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ABSTRACT
People and businesses increasingly rely on public LLM services,
such as ChatGPT, DALL·E, and Claude. Understanding their out-
ages, and particularly measuring their failure-recovery processes,
is becoming a stringent problem. However, only limited studies
exist in this emerging area. Addressing this problem, in this work
we conduct an empirical characterization of outages and failure-
recovery in public LLM services. We collect and prepare datasets
for 8 commonly used LLM services across 3 major LLM providers,
including market-leads OpenAI and Anthropic. We conduct a de-
tailed analysis of failure recovery statistical properties, temporal
patterns, co-occurrence, and the impact range of outage-causing in-
cidents. Wemake over 10 observations, among which: (1) Failures in
OpenAI’s ChatGPT take longer to resolve but occur less frequently
than those in Anthropic’s Claude; (2) OpenAI and Anthropic service
failures exhibit strong weekly and monthly periodicity; and (3) Ope-
nAI services offer better failure-isolation than Anthropic services.
Our research explains LLM failure characteristics and thus enables
optimization in building and using LLM systems. FAIR data and
code are publicly available on https://zenodo.org/records/14018219
and https://github.com/atlarge-research/llm-service-analysis.

KEYWORDS
Failure characterization, LLM, performance modeling, reliability,
OpenAI, Anthropic, Character.AI, operational data analytics, out-
age, incident, failure-recovery, time-series analysis

1 INTRODUCTION
In the past 5 years, increased availability of data and computation
enabled Large Language Models (LLMs) to support scientists, busi-
nesses, and general users in a wide range of applications, such as
coding [41, 64], image generation [36, 42], and general problem-
solving [66, 71]. Hundreds of millions of users rely increasingly on
public LLM services such as ChatGPT [53], DALL·E [29], and Claude
[52]. Understanding service outages, and how incidents leading to
them are addressed, is essential to enhancing the fault tolerance
and quality of service (QoS) of LLM systems. However, relatively
little data and no peer-reviewed studies exist in this rapidly emerg-
ing area. Addressing this problem, and complementing studies that
focus on LLM resource utilization [28, 67] and user satisfaction [66],
in this work we conduct the first data-driven, empirical characteri-
zation of outages and incidents in public LLM services. We conduct
three classes of analysis on long-term datasets we collect from 8
public LLM services from OpenAI, Anthropic, and Character.AI.

The reliability of public LLM services is becoming increasingly
important, as service failures can severely erode user experience
and cause substantial financial losses under the competitive mar-
ket. Driven by demand and market strategy, public LLM providers
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Figure 1: Monthly website visits, outages, and incidents for
ChatGPT. Vertical axis: (left) number of website visits in
billions; (right) monthly outage and incident counts. Data:
website visits [49], outages (Table 3), and incidents (Table 4).
compete intensely, investing over $ 40 billion in 2024 [30]. Failures
quickly affect many users and become highly visible, as the user
cohort has already reached a global scale. For example, the launch
of ChatGPT marked a major breakthrough in LLM applications [55]
and set a user-adoption record, with 100 million monthly active
users within 2 months after its 2022 launch [51].

Although service reliability is important, users still frequently
encounter issues with LLM services. For example, users report
to DownDetector many login failures, request errors, and high
response latency when using ChatGPT [19]. Figure 1 shows the
monthly website visits [49], and outages and incidents for ChatGPT
as reported by OpenAI. As ChatGPT’s monthly web visits grow
dramatically, the number of its outages and especially incidents
also exhibit an upward trend. Thus, significant LLM failures contin-
uously occur, decreasing user satisfaction and potentially causing
financial loss, making reliable LLM services a challenge.

Understanding dependability aspects can help improve systems
especially when the workload characteristics are also understood.
Previous work already provides system-level workload characteris-
tics for the workloads of machine learning [14, 15, 65], deep learn-
ing [38], big data [58], and more general clouds [50]. Recently, LLM
workloads have received attention as well [28, 67]. What remains
unaddressed in characterizing the failures of LLM.

