
Storage-Based Approximate Nearest Neighbor
Search: What are the Performance, Cost, and I/O

Characteristics?
Zebin Ren

Computer Science Department
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

z.ren@vu.nl

Krijn Doekemeijer
Computer Science Department
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

k.doekemeijer@vu.nl

Padma Apparao
Intel

Portland, Oregon, United States
padma.apparao@intel.com

Animesh Trivedi
IBM Research Europe
Zurich, Switzerland

animesh.trivedi@ibm.com

Abstract—Retrieval-augmented generation (RAG) has emerged
as an effective method for enhancing large language models
by integrating external knowledge sources to reduce the model
size, avoid hallucinations, and provide an easier way to update
the knowledge than fine-tuning. This external knowledge is
commonly managed by vector databases, where the external
knowledge is embedded into vectors and retrieved with vector
similarity search. As the size of these external knowledge bases
grows, the memory requirements for storing vectors and their
associated indexes exceed the practical limits of main memory,
prompting a shift toward storage-based solutions. Despite the
adoption of storage-based solutions in modern vector databases,
there have been limited systematic evaluations of the perfor-
mance characteristics and I/O behavior of state-of-the-practice
vector databases with storage-based setups. In this paper, we
systematically characterize the performance, scalability, and
I/O characteristics of these vector databases on modern SSDs
that can deliver millions of I/O operations/s with less than
100µs latency. We report 22 observations and 3 key findings
that indicate: (i) vector databases with storage-based setups
do not necessarily indicate lower performance than memory-
based setups, for example, the storage-based setup DiskANN
outperforms the memory-based setup, IVF, with up to 3.2×
search throughput in Milvus, (ii) state-of-the-practice vector
databases with storage-based setups require optimizations on
I/O traffic to fully utilize the performance with flash SSDs, the
maximum bandwidth achieved in our experiments is 1.7 GiB/s
and can not saturate our benchmarked SSD, and (iii) the indexes’
search-time parameters affect both performance and I/O char-
acteristics of vector databases, for example, when the parameter
search_list increases from 10 to 100, the throughput of vector
similarity search decreases up to 60.9% and the read bandwidth
increases up to 3.3×. We open-source the scripts and traces of
this work at: https://zenodo.org/records/16916496.

Index Terms—approximate nearest neighbor search, vector
database, I/O workload characterization

I. INTRODUCTION

Vector databases [2], [9], [13], [22], [40], [50], [69], [74] are
widely used in information retrieval [5], [25], recommendation
systems [31], [39], [60], and e-commerce [50], [74]. The

This work is funded by The Dutch Research Council (NWO) grant number
OCENW.KLEIN.561, Netherlands-funded projects NWO OffSense and GFP
6G FNS, and Horizon Graph-Massivizer. Krijn Doekemeijer is funded by the
VU PhD innovation program.

emerging retrieval-augmented generation (RAG) enhances the
large language models (LLM) with an external knowledge
base to reduce model size, avoid hallucinations, and provide
an easier way to update the knowledge than fine-tuning [36],
[79]. This knowledge is usually managed by vector databases,
where the external knowledge, such as text, images, or videos,
is embedded into vectors and retrieved with vector similarity
search [47].

Vector databases are specialized databases that manage
vector data. A core feature these vector databases provide is
approximate nearest neighbor search (ANNS), which finds the
approximate k nearest vectors of query vectors in the database
according to a user-defined distance metric [18]. To accelerate
ANNS, vectors are indexed in these vector databases for this
vector similarity search, where these indexes are usually kept
in the main memory for fast access [24], [27], [32]–[34],
[41], [51], [53], [54], [58]. Modern RAG datasets contain
millions of documents and trillions of tokens [28], and the
vectors’ dimensions exceed one thousand. As a result, the
size of the indexes can be several hundred GiBs, making it
challenging to fit into main memory [62], [72]. For example,
the size of the widely used HNSW (Hierarchical Navigable
Small World) index for one billion 96-dimensional vectors
is over 700 GiB [62]. This memory overhead becomes more
significant when many RAG pipelines adopt local setups that
do not split the vector database into multiple servers [52].
Hence, researchers are looking into storing the vectors on
storage devices to reduce their memory requirement [29], [59],
[68], [72], [75]. Modern NVMe SSDs are able to deliver
millions of I/O operations/s with tens of microseconds of
latency and easily scale to TiBs in capacity, making it a good
fit to store these vector indexes [17]. However, there has been
limited systematic study and characterization of the impact of
moving these indexes from main memory to storage devices,
which affects the performance of vector databases, specifically
(i) SSDs have higher latency and larger access granularity
than memory, it is unknown how the latency, throughput, and
scalability of the vector search queries degrade for the indexes
that can not be fully maintained in main memory, (ii) parallel

https://orcid.org/0000-0003-1466-0002
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0009-0008-3522-9135
https://orcid.org/0000-0003-3586-7168
https://zenodo.org/records/16916496

I/O requests are required to fully utilize the performance
of SSD [63], [64], it is unknown if these vector databases
can fully utilize the performance of the modern SSDs and
what their I/O characteristics are, and (iii) the parameters
that control the behavior of vector indexes affect both the
performance and I/O characteristics, which are used to control
the trade-off between accuracy, index building time, and search
performance.

In this work, we investigate the performance cost
and I/O characteristics of four state-of-the-practice vector
databases (Milvus [11], Qdrant [13], Weaviate [22], and
LanceDB [9]) with a storage-based setup to study and charac-
terize the performance of these vector databases with modern
high-performance SSDs. Our investigation is motivated by the
three challenges in the previous section. Firstly, the storage
devices have higher latency and larger access granularity than
memory, creating overheads on the vector search latency,
throughput, and scalability. There are multiple solutions to re-
duce the memory size requirement of vector databases in state-
of-the-practice vector databases, such as using storage-friendly
indexes (DiskANN) [11] or using mmap with memory-based
indexes [13]. The lack of quantification on the performance of
vector search for different storage-based solutions on modern
NVMe SSDs makes it difficult for practitioners to choose the
best vector database when using a setup with local SSDs. We
demonstrate that vector databases with storage-based setups
do not necessarily have worse performance in throughput
and latency than vector databases with memory-based setups.
Secondly, modern NVMe SSDs are able to provide millions
of I/O operations per second (IOPS), but achieving this
throughput requires parallel I/O requests and a large amount
of CPU resources [63], [64], making it challenging to fully
utilize the performance of modern SSDs. Thus, we investigate
the I/O characteristics of these vector databases and find that
the maximum bandwidth achieved during the vector search
of Milvus with DiskANN index is 1,720.0 MiB/s, less than
the maximum bandwidth in the SSD that is used for the
benchmarking (7.2 GiB/s). Thirdly, the indexing algorithms
have parameters to control the trade-off among accuracy, per-
formance, and resource usage. These parameters affect the I/O
features, such as bandwidth. Thus, it is important to understand
how these parameters affect the I/O patterns to fully utilize the
performance of modern SSDs. For example, the search-time
parameter search_list is the number of candidate vectors
during the search, where a higher search_list indicates
more vectors are checked during the search process (§II).
We find that although increasing search_list from 10 to
100 results in a throughput decrease of up to 60.9% and a
bandwidth increase to 3.3×, the bandwidth of the SSD is still
not saturated, indicating that using a larger search_list
does not lead the SSD to be the bottleneck. To summarize, the
limited knowledge of the performance, I/O characteristics, and
the effect of indexes’ parameters motivates us to systematically
study the performance and I/O behavior of vector databases
with storage-based setups.

In this study, we empirically measure, quantify, and analyze

the performance, I/O characteristics, and the performance
effect of indexes’ parameters of four widely used open-
source vector databases in high-dimensional vector space:
Milvus [11], Qdrant [13], Weaviate [22], and LanceDB [9].
We specifically motivate and investigate the following research
questions (RQ) around the I/O workloads of vector databases
and make the following key findings (KF):

RQ1: What is the latency, throughput, and scalability
overhead of using storage-based setups in state-of-the-
practice vector databases compared with memory-based
setups? This research question focuses on finding the per-
formance cost of using storage-based setups compared with
memory-based setups in the evaluated vector databases and
compares the latency, throughput, and scalability of storage-
based setups in modern vector databases. KF-1: We find that
storage-based vector search setups do not necessarily perform
worse than memory-based setups. For example, although Mil-
vus with DiskANN, a storage-based vector index, has up to
74.1% lower throughput and 96.7% higher latency than the
memory-based vector index HNSW, DiskANN outperforms
Milvus with IVF, another memory-based index, with up to
3.2× throughput and 44.5% lower latency, and outperforms
the other databases in throughput at least three out of the four
datasets.

RQ2: What are the I/O characteristics of the state-of-
the-practice vector databases with storage-based setups
during vector similarity search, and are these vector
databases with storage-based setups able to fully utilize
the NVMe SSDs? Modern NVMe SSDs are able to provide
millions of IOPS with tens of µs latency, but require parallel
I/O requests and a large amount of CPU resources to saturate
these SSDs. Here, we study the I/O characteristics of Milvus
with DiskANN during vector search and find that KF-2: the
per-query average read bandwidth scales up to 10.1× when
the dataset size increases to 10×. Milvus with DiskANN fails
to saturate the SSD’s bandwidth.

RQ3: How do the indexes’ parameters affect vector
databases’ performance and I/O characteristics? The vector
indexes have parameters to tune between accuracy, index size,
search performance, and index building time. We investi-
gate how two search-time parameters, search_list and
beam_width, affect the performance and I/O characteristics
of DiskANN with Milvus. KF-3: Increasing search_list
from 10 to 100 brings up to 6.5% accuracy increase with the
cost of up to 60.9% throughput decrease, and 77.0% latency
increase with an up to 6.3× per-query average bandwidth.

Our key contributions in this work are:
• To the best of our knowledge, this is the first-of-its-kind

systematic study on state-of-the-practice vector databases
with NVMe SSDs, exploring their performance, scalability,
and I/O characteristics, resulting in 22 observations and 3
key findings.

• We investigate the I/O characteristics of vector
databases with storage-based setups on a modern NVMe
SSD and report that the existing storage-based solutions,
Milvus with DiskANN, mainly issue 4 KiB random I/O

Centroid

a. Index structure b. Vector search
Query
vector

Serach candidate
clusters

Serach indide
clusters

Top K (approximate)
nearest vectors

...

0.

1.

2.

3.

(a) Cluster-based index.
a. Index structure b. Vector search

Traverse sequence

1. Start from the starting node (red) then;
2. Compare the distance, update V, L;
3. Traverse to the closest unvisited vertex,
repeat 2;
4. Until the k-nearest neighbors in L are
visited.

(b) Graph-based index.

Figure 1: An illustration of cluster-based index and graph-
based index.

requests and fail to fully utilize the performance of modern
SSDs.

• To facilitate reproduction, we open-source the im-
plementation of our script and the traces collected dur-
ing our experiments at https://github.com/atlarge-research/
2025-iiswc-vectordb-bench-artifact-public, permanent link
at https://zenodo.org/records/16916496.

II. BACKGROUND

In this section, we present the background on approximate
nearest neighbor search, vector databases, and dense vector
indexing.

