Does Linux Provide Performance Isolation for
NVMe SSDs? Configuring cgroups for I/0O Control
in the NVMe Era

Krijn Doekemeijer
Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

Balakrishnan Chandrasekaran
Department of Computer Science

Vrije Universiteit Amsterdam

Amsterdam, the Netherlands

Abstract—Modern storage workloads commonly run in con-
tainers within data centers, such as machine learning, databases,
caches, HPC, and serverless workloads. To facilitate the storage
performance requirements (e.g., bandwidth, latency) of these
workloads, data centers have adopted fast NVMe SSDs as a
storage medium. At the same time, data centers virtualize and
share these storage resources with multiple tenants to improve
resource utilization and reduce costs. Such sharing leads to
an inherent trade-off between tenant performance isolation and
SSD utilization. Although various research studies demonstrate
how to achieve various performance isolation properties, such
as fairness, there is neither a unified definition for performance
isolation nor a benchmark. Furthermore, the isolation capabilities
of state-of-the-practice /O control mechanisms in the Linux
kernel are not well understood. In this paper, we address
these three challenges. First, we survey the definition of perfor-
mance isolation and uncover four common performance isolation
desiderata. Second, we introduce isol-bench, a benchmark
for evaluating these desiderata for 1/O control mechanisms.
Third, we use isol-bench to evaluate I/O isolation for Linux’s
state-of-the-practice I/O control mechanism, cgroups. From our
evaluation, we are able to conclude that out of cgroups’s knobs
io.cost achieves the most isolation desiderata, but has a latency
overhead past CPU saturation. We open-source the source code
of isol-bench at https://github.com/atlarge-research/isol-bench.

Index Terms—cgroups, Measurements, NVMe, performance
isolation

I. INTRODUCTION

A large number of storage workloads run in contain-
ers within data centers, including machine learning [64],
databases [94]], caches [77], HPC [43]], and serverless applica-
tions [50], [93]]. To facilitate the performance requirements of
such containerized workloads, data centers have adopted fast

This work is partially supported by Netherlands-funded projects NWO
OffSense (OCENW.KLEIN.209), NWO MLS (OCENW.KLEIN.561), and
GFP 6G FNS. The work is also supported by EU-funded projects MSCA
CloudStars (g.a. 101086248) and Horizon Graph Massivizer (g.a. 101093202).
Krijn Doekemeijer is funded by the VU PhD innovation program.

Zebin Ren
Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

Tiziano De Matteis
Department of Computer Science
Vrije Universiteit Amsterdam
Amsterdam, the Netherlands

Animesh Trivedi
IBM Research Europe
Zurich, Switzerland

TABLE I:. Performance isolation desiderata for cgroups; the

”»

“+” indicates that a knob had to be evaluated together with
an I/O scheduler (i.e., MO—-DL, BFQ) or other knob.
cgroups 1/0 Low Proportional Priority Priority
control knob Overhead Fairness Utilization ~ Bursts
Trade-offs
io.prio.class
+ MQO-DL
io.bfg.weight
+ BFQ
io.max — — —

io.latency —
io.cost + —
io.weight

NVMe SSD storage with single-digit microsecond latencies,
millions of IOPS of throughput, and GiB/s of bandwidth [38]],
[78]. However, since SSD resource utilization by workloads
is typically low [71], [100]], storage resources are virtualized
and shared between containerized tenants to improve SSD
utilization and prevent resource stranding [64]], [[71]], [73]], [84],
[100]. Sharing leads to an implicit trade-off between SSD
utilization and tenant performance isolation; hence, various
works investigate how to co-locate tenants while isolating
tenant performance [34], [53], [83]]. Nevertheless, there is
limited understanding of the structural definition of perfor-
mance isolation for storage and a common benchmark to
compare isolation capabilities. In this work, we address these
shortcomings by surveying storage performance isolation to
understand and summarize the community’s understanding of
isolation, and by benchmarking the isolation capabilities of
Linux’s cgroups I/O control knobs.

The first challenge we address is the lack of a unified
definition and common benchmark for storage performance
isolation, i.e., research studies use different properties and met-
rics to evaluate isolation. For example, some works consider
isolation as minimizing tail latency for priority workloads [61]],

https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0003-1466-0002
https://orcid.org/0000-0002-9158-6849
https://orcid.org/0000-0002-5582-1223
https://orcid.org/0000-0003-3586-7168
https://github.com/atlarge-research/isol-bench

whereas others focus on fairness [82]]. In short, there is
no unified definition of storage performance isolation. This
lack of definition limits the effectiveness of isolation efforts
and leads to apples-to-pears comparisons when comparing
solutions such as the various knobs exposed in cgroups. To
address this challenge, we take a two-pronged approach. First,
we define isolation by summarizing the state-of-the-practice
isolation desiderata using a survey. From this survey, we derive
four performance isolation desiderata, which we discuss in
detail in Second, to effectively compare isolation solutions,
we propose isol-bench, a benchmark suite that evaluates
all our isolation desiderata for a given system.

The next challenge we address is that the performance
isolation capabilities of state-of-the-practice I/O control knobs
on NVMe SSDs are unknown for Linux. Enabling isolation
properties for NVMe SSDs on the host is challenging because
(i) I/O workloads are highly dynamic [[74]; (ii)) NVMe SSDs
have high performance requiring low CPU overhead for I/O
control [91]; (iii) SSD performance models differ signifi-
cantly [54]; and (iv) the SSD-internal flash medium has various
performance idiosyncrasies [54] (e.g., asymmetric read and
write performance, garbage collection). Various state-of-the-art
solutions have been proposed to improve SSD isolation. Such
works typically utilize hardware-specific isolation, requiring
specialized SSDs such as open-channel SSDs [17], [72f,
[83]], or employ software isolation, typically running in user-
space or modified kernels [37]]. However, access to specialized
hardware is often infeasible due to costs or availability, and
custom software solutions require domain expertise; hence, it
is equally vital to understand what is already available in the
Linux kernel by default. In this work, we use 1sol-bench to
benchmark the isolation capabilities of the state-of-the-practice
cgroups.

The state-of-the-practice for containers in Linux is to use
platforms such as Docker, LXC/LXD, or Podman, where
(virtual) SSD resources are managed with Linux’ cgroups [[19],
[34]. cgroups provides various knobs for I/O control; for
example, to limit bandwidth [5]], to prioritize workloads, or
to do weighted sharing [66], [84]. isol-bench evaluates
all our survey-defined performance isolation desiderata for
cgroups using the fio workload generator [[14]. We evaluate
all I/O control cgroups knobs, which are io.prio.class,
io.bfg.weight, io.max, io.latency, io.cost, and
io.weight. We present our key findings in Note that
some knobs such as io.prio.class, io.bfg.weight
or io.weight require I/O schedulers or other cgroups knobs
to be active to have a performance effect; hence, we list these
as combinations in the table. From our analysis, we report that
io.cost achieves the highest level of performance isolation
on NVMe albeit with a small latency overhead beyond CPU
saturation.

We summarize our key contributions as follows:

o A survey on the definition of performance isolation for
data center storage, where we summarize the definition
to include performance overhead and scalability, pro-
portional fairness, trade-offs between prioritization and

utilization, and priority burst support.

e isol-bench, a benchmarking suite for storage perfor-
mance isolation, which we use to evaluate the isolation
capabilities of cgroups I/O control knobs.

o A first-of-its-kind study of performance isolation for
cgroups on NVMe SSDs, where, through 10 observations,
we determine that io.cost achieves most of the isola-
tion desiderata, depending on its configuration.

« To facilitate reproduction, we open-source design and
implementation of our code as FAIR data sets at https:
//github.com/atlarge-research/isol-bench.

II. SURVEY ON STORAGE PERFORMANCE ISOLATION

In this section, we survey the definition of performance
isolation in the context of (NVMe) SSDs. With this survey, we
aim to address two key challenges: there is currently a lack of
understanding of the broader definition of storage performance
isolation and a lack of a methodology for evaluating such
performance isolation. Our survey addresses these problems by
distilling a usable isolation definition that can be benchmarked
and quantified; specifically, we discuss tenants’ performance
requirements, and ubiquitous performance isolation desiderata
and how to quantify them.

A. Tenant Performance Requirements

To evaluate performance isolation, we first need to under-
stand tenant requirements in terms of performance. In the
literature, we observe that such requirements are commonly
defined in terms of service-level objectives (SLOs) [13]],
1200, [271, (300, [311, 350, [36], [40l, [45], [46], (491, 550,
[59], 1650, 169], 193], [99], [101]]. Common SLOs include
throughput and bandwidth (average, minimum, maximum),
latency/slowdown (average, P99 tail, minimum, maximum,
CDF), and burstiness for throughput and bandwidth. Here,
throughput refers to operations per second and bandwidth
refers to I/O bytes per second read from or written to the
SSD. Furthermore, in the cloud, many solutions allow select-
ing a performance profile [1]-[3]], [6], [7], e.g., provisioned
throughput/bandwidth and average/P99 latency. AWS EBS, for
example, has “provisioned iops,” which gives a non-guaranteed
approximation of expected throughput [2]]. Such profiles are
generally tied to volume size and are neither application-
defined nor guaranteed.

In this work, we do not use SLOs or profiles; instead, we
use the metrics they represent. Practitioners should be able to
pick SLOs/profiles according to their needs and a benchmark
should enable them to do so. In benchmarking, it is also
common to group applications together, for example, into
latency-sensitive (L-apps) and throughput-sensitive apps (T-
apps) [29], [37], [57], [[75]. L-apps have stringent requirements
on tail latency, such as caches. T-apps are batch workloads
with constraints on the total runtime or average throughput,
such as Al training. Other works classify their workloads as
latency-critical (LC-app) and best-effort (BE-app) apps [18],

https://github.com/atlarge-research/isol-bench
https://github.com/atlarge-research/isol-bench

[211, 1260, [41], [42], [49], [59], [93], [99]], where one work-
load has no SLOs and the other has latency SLOs. Here, LC-
apps and L-apps are identical in practice. An example of a
BE-app is a non-critical background job such as archiving.
In isol-bench, we combine common SLO metric and app
definitions and use (1) LC-apps that need low P99 tail latency,
(2) batch-apps that require high bandwidth; (3) BE-apps that
have no strict performance requirements. For consistency, we
will refer to applications or workloads as apps in the rest of
the work.

B. Performance Isolation Desiderata

Below, we define ubiquitous storage performance isolation
desiderata discussed in academic literature in the context of
(NVMe) SSDs. Together, these desiderata give insight into the
isolation capabilities of I/O control.

Isolation Overhead and Scalability (Desiderata 1):
NVMe SSDs deliver microsecond access latencies and GiB/s
of bandwidth, increasingly moving the performance bottleneck
of I/0 control to the host [75], [91]. We consider overhead
in ubiquitous metrics such as latency, bandwidth, scalability,
and CPU utilization. In this work, we evaluate latency (CDF,
P99), bandwidth (utilization, scalability), CPU (utilization,
context switches, cycles), and virtual memory (utilization).
Overheads affect performance isolation as I/O control com-
petes for resources with tenants, latency bounds can increase,
and bandwidth scalability can reduce. Further on, the number
of containers and apps on the host is increasing [[11]], [93]], es-
pecially in serverless environments. This increase exacerbates
potential overheads and requires scalable isolation capabilities.
Therefore, to evaluate how many apps can run on a machine
in isolation, we also evaluate scalability by scaling the number
of apps (through the number of cgroups).