We identify and address in this work two main challenges in
understanding how public LLM services currently fail. First, no
longitudinal service failure data currently exists. Ideally, the
community would have access to a large number of similarly cu-
rated datasets that capture LLM-service failures, under the same
failure model, over long periods of time. There are some efforts
to provide available LLM workloads, such as BurstGPT [67] and
AcmeTrace [28], but they each focus on one LLM service, and none
provides service failure data for it.
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Second, no comprehensive analysis of failures in public
LLM services currently exists. At this stage in the scientific area,
such an analysis would ideally be data-driven, and include for exam-
ple general characteristics of failures, such as Mean Time Between
Failures (MTBF) and To Recovery (MTTR) from classical depend-
ability analysis [8], and also of the time spent in various stages of
the recovery-process specific to LLM operations; a temporal analy-
sis of failures; and an analysis of failure cascades (co-occurrences).
Such kinds of analysis would enable future research into models,
and future theoretical and practical studies of LLM systems.

Addressing both main challenges, this research aims to provide a
thorough empirical characterization of LLM service failures, using
data from official outages and incident reports, which are the two
types of information self-disclosed by LLM service providers when
significant failures occur. Our contribution is manyfold:

(i) We summarize the de facto industry standard for model-
ing LLM-service outages and exemplify the anatomy of an
outage (Section 2).

(ii) We collect outage and incident data for 8 LLM services, and
prepare the corresponding LLM-failure datasets (Section 3).
This study covers representative, commonly used LLM ser-
vices, across 3 LLM-service providers: OpenAI’s API [5],
ChatGPT [12], DALL·E [18], Playground [46]; Anthropic’s
API [4], Claude [16], Console [17]; and Character.AI [11].

(iii) We analyze the failure characteristics of 8 LLM services (Sec-
tion 4). We analyze the MTTR and MTBF by provider and
by service, the time spent in various stages of the recovery
process, and quantify empirically the model parameters
introduced in Section 2.

(iv) We analyze LLM service failures over time (Section 5). We
explore service availability over hourly and daily intervals,
identify various diurnal and weekly patterns, and investi-
gate auto-correlations.

(v) We analyze the co-occurrence of failures (Section 6). Specif-
ically, we analyze the co-occurrence of failures per provider,
and of pairs of services across providers.

(vi) We follow the principles of open science and release as open,
FAIR artifacts for public use the datasets1 and software2
used in this work. We expect them to provide opportunities
to reproduce and expand on our research.

2 ANATOMY OF AN LLM-SERVICE INCIDENT:
MODEL AND EXAMPLE

We present in this section a model, coupled with an example, of
how an LLM-service incident occurs, affects actual users, and is
managed by the LLM-service provider.

2.1 Model and Real-World Example
A failure-recovery process not only leads to addressing a system
failure, but also shows a complete story of how the system expe-
rienced the (cascading) failure and provides insights to track and
improve the system and services affected by it [20].

Industry leads, such as OpenAI and Anthropic, report availability
data built around a de facto standard model of their failure-recovery
1https://zenodo.org/records/14018219
2https://github.com/atlarge-research/llm-service-analysis
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Figure 2: Visualization of the failure-recovery model with
user reports of a selected ChatGPT incident, UDT time.

process. Acting as a tutorial, this section summarizes this industry
model and exemplifies it through an actual incident. The exam-
ple considers both data self-reported by the LLM service provider,
OpenAI, and data reported by users experiencing the incident; ana-
lyzing user-reported data across all incidents studied here is useful
but outside the scope of this article.

Selection of the incident. We selected the real-world incident
in which a major outage happened with the ChatGPT LLM ser-
vice on April 10, 2024; this is the first major incident since, on
April 1, OpenAI enabled free-to-use access to ChatGPT without
signup, effectively opening up ChatGPT trials for everyone [45].
OpenAI reported the April 10 incident with complete details about
all the stages of its failure-recovery process [44], which is only done
for significant incidents that require many local resources to ad-
dress. In parallel with OpenAI team’s efforts to identify and resolve
the incident, we recorded two other data sources. First, users re-
ported problems using the ChatGPT service on DownDetector [6];
user-reported failures of public services are increasingly used to
check the truthfulness and completeness of self-reported failure
reports [59], but so far they have not been used in peer-reviewed
studies of LLM services. We also recorded reports about this outage
from news media across the technical and political spectrum, such
as Fox [72].

