i% EI VU k VRIJE

Massivizing Computer Systems :" UNIVERSITEIT = gy (o KRl

E AMSTERDAM | =y’

@‘ https://atlarge-research.com/mjansen/ ‘

+ 10pen-source Code

Containers are an isolation mechanism Container
- Portable, maintainable Source
- Easy to scale and operate Code

- Isolation for performance, security
‘Language‘

'==E' ‘ Libraries ‘
ddOCker ‘ Cont. Runtime \

container
m ‘ Host HW \

CNCF 2024 Annual Survey VU S

How are containers used in your organization
Not

Planning to use
Piloting
For some apps

For most apps

0 10 20 30

The new normal

Over 90% uses containers

Yes, in production

50 60 Does your organization use Kubernetes

The production standard

80% uses Kubernetes

Yes, piloting

No

Container Downsides VU b

But: Containers add overhead Container

- CPU Source

- Memory Code

- Storage

- Network —>| Language
Svor Duplicated ‘

Result: —?l Libraries ‘

- IS|°W9" cgde Extra Cont. Runtime

- Increased cost

- Increased energy use Host OS

‘ Host HW \ 4

Efficiency with WebAssembly VU4 e

WASM: Stack-based VM
- Near native performance

- Low resource overhead

- Portable

1. Source Code

‘ C H Python‘

‘ Rust H Go ‘

4. WASM Runtime
5. Machine Code ‘ Wasmer ‘
‘ x86 H ARM ‘
‘ WasmEdge ‘
2. Compiler || 3 \wasM Module

C-to-WASM
(e.g., Clang)

* wasm ‘

Containerize WebAssembly VU b

WebAssembly modules can be packaged and distributed as containers

Dockerfile

- OCI compliant
- No base image

. FROM scratch

COPY main.wasm /main.wasm

OS/ARCH

linux/amd64

WERTATERI

ENTRYPOINT ["/main.wasm"]

Last pull Compressed Size ®

a month ago 45.48 MB ’

18 days ago 451.38 KB

WASM containers can run side-by-side with non-WASM containers

6

WebAssembly on Kubernetes VU e

AMSTERDAM

WASM containers have less overhead than non-WASM containers

v

WASM containers are compatible with Kubernetes (OCI)

v

WASM containers should be the better choice for Kubernetes
Right?

WASM Inefficiency

VU

VRIJE
UNIVERSITEIT
AMSTERDAM

Current WASM overhead exceeds non-WASM container overhead!

WebAssembly containers

pd
—— T

s — cloud0_memory
/ ——— controller_memory
Python containers caidll =1 antrofieg_memony
—I— —— etcd memory
5 6400')— cloud0_memory
= 1 —— controller_memory
1 g4800- ——— controller_memory
_J—j— ® 4000{ —— etcd_memory
- , . . D 32001 —— apiserver_memory
0 20 40 60 80 1>5400/ — controller memory —
Time g 1600- controller_ memory
[} | —— schedul
- 808 SC ‘e uler_memory
0 20 40 60

80 100 120 140
Time (s)

160

180

Research Objective VU b

Improve the memory footprint of WASM containers
(1) compared to existing WASM runtimes
(2) compared to non-WASM containers

(1) What is the (WASM) container landscape?
(2) How to create a new WASM runtime integration

(3) Evaluation

Deploying Containers - Low Level VU b

AMSTERDAM

Low-level: Create, start, stop, delete container with system calls

Physical Machine

Low-level Container Runtime
runC crun youki gvisor kata

Container Container Container

In green: Only runtimes that currently support WASM "

Deploying Containers - High Level VU b

AMSTERDAM

High-level: Manage images, networking, volume mounting, logging

Physical Machine
High-level Container Runtime
containerd CRI-O Docker

Low-level Container Runtime
runC crun youki gvisor kata

Container Container Container

11

Deploying Containers - WASM VU

WASM: Different runtimes to manage WASM

VRIJE
UNIVERSITEIT
AMSTERDAM

Physical Machine

ctrd-runwasi High-level Container Runtime

Low-level Container Runtime

Container runtimes

WASM Runtime

support only these | WasmEdge || WASMER || WASMtime
WASM WASM WASM
Container Container Container

12

Deploying Containers - Kubernetes VU4 e

AMSTERDAM

Kubernetes control plane
Database Scheduler

Worker node Kubelet

High-level Container Runtime

Low-level Container Runtime

WASM Runtime

WASM WASM WASM
Container Container Container 3

Improving WASM integration VU4 e

The WASM container runtime stack:
1. High-level container runtime
2. Low-level container runtime
3. WebAssembly runtime
- Currently, only WasmEdge, WASMER, WASMtime
supported by container runtimes
- Existing benchmarks show that oy -