A. Approximate Nearest Neighbor Search

Given a vector dataset X = [x1, x2, ..., xn] ∈ Rd and a
query vector q ∈ Rd where all the vectors in X and q have the
same dimension d, the k-nearest neighbor search (NNS) prob-
lem is defined as: finding k vectors K = [i1, i2, ..., ik] ⊂ X
that D(q, i) ≤ D(q, j) for any i ∈ K and j ∈ X \ K
where D measures the distance between two vectors. However,
the vector datasets in real-world applications can contain
billions of vectors, making it computationally prohibitive to
find the exact K nearest neighbor with brute-force searching
the whole dataset [29], [75]. A practical solution is to find the
approximate nearest neighbor instead of the exact k nearest
neighbor, called approximate nearest neighbor search (ANNS)
in vector similarity search. ANNS finds k approximate vectors
K ′ that are close to the query vector q. The accuracy of
ANNS is called recall, where it is defined as recall@k =
|K∩K′|

k . To accelerate ANNS, the vectors are indexed for fast
similarity search. There are four kinds of indexes: (1) cluster-
based indexes, (2) graph-based indexes, (3) tree-based indexes,
and (4) hashing-based indexes. Since only the cluster-based
indexes and graph-based indexes are used in our benchmarked
databases, we explain these two indexes in detail.

B. Dense Vector Indexes

Cluster-based indexes: Fig. 1a shows the general structure of
a cluster-based index (left) and the search procedure (right).
The vectors are clustered with K-Means clustering, and each
cluster is represented by a centroid. The number of clusters
is usually referred to as nlist and is set as a tunable
parameter while building the index. Duplicating the vectors at
the border of each cluster into more than one cluster achieves
high accuracy at the cost of increased index sizes [29]. The
vectors can be compressed, such as product quantization (PQ),
to reduce the memory cost [46]. During a query (step 1),
the search procedure first identifies the candidate clusters
by comparing the query vector to the centroids, where the
number of clusters is usually referred to as nprobe (step 2).
The centroids can be further managed by a graph index to
accelerate the procedure of candidate cluster selection. Then,
the query vector is compared with all the vectors in the
candidate clusters to find the approximate nearest neighbors.
The k nearest vectors in the candidate clusters are selected as
the final result (step 3).
Graph-based indexes: Fig. 1b shows the general structure of
a graph-based index (left) and the search procedure (right).
Graph-based indexes construct a proximity graph of the vec-
tors where the vertices in the graph represent the vectors, and
the edges connect the vectors that are close to each other [53],
[54], [59], [68]. The search procedure starts from a start node
and traverses the graph with a best-first strategy (step 1). The
start node can be fixed or chosen randomly. Recent works
proposed using a smaller sampled graph to select the start
vectors to reduce the travel length [59], [68], [72]. The best-
first search procedure is shown in step 2 to step 4. During
the traversal, the search keeps two sets of vectors: (1) the
top-k candidate vectors L, and (2) the vectors that have been
traversed V . During each iteration, it selects the vector that is
unvisited in L and closest to the query vector, computes the
distance between these neighbors and the query vector, and
updates the candidate vectors L and visited vectors V (step
2). After the L and V are updated, it repeats step 2 until all
the vectors in the candidate set are visited (step 3). When the
traversal ends, the vectors in L are the approximate nearest
vectors of the query vector (step 4).
Storage-optimized indexes: For billion-level vector datasets,
the size of the indexes can reach more than 700 GiBs, pos-
ing significant overhead on the memory [62]. Thus, studies
propose to store the vector indexes in storage devices instead
of main memory [29], [59], [68], [72], [75]. The two kinds
of indexes, cluster-based and graph-based indexes, both have
storage-based variations.

Cluster-based indexes fit the access granularity since all the
vectors in the same cluster can be stored consecutively in the
storage devices. However, the vectors near the border of the
clusters are replicated into several different clusters to achieve
higher accuracy, leading to space amplification. For example,
the vectors at the border of clusters can be replicated up to
eight times in SPANN [29], [75].

https://github.com/atlarge-research/2025-iiswc-vectordb-bench-artifact-public
https://github.com/atlarge-research/2025-iiswc-vectordb-bench-artifact-public
https://zenodo.org/records/16916496

Graph-based indexes are prone to high latency due to their
dependency between I/O requests during the graph traver-
sal [59], [68]. In this paper, we only include DiskANN in
our benchmarks since it is the only supported storage-based
vector index in the selected vector databases [68]. DiskANN
is a graph-based index that is specifically designed for SSDs.
Specifically, DiskANN stores compressed vectors in memory
and the graph index together with the full-precision vectors in
the storage device. During the search procedure, the neighbors
of the graph vertices are fetched from the storage devices,
where the distance is computed using the compressed vec-
tors in the memory. Different from the best-first search in
general graph-based indexes, DiskANN utilizes beam search
that computes the distance of the top W closest (W=1 in the
best-first search strategy) unvisited vectors in the candidate
vectors L (search_list) since reading a single 4KiB page
has the same latency as reading a few pages from the SSDs
when the SSD throughput is not the bottleneck. We will show
how search_list and W , called beam_width, affect the
throughput, latency, and I/O patterns in §VI.

C. Vector Databases

Vector databases are specialized databases that treat vectors
as first-class entities, primarily optimized for vector opera-
tions such as ANNS. Different from the ANNS algorithms
introduced in the previous section, although vector databases
rely on vector indexes to enable efficient vector searches,
vector databases are fully functional systems (normally dis-
tributed) that offer additional capabilities beyond ANNS, such
as transaction management, dynamic vector insertion and
deletion, handling auxiliary data (payloads) associated with
vectors, and data persistence. Commonly used vector database
systems include Milvus [69], Qdrant [13], Weaviate [22],
Chroma [2], and LanceDB [9], all of which are production-
ready solutions adaptable to various deployment scenarios,
ranging from single-machine setups to distributed environ-
ments. These databases also support diverse storage backends,
including cloud-based solutions such as cloud object storage
and local storage devices. In this work, we specifically focus
on scenarios where the vector database is deployed on a single
machine using high-speed NVMe SSDs.

III. EXPERIMENT SETUPS

In this section, we present details about the benchmarking
environment, workloads, and benchmarked vector databases.

A. Software and Hardware Setup

Tab. I shows the detailed hardware environment. We use
VectorDBBench [19] as the workload generator and added
support for setting the index parameters needed for our bench-
marking. All the vectors and their associated indexes are stored
in a dedicated NVMe SSD, a Samsung 990 Pro 4 TiB, apart
from the operating system and vector database installations,
which are stored on a SATA SSD, a Samsung MZ7L31T9.
We use a dedicated SSD to store the vector data and their
associated indexes to avoid the interference of I/Os from other

TABLE I: Details of the benchmarking environment

Component Configuration details

CPU Intel(R) Xeon(R) Silver 4416+, 10 cores, hyperthread-
ing disabled, boost disabled.

Memory 256 GiB, DDR5, 4800 MT/s.
Storage device Samsung MZ7L31T9 and Samsung 990 Pro 4 TiB.
Software Ubuntu 22.04.4 LTS with kernel 5.15.0-139-generic,

Milvus 2.5.11, Qdrant 1.14.1, Weaviate 1.31.0,
LanceDB 0.23.0

processes, such as the operating system. Both storage devices
are formatted with the ext4 file system. The performance
of the benchmarked vector databases is compared with three
metrics: throughput, P99 tail latency, and CPU usage. We use
bpftrace [7] to collect the I/O traces in the block layer. We
probe using the block_rq_issue tracepoint and collect the
I/O operation’s type (i.e., read or write) and request size.

Before evaluating the performance of vector databases, we
measure the raw performance of the NMVe SSD used in the
experiments with fio [6]. The Samsung 990 Pro is able to
deliver a peak random read performance of 324.3 KIOPS with
4 KiB request size on a single CPU core and 1.3 MIOPS with
64 concurrent 4 KiB requests using four CPU cores under the
Linux storage stack. 7.2 GiB/s with 128 KiB sequential read
using 32 concurrent threads.

B. Workload Patterns and Methodology

We use four vector datasets that VectorDBBench provides
in our experiments: Cohere 1M, Cohere 10M, OpenAI 500K,
and OpenAI 5M, where the former two contain 1 million and
10 million 768-dimension vectors and the latter two contain
500 thousand and 5 million 1536-dimension vectors. These
two dimensions are chosen because they are the two most
widely used embedding dimensions in RAG [44], [48], [49].

Each experiment runs for 30 seconds with 1,000 query
vectors. If all the queries are used up before the experiment
ends, it restarts from the first query vector. Before each run,
we write the dirty page cache to the storage devices with
sync and flush the page cache with echo 1 | sudo tee
/proc/sys/vm/drop_caches to reduce the impact of
the page caching. We repeat each experiment five times and
report the average throughput and P99 latency with standard
deviation.

C. Vector Databases and Setups

We benchmark four vector databases with different
memory-based and storage-based indexes, depending on
the indexes that are supported by the benchmarked vector
databases. The version of the benchmarked vector databases
are shown in Tab. I. We use the official Docker image for
Milvus [16], Qdrant [8], and Weaviate [20]. LanceDB is set
up with a local Python setup since it does not provide a
Docker image [15]. We focus on three commonly used dense
vector indexes—IVF, HNSW, and DiskANN, and tune their
key parameters to achieve recall@10≥0.9 on Milvus and use
the same key parameters across the four vector databases to

TABLE II: The build&search-time parameters and their achieved recall@10 accuracy of the vector indexes used in the
benchmarking, where the built-time and search-time parameters are shown with transparent and green backgrounds, the
achieved accuracy is shown with grey backgrounds.

IVF HNSW DiskANN
nlist nprobe acc M efConstruction efSearch acc efSearch (LanceDB) search list acc

Cohere 1M 4,000 25 0.90 (0.73) 16 200 27 0.90 41 10 0.94
Cohere 10M 12,648 17 0.90 (0.72) 16 200 43 0.90 56 10 0.93
OpenAI 500K 2,828 16 0.90 (0.66) 16 200 14 0.90 34 10 0.96
OpenAI 5M 8,944 11 0.90 (0.64) 16 200 10 0.91 38 10 0.98

ensure a fair comparison in §IV and §V, respectively. In §VI,
we further investigate how these parameters influence the
databases’ I/O characteristics.

These vector indexes have two types of parameters: build-
time parameters, which determine how the index is constructed
and remain fixed after the indexes are constructed, and search-
time parameters, which control search behavior and can be
modified at search time. Tab. II summarizes the build- and
search-time index parameters used in our experiments and their
achieved recall@10 on the four vector datasets with Milvus.
The built-time and search-time parameters are shown with
transparent and green backgrounds, and the achieved accuracy
is shown with grey backgrounds. Specifically, for IVF, we
set nlist to 4

√
n, where n is the number of vectors in

the dataset, as recommended by faiss [4], and tune nprobe
to reach recall@10≥0.9. For HNSW, we set M to 16 and
efConstruction to 200 [54] to balance the accuracy and
index build time, and tune efSearch to reach the target
latency. For DiskANN, we tune the search_list to reach
the target accuracy. However, DiskANN achieves the target
accuracy when search_list is set to the minimum number,
so we keep search_list to the minimum value, 10, for all
four datasets.

LanceDB only supports IVF and HNSW vector index with
quantization. Thus, we use IVF with product quantization
and HNSW with scalar quantization in LanceDB. We tune
the search parameters separately for LanceDB since quantiza-
tion has a negative effect on the accuracy. The efSearch
used for LanceDB is shown in the ‘efSearch (LanceDB)’
column in Tab. II. For IVF with product quantization, we
find that LanceDB has at least 10× lower performance with
the same nprobe used in the other database. Thus, we do
not further increase the nprobe to reach the target accuracy,
recall@10≥0.9, and report the achieved accuracy in the paren-
theses in the ‘acc’ column of the IVF index.