Incident visualization and model parameters: Focusing on
the major ChatGPT outage on April 10, 2024, Figure 2 visualizes
the failure-recovery process as reported by ChatGPT, overlapping
it with the number of user reports as reported by DownDetector.
Around 2024-04-10 17:30, with the service believed to operate nor-
mally, some faults started to happen and the number of user reports
increased to an abnormal level. This triggered an alert to the Chat-
GPT operational team, who started investigating at 17:56 (status 𝑆1).
At 20:39, they identified the issue (𝑆2). They quickly implemented a
fix, which they released and started monitoring at 20:49 (𝑆3). They
confirmed that the issue had been resolved at 20:56 (𝑆4). During
this period, the user reports increased to a peak, around which it
fluctuated until the fix was released to increasingly more users, at
which point a sharp drop of user reports, toward a normal level, can
be seen in the figure. Finally, after a period of postmortem analysis,
an incident summary was released by the ChatGPT team, to explain
the cause of this incident to its users (𝑆5).

2
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Table 1: Parameters and, below the double line, output metrics of the failure-recovery model proposed in this work.

ID Name Definition

𝑆1 Investigating Status The operational team has started investigating an incident.
𝑆2 Identified Status The issues have been identified.
𝑆3 Monitoring Status A fix has been implemented and the operational team started monitoring the results.
𝑆4 Resolved Status The incident has been resolved.
𝑆5 Postmortem Status A summary of the incident after it has been resolved.

𝑃𝐼 Investigating Period From 𝑆1 to 𝑆2, showing the time from observing to identifying the issues.
𝑃𝑅 Repairing Period From 𝑆2 to 𝑆3, showing the time to repair the issues.
𝑃𝐶 Checking Period From 𝑆3 to 𝑆4, showing the time to confirm the fix is stable and effective.
𝑃𝐿 Learning Period From 𝑆4 to 𝑆5, showing the time to provide the incident’s root cause.

𝑀𝑇𝑇𝑅 Mean Time To Resolve From 𝑆1 to 𝑆4, covering 𝑃𝐼 , 𝑃𝑅 , 𝑃𝐶 , showing the full time of resolving issues.
𝑀𝑇𝐵𝐹 Mean Time Between Failures From the 𝑆1 of the current incident to the next, showing how frequently failures happen.
𝑇 , 𝑇𝑆 , 𝐴 Outage time, scaled, availability Definitions discussed in Section 2.2

Table 2: Values of parameters for the selected incident [44], UDT time. Status-markers 𝑆1 through 𝑆4 occur on April 10, 2024.

Incident ID 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑃𝐼 [h] 𝑃𝑅 [h] 𝑃𝐶 [h] 𝑃𝐿 [h] Time To Resolve [h]

w20mcckg1748 17:56 20:39 20:49 20:56 2024-04-18 00:01 2.72 0.17 0.12 171.08 3.00

This incident exemplifies a failure-recovery process with five key
status-markers, 𝑆1 through 𝑆5. Table 1 summarizes the industry-
wide model, including these status-markers, the periods they de-
limit, and the operational metrics. Among the periods, whereas 𝑃𝐼 ,
𝑃𝑅 , and 𝑃𝐶 capture how the operational team resolved the outage
and are thus synchronous with users experiencing the incident,
𝑃𝐿 captures the period, sometimes ending long after the incident
has been resolved, during which the operational team analyses
the incident and devises new measures to prevent it and related
incidents from happening again.

The model outputs include the industry-standard Time To Re-
solve and, with knowledge about prior and following incidents,
Time Between Failures. Table 2 summarizes the status-markers, the
periods spanning the failure-recovery process, and the Time To
Resolve for this incident. It shows how the operational team took
much longer than usual to find the cause of this incident, 2.72 h vs.
the 0.65 h found in our analysis in Section 4 (see Table 6), but then
it was able to resolve the failure and restore service much faster
than normal. However, by then it was already late, as the media
has picked up the incident.