Proportional Fairness (D2): When sharing resources, a
common data center objective is ensuring resources are dis-
tributed fairly [10], [13], [23], [26], [28], [34], [47], [55],
(58], (601, (62], (651, (671, [791-[82]. 182, 851, 1871, 1921,
[97], [101]]. This objective is desirable as it allows data centers
to indicate the approximate performance an app can expect,
even when SSDs are congested. In addition, such control
prevents one app from using more resources than allowed.
For multi-tenant storage, “shared resources” are bandwidth
and throughput. In this work, we evaluate bandwidth fairness
as throughput is request size-agnostic. Further on, we evaluate
proportional fairness which accounts for weighted sharing, i.e.,
some apps have higher priority than others. With proportional
sharing and n apps, app x (0 < 2 < n) ideally receives

Z’}'U £ Zf;ht_ of the total bandwidth, where the weight is set
blefle data center. Storage research occasionally measures

fairness by comparing the absolute slowdowns of apps [[67]]
or by comparing the achieved bandwidth/throughput of apps
directly [34]. However, such metrics do not yield a single
quantifiable number, making it challenging to compare solu-
tions. In this work, we take inspiration from network research
and calculate fairness using Jain’s fairness index [39]; here,
bandwidth is multiplied by its relative weight.

Prioritization and Utilization Trade-offs (D3): An overar-
ching goal of sharing SSD resources is to maximize resource
utilization while maintaining an app’s performance. Various
research papers introduce I/O control mechanisms to prioritize
the performance of high-priority apps at the cost of utiliza-
tion [18], [21], [261-128], [30], [41], [42]1, (490, I551-1571,
[59], l61]-163], [88], [90], [93], [99], [101]. This objective,
which we refer to as prioritization, is necessary for apps
with stringent performance requirements such as real-time
apps. Research typically considers an I/O control mechanism
capable of prioritization if predefined SLOs of high-priority
apps are met or if a specific latency or bandwidth target is
met. However, such prioritization is at odds with the utilization
desideratum due to, e.g., throttling other apps. Therefore, prac-
titioners should ideally be able to make a trade-off between
the level of prioritization and utilization. Hence, in this work,
we take a different approach and evaluate whether I/O control
mechanisms are capable of making trade-offs between latency
and system utilization. Specifically, can a prioritized app’s
requirements in latency (LC-app) or bandwidth (batch-app)
be fulfilled at a specified SSD utilization level? A ubiquitous
metric/indicator for utilization in storage systems [12], [27]],
(341, 1581, [67], [79], 182], [86], [92f], [93]] and beyond [80] is
work-conservation. Work-conservation is a binary metric that
can be summarized as “when a resource can do more work
(i.e., is not saturated), requests to the resource should not be
pending”. However, determining whether an SSD is idle is not
trivial; the saturation point of throughput and bandwidth in
SSDs involves a complex model [34], [54], [59] that depends
on the device model, request type (i.e., read, write), access pat-
terns (i.e., sequential, random) and device-internal state (e.g.,
garbage collection). Further on, while some works intend to
measure work conservation with slowdowns [34]], other works
argue that any requests that are not immediately dispatched to
the SSD are non-work-conserving by definition [37]]. In this
research, we adopt the latter definition of work-conservation.
Other research evaluates the aggregated bandwidth/throughput
decrement for a specified knob configuration [60], [89]. We
use this definition; we evaluate a priority app’s performance
trade-offs at a given aggregated bandwidth.

Burst Support (D4): In data centers, many apps are
bursty [15], [27], [101]. Bursty apps are disruptive and lead
to short I/O spikes. Metrics such as fairness and priority
SLOs do not reliably capture I/O control’s capabilities to
account for such spikes in contrast to static long-running
allocations. I/O control needs to respond quickly to account
for bursts. Therefore, in this work, we also explicitly evaluate
performance objectives in bursty scenarios. Specifically we
evaluate the response time for high-priority bursts for LC-apps
and batch-apps.

III. BENCHMARKING SETUP

Our isol-bench benchmark uses fio [14] as a workload
generator. We use cgroups directly for all measurements to
avoid interaction effects (i.e., no Docker) and run our bench-
marks in a QEMU VM (v9.0.1) with NVMe PCle passthrough

controller.slice
i0.*

container-a.service H container-b.service ‘
[_io.* Tio.prio.class|[i0.* Tio.prio.class

broken.service

no 1/0 contro

Figure 1: Example cgroups hierachy, io. * is all I/O control
except io.cost and io.prio.class.

as knobs such as io.latency frequently required reboots
during our benchmarking. The VM’s OS is Ubuntu 22.04.1
with Linux 6.9.0. We run a sample of our workloads on bare-
metal and confirmed the performance trends to be similar. All
experiments use direct I/O without a file system to ensure only
the I/O control of cgroups is evaluated, not the performance
effects of other components. Direct I/O with NVMe is also
common due to NVMe’s performance capabilities. We use
the io_uring [76] storage engine in and due to its
high performance but use libaio in due to issues with fio
and io_uring when throttling.

The host machine has a single-socket Intel(R) Xeon(R)
Silver 4210R CPU @ 2.40GHz (20 logical cores) and 256 GiB
of DDR4. We run all benchmarks on Samsung 980 PRO
SSDs [78]] (flash) and to confirm generalizability we repeat
our experiments on Intel Optane SSDs [38]]. The Optane is
a non-flash SSD; hence, is useful to confirm our results on a
different SSD performance model. We use an 1o . cost model
generated with Linux’s included iocost_coef_gen.py [9] script,
which returned a model with a 2.3 GiB/s read saturation point.
We disable BFQ’s “low_latency” option as it changes priorities
dynamically.

We configure batch- and BE-apps with 4 KiB random reads
unless stated at a queue depth (QD) of 256, and LC-apps with
4 KiB random reads at a QD of 1. We run all benchmark
configurations for 1 minute unless there are writes. When there
are writes, we run for 15 minutes and precondition the SSD a
priori (sequential fill, followed by a random write overwrite).
We evaluate latency as P99 or as a CDF, and bandwidth as
the mean bandwidth. We evaluate CPU utilization (sum of
user and system) and virtual memory with sar [25], context
switches with fio and CPU cycles with perf. Fairness experi-
ments are repeated 5 times for standard deviation, others run
long enough to have a low deviation.

IV. UNDERSTANDING CGROUPS I/O CONTROL

I/O control refers to all mechanisms used to distribute and
manage I/O resources. In Linux, cgroups [4] manages such
I/O control for containers and apps. In this section, we discuss
cgroups and its five I/O control knobs.

A. I/O Control with cgroups

Control groups (cgroups) is a hierarchical control mecha-
nism that groups processes in the unit of control groups. In
Linux, every process is part of such a group by default, and

there is always a root cgroup from which all groups inherit.
The core idea is to enable resource management at a higher
level of abstraction than processes and to make such manage-
ment inheritable. We visualize an example cgroups hierarchy
in The resource requirements and limits of a group are
shared between all of a group’s (child) processes and groups.
For example, if the “controller.slice” group has a defined max-
imum bandwidth, the maximum refers to the aggregated band-
width of the processes in ‘“container-a.service,” “container-
b.service,” and “broken.service”. cgroups also separates re-
source management groups from process groups; groups can
either delegate management or can hold processes, but never
both. A “management group” does not allow any process to
be part of the group, but it does allow this group and its direct
child groups to set resource control mechanisms. A “process
group” can hold any number of processes, but does not allow
any of its child groups to have resource control mechanisms,
e.g., “broken.service” can not have I/O control knobs. A
group becomes a management group when it has a resource
controller enabled in cgroups.subtree_control, e.g.,
an I/O controller (marked “+io” in the plot). cgroups is set
through sysfs.

At the time of writing, cgroups exposes five knobs
for /O control (Note that we are using terminology
as defined in cgroupsv2 [4], [22]): io.prio.class,
io.bfg.weight, io.max, io.latency, and the
io.cost + io.weight combination. io.cost has two
subknobs, io.cost.model and io.cost.qos, and can
only be set in the root group. io.prio.class only works
in process groups as io.prio.class is not inheritable.
The other knobs only require the parent group to have an
“io” resource controller.

B. cgroups I/0 Control Knobs

Below, we detail all five cgroups I/O control knobs. We
explain the knobs with examples visualized in For
this plot, we run fio micro-benchmarks with three batch-apps
(“A)” “B,” and “C”). “A” runs from 0s-50s, “B” from 10-70s,
and app “C” from 20s-50s. Before we run a benchmark, we
(re)configure the cgroups based on the evaluated knob. All
apps are configured identicallly; they are rate-limited to 1.5
GiB/s (achievable in isolation, but not in contention), and use
64 KiB random read requests at QD=8. We plot the bandwidth
for each app without cgroups knob in[Fig. 2aland annotate each
app’s start time.

MQO-DL + io.prio.class: io.prio.class sets the
default “I/O scheduling class” for all a group’s processes; an
I/O scheduling class is a hint for I/O schedulers, which practi-
tioners can set to idle, best-effort, or realtime. These hints are
used by (state-of-the-art) systems [24]], [37], [68] for workload
(de)prioritization (D3). However, due to its hint-based nature,
io.prio.class’s behavior depends on the enabled I/O
scheduler, not on cgroups. In Linux, MQ-DL and BFQ take
these hints into consideration. We only evaluate MQ-DL since
BFQ does not respect these hints across cgroups. MQ—-DL uses
separate queues for each priority and dispatches requests from

2500 2500

- promote-to-rt
2000{ = B - idle

@

BZO(J() - B
Iz C - restrict-to-be
1500(

1
Q

2 500

(
Pl
« 5 &
(=3 =1 (=]
S S 3
Throughput (MiB/s)
S
=3
o

Throughput (Mi

|
%910 20 30 40 50 60 70 80 90
Time (s)

0 10 20 30 40 50 60 70 80 90
Time (s)

(a) No knob or I/O scheduler (b) MO-DL + io.prio.class

2500 - - 2500

. — A - io.max @ 1500 MiB/s —— A - io.latency @ 20us

§zooo — B - io.max @ 500 MiB/s ézooo —— B - io.latency @ 1000us

g C - io.max @ 500 MiB/s g C - io.latency @ 100us
I

(=3 1500(:-—1-“ = 1500¢

= -

! &

£ 1000 £ 1000 C

= =

g Clasdctat_ona 2

2 500] — Z 500 ——

& = .

0

GO 10 20 30 40 50 60 70 80 90
Time (s)

0 10 20 30 40 50 60 70 80 90
Time (s)

(e) io.max () io.latency

500

- A H" IS | e = = A - io.bfq.weight @ 1000
)

azouu — B h iy i 22000{ — B - io.bfq.weight @ 1

S b el C - io.bfg.weight © 100

2 150 < 150 m l

: : |

5 1000 %1000

e e

£ 500 Z 500

= =

Y0 10 20 30 40 50 60 70 80 90
Time (s)

1
%910 20 30 40 50 60 70 80 90
Time (s)

(c) BFQ + no knob (d) BFO + io.bfq.weight

2500 2500
— — A — —— A - io.weight @ 1000
Q Q
= 2000{—— B 32000 —— B - io.weight @ 1
E- g C - io.weight @ 100
< 1500¢ < 1500¢
= =
& 2
-%-nmoo ?501000
) ° C
2 500 C 2 500
3] 3
0 ol B
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

Time (s) Time (s)

(g) io.cost (h) io.cost + io.weight

Figure 2: Illustrative examples of all cgroups I/O control knobs with three identical fio workloads: A, B, and C.

the highest priority queues first. To prevent starvation of the
lower priority-queues, MO-DL uses a dispatching timeout for
lower-priority requests. In we visualize such behavior,
where each app has a different class. Here we observe MO-DL
to enable ~1.5 GiBs for the highest-priority app, but tens of
KiB/s for all other apps when higher-priority apps are running.