Below, we detail the specific setups evaluated for each
vector database:
Milvus [11]: Milvus is evaluated with all three in-
dexes, IVF (memory-based), HNSW (memory-based), and
DiskANN (storage-based).
Qdrant [13]: Qdrant currently only supports HNSW as
a dense vector index and uses mmap with limited mem-
ory resources. We refer to Qdrant with memory-based as
Qdrant-HNSW. We do not observe a statistically different
performance between memory- and storage-based setups since

there is enough CPU memory to hold the vectors and their
associated indexes. Thus, we do not include Qdrant with a
storage-based setup.
Weaviate [22]: Weaviate only supports a memory-
based HNSW vector index, which is referred to as
Weaviate-HNSW in the experiments.
LanceDB [9]: LanceDB provides two indexes: a storage-
based index IVF, and a memory-based index HNSW. However,
LanceDB only supports quantized vectors with these two
vector indexes. Thus, we use IVF with product quantization,
LanceDB-IVF (storage-based), and HNSW index with scalar
quantization, LanceDB-HNSW (memory-based).

IV. HOW DOES STORAGE-BASED SETUP AFFECT THE
PERFORMANCE OF VECTOR DATABASES

We start our analysis by investigating how storage-
based setups affect the performance of vector databases
to answer RQ1. In this section, we quantify the through-
put, latency, and scalability between four different vec-
tor databases with different indexes. Specifically, we have
five memory-based setups: Milvus-IVF, Milvus-HNSW,
Qdrant-mem, Weaviate-HNSW, and LanceDB-HNSW,
and two storage-based setups: Milvus-DiskANN and
LanceDB-IVF. We evaluate the throughput (QPS) and P99
tail latency (µs) to compare the performance of storage-based
setups to memory-based setups. We quantify how the indexes
and vector databases affect the performance of vector search
by comparing the throughput and latency between the same
vector databases with different vector indexes and different
vector databases with the same vector index. The expectation
is that storage-based setups have lower throughput and higher
latency than memory-based setups due to the SSDs’ lower
bandwidth and higher latency than main memory.

A. Throughput Scalability on Vector Search

Do storage-based indexes have lower throughput than
memory-based indexes, and how does this difference scale
with increased concurrent queries? To answer this ques-
tion, we measure the throughput of the benchmarked vector
databases with both memory- and storage-based setups under
varying levels of concurrency. Fig. 2 shows the throughput
in QPS (y-axis, higher is better) of the benchmarked vector
databases with different indexes as the number of query
threads increases from 1 to 256 on the x-axis. Each query
thread issues a single vector search query and waits for the
completion before issuing the next query. For LanceDB with

1 2 4 8 16 32 64 128 256
Concurrency

0

2

4

6

8
Q

PS
 (

K
)

Milvus IVF
Milvus HNSW
Milvus DiskANN
Qdrant HNSW
Weaviate HNSW
LanceDB IVFPQ
LanceDB HNSW

(a) Cohere 1M

1 2 4 8 16 32 64 128 256
Concurrency

0.0

0.5

1.0

1.5

2.0

Q
PS

 (
K

)

(b) Cohere 10M

1 2 4 8 16 32 64 128 256
Concurrency

0

2

4

6

8

Q
PS

 (
K

)

(c) OpenAI 500K

1 2 4 8 16 32 64 128 256
Concurrency

0.0

0.5

1.0

1.5

2.0

Q
PS

 (
K

)

(d) OpenAI 5M

Figure 2: Throughput scalability with an increasing number of query threads on the four different vector datasets, the storage-
based setups are drawn with dashed lines. (Please note (b) and (d) have different scales on the y-axis from (a) and (c).)

1 2 4 8 16 32 64 128 256
Concurrency

100

101

102

103

104

L
at

en
cy

 (
m

s)

Milvus IVF
Milvus HNSW
Milvus DiskANN
Qdrant HNSW
Weaviate HNSW
LanceDB IVFPQ
LanceDB HNSW

(a) Cohere 1M

1 2 4 8 16 32 64 128 256
Concurrency

100

101

102

103

104

L
at

en
cy

 (
m

s)

(b) Cohere 10M

1 2 4 8 16 32 64 128 256
Concurrency

100

101

102

103

104

L
at

en
cy

 (
m

s)

(c) OpenAI 500K

1 2 4 8 16 32 64 128 256
Concurrency

100

101

102

103

104

L
at

en
cy

 (
m

s)

(d) OpenAI 5M

Figure 3: P99 tail latency scalability with an increasing number of query threads on the four different vector datasets, the
storage-based setups are drawn with dashed lines.

1 2 4 8 16 32 64 128 256
Concurrency

0

20

40

60

80

100

C
PU

 U
til

. (
%

)

Milvus IVF
Milvus HNSW
Milvus DiskANN
Qdrant HNSW
Weaviate HNSW
LanceDB IVFPQ
LanceDB HNSW

(a) Cohere 10M

1 2 4 8 16 32 64 128 256
Concurrency

0

20

40

60

80

100

C
PU

 U
til

. (
%

)

(b) OpenAI 5M

Figure 4: Global CPU usage of different vector databases with
an increasing number of query threads during vector search,
the storage-based setups are drawn with dashed lines, 100%
means that all the 20 CPU cores are 100% utlized.

HNSW index, the concurrency does not scale to 256 since
higher concurrency leads to out-of-memory errors. LanceDB
with the IVF index demonstrates notably lower throughput
(under 100 QPS) even at 256 concurrent queries; hence, we
exclude it from further discussion.

There are three observations here: Firstly, Milvus demon-
strates the highest throughput when using the HNSW index,
while its IVF index configuration shows the lowest throughput.
The storage-based index, DiskANN, achieves a throughput
between these extremes—exhibiting 37.3% to 74.1% lower
throughput than the memory-based HNSW index but outper-
forming IVF by 1.2× to 3.2× throughput with 256 query
threads, indicating that O-1: With the same database, the
indexing method is an important factor for the throughput
of vector search. Notably, DiskANN achieves higher accu-

racy (0.93–0.98) compared to both HNSW and IVF (0.90–
0.91), as shown in Tab. II.

Secondly, the indexing methods alone do not fully determine
the performance of vector databases. Among the databases
supporting the HNSW index, Milvus has the highest through-
put in three out of the four datasets, achieving 1.2×– 3.3×
throughput as Qdrant and 1.5×–7.1× throughput as Weaviate
with 256 query threads, with the exception of the Cohere 10M
dataset. Specifically, Weaviate surpasses Milvus by 61.8% in
throughput with Cohere 10M. O-2: The indexing methods
are not the only factor that affects the throughput of the
vector search; vector databases with the same index have a
throughput difference of up to 7.1×. This indicates that vector
databases are a key factor influencing ANNS performance in
addition to indexing algorithms.

Thirdly, among all configurations tested, O-3: LanceDB
employing the HNSW index with scalar quantization has
the lowest throughput when processing a single concurrent
(in-flight) request, highlighting the substantial performance
impact of quantization and database implementation choices.
It is worth noting that we use a different setup with LanceDB,
an embedded Python library, instead of a database server
running in Docker containers like the other databases, so
further investigation is needed on how the setup affects the
throughput of LanceDB.

How does the throughput change as we increase the
number of concurrent query threads? O-4: All eval-
uated vector databases exhibit superlinear scalability when
concurrency increases from 1 to 16 threads with the two small
datasets, Cohere 1M and OpenAI 500K, with throughput

ranging from 17.5× to 39.5× on Cohere 1M and from 15.8×
to 31.0× on OpenAI 500K with 16 threads as using a single
thread. However, when dataset sizes scale by 10× (to Cohere
10M and OpenAI 5M), the throughput scaling behavior varies
across databases. Specifically, the throughput of Milvus-IVF
and Milvus-DiskANN plateaus after four concurrent threads,
showing 6.0× and 1.6× throughput as one thread on the
two datasets with Milvus-IVF, respectively, and 2.1× band-
width for both datasets with Milvus-DiskANN. While Milvus-
HNSW generally achieves higher overall throughput than other
vector databases with HNSW indexes, it demonstrates limited
scalability, only 2.7× to 3.2× improvement, as concurrency in-
creases from 1 to 16 threads. In contrast, Weaviate and Qdrant
show greater scalability, achieving throughput increases of up
to 41.0× and 14.7× under the same concurrency growth.
O-5: Although Milvus-HNSW performs better than the other
vector databases with HNSW indexes, it has worse scalability
than Qdrant and Weaviate with the two large datasets, Cohere
10M and OpenAI 5M .

How does the throughput scale as we increase the size
of the dataset? Milvus generally exhibits higher throughput
than other vector databases. However, it also experiences the
highest reduction in throughput when the dataset size increases
by 10×, where the throughput reduces to 8.1% and 15.0%
on Cohere and 8.2% to 22.8% on OpenAI when the dataset
size increases 10×. In contrast, Qdrant demonstrates better
scalability than Milvus, with its throughput decreasing to
29.6% and 58.7% of throughput with 10× larger datasets.
Remarkably, although Weaviate has the lowest throughput
in three out of the four datasets, it even achieves 3.1%
and 6.6% throughput increase despite the 10× increase in
dataset size. O-6: Although Milvus achieves the highest
throughput among the benchmarked vector databases, it shows
the highest performance decrease as the dataset size increases.
In contrast, the throughput of Weaviate even increases with the
same increases in dataset size, indicating that vector databases
have a huge influence on the scalability, even with the same
vector index.

B. Latency Scalability on Vector Search

Do storage-based indexes have higher latency than
memory-based indexes, and how does this difference scale
with increased query concurrency? To answer this question,
we measure the P99 tail latency (y-axis, lower is better) with
different vector database setups with increasing concurrency
on the x-axis, as shown in Fig. 3. Similar to the previous
section, we exclude LanceDB with the IVF index from this
analysis.

Firstly, with a single thread, Milvus with the storage-
based indexes, DiskANN, has 13.1% to 96.7% higher latency
than Milvus-HNSW on the four datasets. However, Milvus-
DiskANN achieves 3.9% to 44.5% lower latency than Milvus-
IVF in three out of the four datasets, with the exception
of OpenAI 500K, on which Milvus-DiskANN has 27.3%
higher latency than Milvus-IVF. When the number of threads
increases to 256, Milvus-DiskANN demonstrates 7.7% and

50.8% higher P99 latency than Milvus-HNSW on the Cohere
1M and OpenAI 500K datasets, respectively. This latency
difference becomes even more pronounced, up to 8.6× and
20.1×, when the dataset size increases to 10×. In contrast,
DiskANN achieves up to 53.6% lower P99 latency than the
IVF index under similar conditions. This leads to a similar
observation as the throughput that O-7: vector index is the
main factor that affects the tail latency of vector query, but
vector databases with storage-based setups do not necessarily
have higher latency than memory-based setups.

Secondly, with the same vector index HNSW, Milvus
achieves up to 75.6% and 93.8% lower latency than Qdrant
and Weaviate with a single thread. As concurrency increases
to 256, Qdrant and Weaviate exhibit 17.6% and 3.2% lower
latency than Milvus on the Cohere 10M dataset, whereas Mil-
vus maintains up to 73.2% and 96.1% lower P99 latency than
Qdrant and Weaviate on the other three datasets, indicating
that O-8: indexing method is not the only factor that affects
the P99 tail latency of vector search, vector databases with
the same index have a up to 96.1% latency difference.

Thirdly, as the concurrency increases, the tail latency first
stays flat and then increases. O-9: Interestingly, when the
dataset size increases 10× with both Cohere and OpenAI,
the P99 latency of Milvus-IVF, Milvus-HNSW, and Milvus-
DiskANN reduced up to 8.0%, 37.6%, and 47.0% whereas the
P99 latency increases up to 96.9% and 18.7% for Weaviate
and Qdrant.