As Section 2.2 details, the model also includes LLM-specific met-
rics to capture the outage duration, scale it according to the severity
of the outage, and estimate the (daily) service availability.

2.2 LLM-Specific Terms and Metrics
Incident:An operational issue that may cause a service outage, e.g.,
"getting an error of having reached a limit of GPT-4 usage" [6]. Once
an incident happens, a textual report of its failure-recovery process
is produced and is (expectedly) disclosed to the public. An incident
can have different impact levels on single or multiple services, which
include critical, major, minor, minimal, and maintenance, and are
similarly defined by the LLM operators.

Outage: Time when the service is unavailable. An outage can
have multiple impact ranges: major outage, where most of the ser-
vice’s users experience it, and partial outage, where a relatively
small fraction of the users experience the outage. Operators such as
OpenAI scale (discount) partial outages as being about 30% (0.3×)
as bad as major outages [7].

Outage duration: For an operator, per day, let 𝑇𝑀 be the dura-
tion of major outage minutes and 𝑇𝑃 be the partial outage minutes.
The formula to calculate the daily total outage minutes (𝑇 ) is:

𝑇 = 𝑇𝑀 +𝑇𝑃 (1)

Similarly, the daily scaled outage minutes (𝑇𝑆 ) has the formula:

𝑇𝑆 = 𝑇𝑀 + (𝑇𝑃 × 0.3) (2)

Organizations such as OpenAI use primarily the scaled outage
minutes to assess and report outage impact [7].

Availability: Derived from the daily scaled outage minutes, we
define the daily availability, 𝐴, as the percentage of time a service
or a group of services are available, given by the formula:

𝐴 = (1 − 𝑇𝑆

24 × 60
) × 100% (3)

3 DATASET COLLECTION AND PREPARATION
We collect for this research long-term datasets from 8 LLM services
across 3 LLM service providers. We then process these datasets
to prepare data useful to characterize LLM service outages and
incidents. Tables 3 and 4 summarize the processed outage and
incident datasets, respectively.

3.1 LLM Services
Selection process: Addressing the main challenge of lacking longi-
tudinal failure data about LLM services, particularly under the same
failure model, we carefully investigate the current LLM services,

3
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Table 3: Summary of LLM outages, per service. Legend: Incident Count = the number of related incidents.

ID Service Provider Start End Months Outage Count Outage Minutes Incident

Total Major Partial Total Scaled Count

𝑂1 API

OpenAI

2021-02-11 2024-08-31 43 104 26 78 7,891 3,340 242
𝑂2 ChatGPT 2023-02-14 2024-08-31 19 70 28 42 5,185 2,744 157
𝑂3 DALL·E 2023-02-21 2024-08-31 19 27 13 14 2,821 1,748 34
𝑂4 Playground 2021-03-31 2024-08-31 42 24 12 12 1,636 1,018 36

𝐴1 API
Anthropic

2023-07-11 2024-08-31 14 25 0 25 1,675 502 80
𝐴2 Claude 2023-07-11 2024-08-31 14 30 2 28 3,017 983 90
𝐴3 Console 2023-07-11 2024-08-31 14 27 1 26 2,032 662 72

𝐶1 Character.AI Character.AI 2023-10-19 2024-08-31 11 32 17 15 3,351 1,878 41

Table 4: Summary of LLM incident reports, per service. Legend: Maint. = Maintenance; Inv. = Investigating; PM = Postmortem.