BFQ + io.bfg.weight: io.bfg.weight is unique
to the BFQ scheduler and is usable for proportional fairness
and prioritization (D2-3). In BFQ, every group has a relative
weight that determines its fair share of throughput; e.g., if
a group has a relative weight of two-thirds, it should only
use two-thirds of the total throughput. io.bfg.weight
represents a group’s absolute weight in the range of 1-1,000,
where the default is 100. BFQ uses a group’s absolute weight
to calculate each group’s relative weight through the cgroups
hierarchy. For example, if group “A” has an absolute weight
of 1,000 and “B” has a weight of 1, then the relative weight of
“B” and its children is 57 001 Weight-based mechanisms such
as io.bfg.weight are considered challenging to configure
in dynamic environments because relative weights change as
workloads start and stop. To address such issues, Qiao et
al. [[70] propose dynamically changing absolute weights.

In |Fig. 2c| and [Fig. 2d| we visualize BFQ with uniform and
differing weights respectively. We observe that the bandwidth
is unstable in both configurations, which is due to BFQ’s
“slice_idle” mechanism, which is required for prioritization
but idles every queue for a short while. Further on, BFQ indeed
distributes bandwidth based on weight.

io.max: io.max allows practitioners to limit a group’s
aggregated bandwidth or throughput [16], [60], [[70]] and allows
setting different limits for reads and writes. When a group’s
limit is reached, I/O is throttled. io.max is static and has no
form of prioritization on its own, i.e., it does not guarantee
a minimum performance, thereby limiting latency control.
It can be used to limit the performance of other lower-
priority tenants to prevent potential interference. However,

since 10 .max is static such approaches lead to low utilization
(D3) in dynamic environments. Therefore, various state-of-the-
art solutions modify the values of io.max dynamically [60],
[70]. In we visualize io.max, including its static
nature. We observe that all apps respect their maximum
bandwidth, but setting a maximum does not guarantee a
minimum performance, as B and C both change A’s bandwidth
significantly. Further on, the overall utilization is low (33%)
as B and C are free to reuse resources when A is inactive.

io.latency: io.latency is a knob for prioritiza-
tion/utilization trade-offs (D3). It allows a group to set a target
P90 (static percentile) tail latency per SSD. io.latency
ensures this latency is met at the cost of the performance of
all other groups with a higher target, i.e., a lower priority.
Its I/O control works as follows: every 500ms, the kernel
checks whether a group’s target latency is violated by com-
paring the achieved and target P90 latency. If the target is
violated, all groups with a higher target are throttled by halving
their effective QD, which is observable as “nr_requests” in
sysfs. This throttling indirectly limits a group’s bandwidth.
A group’s QD can only be halved once every interval. If
the target is no longer violated, groups are unthrottled by
adding “max_nr_requests” / 4 (256 in our experiments) to the
effective QD. However, to prevent unthrottling too quickly,
io.latency also uses a counter called “use_delay.” When
QD =1 and the target is still violated, use_delay increases,
and every time a group can unthrottle, this variable decreases.
The QD can only be recovered when use_delay is zero.

visualizes io.latency. When a new workload
starts, A’s bandwidth drops shortly. After a few intervals, A
recovers and B and C are throttled. The bandwidth of B
and C remains at a few hundred MiB/s as io.latency’s
mechanism can only throttle both workloads to 64 KiB QD =
1 (request-size agnostic). We also observe that the throughput
does not recover when A stops, which is due to use_delay.

io.cost + io.weight: io.cost’s design considers

100
£ 104 £ 10 g’ 1.0 9
3 . i . 5 2 e
1 no knob: 81.4 io.cost: 82.4 s < £ 75
£oms io.max: 824 MQ-DL: 87.6 2075 5075 2 > 1o knob
&) io.latency: 82.4 BFQ: 96.8) no knob: 181.2 io.cost: 268.3 & Ho knob: 4.3 g —*— io.max
2 05 ¢ 0.5f ;io.max: 193.5 MQ-DL: 280 g 05 io.max: 4.9 é 50 io.latency
g no knob io0.cost i J- io.latency: 187.4BFQ: 448.5 :f iu.latency: 4.8 ; io.cost
£0.25{] —— io.max —=— MQ-DL 2025 £025 ;\‘Z&”gi?é"g. 5 25 —=— MQ-DL
3 iolatency —+— BFQ 8 3 BFQ: 11.3 © —— BFQ
]
% 300 600 900 1200 % 300 600 900 1200 % 1 32345678910 % 1 3 4 & 16 32 64128256
Latency (us) Latency (us) Latency (ms) #LC-apps
(a) I LC-app (b) 16 LC-apps (c) 256 LC-apps (different x-axis) (d) 1-256 LC-apps: CPU utilization
Figure 3: cgroups latency and CPU overhead when scaling up from 1 to 256 LC-apps on a single CPU core.
10 10 — 20 20
—_ =—4— no knob io.cost — ’:E =—— no knob io.cost ’{g
% 81 —f— jo.max == MQ-DL é 8 ;15 == jo.max —=— MQ-DL ;15
6‘ io.latency =—$= BFQ 1<) § io.latency =—+— BFQ 'g
= 6 = 6 2 b
_:g —g ‘ 210 210
o o o i
g 4 g 4 y, & £
3 e S S 2 s 8 .
3 2 g 2 / =] =
A — /A . & [
— o O
0 0

0(] 1 3 5 7 9 11 13 15 17

##batch-apps
(a) 1 SSD bandwidth

0 1 3 5 7 9 11 13 15 17

#batch-apps
(b) 7 SSDs bandwidth

7 9 11 13 15 17
#batch-apps

(d) 7 SSDs CPU utilization

0(]1357911131517 01 3 5

#batch-apps
(c) 1 SSD CPU utilization

Figure 4: cgroups bandwidth and CPU scalability (10 cores) when scaling up batch-apps on 1 and 7 SSDs.

low overhead, proportional fairness, work conservation, and
prioritization [33] (D1-3). io.cost uses virtual time to
determine whether a cgroup can dispatch I/O. Each cgroup can
only expend its I/O budget within a window of time. If the cost
of an operation exceeds its budget, the operation is delayed
by the timing difference between cost and budget. io.cost
contains two global knobs: io.cost .model, a performance
model that determines the saturation/congestion points per
device, and i0.cost . gos, which determines when, whether,
and how much to restrain groups on saturation. As expected of
flash storage, the model supports different costs for different
types of operations (i.e., reads, writes), access patterns, and
request sizes. Further on, the model can be configured either
automatically or statically; see [§]] for a database of SSD
models. Automatic models are more sensitive to performance
fluctuations such as GC; hence, we use the fio script included
in the Linux kernel to aid in generating a model [9)]. The
io.cost.model is used to determine whether the SSD is
congested. Additionally, congestion can be indicated by setting
a target tail latency for reads or writes, with 10.cost.gos.
When the system is considered congested, all groups are
restrained by changing their budget window, implicitly limiting
their bandwidth. The extent to which the budget window can
change depends on the min and max percentile variables
in io.cost.qgos. Lastly, to allow for prioritizing applica-
tions, 10.cost supports io.weight, an absolute weight
that is set per group between 1-10,000. The relative weight
is determined similarly to io.bfqg.weight. The cost of
an operation (io.cost.model) is then multiplied by this
weight.

In [Fig. 2¢] and [Fig. 2h, we visualize io.cost. Without
weights, we observe that the overall bandwidth is lower than

without knobs (Fig. 2a)), which is because we use a P95 latency

target of 100 us and io.cost tries to uphold the target.
With weights, we observe that 10.cost can prioritize apps
according to their weight (D3).

V. ISOLATION OVERHEAD (D1) ANALYSIS OF CGROUPS

In this section, we analyze the performance overhead of
cgroups I/O control in terms of tail latency, bandwidth, CPU
utilization, and scalability (D1). Each app runs in a different
cgroup. We only measure the overhead of I/O control mecha-
nisms that do the actual I/O control, i.e., we evaluate MQ-DL,
BFQ, io.max, io.latency, and io.cost. Furthermore,
we ensure that we only measure the overhead of I/0 control by
limiting the performance impact of the I/O control mechanisms
themselves. Specifically, we set a maximum bandwidth beyond
device saturation for io . max, a multiple-second target latency
for io.latency, a saturation point beyond the SSD’s satura-
tion point for io.cost, and disable BFQ’s “slice_idle”. We
use read-only workloads as write workloads will require longer
runs and pre-conditioning due to SSD garbage collection.
The read and write path are similar; hence, the performance
trends should be similar. For generalizability, we evaluated on
multiple devices similar to the other evaluations. All of these
benchmarks are part of isol-bench as described.

Q1: What is the latency overhead of cgroups I/O control,
and what is its impact on the CPU saturation point? We
answer this question by scaling up the number of LC-apps
(STII) on a single CPU core from 1 to 256, and evaluating the
latency (CDF, P99) and CPU utilization.

In (a—c), we plot the latency overhead on a single
core. We plot the CDF for 1, 16, and 256 co-located apps.
We specifically plot 16 apps, as we observed that 16 apps
are sufficient to saturate the CPU for all knobs, demonstrating
the latency cost when the CPU becomes the bottleneck. On
the x-axis, we plot the latency (lower is better), and on the

y-axis, we plot the cumulative probability; we also annotate
the P99 latency red. First, io.max and io.latency do not
incur a significant latency increase (although not plotted, the
P99 increase observed in some points is unstable). Second,
we observe that io.cost has a latency overhead past the
CPU saturation point; for example, 48.02% compared to none
with 16 apps (181.2 to 268.3us). Third, we observe that
MQ-DL and BFQ incur a significant increase in tail latency
for any number of apps. For example, with just one LC-app,
MQ-DL and BFQ have 7.55% and 18.87% higher P99 latency
respectively, compared to no knob. We confirmed that this
difference increases with the number of LC-apps.

To confirm if this latency increase also translates to a higher
CPU utilization, we plot single-core CPU utilization (0-100%)
as a function of the number of LC-apps in Here, we
observe that MO—DL and BFQ also have a high CPU utilization,
e.g., only BFQ saturates the CPU with 8 apps. Furthermore,
io.cost and io.max exhibit a slight increase in CPU
utilization; for example, with 8 apps, io.cost has 80.27%
utilization compared to 78.22% for none. We also run a system
profile for 16 apps (past the saturation point) and repeat it 10
times to calculate the standard deviation. First, we observed
that the effect on virtual memory is negligible. Second, the
CPU cost (not plotted) of MO—-DL and BFQ is indeed higher.
Specifically, there are 5.0% and 5.8% more context switches
per I/O for BFQ and MQ-DL, respectively, than for none (1.05
and 1.06 to 1.0). Further on, there are 76.2% and 26.8%
more cycles per instruction for BFQ and MQ-DL, respectively
(44.0K and 31.7K to 25.0K). Observation 1: The latency
and CPU overhead of BFQ and MQO-DL are higher than
using no /O control (up to 18.87% higher latency with 1
LC-app). io.cost has a latency overhead past the CPU
saturation point (e.g., 48.02% with 16 LC-apps). io.max and
io.latency have little overhead for LC-apps.

Q2: What is the bandwidth scalability of cgroups I/O
control? With this experiment, we determine if I/O control
can saturate modern NVMe SSDs and bandwidth scalability.
To evaluate scalability, we scale up batch-apps from 1 to
17, which we observed is past the bandwidth saturation point.
Further on, we run our benchmarks on 1-7 SSDs (round-robin
to all SSDs) to evaluate scalability beyond one SSD. All apps
have access to 10 CPU cores.

In (a) and (b), we plot the bandwidth scalabil-
ity; on the x-axis, the number of apps, and on the y-
axis, the aggregated bandwidth (higher is better). With 1
SSD, MQO-DL and BFQ achieve significantly lower bandwidth.
Specifically, MQO-DL achieves a maximum of 1.81 GiB/s and
BFQ 0.69 GiB/s, compared to no knob’s 2.94 GiB/s (38.14%
and 76.54% lower respectively). This performance plateau
is not due to CPU utilization. As we scale up to 7 SSDs,
bandwidth increases for all knobs. For example, MO-DL’s
and BFQ’s performance increases to 4.24 GiB/s and 2.14 GiB/s
respectively. However, both I/O schedulers are unable to reach
less than half the peak bandwidth of none, which is 9.87 GiB/s
with 7 SSDs and 10 cores (Fig. 4b). Additionally, we observe
that with 7 SSDs, io.max and io.cost have an overhead

as they achieve 8.94 GiB/s and 9.32 GiB/s, respectively.