To further investigate if the CPU is the bottleneck during
vector search, we record the CPU utilization during the vector
search and plot the average global CPU utilization for Cohere
10M and OpenAI 5M in Fig. 4 on the y-axis as the concur-
rency increases on the x-axis. We find a strong connection
between throughput and CPU usage. For Milvus with IVF
and DiskANN, both throughput and CPU usage plateau after
4 concurrent query threads, and for Qdrant and Weaviate, this
number grows to 32. However, we observe less correlation
between CPU usage and P99 latency than throughput, where
the P99 latency of Milvus of all three index settings starts to
increase from 1 concurrent thread. The P99 latency of Qdrant
and Weaviate starts to increase after 8 and 16 threads, before
the CPU usage stops increasing.

Answering RQ1 with KF1: We observe that the storage-
based setups can have lower throughput and higher la-
tency than memory-based setups (Milvus-HNSW vs. Milvus-
DiskANN). However, vector databases with storage-based
indexes do not necessarily have worse performance than
memory-based indexes. For example, Milvus-DiskANN has
higher throughput and lower latency than Milvus-IVF, which
is the same vector database with memory-based indexes, and
the other three vector databases with memory-based indexes in
three out of four datasets. We also summarize that although the
vector index is an important factor that affects the performance
of vector databases (Milvus with different indexes), different
vector databases can have a performance difference with the
same vector index, with a 7.1× throughput difference in our
benchmarked settings.

0 10 20 30
Time (S)

0

250

500

750

1,000
B

an
dw

id
th

 (
M

iB
/s

)
1 thread
32 threads
256 threads

(a) Cohere 1M

0 10 20 30
Time (S)

0

250

500

750

1,000

B
an

dw
id

th
 (

M
iB

/s
)

1 thread
8 threads
256 threads

(b) Cohere 10M

0 10 20 30
Time (S)

0

250

500

750

1,000

B
an

dw
id

th
 (

M
iB

/s
)

1 thread
16 threads
256 threads

(c) OpenAI 500K

0 10 20 30
Time (S)

0

250

500

750

1,000

B
an

dw
id

th
 (

M
iB

/s
)

1 thread
4 threads
256 threads

(d) OpenAI 5M

Figure 5: Read bandwidth of Milvus with DiskANN index during vector search on the four vector datasets under different
query concurrencies, where each thread has one in-flight query.

cohere-1m

cohere-10m

openai-500k

openai-5m
0.0

0.5

1.0

1.5

2.0

2.5

B
an

dw
id

th
 (

M
iB

/s
)

0.08

0.67

0.21

2.13

(a) Concurrency = 1

cohere-1m

cohere-10m

openai-500k

openai-5m
0.0

0.5

1.0

1.5

2.0

2.5

B
an

dw
id

th
 (

M
iB

/s
)

0.07

0.58

0.19

1.85

(b) Concurrency = 256

Figure 6: Average read bandwidth of Milvus with DiskANN
index during vector search on the four vector datasets.

V. I/O WORKLOAD CHARACTERIZATION

In the previous section, we compared the P99 tail la-
tency, throughput, and scalability between memory-based and
storage-based vector database setups. Our analysis indicates
that storage-based setups do not necessarily result in lower
throughput or higher latency compared to memory-based
setups. Given that modern NVMe SSDs are able to deliver
millions of I/O operations/s with tens of µs of latency, it
is important to investigate whether storage-based setups can
fully utilize the potential of these high-performance SSDs. To
better understand these observed performance outcomes, this
section specifically examines the I/O characteristics of vector
databases to answer RQ2: What are the I/O characteristics of
the benchmarked vector databases, and are they able to fully
utilize the bandwidth and throughput of modern SSDs? We
focus on DiskANN, given its superior performance over its
storage-based counterparts, LanceDB with the IVF index.

A. I/O Bandwidth During Search

What is the I/O bandwidth of the benchmarked vector
databases with storage-based setups, and how does the
I/O traffic scale with an increasing number of concur-
rency? To answer this question, we collect the block-level I/O
traces of Milvus-DiskANN with three query concurrencies:
(1) concurrency = 1, (2) concurrency = when the throughput
plateaus, and (3) concurrency = 256. It is expected that for
all four databases, the bandwidth increases as we increase
the concurrency since increasing concurrency leads to higher
throughput, meaning that more work is completed within a
fixed length of time. Consequently, as the vector databases

finish more work, it is expected to read more data from the
storage device.

Fig. 5 shows the per-second averaged bandwidth (y-axis)
of the Milvus-DiskANN with three concurrency levels during
vector search. The experiment’s start time aligns with the initi-
ation of vector searches, where all the query threads are synced
at time 0 on the x-axis. However, due to this synchronization,
the I/O traffic at concurrency level 256 begins later than the
actual start of the experiment (x = 0). The experiment ends at
the 30-second mark, indicated by the horizontal blue line. The
read bandwidth remains stable during the search, indicating a
stable I/O workload during the vector search. Firstly, the SSD
is not saturated during vector similarity search in our hardware
setup, where O-10: the maximum bandwidth achieved in the
experiments is 658.8 MiB/s, achieved with 256 threads with
OpenAI 5M, with 8.9% of the SSD’s maximum bandwidth of
7.2 GiB/s. Secondly, O-11: the average read bandwidth
with one thread increases to 16.7× and 17.4× when the
dataset size increases 10×, however, this increase reduces to
6.9% and 36.9% with 256 threads. We hypothesize that this
decrease in bandwidth when the number of threads increases
from 1 to 256 is caused by the CPU becoming the bottleneck.
Thirdly, O-12: increasing concurrency from 1 to 256 results
in a substantial bandwidth increase for smaller datasets —
28.8× for Cohere 1M and 22.8× for OpenAI 500K, but the
scaling diminishes notably with larger datasets, only 1.8× and
1.9× for Cohere 10M and OpenAI 5M, respectively.

B. Per-query I/O Load During Vector Search

In this subsection, we analyze the performance at a finer
granularity by investigating how the per-query bandwidth
changes with increasing dataset size and concurrency.

Fig. 6 shows the average read bandwidth per query on the
y-axis with two different concurrencies, 1 and 256. Firstly, as
concurrency increases from 1 to 256, the per-query bandwidth
decreases across all four datasets, with reductions ranging from
9.5% to 13.4%. This indicates that O-13: higher concurrency
leads to lower per-query bandwidth. Secondly, O-14: when
the size of the dataset increases by a factor of 10, the per-
query average bandwidth of DiskANN increases to 8.4× and
10.1× with the Cohere and OpenAI datasets, respectively.
This indicates that larger datasets require higher per-request
bandwidth, raising concerns about whether the SSD will be

10 20 30 40 50 60 70 80 90 100
Search list

0

1

2

3

4
Q

PS
 (

K
)

Cohere 1M, 1 thread
Cohere 1M, 256 threads
Cohere 10M, 1 thread
Cohere 10M, 256 threads

(a) Cohere

10 20 30 40 50 60 70 80 90 100
Search list

0

1

2

3

4

Q
PS

 (
K

)

OpenAI 500K, 1 thread
openai-500k, 256 threads
openai-5m, 1 thread
openai-5m, 256 threads

(b) OpenAI

Figure 7: Vector search throughput of Milvus-DiskANN with
an increasing value of search_list.

10 20 30 40 50 60 70 80 90 100
Search list

0

5

10

15

20

25

L
at

en
cy

 (
m

s)

Cohere 1M
Cohere 10M

OpenAI 500K
OpenAI 5M

Figure 8: Vector search
P99 tail latency of Milvus-
DiskANN with an increasing
search_list.

10 20 30 40 50 60 70 80 90 100
Search list

0.90

0.92

0.94

0.96

0.98

1.00

re
ca

ll@
10

Cohere 1M
Cohere 10M
OpenAI 500K
OpenAI 5M

Figure 9: Accuracy of Milvus-
DiskANN with an increasing
search_list (recall@10).

the bottleneck with larger datasets, for example, when the
datasets increase to a billion-level. Additionally, we measured
the size distribution of I/O requests (not shown in Figure 6)
and found that O-15: the I/O requests are dominated by 4 KiB
requests (over 99.99% of the I/O requests are 4 KiB for all the
lines in Fig. 6) . Thus, the I/O granularity is not affected by
the level of concurrency and the size of the database.

Answering RQ2 with KF2: Our experiments in this sec-
tion find that the storage-based setup for Milvus, DiskANN,
achieves the highest 658.8 MiB/s during vector search, thus
can not saturate the SSD. However, further analysis shows
that per-query bandwidth exhibits an 8.4× and 10.1× increase
when the dataset size increases by a factor of 10, raising
concerns that the SSD is the bottleneck with larger vector
datasets.

VI. THE EFFECT OF INDEX PARAMETERS

In the previous section, we investigated the I/O characteris-
tics of storage-based setups of vector databases with Milvus-
DiskANN. DiskANN offers several configurable parameters
that allow users to trade off between the performance of vector
search and accuracy, which is crucial for practical deployment.
In this section, we address RQ3: How do search-time param-
eters affect performance and I/O characteristics? Specifically,
we focus on two search-time parameters of DiskANN that are
supported by Milvus: search_list and beam_width (see
§II for the definition of these two parameters).

10 20 30 40 50 60 70 80 90 100
Search list

0

500

1,000

1,500

2,000

B
an

dw
id

th
 (

M
iB

/s
) Cohere 1M, 1 thread

Cohere 1M, 256 threads
Cohere 10M, 1 thread
Cohere 10M, 256 threads

(a) Cohere

10 20 30 40 50 60 70 80 90 100
Search list

0

500

1,000

1,500

2,000

B
an

dw
id

th
 (

M
iB

/s
) OpenAI 500K, 1 thread

OpenAI 500K, 256 threads
OpenAI 5M, 1 thread
OpenAI 5M, 256 threads

(b) OpenAI

Figure 10: Read bandwidth of Milvus with DiskANN during
vector search with an increasing search_list.

10 20 30 40 50 60 70 80 90 100
Search list

0.0

2.5

5.0

7.5

10.0

12.5

15.0

B
an

dw
id

th
 (

M
iB

/s
) Cohere 1M, 1 thread

Cohere 1M, 256 threads
Cohere 10M, 1 thread
Cohere 10M, 256 threads

(a) Cohere

10 20 30 40 50 60 70 80 90 100
Search list

0.0

2.5

5.0

7.5

10.0

12.5

15.0

B
an

dw
id

th
 (

M
iB

/s
)

OpenAI 500K, 1 thread
OpenAI 500K, 256 threads
OpenAI 5M, 1 thread
OpenAI 5M, 256 threads

(b) OpenAI

Figure 11: Average read bandwidth of Milvus with DiskANN
during vector search with an increasing search_list.

A. The Effect of search_list

How does the search_list affect the performance
and I/O characteristics of DiskANN? search_list is
the size of the candidate list during the search. Increasing
search_list leads to more vectors being checked dur-
ing the vector search, thus resulting in higher search accu-
racy at the cost of performance and potentially higher I/O
overhead, where higher search latency and lower through-
put are expected. Fig. 9 shows the accuracy (recall@10)
of vector similarity search of DiskANN on the y-axis as
search_list increases on the x-axis (note that the y-axis
starts from 0.9). The highest improvement in accuracy occurs
when search_list increases from 10 to 20, resulting in a
gain of 1.0% to 4.3%. When search_list increases from
10 to 100, the total accuracy gain ranges from 2.0% to 6.5%.
O-16: These results demonstrate that larger search_list
values provide diminishing returns in accuracy.

This increased accuracy comes at the expense of reduced
throughput and increased latency. Fig. 7 shows the through-
put (y-axis) of vector similarity search as search_list
increases on the x-axis. O-17: With a single thread,
the throughput decreases from 36.3% to 43.8% when
search_list increases from 10 to 100. O-18: When
the number of threads increases to 256, the reduction is more
pronounced, with throughput decreasing by 51.2% to 60.9%.
Fig. 8 shows the P99 latency (y-axis) as search_list in-
creases with one query thread. O-19: When search_list
increases from 10 to 100, the P99 latency increases 59.7%,
102.5%, 76.2%, and 77.0% with the four datasets.