ID Provider First Date Last Date # of # of Impact Levels # of Failure-Recovery Status

Reports Critical Major Minor None Maint. Inv. Identified Monitoring Resolved PM

𝑃1 OpenAI 2021-02-09 2024-08-28 365 46 125 141 52 1 259 144 225 365 29
𝑃2 Anthropic 2023-03-25 2024-08-30 141 5 43 48 44 1 96 45 51 141 2
𝑃3 Character.AI 2023-10-24 2024-08-07 36 19 11 4 2 0 26 16 15 36 2

and select 8 LLM services from 3 service providers based on the
following reasons: (1) Data availability: Selected services should
have public status pages running for long durations, so our data
collection can provide rich datasets for the community to further
analyze. (2) Popularity: Selected services should be popular, with
many users and applications with daily use, so the impact of out-
ages is significant, and there is high likelihood users and media
will also report on such outages if left unattended. This pressures
operators to respond quickly, so the data we collect represents the
best performance LLM operators can currently deliver. (3) Diver-
sity: Selected services should cover most types of LLM services
provided by different companies. This will ensure the generality of
our results.

Selected LLM services. (1) OpenAI API: The OpenAI API allows
developers to access and use advanced LLM models provided by
OpenAI through API keys without building or training from scratch.
(2) ChatGPT: ChatGPT is a chatbot that interacts with users conver-
sationally. ChatGPT can answer follow-up questions with prompts
and provide a detailed response. (3) Labs (DALL·E): DALL·E is a
text-to-image model that can create original, realistic images from
a short text description. (4) Playground: Playground is a web-based
interface for users to interact with and experiment with OpenAI’s
language models. (5) Anthropic API: Similar to OpenAI API, An-
thropic API allows developers to integrate language models such
as Claude, into their applications and services. (6) Claude Similar to
OpenAI’s ChatGPT, Claude is an AI chatbot and is trained to have
natural, text-based conversations with users. (7) Console: Similar to
the OpenAI’s playground, the Anthropic Console is a web-based
interface that allows users to interact with Anthropic’s AI models
directly. (8) Character.AI: is an innovative chatbot platform that
leverages LLMs to facilitate a series of chatbots that emulate the
personas of various figures, such as historical icons, fictional heroes,
modern celebrities, etc.

3.2 Data Collection and Dataset Preparation
We collected all available outage and incident data reported publicly
by of OpenAI, Anthropic, and Character.AI, up to 2024-08-31, on
their public status pages [61–63] and incident pages [31–33]. The
starting dates differ: OpenAI has started reporting on February 11,
Anthropic on July 11, and Character.AI on October 19, all dates in
2023. (Our study misses none of the published reports.)

The industry has standardized presenting outage data in a calen-
dar format, with separate information for each service. Each outage
history page displays a 3-month calendar view. By hovering over
the calendar, one can reveal detailed information about outages,
including the occurrence and duration of partial and major outages
and any related incidents. Incident reports provide detailed records
of past issues, organized chronologically by month. Each incident
report includes a title, a timeline of incident status updates with
detailed descriptions, and the services affected. Not all outages have
corresponding incident reports. Conversely, some incidents, e.g.,
with minimal impact, do not report a service outage.

We developed an automated data-collectionmethod, able to collect
industry-standard outage and incident reports. Our tools leverage
Python Selenium WebDriver [56], a robust tool allowing native
browser automation by simulating real-user interactions. Our tools
implement exception-handling mechanisms, addressing potential
issues such as network problems, stale elements, and unexpected
page layouts. They parse and extract information from the dynamic
pages, and store them as raw datasets.

To prepare the datasets, we did typical data transformation, in-
cluding filling in missing values, extracting data from text, pro-
cessing JSON formats, splitting columns, and feature engineering
to get the metrics used in this study. Last, before the analysis, we
performed data cleanup, as discussed in the following, to obtain
the cleaned outage and incident datasets whose properties are sum-
marized in Table 3 and Table 4, respectively.
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Table 5: Status counts of incident reports (see Table 4).