To determine if the overhead is due to compute, we plot
the accompanying CPU utilization in (c) and (d). With
1 SSD, every batch-app requires a full core from MQ-DL and
BFQ, and the CPU utilization of io.max and io.cost is
higher than without a knob (4.51% and 1.98% respectively,
17 apps). io.max’s overhead is thus higher with our batch-
app scaling than with LC-app scaling, indicating a higher
overhead for bandwidth-heavy scenarios. With 7 SSDs, we
observe all knobs to require a full core per batch-app and
the CPU overhead differences to be negligible. O2: BFQ
and MQ-DIL have a bandwidth scalability bottleneck as they
are unable to saturate NVMe SSDs (a 38.14% and 76.54%
reduction, respectively). Further on, io.cost and io.max
incur a slight decrease in bandwidth (up to 9.41%) and CPU
as we scale up the number of NVMe SSDs.

VI. EVALUATING CGROUPS’ ISOLATION CAPABILITIES

Below, we evaluate the performance isolation capabilities
(D2-Ds, of all five cgroups I/O control knobs. DI is
addressed in the previous section. We do not combine knobs
to evaluate what each knob is able to achieve on its own, i.e.,
no interaction effects. Each of the desiderata achieved here
is a sub-benchmark of isol-bench and the implementation
closely follows the description of the respective subsections.

A. Proportional Fairness (D2)

We evaluate fairness between cgroups using Jain’s fairness
index [39] with weights. This metric has the disadvantage that
it does not account for one app sending less than its fair
share. Further on, bandwidth fairness is only relevant when
the system is congested; limiting an app when more bandwidth
is available is counter-intuitive. Therefore, in our experiments,
we use four batch-apps per cgroup, which is enough to saturate
bandwidth, see

We evaluate fairness across four scenarios and two weight
distributions. These evaluations intend to verify under which
(app) conditions fairness is achievable and whether band-
width can be distributed fairly by practitioners using (ap-
proximations of) weights. First, we evaluate fairness with
random-read-only batch-apps and uniform weights while scal-
ing up the number of cgroups from 2 to 16. Here, we
evaluate fairness without weights and its scalability. Next,
we evaluate fairness with weights, where we repeat previ-
ous experiment and give each cgroup a “weight” that in-
creases linearly with the number of cgroups. We set weights
as follows: io.weight for io.cost, io.bfg.weight
for BFQ, io.prio.class for MQ-DL, latency targets for
io.latency, and for io.max we use a naive calculation
as an approximation for weights (maximum = #jggm
maz_read_bandwidth). Lastly, we evaluate if fairness holds
under various storage and flash idiosyncrasies. In particular,
we evaluate fairness when we configure half of the cgroups
to issue I/O with large request sizes of 256 KiB, when we
configure half of the groups to issue sequential I/O (i.e., access

-
o
w
o

®
o

o
=3
N
=

d
B2l

g
o

Aggregated Bandwidth (GiB/s)
»
o

4
o

\

-
12

o
S

-
o

Jain’s fairness index
=
o

e
9
=)

2
e
2

o
o
)
o

Jain’s fairness index
1) A
=) &
Aggregated Bandwidth (GiB/s)

¢ 8 & O
& or“q& &

o

v T &

(a) 2 cgroups (b) 16 cgroups

a a
1.0 3.0 1.0 3.0
’ £ | g
o 25< © 2.5
<0.8 <0.8
E £z £
" 20T 2,032
] 0.6 2] 0.6 2
= =] <
g 1.5 z g 1.5 z
E0.4 R E04 2
- 10y =« 1.0.5
] $ Eoe 3
'z 0.2 055 0. 0.5 &
0.0 - o 0.0 & 0.0 < o 0.0 &
& &
FF S P < FF S PE <
T T & ® ST
h .OB‘D s o 01-\9 A

(c) 2 cgroups (weighted) (d) 16 cgroups (weighted)
Figure 5: Bandwidth fairness scalability; uniform workload.

patterns), and a configuration where half issue writes (read—
write interference, GC).

Q3: What is the fairness of cgroups I/O control with
uniform weights and workloads, and what is fairness
scalability? In [Fig. 5a] we plot fairness as a bar plot
(higher is fairer). Here, all knobs have a fairness close to
1; hence, little I/O control is needed. Additionally, in the
same plot, we use a line plot for the average aggregated
bandwidth per knob to evaluate the utilization cost paid for
I/O control. Our findings here largely conform with our prior
overhead benchmarks. However, io.cost has a notably
lower throughput, 1.26 GiB/s compared to none’s 2.92 GiB/s.
This performance decrement is due to the use of a different,
achievable io.cost.model and a “min” window of 50%
for this experiment (§III). io.cost is restricting apps to
uphold the model; therefore, io.cost’s configurations sig-
nificantly impact the achievable bandwidth.

In we plot fairmess for 16 apps, which is past
the CPU saturation for all knobs. The aggregated bandwidth
does not change as expected. However, when the CPU is
saturated, MQ-DL and BFQ get lower fairness than the other
knobs (19.09% and 4.43% lower, respectively). This difference
increases as we scale up further (not plotted). Neither /O
schedulers thus enables fairness past the CPU saturation. O3:
Workload fairness decreases for MQ-DL and BFQ beyond
the CPU saturation point, e.g., we observed 19.09% lower
fairness. The other knobs achieve fairness irrespective of CPU
saturation, but 10.cost configurations impact the bandwidth
saturation point.

Q4: What is the fairness of cgroups I/O control with
non-uniform weights? In [Fig. 3¢ and [Fig. 5dl we plot
fairness when the cgroups are assigned linearly increasing
weights. We observe that io.cost, io.max, and BFQ are
all able to achieve high fairness with weights. When scaling

-
o
b
o
b
o

2. 2.5

e
3

I
)
v
)

e
=

v

-
2

I
LS

-
o
-
o

Jain’s fairness index
o
i

Jain’s fairness index

e
2
e
2

o A
o E
Aggregated Bandwidth (GiB/s)

)
=Y
Aggregated Bandwidth (GiB/s)

e
o

& &

<&
&

K

PR
F &S S
RGN
o

YO
7 $
& & &L >
FoT T ®
o

(a) Request size: 4KiB + 256 KiB (b) Random read + write
Figure 6: Bandwidth fairness, mixed workloads (2 cgroups).

up to 16 apps, BFQ has the same scalability challenges
we observed with uniform weights. Setting “weights” with
io.latency and MQ-DL notably leads to lower fairness
than setting no weight at all; hence, both io.latency and
io.prio.class should not be used to ensure fairness. O4:
io.cost, io.max, and BFQ (before CPU saturation) are
capable of enabling weighted fairness.

QS5: What is the fairness of cgroups I/O control with
non-uniform workloads such as differing request sizes,
access patterns, and read—write interference? In[Fig. 6a we
plot fairness with large requests. We observe that io.cost
and io.max can maintain high fairness with differing request
sizes (4KiB and 256 KiB), but the other knobs have lower
fairness. Specifically, BFQ has a fairness of 0.82 and the
others less than 0.52. Here, the groups with large requests
get a larger share of bandwidth, e.g., with none less than
50MiB/s is from 4 KiB requests. We do not plot the fairness
for different access patterns, as we observe that all knobs
lead to high fairness values close to 1. In we plot
fairness with writes. Writes lead to read—write interference and
cause GC, which leads to a significant bandwidth drop, i.e.,
the aggregated average bandwidth is less than 0.6 GiB/s for
all knobs compared to the prior experiment’s 3 GiB/s. Here,
we observe that only io.cost has a lower fairness of 0.89
as the model we used with io.cost assigns a higher cost
to writes, which indirectly preferentiates read apps. This is
expected as 10.cost assigns a different budget to reads and
writes exactly to limit interference (and later GC) effects.
Our used fairness metric does not account for such effects;
hence, it considers such behavior unfair. O5: io.max enables
fairness irrespective of the evaluated workload characteristics.
io.cost has high fairness as well but exhibits preferential
behavior for certain workload characteristics, such as reads,
leading to lower fairness in mixed read—write workloads. The
other knobs do not allow for fairness under differing request
sizes.

B. Prioritization and Utilization Trade-offs (D3)

In this section, we evaluate prioritization and utilization
concurrently as both desiderata are at odds, i.e., prioritizing
the performance of one app is frequently at the expense
of others. In short, there is an inherent trade-off between
utilization and prioritization. Below, we quantify the effect

by
o

-
o

MQ-DL + jo.prio.class
® BFQ + io.bfq.weight

o ey "_"\

e
3
e
@

e
@

o
=
©
=

BE-workload:
® 4KiB rread ®m 256KiB rread
» 4KiB sread ¢ 4KiB rwrite

o
IS
9

b
b it
iy

=}
=)

=)
=)

Batch-app bandwidth (GiB/s)
Batch-app bandwidth (GiB/s)
IS)
>

o 1 2 3 o 1 2 3
Aggregated Bandwidth (GiB/s) Aggregated Bandwidth (GiB/s)

(a) I/O schedulers (Batch-app) (b) io.1atency (Batch-app)

3000 3000 y
5 3
= =
~ 2500 ~ 2500 -
2 2 a -
3 2000 3 20001 & =
K k
= 1500 = 1500
> >
& g [}
1000 1000 a
& 2 2 »'?/
& 500 1\ v % 500 e :: Y =
0 0
] o - 3 o m o
0 1 2 3 0 2 3
Aggregated Bandwidth (GiB/s) Aggregated Bandwidth (GiB/s)
(e) I/O schedulers (LC-app) (f) io.latency (LC-app)

gm gl.o

& & o
<08 <08

= g = ® ™,
Zo.6 = Z o6 ">
LTI S : s
204 o 204]
2 Q H a n
F0.2 § F0.2

c 8

& %% 1 2 3 & %

1 2 3
Aggregated Bandwidth (GiB/s) Aggregated Bandwidth (GiB/s)

(d) io.cost (Batch-app)

(¢) io.max (Batch-app)

sV

3000
3
z &
52000 &
£ 20001 8 w
k Py -
=]
1500 H
g e .
D; 1000 »®
2 L] > [}
T 500 B, o
@) 3
=]

=)

Jesee
1 2 3
Aggregated Bandwidth (GiB/s)

(h) io.cost (LC-app)

[S)

1 2
Aggregated Bandwidth (GiB/s)

(g) io.max (LC-app)

Figure 7: cgroups performance/utilization trade-offs; note that the workloads in (a) and (e) are 4 KiB random reads.

on utilization and prioritization, i.e., what is the achievable
tail latency or bandwidth for a priority app at a given
SSD utilization level. In cgroups, a priority can be set with
priority classes (io.prio.class with MQ-DL), weights
(io.bfg.weight with BFQ, io.weight with io.cost),
or latency targets (io.latency and io.cost.gos in
io.cost). Further on, io.cost allows setting a minimum
scaling window in io.cost.qgos, and io.max can priori-
tize by throttling all other workloads.

We evaluate two different prioritization scenarios in a multi-
tenant environment: What is the latency of an LC-app at a
certain utilization?; what is the bandwidth of a batch-app at
a certain utilization? Concurrently with the priority app, we
run 4 BE-apps that saturate the SSD in isolation (Fig. 4).
BE-apps are low-priority apps. While the BE-apps saturate
the SSD isolation, we ensure the batch-apps and LC-apps do
not; hence, the trade-off is how much we can reduce the
BE-app’s bandwidth to improve the batch-app’s bandwidth
or an LC-app’s latency. For each cgroups knob, we explore
its configuration space and create a Pareto front with the
prioritized apps performance on one axis and the aggregated
bandwidth utilization on the other. Such a front shows a
knob’s trade-off capabilities. Additionally, to account for flash
idiosyncrasies, we run the BE-app with various request sizes,
access patterns (i.e., random, sequential), and with writes for
read—write interference and GC effects.