As search_list increases, it is expected that the number
of vectors checked increases, leading to higher I/O traffic.

1 2 3 4 5 6
Beam width

0.0

0.5

1.0

1.5

2.0
Q

PS
 (

K
)

Cohere 1M
Cohere 10M
OpenAI 500K

OpenAI 5M
Concurrency 1
Concurrency 256

Figure 12: Vector search
throughput of Milvus-
DiskANN with an increasing
beamwidth.

1 2 3 4 5 6
Beam width

0

5

10

15

20

25

L
at

en
cy

 (
m

s)

Cohere 1M
Cohere 10M

OpenAI 500K
OpenAI 5M

Figure 13: Vector search
P99 tail latency of Milvus-
DiskANN with an increasing
beamwidth.

1 2 3 4 5 6
Beam width

0

500

1,000

1,500

2,000

B
an

dw
id

th
 (

M
iB

/s
)

Cohere 1M
Cohere 10M
OpenAI 500K

OpenAI 5M
Concurrecy 1
Concurrency 256

Figure 14: Read bandwidth of
Milvus-DiskANN during vec-
tor search with an increasing
beamwidth.

1 2 3 4 5 6
Beam width

0.0

2.5

5.0

7.5

10.0

12.5

15.0

B
an

dw
id

th
 (

M
iB

/s
)

Cohere 1M
Cohere 10M
OpenAI 500K

OpenAI 5M
Concurrecy 1
Concurrency 256

Figure 15: Average read
bandwidth of Milvus-
DiskANN during vector
search with an increasing
beamwidth.

To further investigate this negative performance effect of
increasing search_list, we analyze the I/O workloads
as search_list increases. Fig. 10 and Fig. 11 show
the total and per-query average bandwidth on the y-axis
as search_list increases on the x-axis. O-20: When
search_list increases from 10 to 100, the total bandwidth
increases from 3.0× to 3.3× with a single thread and from
2.0× to 2.4× with 256 threads. In contrast, the per-query
average bandwidth increases from 5.1× to 6.3× with one
thread and 4.9× to 5.4× with 256 threads. O-21: Both
total bandwidth and per-query average bandwidth increase as
search_list increases. However, the maximum bandwidth
achieved is 1620.0 MiB/s, thus not saturating the SSD .

B. The Effect of beam_width

Next, we investigate how varying beam_width affects the
performance and I/O characteristics in Milvus with DiskANN.
Increasing the beam_width allows more I/O operations to
be issued in parallel, which generally reduces query latency
if the storage devices do not become the bottleneck. Milvus
provides BeamWidthRatio, which specifies the number of
I/O requests that each CPU core can issue per search iteration.
For clarity, in this section, we refer to beam_width as the
number of I/O requests per search iteration per CPU core,
which is consistent with the definition of BeamWidthRatio
in Milvus. To ensure that the system can fully utilize
increased parallelism as beam_width grows, we set
queryNode.scheduler.maxReadConcurrentRatio,

which is the max read concurrency per CPU core, and
search_list to 100. This configuration ensures that
a sufficient number of candidate vectors are available for
parallel processing, preventing the search from becoming
bottlenecked by candidate availability rather than by the
effects of beam_width itself.

Fig. 12 and Fig. 13 show the throughput and P99 tail
latency on the y-axis as beam_width increases on the x-
axis. We observe that both throughput and latency fluctuate as
beam_width increases. Similarly, Fig. 14 and Fig. 15 depict
the total bandwidth and the per-query average bandwidth
as beam_width increases. The bandwidth also fluctuates
without displaying any distinct trend, similar to our earlier
performance observations for throughput and latency.

O-22: We hypothesize that the lack of observable pat-
terns in throughput, latency, and bandwidth as beam_width
increases is due to limitations in the system configuration.
Further investigation is needed to understand system behavior
when beam_width can be set below the total number of CPU
cores.

Answering RQ3 with KF3: Increasing search_list
leads to higher accuracy, with the cost of lower throughput,
higher latency, and higher bandwidth. Despite the increase
in I/O, Milvus with DiskANN does not fully saturate the
SSD at any tested search_list value. The most signif-
icant accuracy improvement occurs when search_list
increases from 10 to 20, further increasing yield and di-
minishing returns in accuracy. However, the degradation in
performance (throughput and P99 latency) and increased I/O
bandwidth do not exhibit the same diminishing returns as
accuracy, making it important to tune search_list to
balance performance and accuracy carefully.

VII. RELATED WORK

Vector management systems: A variety of systems have
been developed to manage vector data, such as libraries [3],
[10], vector plugins for SQL databases [12], and vector
databases [2], [9], [13], [22], [34], [69]. Vector databases
are full-fledged systems that provide vector query, insertion,
deletion, indexing, and many features that are not directly
related to ANNS, such as allowing each vector to be associated
with additional data (payload), payload-based filtering, and
a distributed setup [2], [9], [13], [22]. In this work, we
investigate the performance and I/O characteristics of vector
databases with a disk-based setup with vector search work-
loads.
Approximate Nearest Neighbor Search (ANNS): ANNS is
the core of vector similarity search in vector databases, where
the vector databases are based on ANNS indexes for quick
vector similarity search. There are two widely used ANNS
indexes: cluster-based indexes [24], [27], [29], [75], [76] and
graph-based indexes [34], [53]–[55], [61], [62]. Cluster-based
indexes fit the access granularity of SSDs but have large
space amplification due to the replication of the vectors near
cluster borders for higher accuracy [29]. Other indexes, such

as tree-based indexes [26], [56], [57], [67], [70] and hash-
based indexes [37], [42], [43], [66], [71] have scalability or
accuracy issues [30], [74], and these indexes are not supported
in our benchmarked vector databases [9], [11], [13], [22].
Disk-optimized ANNS indexes: Many studies propose disk-
based ANNS indexes to reduce the memory cost. There
are two main kinds of disk-based ANNS indexes: cluster-
based [29], [75], [78] and graph-based indexes [59], [68],
[72]. DiskANN [68] stores an index of product quantization
compressed vectors in memory and a graph index of the
original vectors in SSDs, and has variants for filtered search
and streaming search [38], [45], [65]. Graph-based indexes
for storage can be optimized by reducing the search path and
increasing the data locality [59], [72]. Cluster-based indexes,
such as SPANN [29], store the centroid points in memory and
the posting lists (the vectors in the cluster) in storage devices.
SPFresh [75] provides an in-place update for vectors with
cluster-based indexes. However, these disk-based indexing
algorithms are not widely adopted in vector databases. Among
our selected vector databases, only Milvus supports DiskANN
as a disk-friendly option [11].
Performance measurement of vector databases: Many vec-
tor databases provide benchmarking tools with their vector
databases, such as Ziliz [19], Qdrant [14], and Weaviate [21].
However, these benchmarks typically report only basic metrics
such as throughput, latency, and recall, without analyzing how
performance scales with dataset size or query concurrency.
ANN Benchmarks [1] compare the performance of different
vector databases/libraries but lack storage-based evaluations
and in-depth analysis. The main goal of our work is to provide
insights into how vector databases, specifically with storage-
based setups, scale with concurrency and the size of datasets,
and investigate the I/O characteristics of vector databases
with storage-based setups. [77] compares vector databases
with relational databases enhanced with vector support to
identify fundamental limitations in relational databases, while
others [23], [73] survey and compare the performance of
graph-based in-memory vector search algorithms. [35] focuses
on the performance of graph-based ANNS methods on edge
devices. Specifically, [30] compares the performance and I/O
pattern of DiskANN [68] and SPFresh [75], two state-of-the-
art ANNS indexes for vector search. Our work is orthogonal
to these benchmarks, where we focus on the performance and
I/O characteristics of full-fledged vector databases instead of
ANNS algorithms.

VIII. LIMITATIONS AND FUTURE WORK

Our work compares the performance of vector databases in
storage-based setups against memory-based setups, investigat-
ing the I/O characteristics using four datasets. Our work can
be expanded in the following directions.

Firstly, our largest dataset comprises 10 million vectors with
768 dimensions and 5 million vectors with 1536 dimensions,
illustrating how performance and I/O characteristics scale
when the dataset size increases by a factor of 10. However,
existing RAG systems now handle trillions of tokens and

billions of vectors, so it would be valuable to investigate
performance and I/O scaling at even larger scales, such as
billions of vectors.

Secondly, our benchmarks focus on a single-machine
setup with local SSD storage. However, benchmarked vector
databases, such as Milvus, support distributed setups with
compute-storage disaggregation, where index files and vector
data reside in remote object storage. Future studies could
examine the performance characteristics and scalability of
storage-based setups in distributed environments utilizing re-
mote storage.

Thirdly, we have concentrated exclusively on vector simi-
larity search performance without assessing performance and
I/O characteristics under workloads involving insertion, dele-
tion, or filtered search operations. We observed that the I/O
workloads are dominated by 4 KiB reads during vector search.
However, with data mutation operations such as insert and
deletion, writes are expected to occur in the I/O workloads.
Since NAND SSDs have read-write interference, meaning that
the read throughput decreases and the latency increases with
concurrent writes. This research can be extended by measuring
and analyzing performance and I/O characteristics under such
hybrid read-write workloads.

IX. CONCLUSION

In this work, we investigate the suitability of vector
databases for deployment on modern NVMe SSDs by quan-
tifying the performance between memory-based and storage-
based setups across different vector databases. We characterize
their I/O behaviors and analyze how index parameters influ-
ence both performance and I/O characteristics. Our findings
reveal three key insights: (1) storage-based setups in vector
databases can have lower throughput and higher latency than
the memory-based setups within the same vector database, but
do not necessarily lead to worse performance than memory-
based setups, especially when this comparison is extended to
different vector databases, (2) the choice of vector database
itself is a major factor influencing search performance, even
when using the same vector index, and (3) state-of-the-
practice vector databases with storage-based setups require
optimizations on I/O traffic to fully utilize the performance
with flash SSDs, whereas the parameters of the indexes should
also be taken into consideration as a factor that affects the
I/O behavior. Future work includes extending performance
characterization of storage-based vector databases to more
complex workloads that combine insertions, deletions, and
searches, as well as integrating state-of-the-art vector indexing
techniques into these systems.

ACKNOWLEDGMENT

We thank the IISWC’25 reviewers for their invaluable and
constructive feedback. The authors would also like to thank
the AtLarge group at Vrije Universiteit Amsterdam for their
help with the paper.

REFERENCES

[1] “ANNS benchmarks,” https://ann-benchmarks.com/index.html, Ac-
cessed: 2025-09-01.

[2] “Chroma,” https://www.trychroma.com, Accessed: 2025-09-01.
[3] “Faiss: A library for efficient similarity search,”

https://engineering.fb.com/2017/03/29/data-infrastructure/
faiss-a-library-for-efficient-similarity-search/, Accessed: 2025-09-
01.

[4] “faiss: Guidelines to choose an index,” https://github.com/
facebookresearch/faiss/wiki/Guidelines-to-choose-an-index?, Accessed:
2025-09-01.

[5] “Find anything blazingly fast with Google’s vector search technology,”
https://cloud.google.com/blog/topics/developers-practitioners/
find-anything-blazingly-fast-googles-vector-search-technology,
Accessed: 2025-09-01.

[6] “fio - Flexible I/O tester,” https://fio.readthedocs.io/en/latest/fio doc.
html, Accessed: 2025-09-01.