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 Count Percent

✓ ✓ ✓ 131 24.39%
✓ ✓ 110 20.48%
✓ ✓ ✓ ✓ 77 14.34%

✓ 62 11.55%
✓ ✓ ✓ 39 7.26%

✓ ✓ ✓ 35 6.52%
✓ ✓ 32 5.96%

✓ ✓ 18 3.35%
✓ ✓ ✓ ✓ ✓ 12 2.23%
✓ ✓ ✓ ✓ 7 1.30%
✓ ✓ ✓ 5 0.93%

✓ ✓ 4 0.74%
✓ ✓ ✓ ✓ 3 0.56%
✓ ✓ ✓ 2 0.37%

TOTAL 537 100.00%
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Figure 3: Presence of different status combinations, by ser-
vice [%]. Due to small counts, status combinations with 𝑆5
are merged into ‘All-with-S5’. (Table 3 indexes the services.)

Data cleanup related to the failure-recovery model in Sec-
tion 2.1: (1) The incident reports from, e.g., ChatGPT, include 6
statuses: investigating, identified, monitoring, update, resolved, and
postmortem. The update status is not considered in the model, but
in all the reports we have analyzed it seems to be used only as a
keep-alive of the recovery process, to mark the operational team is
still actively working on the incident, so we do not consider it in our
analysis; (2) Out of the over 500 hundreds of incidents we analyzed
in this work, only 5 cases do not follow the order of status mark-
ers 𝑆1 through 𝑆5. In 2 of these cases, the status-marker identified
comes before investigating, and in 3 other cases, the status-marker
monitoring comes before identified. None of these cases involves
unusual durations or recovery times, so we safely exclude these 5
corner cases in our analysis.

4 FAILURE-RECOVERY ANALYSIS
We investigate the time spent on the key operationalmetrics (MTTR,
MTBF) and compare the failure-recovery performance across the
8 LLM services and 3 service providers. We conduct several types
of analysis to investigate the failure-recovery processes of LLM
services: (1) Statues count and percent of different services; (2)
Mean values for main model parameters; (3) Percent of different
periods in the MTTR process; (4) Distribution of MTTR and MTTF
duration by service; (5) Distribution of MTTR and MTTF duration

Table 6: Mean value for model parameters by service. Legend:
h=hour(s), D=day(s).

ID Service 𝑃𝐼 [h] 𝑃𝑅 [h] 𝑃𝐶 [h] 𝑃𝐿 [D] 𝑀𝑇𝑇𝑅 [h] 𝑀𝑇𝐵𝐹 [D]

𝑂1 API-OpenAI 0.72 1.63 1.46 4.10 2.56 5.64
𝑂2 ChatGPT 0.65 1.64 1.73 4.79 3.64 4.01
𝑂3 DALL·E 1.01 0.96 1.81 1.86 3.03 18.24
𝑂4 Playground 0.37 1.56 2.22 4.30 2.95 39.93

𝐴1 API-Anthropic 1.04 1.11 1.37 - 2.81 5.22
𝐴2 Claude 1.35 1.72 2.05 0.21 3.16 4.79
𝐴3 Console 0.94 0.34 0.58 - 2.05 5.73

𝐶1 Character.AI 0.40 0.50 1.73 3.61 3.95 8.74

Arith. Mean 0.84 1.40 1.58 4.01 2.94 7.41
Geom. Mean 0.53 1.15 0.87 3.45 3.99 3.26
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Figure 4: Percent of time spent in the Investigating, Repair-
ing, and Checking periods, from the overall duration for
failure resolution [%].
by providers. For each analysis, we begin with key observations,
followed by detailed descriptions and discussions.
Observation #1: Most incident reports lack information for all sta-
tuses. Although 100% of the incidents have been resolved, only 6.15%
of reports disclose a postmortem.
Updated status information is important for users waiting for

a service to recover so that they can plan their work, recovery,
and communication with customers. Table 5 gives the numbers
and percent of different combinations of statuses for all reports.
In most cases, incident reports do not include every status. Cases
with 𝑆5 (𝑝𝑜𝑠𝑡𝑚𝑜𝑟𝑡𝑒𝑚) account for the fewest percent, with only
6.15% of incident reports having a postmortem. The most prevail-
ing case combination is 𝑆1-𝑆3-𝑆4 (24.39%), in which the impor-
tant status 𝑆2 (𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑) is missing. This means the operators
do not communicate to the users that they have identified the issue.
20.48% of cases only provide information about 𝑆1 (𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑖𝑛𝑔)
and 𝑆4 (𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑) statuses. 14.34% of reports update every status
(𝑆1-𝑆2-𝑆3-𝑆4) throughout the duration of incidents, while 11.55%
only update once the incidents have been resolved (𝑆4).