Q6: What is the trade-off between prioritization and
utilization for the MQ-DL and BFQ I/O schedulers? We
configure BFQ with io.bfg.weight weights from 1 to
1,000 in steps of 25 for the priority app, and MQO-DL with
all io.prio.class permutations between the priority and
BE-app. In we plot the trade-offs between a batch-
app’s bandwidth (y-axis, higher is better) and the aggregated
bandwidth (x-axis, higher is better). First, we observe that
the achievable aggregated bandwidth of the I/O schedulers
is limited; this is due to overhead, see Second, MQO-DL

is only capable of strict prioritization where either the batch-
app, the BE-app or both have full performance, but there are
no finer-grained configurations. Here, we marked the scenario
where the BE-app is prioritized as “1” and the scenario with
equal priorities as “2”. Third, BFQ is ineffective at prioritizing
the bandwidth of a single application, despite prior fairness
results.

In we plot the performance trade-offs for BFQ
and MQO-DL between the P99 latency of an LC-app (y-axis,
lower is better) and the aggregated bandwidth. We observe
that BFQ does not exhibit a latency/utilization trade-off, as
the latency differences are minimal. MQO-DL’s trade-offs are
coarse-grained with two optimal clusters, annotated 1 and 2.
Contrary to our expectations, a lower-priority class in MO-DL
can lead to a lower latency as it reduces the aggregated
bandwidth—note that the LC-app has a lower priority than
the BE-app at annotation 1. Since the trade-offs are limited
for read-only workloads, we do not further evaluate I/O
schedulers for request sizes, access patterns, or writes. O6:
BFQ is not effective at prioritizing the latency or bandwidth
of a high-priority application. MO—DL supports coarse-grained
prioritization where one application benefits from increased
bandwidth or lower latency, while other workloads experience
low performance.

Q7: What is the trade-off between prioritization and uti-
lization for io.latency? We configure io.latency by
increasing the P90 latency target of the priority app from 75 us
(achievable in isolation) to 1.2 ms in steps of 25 us. In[Fig. 7b]
we plot the trade-offs for the batch-app. Additionally, we plot
the impact of changing the workload of the BE-app, including
random and sequential 4KiB reads, large 256 KiB random
reads, and random 4 KiB random writes. First, we observe
that io.latency’s configurations allow making trade-offs
between priority and utilization. Second, the trade-offs are not
work-conserving; various configurations do not lead to higher
batch-app bandwidth but do limit the aggregated bandwidth.

For every workload combination, there is an optimal “dent”,
where the batch-app performance reduces. Since the optimal
setting depends on the app, 10.latency needs to be config-
ured for the most intrusive BE-app to ensure a priority app’s
performance. Third, its trade-offs are less effective for large
requests and writes. 1io.latency considers all operations
equally expensive and does not account for request sizes. It
throttles QD down to a minimum of 1, irrespective of its
size, and unthrottles in large steps of 256. Such behavior is
ineffective for large requests, as we also observe in the plot,
where increasing the target slightly leads to a P99 of more
than 2 ms. Further on, io.latency is also a reactive knob
and considers latency a sign of congestion. Such an approach
is ineffective for writes, as writes have a delayed effect due
to GC, which can happen after a burst of writes, and QD can
not be throttled down below 1.

In we plot the trade-offs for an LC-app. We observe
that io.latency achieves the LC-app’s target for random
and sequential 4 KiB requests at the cost of bandwidth uti-
lization, allowing for latency—bandwidth trade-offs. However,
similar to the batch-app experiments, io.latency does not
achieve its targets with large requests or write apps. O7:
io.latency is effective for bandwidth-utilization trade-offs
and for latency-utilization trade-offs with equal-sized read
workloads. However, it is not effective for trade-offs when a
workload issues large requests or writes.

Q8: What is the trade-off between prioritization and
utilization for io.max? We configure io.max by setting
a maximum for reads/writes of the BE-app from 80 MiB/s
to 2.3 GiB/s (saturation) in steps of 80MiBs (covering the
spectrum of achievable bandwidth). In (c) and (g), we
plot the trade-offs for io.max. We observe that io.max is
effective at making a trade-off between the bandwidth and
latency of two applications, confirming its weighted fairness
capabilities. Specifically, by limiting the aggregated bandwidth
of BE-apps, we can effectively increase the available band-
width for high-priority batch-apps, and this control works for
various request sizes and workloads. However, io.max has
some challenges. The first challenge with io.max is that it,
like io.latency, does not account for GC or assymetric
operation costs. The second challenge with io.max is that,
like io.latency, it is not work-conservative; however,
unlike io.latency, it has no prioritization capabilities at
all. Specifically, increasing the BE-apps bandwidth improves
aggregated bandwidth but reduces the batch-app’s bandwidth
or increases the LC-app’s latency. The cost of increasing
utilization is thus higher than with io.latency. Third,
unlike other knobs, io.max is static and does not unthrottle
in the absence of other workloads. O8: io.max allows
making trade-offs between prioritization and utilization but
is not work-conservative as bandwidth is throttled statically.
Further on, it lacks prioritization mechanisms, resulting in
lower bandwidth and higher latency for priority apps as
utilization increases.

Q9: What is the trade-off between prioritization and
utilization for io.cost? io.cost has various con-

figuration knobs. For prioritization, we determined through
benchmarks (not plotted) that a high value, 10,000 in our case,
for the io.weight knob and differing the “min” value of
io.cost.gos allows for trade-offs. We find that changing
io.weight is efficient for fairness but less for improving
utilization. For LC-app trade-offs, we further differ the latency
target in io.cost.qgos at the 99 percentile (we fixed the
target at 500 us for the batch-app experiment). In (d) and
(h), we plot the trade-offs. First, we observe that io.cost
allows for bandwidth and latency trade-offs irrespective of
workload. It does not have the same issues with large requests
or writes as the other knobs, because io.cost assigns a
different budget based on a request size, request access pattern,
or whether the request is a read or a write. Second, similar
to io.latency, it is non-work-conservative and allows for
prioritization of the high-priority app. It thus has benefits of
both io.max and io.latency. Third, like the other knobs,
we find that the trade-offs depend on the characteristics of the
BE-app and the SSD model. For example, we find that the
trade-offs are different for an Optane SSD. 09: io.cost
supports prioritization and utilization trade-offs irrespective
of request size or operation type, but the trade-offs do differ
based on workload characteristics or SSD models.

C. Performance Isolation during Bursts (D4)

To evaluate each knob’s response time to bursts, we evaluate
the time in milliseconds it takes for a priority app (LC-app,
batch-app) to get its latency or bandwidth when another low-
priority app is running. We run a high-priority app concur-
rently with a BE-app, similar to

Q10: What is the response time for high-priority bursty
apps? We observe (not plotted) that for both the LC-app and
the batch-app, 10. latency can take multiple seconds before
the I/0 control mechanism stabilizes. This behavior is because
io.latency (un)throttles after a predefined window, i.e.,
500 ms in the evaluated kernel. When throttling QD is halved
on our evaluated SSD, this requires 10 throttling events to fully
throttle down (1024 to 1), i.e., 5 seconds. In our experiments,
the other knobs do not have similar issues. Instead, we observe
io.cost, i0.max, and the I/O schedulers to respond in the
order of milliseconds to priority apps. O10: io.latency
is unable to prioritize bursty apps as scaling down can take
seconds based on the SSD’s max QD.

VII. DISCUSSION

Below, we discuss the achievable desiderata for each
cgroups knob based on our observations in From
this analysis, we conclude While our conclusions
are for direct I/O without a file system, future work can
extend isol-bench’s abilities and results to higher layers
in the storage stack. For example, does the page cache or
Linux’s file systems maintain the desiderata of io.cost, or
is more control needed at higher layer to use its capabili-
ties? Such research can give an end-to-end overview of the
isolation capabilities applications can expect in OSes such
as GNU/Linux. Further on, tenant goals might conflict. For

example, a latency and a bandwidth goal. In such scenarios,
our tool can help with making a trade-off on what knobs
are effective. Practitioners will then need to make a decision
themselves on what desiderata is more important.

Overhead: 1/O schedulers exhibit high latency and CPU
overhead, as well as limited bandwidth scalability. 10.cost
incurs a latency overhead beyond the CPU saturation point,
a bandwidth overhead as the number of SSDs scales up,
and, depending on the used io.cost.model, can lead to
reduced bandwidth saturation (§VI-A). Both io.latency
and io.max have low overhead.

Proportional Fairness: MQO-DL and io.latency do not
ensure fairness when workloads are non-uniform or when
using weights, and BFQ does not ensure fairness beyond the
CPU saturation point. io.max enables fairness, but not by
itself; it requires practitioners to dynamically translate weights
to maximums and adjust values as new groups start or stop.
io.cost enables fairness, but exhibits preferential behavior
to certain apps depending on the used SSD model.

Priority Utilization Trade-offs: BFQ can not prioritize the
latency of a prioritized app, and MQO-DL is limited to coarse-
grained (3 options) trade-offs for latency and bandwidth. Both
io.latency and io.max allow trade-offs for latency or
bandwidth prioritization, but do not include a performance
model requiring practitioners to model SSDs themselves. Fur-
ther on, 10.latency does not distinguish between request
sizes or operation types and has challenges with GC due to
its reactive nature and its inability to throttle beyond reducing
the maximum QD. io.max has no prioritization capabilities
on its own, leading to lower performance for high-priority
apps as system utilization increases due to resource contention.
io.cost allows trade-offs between latency and bandwidth in
the evaluated scenarios.

Priority Bursts: we evaluate the response time for knobs
that have prioritization capabilities, which is crucial for high-
priority, bursty apps. io.cost and io.max can respond in
a millisecond, but io.latency can take multiple seconds.

VIII. RELATED WORK

A few works complement our cgroups evaluation. Heo
et al. [34] discuss io.cost and benchmark/discuss a few
isolation properties for I/O control, including throughput
overhead, work-conservation in dynamic environments, and
proportional throughput sharing for reads on SSDs. Park et
al. [60] show that file fragmentation reduces isolation for
BFQ and io.cost. Ahn et al. [12]] propose a cgroups knob
for weighted proportionality. Two works have characterized
I/O scheduler performance overhead and interference for
NVMe [75], [91]. We confirmed their results for cgroups
and additionally demonstrated that these schedulers have per-
formance isolation challenges. Additionally, various works
benchmark and model SSD performance [48]], [|54]], [102] or
interference in multi-tenant environments [40].

Various researches propose systems to improve storage
performance isolation, i.e., storage stack modifications [32],
[53], I/O schedulers [37]], [46], [57], [67]], [85], [92], [96]], [98,

or user-space device sharing or virtualization [68], [95]. Some
of these utilize novel SSD interfaces such as open-channel,
ZNS or modify flash-internal mappings [35]], [44], [51], [S1]],
[52], 163], (711, [72], [83], or are designed for distributed
systems [59]], [62], [65]], [72]. Others involve application
adjustments such as adjusting application accuracy based on
I/O intensity [69]], [[70].