[7] “GitHub:bpftrace/bptrace,” https://github.com/bpftrace/bpftrace,
Accessed: 2025-09-01.

[8] “How to get started with Qdrant locally,” https://qdrant.tech/
documentation/quickstart/, Accessed: 2025-09-01.

[9] “LanceDB - The database for multimodal Al,” https://lancedb.com,
Accessed: 2025-09-01.

[10] “Microsoft SPTAG,” https://github.com/microsoft/SPTAG, Accessed:
2025-09-01.

[11] “Milvus — High-performance vector database built for scale,” https:
//milvus.io, Accessed: 2025-09-01.

[12] “pgvector,” https://github.com/pgvector/pgvector, Accessed: 2025-09-
01.

[13] “Qdrant - Vector Database,” https://qdrant.tech, Accessed: 2025-09-01.
[14] “Qdrant: vector database benchmarks,” https://qdrant.tech/benchmarks/,

Accessed: 2025-09-01.
[15] “Quick start: LanceDB,” https://lancedb.github.io/lancedb/basic/, Ac-

cessed: 2025-09-01.
[16] “Run Milvus in Docker (Linux),” https://milvus.io/docs/install

standalone-docker.md, Accessed: 2025-09-01.
[17] “Samsung 990 pro,” https://semiconductor.samsung.com/

consumer-storage/internal-ssd/990-pro/, Accessed: 2025-09-01.
[18] “Vector distance metric types,” https://milvus.io/docs/metric.md, Ac-

cessed: 2025-09-01.
[19] “VectorDBBench - A vector database benchmark tool,” https://zilliz.

com/vector-database-benchmark-tool, Accessed: 2025-09-01.
[20] “Weavaite: How to install: docker,” https://weaviate.io/developers/

weaviate/installation/docker-compose, Accessed: 2025-09-01.
[21] “Weaviate: ANN benchmark,” https://weaviate.io/developers/weaviate/

benchmarks/ann, Accessed: 2025-09-01.
[22] “Weaviate: The Al-native database developers love,” https://weaviate.io,

Accessed: 2025-09-01.
[23] I. Azizi, K. Echihabi, and T. Palpanas, “Graph-based vector search:

An experimental evaluation of the state-of-the-art,” Proc. ACM Manag.
Data, vol. 3, no. 1, pp. 43:1–43:31, 2025. [Online]. Available:
https://doi.org/10.1145/3709693

[24] A. Babenko and V. S. Lempitsky, “The inverted multi-index,” in
2012 IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, June 16-21, 2012. IEEE Computer Society,
2012, pp. 3069–3076. [Online]. Available: https://doi.org/10.1109/
CVPR.2012.6248038

[25] ——, “Efficient indexing of billion-scale datasets of deep descriptors,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 2055–2063. [Online]. Available: https:
//doi.org/10.1109/CVPR.2016.226

[26] ——, “Product split trees,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July
21-26, 2017. IEEE Computer Society, 2017, pp. 6316–6324. [Online].
Available: https://doi.org/10.1109/CVPR.2017.669

[27] D. Baranchuk, A. Babenko, and Y. Malkov, “Revisiting the inverted
indices for billion-scale approximate nearest neighbors,” in Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part XII, ser. Lecture Notes
in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu, and
Y. Weiss, Eds., vol. 11216. Springer, 2018, pp. 209–224. [Online].
Available: https://doi.org/10.1007/978-3-030-01258-8 13

[28] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford,
K. Millican, G. van den Driessche, J. Lespiau, B. Damoc, A. Clark,
D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang,
L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving,
O. Vinyals, S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre,
“Improving language models by retrieving from trillions of tokens,” in
International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, ser. Proceedings of Machine Learning
Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu,
and S. Sabato, Eds., vol. 162. PMLR, 2022, pp. 2206–2240. [Online].
Available: https://proceedings.mlr.press/v162/borgeaud22a.html

[29] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li, M. Yang, and
J. Wang, “SPANN: highly-efficient billion-scale approximate nearest
neighborhood search,” in Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, M. Ranzato,
A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021,
pp. 5199–5212. [Online]. Available: https://proceedings.neurips.cc/
paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html

[30] R. Chen, Y. Peng, X. Wei, H. Xie, R. Chen, S. Shen, and
H. Chen, “Characterizing the dilemma of performance and index
size in billion-scale vector search and breaking it with second-tier
memory,” CoRR, vol. abs/2405.03267, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2405.03267

[31] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016,
S. Sen, W. Geyer, J. Freyne, and P. Castells, Eds. ACM, 2016, pp.
191–198. [Online]. Available: https://doi.org/10.1145/2959100.2959190

[32] C. Fu and D. Cai, “EFANNA : An extremely fast approximate
nearest neighbor search algorithm based on knn graph,” CoRR, vol.
abs/1609.07228, 2016. [Online]. Available: http://arxiv.org/abs/1609.
07228

[33] C. Fu, C. Wang, and D. Cai, “High dimensional similarity
search with satellite system graph: Efficiency, scalability, and
unindexed query compatibility,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 8, pp. 4139–4150, 2022. [Online]. Available:
https://doi.org/10.1109/TPAMI.2021.3067706

[34] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest
neighbor search with the navigating spreading-out graph,” Proc. VLDB
Endow., vol. 12, no. 5, pp. 461–474, 2019. [Online]. Available:
http://www.vldb.org/pvldb/vol12/p461-fu.pdf

[35] A. Ganbarov, J. Yuan, A. Le-Tuan, M. Hauswirth, and D. L. Phuoc,
“Experimental comparison of graph-based approximate nearest neighbor
search algorithms on edge devices,” CoRR, vol. abs/2411.14006, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2411.14006

[36] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
Q. Guo, M. Wang, and H. Wang, “Retrieval-augmented generation for
large language models: A survey,” CoRR, vol. abs/2312.10997, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2312.10997

[37] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999,
Edinburgh, Scotland, UK, M. P. Atkinson, M. E. Orlowska, P. Valduriez,
S. B. Zdonik, and M. L. Brodie, Eds. Morgan Kaufmann, 1999, pp.
518–529. [Online]. Available: http://www.vldb.org/conf/1999/P49.pdf

[38] S. Gollapudi, N. Karia, V. Sivashankar, R. Krishnaswamy, N. Begwani,
S. Raz, Y. Lin, Y. Zhang, N. Mahapatro, P. Srinivasan, A. Singh, and
H. V. Simhadri, “Filtered-diskann: Graph algorithms for approximate
nearest neighbor search with filters,” in Proceedings of the ACM Web
Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4
May 2023, Y. Ding, J. Tang, J. F. Sequeda, L. Aroyo, C. Castillo, and
G. Houben, Eds. ACM, 2023, pp. 3406–3416. [Online]. Available:
https://doi.org/10.1145/3543507.3583552

[39] M. Grbovic and H. Cheng, “Real-time personalization using embeddings
for search ranking at airbnb,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
KDD 2018, London, UK, August 19-23, 2018, Y. Guo and
F. Farooq, Eds. ACM, 2018, pp. 311–320. [Online]. Available:
https://doi.org/10.1145/3219819.3219885

[40] R. Guo, X. Luan, L. Xiang, X. Yan, X. Yi, J. Luo, Q. Cheng, W. Xu,
J. Luo, F. Liu, Z. Cao, Y. Qiao, T. Wang, B. Tang, and C. Xie, “Manu:
A cloud native vector database management system,” Proc. VLDB

https://ann-benchmarks.com/index.html
https://www.trychroma.com
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index?
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index?
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://github.com/bpftrace/bpftrace
https://qdrant.tech/documentation/quickstart/
https://qdrant.tech/documentation/quickstart/
https://lancedb.com
https://github.com/microsoft/SPTAG
https://milvus.io
https://milvus.io
https://github.com/pgvector/pgvector
https://qdrant.tech
https://qdrant.tech/benchmarks/
https://lancedb.github.io/lancedb/basic/
https://milvus.io/docs/install_standalone-docker.md
https://milvus.io/docs/install_standalone-docker.md
https://semiconductor.samsung.com/consumer-storage/internal-ssd/990-pro/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/990-pro/
https://milvus.io/docs/metric.md
https://zilliz.com/vector-database-benchmark-tool
https://zilliz.com/vector-database-benchmark-tool
https://weaviate.io/developers/weaviate/installation/docker-compose
https://weaviate.io/developers/weaviate/installation/docker-compose
https://weaviate.io/developers/weaviate/benchmarks/ann
https://weaviate.io/developers/weaviate/benchmarks/ann
https://weaviate.io
https://doi.org/10.1145/3709693
https://doi.org/10.1109/CVPR.2012.6248038
https://doi.org/10.1109/CVPR.2012.6248038
https://doi.org/10.1109/CVPR.2016.226
https://doi.org/10.1109/CVPR.2016.226
https://doi.org/10.1109/CVPR.2017.669
https://doi.org/10.1007/978-3-030-01258-8_13
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/299dc35e747eb77177d9cea10a802da2-Abstract.html
https://doi.org/10.48550/arXiv.2405.03267
https://doi.org/10.1145/2959100.2959190
http://arxiv.org/abs/1609.07228
http://arxiv.org/abs/1609.07228
https://doi.org/10.1109/TPAMI.2021.3067706
http://www.vldb.org/pvldb/vol12/p461-fu.pdf
https://doi.org/10.48550/arXiv.2411.14006
https://doi.org/10.48550/arXiv.2312.10997
http://www.vldb.org/conf/1999/P49.pdf
https://doi.org/10.1145/3543507.3583552
https://doi.org/10.1145/3219819.3219885

Endow., vol. 15, no. 12, pp. 3548–3561, 2022. [Online]. Available:
https://www.vldb.org/pvldb/vol15/p3548-yan.pdf

[41] B. Harwood and T. Drummond, “FANNG: fast approximate nearest
neighbour graphs,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 5713–5722. [Online].
Available: https://doi.org/10.1109/CVPR.2016.616

[42] J. He, W. Liu, and S. Chang, “Scalable similarity search with
optimized kernel hashing,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010, B. Rao, B. Krishnapuram,
A. Tomkins, and Q. Yang, Eds. ACM, 2010, pp. 1129–1138. [Online].
Available: https://doi.org/10.1145/1835804.1835946

[43] Q. Huang, J. Feng, Y. Zhang, Q. Fang, and W. Ng, “Query-aware
locality-sensitive hashing for approximate nearest neighbor search,”
Proc. VLDB Endow., vol. 9, no. 1, pp. 1–12, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p1-huang.pdf

[44] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski,
A. Joulin, and E. Grave, “Unsupervised dense information retrieval
with contrastive learning,” Trans. Mach. Learn. Res., vol. 2022, 2022.
[Online]. Available: https://openreview.net/forum?id=jKN1pXi7b0

[45] S. Jaiswal, R. Krishnaswamy, A. Garg, H. V. Simhadri, and
S. Agrawal, “Ood-diskann: Efficient and scalable graph ANNS for
out-of-distribution queries,” CoRR, vol. abs/2211.12850, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2211.12850

[46] H. Jégou, M. Douze, and C. Schmid, “Product quantization
for nearest neighbor search,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 1, pp. 117–128, 2011. [Online]. Available:
https://doi.org/10.1109/TPAMI.2010.57

[47] Z. Jing, Y. Su, Y. Han, B. Yuan, H. Xu, C. Liu, K. Chen, and
M. Zhang, “When large language models meet vector databases:
A survey,” CoRR, vol. abs/2402.01763, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2402.01763

[48] V. Karpukhin, B. Oguz, S. Min, P. S. H. Lewis, L. Wu, S. Edunov,
D. Chen, and W. Yih, “Dense passage retrieval for open-domain
question answering,” in Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, B. Webber, T. Cohn, Y. He, and Y. Liu,
Eds. Association for Computational Linguistics, 2020, pp. 6769–6781.
[Online]. Available: https://doi.org/10.18653/v1/2020.emnlp-main.550