WAMR has better performance v 0

mmmmmmmm 1L

and lower memory footprint -
wesmocoe (I IR

vece. [HHREL HRERD
or [IECREL (DAL
wasne s [IIIITIEC N0 HINND
weo [IHIN T 1 Il

s 14

Improving WASM integration VU4 e

The WASM container runtime stack:
1. High-level container runtime
2. Low-level container runtime
- crun and youki already support WASM
- Or bypass lower-level with RunWASI?
3. WebAssembly runtime: WAMR

Runtime Time (mean % o) Range (min ... max) vs youki(mean) Version

F h k youki 1M1.5 ms +11.6 ms 84.0 ms +142.5 ms 100% 0.3.3
crun: aSter t an yOu I runc 2246ms+120ms 1905ms +2554ms 200% 1E187.
[crun 47.3 ms + 2.8 ms 42.4 ms + 56.2 ms 42% 1.15 I

‘ crun: Full container support (POSIX, syscalls), unlike RunWASI ‘ .

Improving WASM integration VU4 e

1. High-level container runtime
- Need to support OCI for crun and CRI for Kubernetes
- containerd is industry standard outside of OpenShift (CRI-O)

High-level Container Runtime| containerd

Low-level Container Runtime crun
WASM Runtime WAMR
WASM WASM

Container Container

16

Evaluation: Memory Usage crun VU4 S

- Deploy 10 /100 / 400 WASM containers
- Average per-container memory overhead (OS)
- Empty Python application

D
= Deployment Size:
~ 20| HEE 10 containers
At least 40.0% 2 B 100 containers
less memory! g 151 W 400 containers
S
o 101
Most efficient ;
crun integration | 2 5
V]
=

crun+wamr crun+wasmedge crun+wasmer crun+wasmtime
2 & A 17
Runtime Configuration Used

Evaluation: Memory Usage RunWASI VU o

AMSTERDAM

- Compared to containerd RunWASI
- RunWASI performs better than low-level runtime alternatives
- Later: RunWASI startup time does not scale

At least 10.9%
less memory!

Most efficient
WASM integration

=60
Z
= 50

Memory per Cont

= N W
o O O o

Deployment Size:
B 10 containers
e 100 containers
B 400 containers

crun+wamr containerd containerd containerd
shim-wasmedge shim-wasmer shim-wasmtime

Runtime Configuration Used 18

Evaluation: Memory Usage non-WASM VU o

AMSTERDAM

- Compared to Python Debian-slim container

At least 16.4%
less memory!

Outperforms
non-WASM
containers

Memory per Container (MB)

N
(9]

N
o

=
Ul

=
(@)

w1

{ I 10 containers

{ I 400 containers

Deployment Size:

P 100 containers

crun+wamr crun+python runC+python
Runtime Configuration Used

19

Evaluation: Memory Usage Summary VU o

AMSTERDAM

Our containerd + crun + wamr integration outperforms all

containerd-shim-wasmer
crun+wasmer
crun+wasmtime
crun+wasmedge

+— containerd-shim-wasmedge
runC+python

crun+python
containerd-shim-wasmtime
crun+wamr

Metrics source:
i free command
B kubectl top

Runtime Configuration Used

0 10 20 30 40 50
Memory Used per Container (MB) 20

Evaluation: Start-up Time VU S

AMSTERDAM

For 10 containers: Rank 3/9

containerd-shim-wasmer
runC+python
crun+wasmtime
crun+wasmedge
crun+wasmer
crun+python
crun+wamr

containerd-shim-wasmtime
containerd-shim-wasmedge

-11.5%
0 1 2 3 4 5
Time to Start All Containers (s) 21

Evaluation: Start-up Time VU S

AMSTERDAM

For 400 containers: Rank 4/9
Mixed results compared to 10 — On average no performance loss

containerd-shim-wasmer
containerd-shim-wasmtime
containerd-shim-wasmedge
runC+python

crun+python

crun+wamr

crun+wasmer
crun+wasmedge
crun+wasmtime -6.9%

0 25 50 75 100 125 150 175 200
Time to Start All Containers (s) 22

New WASM integration with lowest memory footprint

Comparable startup time to alternatives

containerd-shim-wasmer
crun+wasmer
crun+wasmtime
crun+wasmedge

i containerd-shim-wasmedge
runC+python

crun+python
containerd-shim-wasmtime
crun+wamr

iguration Used

Runtime Conf

\

We make WASM competitive with traditional containers

Metrics source:
pw free command
BN kubectl top

10 20 30 40
Memory Used per Container (MB)

50

VRIJE
UNIVERSITEIT
AMSTERDAM

23