IX. CONCLUSION

In this paper, we evaluate the performance isolation ca-
pabilities of Linux’s state-of-the-practice cgroups framework
with NVMe SSDs. Our results show that the MQO-DL and
BFQ I/O schedulers are unable to isolate performance, even
with cgroups’s io.prio.class and io.bfg.weight
knobs. Past research has already demonstrated that these I/O
schedulers should not be used on NVMe for performance-
sensitive workloads; however, here we find that their isolation
capabilities in multi-tenant environments are also limited.
Further on, io.latency and io.max knobs have lower
overhead, but their isolation capabilities for workloads that
use larger requests or writes are limited, and can reduce
SSD utilization. io.max further requires practitioners to
dynamically change configurations to ensure isolation and is
not usable for isolation when set statically. io.cost has
the highest isolation capabilities for NVMe SSDs in terms
of fairness, priority-utilization trade-offs, and priority bursts.
However, io.cost has a latency overhead beyond CPU
saturation. Since io.cost achieves the most desiderata, we
consider 1io.cost to have the highest isolation capabilities.
We believe that our results and benchmark are valuable for
developers looking for ways to control performance isolation
or evaluate their performance isolation implementation.

ACKNOWLEDGMENTS

We thank the IISWC’25 reviewers for their helpful and
constructive feedback. We also want to thank the AtlLarge
group at the Vrije Universiteit Amsterdam for their input.

REFERENCES

[1] “Amazon EBS General Purpose SSD Volumes,” https://docs.aws.a
mazon.com/ebs/latest/userguide/general-purpose.html, Accessed:
2025-09-02.

[2] “Amazon EBS Provisioned IOPS Volumes,” https://aws.amazon.com/e
bs/provisioned-iops/, Accessed: 2025-09-02.

[3] “Azure Managed Disk Types,” https://learn.microsoft.com/en-us/azur
e/virtual-machines/disks-types, Accessed: 2025-09-02.

[4] “Control Group v2,” https://www.kernel.org/doc/html/latest/admin- gui
de/cgroup-v2.html, Accessed: 2025-09-02.

[5] “DockerDocs,” https://docs.docker.com/reference/cli/docker/container
/run/, Accessed: 2025-09-02.

[6] “GCP — About Local SSD Disks,” https://cloud.google.com/compute
/docs/disks/local-ssd, Accessed: 2025-09-02.

[7] “GCP - Configure Disks to Meet Performance Requirements,” https:
/lcloud.google.com/compute/docs/disks/performance, Accessed: 2025-
09-02.

[8] “iocost-benchmarks,” https://github.com/iocost-benchmark/iocost-ben
chmarks, Accessed: 2025-09-02.

[9] “iocost_coef_gen.py,” https://github.com/torvalds/linux/blob/master/to
ols/cgroup/iocost_coef_gen.py, Accessed: 2025-09-02.

https://docs.aws.amazon.com/ebs/latest/userguide/general-purpose.html
https://docs.aws.amazon.com/ebs/latest/userguide/general-purpose.html
https://aws.amazon.com/ebs/provisioned-iops/
https://aws.amazon.com/ebs/provisioned-iops/
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-types
https://learn.microsoft.com/en-us/azure/virtual-machines/disks-types
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://docs.docker.com/reference/cli/docker/container/run/
https://docs.docker.com/reference/cli/docker/container/run/
https://cloud.google.com/compute/docs/disks/local-ssd
https://cloud.google.com/compute/docs/disks/local-ssd
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/compute/docs/disks/performance
https://github.com/iocost-benchmark/iocost-benchmarks
https://github.com/iocost-benchmark/iocost-benchmarks
https://github.com/torvalds/linux/blob/master/tools/cgroup/iocost_coef_gen.py
https://github.com/torvalds/linux/blob/master/tools/cgroup/iocost_coef_gen.py

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

“VMWare vSphere 7.0 — Managing Storage /O Resources,”
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-
O/vsphere-resource-management-7-0/managing-storage-i-o-
resources.html |, Accessed: 2025-09-02.

A. Agache, M. Brooker, A. Tordache, A. Liguori, R. Neugebauer, P. Pi-
wonka, and D.-M. Popa, “Firecracker: Lightweight Virtualization for
Serverless Applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020. USENIX Association, 2020, pp. 419-
434.

S. Ahn, K. La, and J. Kim, “Improving I/O Resource Sharing of
Linux cgroup for NVMe SSDs on Multi-core Systems,” in 8th USENIX
Workshop on Hot Topics in Storage and File Systems, HotStorage 2016,
Denver, CO, USA, June 20-21, 2016, N. Agrawal and S. H. Noh, Eds.
USENIX Association, 2016.

S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska,
“End-to-end Performance Isolation through Virtual Datacenters,” in
11th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 14, Broomfield, CO, USA, October 6-8, 2014, J. Flinn
and H. Levy, Eds. USENIX Association, 2014, pp. 233-248.

J. Axboe, “Flexible I/O Tester,” https://github.com/axboe/fio/tree/bcd4
6be2adaadafc32b836ad6137798544a3d80, Accessed: 2025-06-20.

B. Berg, D. S. Berger, S. McAllister, I. Grosof, S. Gunasekar, J. Lu,
M. Uhlar, J. Carrig, N. Beckmann, M. Harchol-Balter et al., “The
CacheLib Caching Engine: Design and Experiences at Scale,” in /4th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX
Association, 2020, pp. 753-768.

S. Bergman, N. Cassel, M. Bjgrling, and M. Silberstein, “ZNSwap: Un-
block your Swap,” ACM Trans. Storage, vol. 19, no. 2, pp. 12:1-12:25,
2023.

M. Bjgrling, J. Gonzalez, and P. Bonnet, “LightNVM: The Linux Open-
Channel SSD Subsystem,” in 15th USENIX Conference on File and
Storage Technologies, FAST 2017, Santa Clara, CA, USA, February 27
- March 2, 2017, G. Kuenning and C. A. Waldspurger, Eds. USENIX
Association, 2017, pp. 359-374.

S. Chen, C. Delimitrou, and J. F. Martinez, ‘“Parties: QoS-Aware
Resource Partitioning for Multiple Interactive Services,” in Proceed-
ings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, 1. Bahar, M. Herlihy,
E. Witchel, and A. R. Lebeck, Eds. ACM, 2019, pp. 107-120.

G. E. de Velp, E. Riviere, and R. Sadre, “Understanding the Perfor-
mance of Container Execution Environments,” in Proceedings of the
6th International Workshop on Container Technologies and Container
Clouds, WOC@Middleware 2020, Delft, The Netherlands, December
07-11, 2020. ACM, 2020, pp. 37-42.

C. Delimitrou and C. Kozyrakis, “Paragon: QoS-aware Scheduling for
Heterogeneous Datacenters,” in Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2013, Houston, TX, USA,
March 16-20, 2013, V. Sarkar and R. Bodik, Eds. ACM, 2013, pp.
77-88.

——, “Quasar: Resource-efficient and QoS-aware Cluster Manage-
ment,” in Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2014, Salt Lake City, UT, USA, March
1-5, 2014, R. Balasubramonian, A. Davis, and S. V. Adve, Eds. ACM,
2014, pp. 127-144.

C. Down, “5 Years of cgroup v2: The Future of Linux Resource
Control,” 2021.

A. Fedorova, M. Seltzer, and M. D. Smith, “Improving Performance
Isolation on Chip Multiprocessors Via an Operating System Scheduler,”
in 16th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT 2007), Brasov, Romania, September 15-19,
2007. 1EEE Computer Society, 2007, pp. 25-38.

X. Ge, Z. Cao, D. H. Du, P. Ganesan, and D. Hahn, “Hintstor: A
Framework to Study I/O Hints in Heterogeneous Storage,” ACM Trans.
Storage, vol. 18, no. 2, pp. 18:1-18:24, 2022.

S. Godard, “sysstat,” https://github.com/sysstat/sysstat, Accessed:
2025-06-14.

A. Gulati, I. Ahmad, C. A. Waldspurger et al., “PARDA: Propor-
tional Allocation of Resources for Distributed Storage Access,” in 7th
USENIX Conference on File and Storage Technologies, February 24-
27, 2009, San Francisco, CA, USA. Proceedings, M. 1. Seltzer and
R. Wheeler, Eds. USENIX, 2009, pp. 85-98.

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

A. Gulati, A. Merchant, and P. J. Varman, “pClock: an Arrival Curve
Based Approach for QoS Guarantees in Shared Storage Systems,” in
Proceedings of the 2007 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
2007, San Diego, California, USA, June 12-16, 2007, L. Golubchik,
M. H. Ammar, and M. Harchol-Balter, Eds. ACM, 2007, pp. 13-24.
——, “mClock: Handling Throughput Variability for Hypervisor 10
Scheduling,” in 9th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, R. H. Arpaci-Dusseau and B. Chen, Eds.
USENIX Association, 2010, pp. 437-450.

J. Gupta, K. Kant, A. Pal, and J. Biswas, “Configuring and Coordinat-
ing End-to-end QoS for Emerging Storage Infrastructure,” ACM Trans.
Model. Perform. Evaluation Comput. Syst., vol. 9, no. 1, pp. 4:1-4:32,
2024.

M. Hao, H. Li, M. H. Tong, C. Pakha, R. O. Suminto, C. A. Stuardo,
A. A. Chien, and H. S. Gunawi, “MittOS: Supporting Millisecond
Tail Tolerance with Fast Rejecting SLO-aware OS Interface,” in Pro-
ceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017. ACM, 2017, pp. 168-183.
M. Hao, G. Soundararajan, D. Kenchammana-Hosekote, A. A. Chien,
and H. S. Gunawi, “The Tail at Store: A Revelation from Millions of
Hours of Disk and SSD Deployments,” in /4th USENIX Conference
on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA,
February 22-25, 2016, A. D. Brown and F. I. Popovici, Eds. USENIX
Association, 2016, pp. 263-276.

M. Hedayati, K. Shen, M. L. Scott, and M. Marty, “Multi-Queue
Fair Queuing,” in Proceedings of the 2019 USENIX Annual Technical
Conference, USENIX ATC 2019, Renton, WA, USA, July 10-12, 2019,
D. Malkhi and D. Tsafrir, Eds. USENIX Association, 2019, pp. 301-
314.

T. Heo, D. Schatzberg, A. Newell, S. Liu, S. Dhakshinamurthy,
1. Narayanan, J. Bacik, C. Mason, C. Tang, and D. Skarlatos, “IOCost:
Block 10 Control for Containers in Datacenters,” in ASPLOS ’22: 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Lausanne, Switzerland, 28
February 2022 - 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and
T. F. Wenisch, Eds. ACM, 2022, pp. 595-608.

——, “IOCost: Block Input—Output Control for Containers in Data-
centers,” IEEE Micro, vol. 43, no. 4, pp. 80-87, 2023.

J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and
M. K. Qureshi, “FlashBlox: Achieving Both Performance Isolation and
Uniform Lifetime for Virtualized SSDs,” in 15th USENIX Conference
on File and Storage Technologies, FAST 2017, Santa Clara, CA, USA,
February 27 - March 2, 2017, G. Kuenning and C. A. Waldspurger,
Eds. USENIX Association, 2017, pp. 375-390.

L. Huang, A. Parayil, J. Zhang, X. Qin, C. Bansal, J. Stojkovic,
P. Zardoshti, P. Misra, E. Cortez, R. Ghelman et al., “Workload
Intelligence: Punching Holes through the Cloud Abstraction,” CoRR,
vol. abs/2404.19143, 2024.

J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal, “Rearchitecting
Linux Storage Stack for ps Latency and High Throughput,” in /5th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2021, July 14-16, 2021, A. D. Brown and J. R. Lorch, Eds.
USENIX Association, 2021, pp. 113-128.

Intel, “Intel® Optane™ SSD 900P Series 280GB,”
https://www.intel.com/content/www/us/en/products/sku/123623/intel-
optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-
xpoint/specifications.html, Accessed: 2025-09-02.

R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A Quantitative Measure
of Fairness and Discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, vol. 21, no. 1, 1984.