[49] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and
D. Kiela, “Retrieval-augmented generation for knowledge-intensive
NLP tasks,” in Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/6b493230205f780e1bc26945df7481e5-Abstract.html

[50] J. Li, H. Liu, C. Gui, J. Chen, Z. Ni, N. Wang, and Y. Chen, “The
design and implementation of a real time visual search system on
JD e-commerce platform,” in Proceedings of the 19th International
Middleware Conference, Middleware Industrial Track 2018, Rennes,
France, December 10-14, 2018. ACM, 2018, pp. 9–16. [Online].
Available: https://doi.org/10.1145/3284028.3284030

[51] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin,
“Approximate nearest neighbor search on high dimensional data -
experiments, analyses, and improvement,” IEEE Trans. Knowl. Data
Eng., vol. 32, no. 8, pp. 1475–1488, 2020. [Online]. Available:
https://doi.org/10.1109/TKDE.2019.2909204

[52] F. Liu, Z. Kang, and X. Han, “Optimizing RAG techniques for
automotive industry PDF chatbots: A case study with locally deployed
ollama models,” CoRR, vol. abs/2408.05933, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2408.05933

[53] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,”
Inf. Syst., vol. 45, pp. 61–68, 2014. [Online]. Available: https:
//doi.org/10.1016/j.is.2013.10.006

[54] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4,
pp. 824–836, 2020. [Online]. Available: https://doi.org/10.1109/TPAMI.
2018.2889473

[55] M. D. Manohar, Z. Shen, G. E. Blelloch, L. Dhulipala, Y. Gu,
H. V. Simhadri, and Y. Sun, “Parlayann: Scalable and deterministic
parallel graph-based approximate nearest neighbor search algorithms,”
in Proceedings of the 29th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, PPoPP 2024,
Edinburgh, United Kingdom, March 2-6, 2024, M. Steuwer, I. A. Lee,
and M. Chabbi, Eds. ACM, 2024, pp. 270–285. [Online]. Available:
https://doi.org/10.1145/3627535.3638475

[56] M. McCartin-Lim, A. McGregor, and R. Wang, “Approximate principal
direction trees,” in Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June
26 - July 1, 2012. icml.cc / Omnipress, 2012. [Online]. Available:
http://icml.cc/2012/papers/348.pdf

[57] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms
for high dimensional data,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 11, pp. 2227–2240, 2014. [Online]. Available:
https://doi.org/10.1109/TPAMI.2014.2321376

[58] J. A. V. Muñoz, M. A. Gonçalves, Z. Dias, and R. da Silva Torres,
“Hierarchical clustering-based graphs for large scale approximate
nearest neighbor search,” Pattern Recognit., vol. 96, 2019. [Online].
Available: https://doi.org/10.1016/j.patcog.2019.106970

[59] J. Ni, X. Xu, Y. Wang, C. Li, J. Yao, S. Xiao, and X. Zhang,
“Diskann++: Efficient page-based search over isomorphic mapped graph
index using query-sensitivity entry vertex,” CoRR, vol. abs/2310.00402,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.00402

[60] S. Okura, Y. Tagami, S. Ono, and A. Tajima, “Embedding-based
news recommendation for millions of users,” in Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Halifax, NS, Canada, August 13
- 17, 2017. ACM, 2017, pp. 1933–1942. [Online]. Available:
https://doi.org/10.1145/3097983.3098108

[61] Z. Peng, M. Zhang, K. Li, R. Jin, and B. Ren, “iqan: Fast and accurate
vector search with efficient intra-query parallelism on multi-core
architectures,” in Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, PPoPP
2023, Montreal, QC, Canada, 25 February 2023 - 1 March 2023, M. M.
Dehnavi, M. Kulkarni, and S. Krishnamoorthy, Eds. ACM, 2023, pp.
313–328. [Online]. Available: https://doi.org/10.1145/3572848.3577527

[62] J. Ren, M. Zhang, and D. Li, “HM-ANN: efficient billion-point nearest
neighbor search on heterogeneous memory,” in Advances in Neural
Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/hash/788d986905533aba051261497ecffcbb-Abstract.html

[63] Z. Ren, K. Doekemeijer, N. Tehrany, and A. Trivedi, “Bfq, multiqueue-
deadline, or kyber? performance characterization of linux storage
schedulers in the nvme era,” in Proceedings of the 15th ACM/SPEC
International Conference on Performance Engineering, ICPE 2024,
London, United Kingdom, May 7-11, 2024, S. Balsamo, W. J.
Knottenbelt, C. L. Abad, and W. Shang, Eds. ACM, 2024, pp.
154–165. [Online]. Available: https://doi.org/10.1145/3629526.3645053

[64] Z. Ren and A. Trivedi, “Performance characterization of modern
storage stacks: POSIX i/o, libaio, spdk, and io uring,” in Proceedings
of the 3rd Workshop on Challenges and Opportunities of Efficient and
Performant Storage Systems, CHEOPS 2023, Rome, Italy, 8 May 2023,
J. Acquaviva, S. Ibrahim, and S. Byna, Eds. ACM, 2023, pp. 35–45.
[Online]. Available: https://doi.org/10.1145/3578353.3589545

[65] A. Singh, S. J. Subramanya, R. Krishnaswamy, and H. V. Simhadri,
“Freshdiskann: A fast and accurate graph-based ANN index for
streaming similarity search,” CoRR, vol. abs/2105.09613, 2021.
[Online]. Available: https://arxiv.org/abs/2105.09613

[66] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple
feature hashing for real-time large scale near-duplicate video retrieval,”
in Proceedings of the 19th International Conference on Multimedia
2011, Scottsdale, AZ, USA, November 28 - December 1, 2011, K. S.
Candan, S. Panchanathan, B. Prabhakaran, H. Sundaram, W. Feng,
and N. Sebe, Eds. ACM, 2011, pp. 423–432. [Online]. Available:
https://doi.org/10.1145/2072298.2072354

[67] R. F. Sproull, “Refinements to nearest-neighbor searching in k-
dimensional trees,” Algorithmica, vol. 6, no. 4, pp. 579–589, 1991.
[Online]. Available: https://doi.org/10.1007/BF01759061

[68] S. J. Subramanya, Devvrit, R. Kadekodi, R. Krishaswamy, and H. V.

https://www.vldb.org/pvldb/vol15/p3548-yan.pdf
https://doi.org/10.1109/CVPR.2016.616
https://doi.org/10.1145/1835804.1835946
http://www.vldb.org/pvldb/vol9/p1-huang.pdf
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.48550/arXiv.2211.12850
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.48550/arXiv.2402.01763
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.1145/3284028.3284030
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.48550/arXiv.2408.05933
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1016/j.is.2013.10.006
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3627535.3638475
http://icml.cc/2012/papers/348.pdf
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1016/j.patcog.2019.106970
https://doi.org/10.48550/arXiv.2310.00402
https://doi.org/10.1145/3097983.3098108
https://doi.org/10.1145/3572848.3577527
https://proceedings.neurips.cc/paper/2020/hash/788d986905533aba051261497ecffcbb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/788d986905533aba051261497ecffcbb-Abstract.html
https://doi.org/10.1145/3629526.3645053
https://doi.org/10.1145/3578353.3589545
https://arxiv.org/abs/2105.09613
https://doi.org/10.1145/2072298.2072354
https://doi.org/10.1007/BF01759061

Simhadri, DiskANN: fast accurate billion-point nearest neighbor search
on a single node. Red Hook, NY, USA: Curran Associates Inc., 2019.

[69] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li,
X. Xu, K. Yu, Y. Yuan, Y. Zou, J. Long, Y. Cai, Z. Li, Z. Zhang, Y. Mo,
J. Gu, R. Jiang, Y. Wei, and C. Xie, “Milvus: A purpose-built vector
data management system,” in SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June 20-25, 2021, G. Li,
Z. Li, S. Idreos, and D. Srivastava, Eds. ACM, 2021, pp. 2614–2627.
[Online]. Available: https://doi.org/10.1145/3448016.3457550

[70] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and X. Hua,
“Trinary-projection trees for approximate nearest neighbor search,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2, pp. 388–403,
2014. [Online]. Available: https://doi.org/10.1109/TPAMI.2013.125

[71] J. Wang, S. Kumar, and S. Chang, “Semi-supervised hashing
for large-scale search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 12, pp. 2393–2406, 2012. [Online]. Available: https:
//doi.org/10.1109/TPAMI.2012.48

[72] M. Wang, W. Xu, X. Yi, S. Wu, Z. Peng, X. Ke, Y. Gao,
X. Xu, R. Guo, and C. Xie, “Starling: An i/o-efficient disk-
resident graph index framework for high-dimensional vector similarity
search on data segment,” Proc. ACM Manag. Data, vol. 2,
no. 1, pp. V2mod014:1–V2mod014:27, 2024. [Online]. Available:
https://doi.org/10.1145/3639269

[73] M. Wang, X. Xu, Q. Yue, and Y. Wang, “A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor
search,” Proc. VLDB Endow., vol. 14, no. 11, pp. 1964–1978, 2021.
[Online]. Available: http://www.vldb.org/pvldb/vol14/p1964-wang.pdf

[74] C. Wei, B. Wu, S. Wang, R. Lou, C. Zhan, F. Li, and
Y. Cai, “Analyticdb-v: A hybrid analytical engine towards query
fusion for structured and unstructured data,” Proc. VLDB Endow.,
vol. 13, no. 12, pp. 3152–3165, 2020. [Online]. Available: http:
//www.vldb.org/pvldb/vol13/p3152-wei.pdf

[75] Y. Xu, H. Liang, J. Li, S. Xu, Q. Chen, Q. Zhang, C. Li, Z. Yang,
F. Yang, Y. Yang, P. Cheng, and M. Yang, “Spfresh: Incremental
in-place update for billion-scale vector search,” in Proceedings of
the 29th Symposium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, J. Flinn, M. I. Seltzer,
P. Druschel, A. Kaufmann, and J. Mace, Eds. ACM, 2023, pp.
545–561. [Online]. Available: https://doi.org/10.1145/3600006.3613166

[76] M. Zhang and Y. He, “GRIP: multi-store capacity-optimized high-
performance nearest neighbor search for vector search engine,” in
Proceedings of the 28th ACM International Conference on Information
and Knowledge Management, CIKM 2019, Beijing, China, November
3-7, 2019, W. Zhu, D. Tao, X. Cheng, P. Cui, E. A. Rundensteiner,
D. Carmel, Q. He, and J. X. Yu, Eds. ACM, 2019, pp. 1673–1682.
[Online]. Available: https://doi.org/10.1145/3357384.3357938

[77] Y. Zhang, S. Liu, and J. Wang, “Are there fundamental limitations
in supporting vector data management in relational databases? A
case study of postgresql,” in 40th IEEE International Conference
on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May
13-16, 2024. IEEE, 2024, pp. 3640–3653. [Online]. Available:
https://doi.org/10.1109/ICDE60146.2024.00280

[78] Z. Zhang, F. Liu, G. Huang, X. Liu, and X. Jin, “Fast vector query
processing for large datasets beyond GPU memory with reordered
pipelining,” in 21st USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2024, Santa Clara, CA, April 15-17, 2024,
L. Vanbever and I. Zhang, Eds. USENIX Association, 2024, pp.
23–40. [Online]. Available: https://www.usenix.org/conference/nsdi24/
presentation/zhang-zili-pipelining

[79] S. Zhao, Y. Yang, Z. Wang, Z. He, L. Qiu, and L. Qiu,
“Retrieval augmented generation (RAG) and beyond: A comprehensive
survey on how to make your llms use external data more
wisely,” CoRR, vol. abs/2409.14924, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2409.14924

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both.
Java and all Java-based trademarks and logos are trademarks

or registered trademarks of Oracle and/or its affiliates. Other
products and service names might be trademarks of IBM or
other companies.

https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1109/TPAMI.2013.125
https://doi.org/10.1109/TPAMI.2012.48
https://doi.org/10.1109/TPAMI.2012.48
https://doi.org/10.1145/3639269
http://www.vldb.org/pvldb/vol14/p1964-wang.pdf
http://www.vldb.org/pvldb/vol13/p3152-wei.pdf
http://www.vldb.org/pvldb/vol13/p3152-wei.pdf
https://doi.org/10.1145/3600006.3613166
https://doi.org/10.1145/3357384.3357938
https://doi.org/10.1109/ICDE60146.2024.00280
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-pipelining
https://www.usenix.org/conference/nsdi24/presentation/zhang-zili-pipelining
https://doi.org/10.48550/arXiv.2409.14924

A. Artifact Appendix
A.1 Abstract
This artifact contains the scripts and traces of Storage-Based Ap-
proximate Nearest Neighbor Search: What are the Performance,
Cost, and I/O Characteristics? We details the environment setup
and the procedures to reproduce our results in this appendix.