These results indicate that operators fail to communicate the
state of a failure to the user and update the user about potential fix
times. Users must create their own failure models [21] and fault-
tolerance systems [48] and expect little input from the operator.
Observation #2: ChatGPT includes postmortems in 12.91% of its
reports. Anthropic’s reports contain the fewest postmortems, with none
provided for its API and Console services.
The status combinations also vary depending on different ser-

vices, as Figure 3 shows. The primary status combination for Ope-
nAI services is 𝑆1-𝑆3-𝑆4, representing 29.96% for API, 41.13% for
ChatGPT, 38.71% for DALL·E, and 31.25% for Playground. In con-
trast, Anthropic and Character.AI primarily use the 𝑆1-𝑆4 combi-
nation, accounting for over 30% of each service. OpenAI publishes
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Figure 5: Distribution of MTTR and MTBF by service, with median values indicated.

more status information in incident reports compared to Anthropic
and Character.AI.
Observation #3: Claude spent the longest time on the periods of
investigating (1.35 hours), repairing (1.72 hours), and checking (2.05
hours).

The time a service takes to resolve incidents affects the fault-
tolerance strategies a user can use. For example, users can maintain
a local cache to tolerate very short failures. Table 6 shows the
mean value of different model parameters. For MTTR and MTBF,
because some records don’t have 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑖𝑛𝑔 timestamps, we
use the minimum ones before the resolved status here (This also
explains why Claude has the longest 𝑃𝐼 , 𝑃𝑅 , and 𝑃𝐶 respectively,
but it does not have the longest𝑀𝑇𝑇𝑅). The learning period (𝑃𝐿)
takes the longest time (2.94 days) in all services.
Observation #4: Significant differences are observed across the 8
services in the percentage of periods within failure resolutions. For
Character.AI, 82.71% of the time is spent on monitoring and checking
if the fix is stable and effective. Anthropic services spent more percent
of the time for investigating and resolving issues than OpenAI services.

Figure 4 shows the percent of the 3 periods (Investigating, Re-
pairing, Checking) in𝑀𝑇𝑇𝑅. The majority of the resolution time
is used for checking, ranging from the highest 82.71% for Charac-
ter.AI to the lowest 43.75% for Console. Most services spent more
percent of the time on repairing than investigating, except for API
and Console from Anthropic. Anthropic API spent 26.70% of the
time investigating issues, while Console spent 43.23% in the same
period.

The large fraction of the time used for checking indicates that
deploying a fix to production takes a long time. Operators should
employ faster testing and continuous deployment techniques to
deploy fixes faster [73]. However, this is challenging as LLMs are a
new technology, and there isn’t much work on improving testing
and deployment time.
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Figure 6: MTTR andMTBF by provider, ECDF plot. The closer
the line is to the upper left, the shorter the time it takes.

Observation #5: OpenAI’s API and ChatGPT recover slower from
failures than Anthropic’s API and Claude, with 1.6x and 1.4 longer
𝑀𝑇𝑇𝑅, respectively.

Figure 5a depicts 𝑀𝑇𝑇𝑅 of the 8 LLM service incidents, show-
ing how quickly failures are resolved. Most failures are resolved
between 0.5 and 3 hours, with the median values around 1 hour.
APIs and chatbots are the most popular LLM services. The median
𝑀𝑇𝑇𝑅 of OpenAI API (1.23 hours) is 1.6x longer than Anthropic
API (0.77 hours). Similarly, the median 𝑀𝑇𝑇𝑅 of ChatGPT (1.32
hours) is 1.4x longer than Claude (0.93 hours).
Observation #6: Playground is the most reliable service (16.80 me-
dian𝑀𝑇𝐵𝐹 ), followed by DALL·E (4.53 median𝑀𝑇𝐵𝐹 ) and Charac-
ter.AI (3.94 median𝑀𝑇𝐵𝐹 ). OpenAI’s ChatGPT is more reliable than
Anthropic’s Claude, though its API is less reliable in comparison.