L. N. Jaliminche, C. N. Chakraborttii, C. Choi, and H. Litz, “Enabling
Multi-tenancy on SSDs with Accurate 10 Interference Modeling,” in
Proceedings of the 2023 ACM Symposium on Cloud Computing, SoCC
2023, Santa Cruz, CA, USA, 30 October 2023 - 1 November 2023.
ACM, 2023, pp. 216-232.

H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast Analytical Power Management for Latency-critical Systems,” in
Proceedings of the 48th International Symposium on Microarchitecture,
MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, M. Prvulovic,
Ed. ACM, 2015, pp. 598-610.

H. Kasture and D. Sanchez, “Ubik: Efficient Cache Sharing with
Strict QoS for Latency-critical Workloads,” in Architectural Support for

https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/managing-storage-i-o-resources.html
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/managing-storage-i-o-resources.html
https://techdocs.broadcom.com/us/en/vmware-cis/vsphere/vsphere/7-0/vsphere-resource-management-7-0/managing-storage-i-o-resources.html
https://github.com/axboe/fio/tree/bcd46be2adaa4afc32b836ad6137798544a3d80
https://github.com/axboe/fio/tree/bcd46be2adaa4afc32b836ad6137798544a3d80
https://github.com/sysstat/sysstat
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/123623/intel-optane-ssd-900p-series-280gb-2-5in-pcie-x4-20nm-3d-xpoint/specifications.html

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Programming Languages and Operating Systems, ASPLOS 2014, Salt
Lake City, UT, USA, March 1-5, 2014, R. Balasubramonian, A. Davis,
and S. V. Adve, Eds. ACM, 2014, pp. 729-742.

R. Keller Tesser and E. Borin, “Containers in HPC: A Survey,” J.
Supercomput., vol. 79, no. 5, pp. 5759-5827, 2023.

B. S. Kim, “Utilitarian Performance Isolation in Shared SSDs,” in
10th USENIX Workshop on Hot Topics in Storage and File Systems,
HotStorage 2018, Boston, MA, USA, July 9-10, 2018, A. Goel and
N. Talagala, Eds. USENIX Association, 2018.

J. Kim, D. Lee, and S. H. Noh, “Towards SLO complying SSDs through
OPS Isolation,” in Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST 2015, Santa Clara, CA, USA, February
16-19, 2015, J. Schindler and E. Zadok, Eds. USENIX Association,
2015, pp. 183-189.

J. Kim, E. Lee, and S. H. Noh, “I/O Schedulers for Proportionality and
Stability on Flash-based SSDs in Multi-tenant Environments,” IEEE
Access, vol. 8, pp. 4451-4465, 2019.

J. Kim, D. Kim, and Y. Won, “Fair I/O Scheduler for Alleviating
Read/Write Interference by Forced Unit Access in Flash Memory,” in
Proceedings of the 14th ACM Workshop on Hot Topics in Storage and
File Systems, ser. HotStorage "22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 86-92.

J. Kim, P. Park, J. Ahn, J. Kim, J. Kim, and J. Kim, “SSDcheck:
Timely and Accurate Prediction of Irregular Behaviors in Black-
box SSDs,” in 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24,
2018. 1EEE Computer Society, 2018, pp. 455-468.

A. Klimovic, H. Litz, and C. Kozyrakis, “ReFlex: Remote Flash
~ Local Flash,” in Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2017, Xi’an, China, April 8-12, 2017,
Y. Chen, O. Temam, and J. Carter, Eds. ACM, 2017, pp. 345-359.
A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic Ephemeral Storage for Serverless Ana-
lytics,” in 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018,
A. C. Arpaci-Dusseau and G. Voelker, Eds. USENIX Association,
2018, pp. 427-444.

M. Kwon, D. Gouk, C. Lee, B. Kim, J. Hwang, and M. Jung, “DC-
Store: Eliminating Noisy Neighbor Containers Using Deterministic
I/0 Performance and Resource Isolation,” in 2019 IEEE International
Conference on Web Services, ICWS 2019, Milan, Italy, July 8-13, 2019,
E. Bertino, C. K. Chang, P. Chen, E. Damiani, M. Goul, and K. Oyama,
Eds. IEEE, 2019, pp. 291-295.

H. Li, M. L. Putra, R. Shi, X. Lin, G. R. Ganger, and H. S. Gunawi,
“IODA: A Host/Device Co-design for Strong Predictability Contract
on Modern Flash Storage,” in Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, ser. SOSP ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
263-279.

J. Li, R. Shu, J. Lin, Q. Zhang, Z. Yang, J. Zhang, Y. Xiong, and
C. Qian, “Daredevil: Rescue Your Flash Storage from Inflexible Kernel
Storage Stack,” in Proceedings of the Twentieth European Conference
on Computer Systems, EuroSys 2025, Rotterdam, The Netherlands, 30
March 2025 - 3 April 2025. ACM, 2025, pp. 991-1008.

N. Li, M. Hao, H. Li, X. Lin, T. Emami, and H. S. Gunawi, “Fantastic
SSD Internals and How to Learn and Use Them,” in SYSTOR ’22:
The 15th ACM International Systems and Storage Conference, Haifa,
Israel, June 13 - 15, 2022, M. Malka, H. Kolodner, F. Bellosa, and
M. Gabel, Eds. ACM, 2022, pp. 72-84.

N. Li, H. Jiang, D. Feng, and Z. Shi, “Storage Sharing Optimization
under Constraints of SLO Compliance and Performance Variability,”
IEEE Trans. Serv. Comput., vol. 12, no. 1, pp. 58-72, 2019.

H. Litz, J. Gonzalez, A. Klimovic, and C. Kozyrakis, “RAIL: Pre-
dictable, Low Tail Latency for NVMe Flash,” ACM Trans. Storage,
vol. 18, no. 1, pp. 5:1-5:21, 2022.

M. Liu, H. Liu, C. Ye, X. Liao, H. Jin, Y. Zhang, R. Zheng, and
L. Hu, “Towards Low-latency I/O Services for Mixed Workloads Using
Ultra-low latency SSDs,” in ICS '22: 2022 International Conference on
Supercomputing, Virtual Event, June 28 - 30, 2022, L. Rauchwerger,
K. W. Cameron, D. S. Nikolopoulos, and D. N. Pnevmatikatos, Eds.
ACM, 2022, pp. 13:1-13:12.

H. Lu, B. Saltaformaggio, R. Kompella, and D. Xu, “vFair: Latency-
aware Fair Storage Scheduling via Per-IO Cost-based Differentiation,”

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

in Proceedings of the Sixth ACM Symposium on Cloud Computing,
SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29, 2015, S. Ghan-
deharizadeh, S. Barahmand, M. Balazinska, and M. J. Freedman, Eds.
ACM, 2015, pp. 125-138.

L. Ma, Z. Liu, J. Xiong, Y. Wu, R. Chen, X. Peng, Y. Zhang, G. Zhang,
and D. Jiang, “zQoS: Unleashing Full Performance Capabilities of
NVMe SSDs While Enforcing SLOs in Distributed Storage Systems,”
in Proceedings of the 53rd International Conference on Parallel
Processing, ICPP 2024, Gotland, Sweden, August 12-15, 2024. ACM,
2024, pp. 618-628.

R. Macedo, Y. Tanimura, J. Haga, V. Chidambaram, J. Pereira, and
J. Paulo, “PAIO: General, Portable I/O Optimizations With Minor
Application Modifications,” in 20th USENIX Conference on File and
Storage Technologies, FAST 2022, Santa Clara, CA, USA, February 22-
24, 2022, D. Hildebrand and D. E. Porter, Eds. USENIX Association,
2022, pp. 413-428.

T. Miemietz, H. Weisbach, M. Roitzsch, and H. Hirtig, “K2: Work-
constraining Scheduling of NVMe-Attached Storage,” in IEEE Real-
Time Systems Symposium, RTSS 2019, Hong Kong, SAR, China,
December 3-6, 2019. 1EEE, 2019, pp. 56-68.

J. Min, M. Liu, T. Chugh, C. Zhao, A. Wei, I. H. Doh, and A. Kr-
ishnamurthy, “Gimbal: Enabling Multi-tenant Storage Disaggregation
on SmartNIC JBOFs,” in ACM SIGCOMM 2021 Conference, Virtual
Event, USA, August 23-27, 2021, F. A. Kuipers and M. C. Caesar, Eds.
ACM, 2021, pp. 106-122.

J. Min, C. Zhao, M. Liu, and A. Krishnamurthy, “eZNS: Elastic
Zoned Namespace for Enhanced Performance Isolation and Device
Utilization,” ACM Trans. Storage, vol. 20, no. 3, p. 16, 2024.

A. Mohan, R. Walkup, B. Karacali, M. Chen, A. Kayi, L. Schour,
S. Salaria, S. Wen, I. Chung, A. Alim, C. Evangelinos, L. Luo,
M. Dombrowa, L. Schares, A. Sydney, P. Maniotis, S. Koteshwara,
B. Tang, J. Belog, R. Odaira, V. Tarasov, E. Gampel, D. Thorstensen,
T. Gershon, and S. Seelam, “Vela: A Virtualized LLM Training System
with GPU Direct RoCE,” in Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2025, Rotterdam, Netherlands,
30 March 2025 - 3 April 2025, L. Eeckhout, G. Smaragdakis, K. Liang,
A. Sampson, M. A. Kim, and C. J. Rossbach, Eds. ACM, 2025, pp.
1348-1364.

M. Nanavati, J. Wires, and A. Warfield, “Decibel: Isolation and Sharing
in Disaggregated Rack-Scale Storage,” in /4th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2017, Boston,
MA, USA, March 27-29, 2017, A. Akella and J. Howell, Eds. USENIX
Association, 2017, pp. 17-33.

J. Park and Y. I. Eom, “Filesystem Fragmentation on Modern Storage
Systems,” ACM Trans. Comput. Syst., vol. 41, pp. 3:1-3:27, 2023.

S. Park and K. Shen, “FIOS: a Fair, Efficient Flash I/O Scheduler,”
in Proceedings of the 10th USENIX conference on File and Storage
Technologies, FAST 2012, San Jose, CA, USA, February 14-17, 2012,
W. J. Bolosky and J. Flinn, Eds. USENIX Association, 2012, p. 13.
B. Peng, C. Guo, J. Yao, and H. Guan, “LPNS: Scalable and Latency-
Predictable Local Storage Virtualization for Unpredictable NVMe
SSDs in Clouds,” in Proceedings of the 2023 USENIX Annual Technical
Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023,
J. Lawall and D. Williams, Eds. = USENIX Association, 2023, pp.
785-800.

Z. Qiao, Q. Liu, N. Podhorszki, S. Klasky, and J. Chen, “Taming
I/0O Variation on QoS-less HPC Storage: What Can Applications Do?”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2020, Virtual Event
/ Atlanta, Georgia, USA, November 9-19, 2020, C. Cuicchi, 1. Qualters,
and W. T. Kramer, Eds. IEEE/ACM, 2020, p. 11.

Z. Qiao, Q. Tian, Z. Qin, J. Wang, Q. g Liu, N. Podhorszki, S. Klasky,
and H. Zhu, “Tango: A Cross-layer Approach to Managing I/O In-
terference over Local Ephemeral Storage,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 2024, Atlanta, GA, USA, November 17-22,
2024. 1EEE, 2024, p. 14.

B. Reidys, J. Sun, A. Badam, S. Noghabi, and J. Huang, “BlockFlex:
Enabling Storage Harvesting with Software-Defined Flash in Modern
Cloud Platforms,” in 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2022, Carlsbad, CA, USA, July
11-13, 2022, M. K. Aguilera and H. Weatherspoon, Eds. USENIX
Association, 2022, pp. 17-33.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

B. Reidys, Y. Xue, D. Li, B. Sukhwani, W.-M. Hwu, D. Chen, S. Asaad,
and J. Huang, “RackBlox: A Software-Defined Rack-Scale Storage
System with Network-Storage Co-Design,” in Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP 2023, Koblenz,
Germany, October 23-26, 2023, J. Flinn, M. 1. Seltzer, P. Druschel,
A. Kaufmann, and J. Mace, Eds. ACM, 2023, pp. 182-199.