A.2 Artifact check-list (meta-information)
• Program: VectorDBBench, Milvus 2.5.11, Qdrant 1.14.1, Weaviate

1.31.0, LanceDB 0.23.0, Python, Docker, bpftrace.

• Data set: Provided by VectorDBBench.

• Run-time environment: Ubuntu 22.04 with 5.15.0-142-generic ker-
nel.

• Hardware: x86-64 machine, NVMe SSD.

• Execution: Command line.

• Metrics: Throughput, P99 tail latency, CPU utilization, bandwidth,
recall.

• Output: I/O traces and vector search throughput and latency.

• How much disk space required (approximately)?: 1.5 TiB.

• How much time is needed to prepare workflow (approximately)?:
1 hour.

• How much time is needed to complete experiments (approxi-
mately)?: two to three weeks deepening on the CPU.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT license.

• Data licenses (if publicly available)?: MIT license for the data col-
lected in this paper.

• Workflow automation framework used?: No.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo
.16916495.

A.3 Description
A.3.1 How to access
The code and traces can be accessed via GitHub link: https:
//github.com/ZebinRen/2025-iiswc-vectordb-bench
-artifact-public. Permanent link (Zenodo): https://doi.
org/10.5281/zenodo.16916496. Due to the file size limitation
of GitHub, the I/O traces are only avaiable via Zenodo.

A.3.2 Hardware dependencies
To reproduce the results, a x86-64 base machine with NVMe SSD
is required.

A.3.3 Software dependencies
The experiments in this paper are carried out with Ubuntu 22.04
with kernel version of 5.15.0-142-generic. It is expected that the
experiments are able to run with other Linux distribution with
other kernel versions. We use bpftrace to trace the I/O workloads
during the vector similarity search, root access is required to use
bpftrace.

A.3.4 Data sets
The datasets used for benchmarking are provided by VectorDBBench,
specific setups are not needed. We use four datasets in this paper:
Cohere 1M, Cohere 10M, OpenAI 500K and OpenAI 5M. All the
traces generated during the benchmarking are accessible via the
Zenodo link at https://doi.org/10.5281/zenodo.16916496.

A.4 Installation
1. Install bpftrace:

$ sudo apt-get install bpftrace

If the bpftrace installed from apt does not work, compile it from
the source code, please refer to the README of the artifact for
instructions on compile bpftrace from source code.
2. Install conda environment (optional):

$ wget https://repo.anaconda.com/archive/Anaconda3
-2024.02-1-Linux-x86_64.sh

$ chmod +x Anaconda3-2024.02-1-Linux-x86_64.sh
$./Anaconda3-2024.02-1-Linux-x86_64.sh
$ conda create --name vectordb-bench python=3.11.10
$ conda install pip

3. Install VectorDBBench:
$ git clone https://github.com/ZebinRen/VectorDBBench-

dev.git
$ cd VectorDBBench-dev
$ git checkout origin/benchmark-paper
$ pip install -e .

4. Install the vector databases’ clients:
$ pip install vectordb-bench[qdrant]
$ pip install vectordb-bench[weaviate]
$ pip install lancedb pandas

5. Install docker: https://docs.docker.com/engine/insta
ll/ubuntu/.

A.5 Experiment workflow
Before run the experiments, setup the environment variables. To get
PYTHON BIN and VECTORDB BENCH BIN, run whereis python
and whereis vectordbbench when the conda environment is
activated. If bpftrace is installed with apt, set BPFTRACE BIN
to bpftrace. If bpftrace is compiled from source code, set
bpftrace to the compiled binary. DATA ROOT is the directory
where all the data of the benchmarked vector databases are stored.

$ export PYTHON_BIN=/python/path
$ export VECTORDB_BENCH_BIN=/vectordbbench/path
$ export BPFTRACE_BIN=/bpftrace/path
$ export DATA_ROOT=/data/root/path

Build the indexes before running the experiments, the following
command shows how to build the indexes of Cohere 1M. Re-
place argument --case-type with cohere-10m, openai-500k
and openai-5m to build the indexes for the three other databases.

$ mkdir -p ${DATA_ROOT}/milvus/milvus-ivf-cohere-1m ${
DATA_ROOT}/milvus/milvus-hnsw-cohere-1m ${
DATA_ROOT}/milvus-diskann-cohere-1m

$ python3 milvus-ivf-perf.py --case-type cohere-1m --
run # Milvus IVF

$ python3 milvus-hnsw-perf.py --case-type cohere-1m --
run # Milvus HNSW

$ python3 milvus-diskann-perf.py --case-type cohere-1m
--run # Milvus DiskANN

$ mkdir -p ${DATA_ROOT}/qdrant/qdrant-hnsw-mem-cohere
-1m

$ python3 qdrant-hnsw-perf.py --case-type cohere-1m --
index-location memory --run # Qdrant

$ mkdir -p ${DATA_ROOT}/weaviate/weaviate-hnsw-cohere
-1m

$ python3 weaviate-hnsw-perf.py --case-type cohere-1m
--run # Weaviate

$ mkdir -p ${DATA_ROOT}/lancedb/lancedb-ivfpq-cohere-1
m ${DATA_ROOT}/lancedb/lancedb-hnsw-cohere-1m

$ python3 lancedb-ivfpq-perf.py --case-type cohere-1m
--run # LanceDB IVF-PQ

$ python3 lancedb-hnsw-perf.py --case-type cohere-1m
--run # LanceDB HNSW

Experiments for the throughput and latency of different vector
databases with different indexes. Use the following commands to
reproudce figure 2, 3 and 4.

$ cd figure-2-3-4

https://doi.org/10.5281/zenodo.16916495
https://doi.org/10.5281/zenodo.16916495
https://github.com/ZebinRen/2025-iiswc-vectordb-bench-artifact-public
https://github.com/ZebinRen/2025-iiswc-vectordb-bench-artifact-public
https://github.com/ZebinRen/2025-iiswc-vectordb-bench-artifact-public
https://doi.org/10.5281/zenodo.16916496
https://doi.org/10.5281/zenodo.16916496
https://doi.org/10.5281/zenodo.16916496
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

$ python3 milvus-ivf-perf.py --case-type cohere-1m --
run

$ python3 milvus-hnsw-perf.py --case-type cohere-1m --
run

$ python3 milvus-diskann-perf.py --case-type cohere-1m
--run

$ python3 qdrant-hnsw-perf.py --case-type cohere-1m --
index-location memory --run

$ python3 weaviate-hnsw-perf.py --case-type cohere-1m
--run

$ python3 lancedb-ivfpq-perf.py --case-type cohere-1m
--run

$ python3 lancedb-hnsw-perf.py --case-type cohere-1m
--run

Plots
$ python3 plot-performance-all-dbs.py
$ python3 plot-cpu-all-db.py

Experiments that traces the I/O trace of Milvus with DiskANN
index. Use the following commands to reproduce figure 5 and 6.

$ cd figure-5-6
$ sudo -E $PYTHON_BIN milvus-diskann-iotrace.py --case

-type cohere-1m --concurrency 1 --run

Experiments that measures the performance and I/O traffic with
different search list. Use the following commands to reproduce
figure 7, 8, 9, 10 and 11.

$ python3 milvus-diskann-var-klist.py --case-type
cohere-1m --concurrency 1 --run

$ sudo -E $PYTHON_BIN milvus-diskann-var-klist-io-
trace.py --case-type cohere-1m --concurrency 1 --
run

Experiments that measures the performance and I/O traffic with
different beam width. Use the following commands to reproduce
figure 12, 13, 14 and 15.

$ cp milvus-configs/user.yaml ${DATA_ROOT}/milvus/
milvus-diskann-cohere-1m/user.yaml

$ python3 milvus-diskann-var-bwidth.py --case-type
cohere-1m --concurrency 1 --run

$ sudo -E $PYTHON_BIN milvus-diskann-var-bwidth-io-
trace.py --case-type cohere-1m --concurrency 1 --
run

A.6 Evaluation and expected results
After the experiment finishes, the plotted graphs are stored under
the figure subdirectory under the corresponding experiments fig-
ures.

We also provide the performances and traces that are used in the
paper, to plot the figures with these traces:

Figure 2, 3 and 4
$ cd results/figure-2-3-4
$ python3 plot-performance-all-dbs.py
$ python3 plot-cpu-all-db.py
Figure 5 and 6
$ cd ../figure-5-6
$ python3 plot-milvus-diskann-iotrace.py
Figure 7, 8, 9, 10, and 11
$ cd ../figure-7-8-9-10-11
$ python3 plot-diskann-milvus-klist-all.py
$ python3 plot-diskann-milvus-klist-bandwidth.py
Figure 12, 13, 14, 15 and 16
$ cd ../figure-12-13-14-15-16
$ python3 plot-diskann-milvus-bwidth-all.py
$ python3 plot-diskann-milvus-bwidth-io-trace.py

A.7 Experiment customization
The experiments can be augmented with more datasets and vec-
tor databases, please refer to VectorDBBench for all the vector
databases supported and how to add new datasets at https:
//github.com/zilliztech/VectorDBBench.

A.8 Notes
• We use a dedicated NVMe SSD for the storage of the database

to avoid the effect of the operating system and other workloads.
• All the experiments are run in a server with a single NUMA

node, we suggest pinning all the benchmark processes and
vector databases in a single NUMA node to get stable results.

• The absolute performance of the vector databases may vary
with different CPU and NVMe SSD configurations, we expect
the relative performance of the vector databases to be stable
across different configurations.

• Higher I/O bandwidth is expected if CPUs with higher perfor-
mance is used.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifa
ct-review-and-badging-current

• https://cTuning.org/ae

https://github.com/zilliztech/VectorDBBench
https://github.com/zilliztech/VectorDBBench
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Introduction
	Background
	Approximate Nearest Neighbor Search
	Dense Vector Indexes
	Vector Databases

	Experiment Setups
	Software and Hardware Setup
	Workload Patterns and Methodology
	Vector Databases and Setups

	How Does Storage-based Setup Affect the Performance of Vector Databases
	Throughput Scalability on Vector Search
	Latency Scalability on Vector Search

	I/O Workload Characterization
	I/O Bandwidth During Search
	Per-query I/O Load During Vector Search

	The Effect of Index Parameters
	The Effect of search_list
	The Effect of beam_width

	Related Work
	Limitations and Future Work
	Conclusion
	References