B. Reidys, P. Zardoshti, i Goiri, C. Irvene, D. S. Berger, H. Ma,
K. Arya, E. Cortez, T. Stark, E. Bak, M. lyigun, S. Novakovic,
L. Hsu, K. Trueba, A. Pan, C. Bansal, S. Rajmohan, J. Huang,
and R. Bianchini, “Coach: Exploiting Temporal Patterns for All-

Resource Oversubscription in Cloud Platforms,” in Proceedings of

the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, ASPLOS
2025, Rotterdam, The Netherlands, 30 March 2025 - 3 April 2025,
L. Eeckhout, G. Smaragdakis, K. Liang, A. Sampson, M. A. Kim, and
C. J. Rossbach, Eds. ACM, 2025, pp. 164-181.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in ACM Symposium on Cloud Computing, SOCC ’12, San
Jose, CA, USA, October 14-17, 2012, M. J. Carey and S. Hand, Eds.
ACM, 2012, p. 7.

Z. Ren, K. Doekemeijer, N. Tehrany, and A. Trivedi, “BFQ,
Multiqueue-Deadline, or Kyber? Performance Characterization of
Linux Storage Schedulers in the NVMe Era,” in Proceedings of the 15th
ACM/SPEC International Conference on Performance Engineering,
ICPE 2024, London, United Kingdom, May 7-11, 2024, S. Balsamo,
W. J. Knottenbelt, C. L. Abad, and W. Shang, Eds. ACM, 2024, pp.
154-165.

Z. Ren and A. Trivedi, “Performance Characterization of Modern Stor-
age Stacks: POSIX I/O, Libaio, SPDK, and io_uring,” in Proceedings
of the 3rd Workshop on Challenges and Opportunities of Efficient and
Performant Storage Systems, CHEOPS 2023, Rome, Italy, 8 May 2023,
J. Acquaviva, S. Ibrahim, and S. Byna, Eds. ACM, 2023, pp. 35-45.
L. V. Rodriguez, A. Gonzalez, P. Poudel, R. Rangaswami, and J. Liu,
“Unifying the Data Center Caching Layer: Feasible? Profitable?” in
HotStorage ’21: 13th ACM Workshop on Hot Topics in Storage and
File Systems, Virtual Event, USA, July 27-28, 2021, P. Shilane and
Y. Won, Eds. ACM / USENIX Association, 2021, pp. 50-57.
Samsung, “Samsung 980 PRO PCle® 4.0 NVMe® SSD ITB,”
https://semiconductor.samsung.com/consumer-storage/internal-
ssd/980pro/, Accessed: 2025-09-02.

K. Shen and S. Park, “FlashFQ: A Fair Queueing I/O Scheduler
for Flash-Based SSDs,” in Proceedings of the 2013 USENIX Annual
Technical Conference, USENIX ATC 2013, San Jose, CA, USA, June
26-28, 2013, A. Birrell and E. G. Sirer, Eds. USENIX Association,
2013, pp. 67-78.

Y. Sheng, S. Cao, D. Li, B. Zhu, Z. Li, D. Zhuo, J. E. Gonzalez,
and I. Stoica, “Fairness in Serving Large Language Models,” in
18th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024,
A. Gavrilovska and D. B. Terry, Eds. USENIX Association, 2024,
pp. 965-988.

P. J. Shenoy and H. M. Vin, “Cello: A Disk Scheduling Framework
for Next Generation Operating Systems,” Real Time Syst., vol. 22, no.
1-2, pp. 9-48, 2002.

D. Shue, M. J. Freedman, and A. Shaikh, “Performance Isolation and
Fairness for Multi-Tenant Cloud Storage,” in 10th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2012, Hol-
lywood, CA, USA, October 8-10, 2012, C. Thekkath and A. Vahdat,
Eds. USENIX Association, 2012, pp. 349-362.

J. Sun, B. Reidys, D. Li, J. Chang, M. Snir, and J. Huang, “Flee-
tIO: Managing Multi-Tenant Cloud Storage with Multi-Agent Rein-
forcement Learning,” in Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1, ASPLOS 2025, Rotterdam, The Nether-
lands, 30 March 2025 - 3 April 2025, L. Eeckhout, G. Smaragdakis,
K. Liang, A. Sampson, M. A. Kim, and C. J. Rossbach, Eds. ACM,
2025, pp. 478-492.

C. Tang, “Meta’s Hyperscale Infrastructure: Overview and Insights,”
Commun. ACM, vol. 68, no. 2, pp. 52-63, 2025.

A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang,
N. M. Ghiasi, L. Orosa, J. Gémez-Luna, and O. Mutlu, “FLIN:
Enabling Fairness and Enhancing Performance in Modern NVMe Solid
State Drives,” in 45th ACM/IEEE Annual International Symposium on

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Computer Architecture, ISCA 2018, Los Angeles, CA, USA, June 1-6,
2018, M. Annavaram, T. M. Pinkston, and B. Falsafi, Eds. IEEE
Computer Society, 2018, pp. 397-410.

E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “IOFlow: A Software-defined Storage
Architecture,” in ACM SIGOPS 24th Symposium on Operating Systems
Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013,
M. Kaminsky and M. Dahlin, Eds. ACM, 2013, pp. 182-196.

M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger, “Argon:
Performance Insulation for Shared Storage Servers,” in 5th USENIX
Conference on File and Storage Technologies, FAST 2007, February
13-16, 2007, San Jose, CA, USA, A. C. Arpaci-Dusseau and R. H.
Arpaci-Dusseau, Eds. USENIX, 2007, pp. 61-76.

L. Wang, Q. Weng, W. Wang, C. Chen, and B. Li, “Metis: Learning
to Schedule Long-running Applications in Shared Container Clusters
at Scale,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2020,
Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, C. Cuic-
chi, I. Qualters, and W. T. Kramer, Eds. IEEE/ACM, 2020, p. 68.
M. Wang and Y. Hu, “An I/O Scheduler Based on Fine-grained Access
Patterns to Improve SSD Performance and Lifespan,” in Symposium on
Applied Computing, SAC 2014, Gyeongju, Republic of Korea - March
24 - 28, 2014, Y. Cho, S. Y. Shin, S. Kim, C. Hung, and J. Hong, Eds.
ACM, 2014, pp. 1511-1516.

S. Wang, K. Zhou, Z. Guo, Q. Cao, J. Xu, and J. Yao, “SIndex: An
SSD-based Large-scale Indexing with Deterministic Latency for Cloud
Block Storage,” in Proceedings of the 53rd International Conference
on Parallel Processing, ICPP 2024, Gotland, Sweden, August 12-15,
2024. ACM, 2024, pp. 1237-1246.

C. Whitaker, S. Sundar, B. Harris, and N. Altiparmak, “Do We Still
Need IO Schedulers for Low-latency Disks?” in Proceedings of the 15th
ACM/USENIX Workshop on Hot Topics in Storage and File Systems,
HotStorage 2023, Boston, MA, USA, 9 July 2023, A. Anwar, N. Mi,
V. Tarasov, and Y. Zhang, Eds. ACM, 2023, pp. 44-50.

J. Woo, M. Ahn, G. Lee, and J. Jeong, “D2FQ: Device-Direct Fair
Queueing for NVMe SSDs.” in 19th USENIX Conference on File
and Storage Technologies, FAST 2021, February 23-25, 2021, M. K.
Aguilera and G. Yadgar, Eds. USENIX Association, 2021, pp. 403—
415.

M. Xie, C. Qian, and H. Litz, “En4S: Enabling SLOs in Serverless
Storage Systems,” in Proceedings of the 2024 ACM Symposium on
Cloud Computing, SoCC 2024, Redmond, WA, USA, November 20-22,
2024. ACM, 2024, pp. 160-177.

J. Xu, Y. Chen, Y. Wang, W. Shi, G. Fang, Y. Chen, H. Liao, Y. Wang,
H. Lin, Z. Jin, Q. Liu, and W. Chen, “Lightpool: A NVMe-oF-
based High-performance and Lightweight Storage Pool Architecture for
Cloud-native Distributed Database,” in IEEE International Symposium
on High-Performance Computer Architecture, HPCA 2024, Edinburgh,
United Kingdom, March 2-6, 2024. 1EEE, 2024, pp. 983-995.

S. Yadalam, C. Alverti, V. Karakostas, J. Gandhi, and M. Swift, “By-
passD: Enabling fast userspace access to shared SSDs,” in Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, ASPLOS
2024, La Jolla, CA, USA, 27 April 2024- 1 May 2024, R. Gupta, N. B.
Abu-Ghazaleh, M. Musuvathi, and D. Tsafrir, Eds. ACM, 2024, pp.
35-51.

S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krishnamurthy,
S. Al-Kiswany, R. T. Kaushik, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Split-level I/0 Scheduling,” in Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP 2015, Monterey,
CA, USA, October 4-7, 2015, E. L. Miller and S. Hand, Eds. ACM,
2015, pp. 474-489.

T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,
“Redline: First Class Support for Interactivity in Commodity Operating
Systems,” in 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings, R. Draves and R. van Renesse, Eds.
USENIX Association, 2008, pp. 73-86.

J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M. T.
Kandemir, N. S. Kim, J. Kim, and M. Jung, “FlashShare: Punching
Through Server Storage Stack from Kernel to Firmware for Ultra-Low
Latency SSDs,” in 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October

https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/

[99]

[100]

[101]

[102]

8-10, 2018, A. C. Arpaci-Dusseau and G. Voelker, Eds. USENIX
Association, 2018, pp. 477-492.

Y. Zhang, Y. Yu, W. Wang, Q. Chen, J. Wu, Z. Zhang, J. Zhong,
T. Ding, Q. Weng, L. Yang, C. Wang, J. He, G. Yang, and L. Zhang,
“Workload Consolidation in Alibaba Clusters: the Good, the Bad,
and the Ugly,” in Proceedings of the 13th Symposium on Cloud
Computing, SoCC 2022, San Francisco, California, November 7-11,
2022, A. Gavrilovska, D. Altinbiiken, and C. Binnig, Eds. ACM,
2022, pp. 210-225.

Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. Goiri, and
R. Bianchini, “History-Based Harvesting of Spare Cycles and Storage
in Large-Scale Datacenters,” in 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, K. Keeton and T. Roscoe, Eds. USENIX
Association, 2016, pp. 755-770.

T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Prioritymeister: Tail Latency QoS for Shared Networked
Storage,” in Proceedings of the ACM Symposium on Cloud Computing,
Seattle, WA, USA, November 3-5, 2014, E. Lazowska, D. Terry, R. H.
Arpaci-Dusseau, and J. Gehrke, Eds. ACM, 2014, pp. 29:1-29:14.
A. Zuck, P. Giihring, T. Zhang, D. E. Porter, and D. Tsafrir, “Why
and How to Increase SSD Performance Transparency,” in Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS 2019,
Bertinoro, Italy, May 13-15, 2019. ACM, 2019, pp. 192-200.

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both.
Java and all Java-based trademarks and logos are trademarks
or registered trademarks of Oracle and/or its affiliates. Other
products and service names might be trademarks of IBM or
other companies.

	Introduction
	Survey On Storage Performance Isolation
	Tenant Performance Requirements
	Performance Isolation Desiderata

	Benchmarking setup
	Understanding cgroups I/O Control
	I/O Control with cgroups
	cgroups I/O Control Knobs

	Isolation Overhead (D1) Analysis of cgroups
	Evaluating cgroups' Isolation Capabilities
	Proportional Fairness (D2)
	Prioritization and Utilization Trade-offs (D3)
	Performance Isolation during Bursts (D4)

	Discussion
	Related Work
	Conclusion
	References