Awareness of how frequently a service fails is important for users
to assess the reliability they can offer when they depend on the ser-
vice. It’s also important to assess which fault-tolerance mechanisms
they should use as each has a different overhead. For example, active
replication, frequent checkpointing, or infrequent checkpointing.
Figure 5b depicts𝑀𝑇𝐵𝐹 of the 8 LLM incidents, showing how fre-
quently failures occur. The 𝑀𝑇𝐵𝐹 of failures varies significantly
across services. The most reliable service is Playground, with a me-
dian𝑀𝑇𝐵𝐹 of 16.80 days, which is nearly 9.66 times higher than the
lowest median𝑀𝑇𝐵𝐹 of 1.74 days from Claude. The median𝑀𝑇𝐵𝐹

for OpenAI’s API is 1.99 days, which is lower than Anthropic’s API
at 2.09 days; however, ChatGPT at 2.04 days is higher than Claude’s
1.74 days. DALL·E and Character.AI are relatively reliable services,
with median𝑀𝑇𝐵𝐹 values of 4.63 days and 3.94 days, respectively.
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Figure 7: Temporal distributions for incidents, PDT time.

The MTBF of LLM services (4-40 days) is much higher than the
MTBF of single-node failure (0.25-1 day) and system-wide failure
(6.6 days) in other large-scale systems [24, 43]. This indicates that
LLM operators use effective fault-tolerance mechanisms. It also in-
dicates that users can use low-overhead fault-tolerance techniques
like infrequent checkpointing to provide a reliable service that
depends on LLMs.
Observation #7:Over 90% of the incidents end within 10 hours for all
measured providers. Specifically, Anthropic’s services resolved failures
more quickly but also experienced the highest frequency of incidents,
based on its𝑀𝑇𝑇𝑅 (2.70 hours) and𝑀𝑇𝐵𝐹 (5.22 days) on average.

To understand how the MTTR and MTBF values are distributed
and compare the distributions for different LLM providers, Figure 6
displays the Empirical Cumulative Distribution Function (ECDF)
plot of𝑀𝑇𝑇𝑅 in hours and𝑀𝑇𝐵𝐹 in days, grouped by provider. It
also marks vertically different time points for better observation
and comparison.

A small percentage of incidents can be resolved within 10 min-
utes, such as 8.55% for Anthropic. Anthropic also solved the high-
est percent of incidents (37.18%) in 0.5 hours, significantly more
than OpenAI (19.72%) and Character.AI (22.86%). Most failures are
addressed within 3 hours, with 74.25% for OpenAI, 82.91% for An-
thropic, and 68.57% for Character.AI. After 10 hours, 92.34% of
OpenAI, 90.60% of Anthropic, and 91.43% of Character.AI’s fail-
ures are solved. However, a small proposition of failures for all
providers lasted over 1 day, with 6.03%, 7.69%, and 5.71%, respec-
tively. Overall, Anthropic resolved failures more quickly, despite a
higher percentage of extreme cases lasting over 1 day.

Although Anthropic resolves failures the fastest, it also encoun-
ters them most frequently, with every 5.22 days on average. In
contrast, OpenAI and Character.AI are more reliable, with failure
occurring every 8.48 and 8.74 days, respectively. A notable percent-
age of incidents occur within a day: 35.47% for Anthropic, 28.77%
for OpenAI, and 20.00% for Character.AI. Within 1 week interval,
nearly three-quarters of failures occur for OpenAI (75.64%) and
for Anthorpic (78.63%), with a slightly lower rate for Character.AI
(60.00%). Over 90% of incidents for all providers happen within a
month of each other.
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Figure 8: Auto-correlations with the numbers of incidents
aggregated at different time granularities.

Our findings indicate that users of LLMs should expect failures
regularly (at least once a month). Therefore, failure should not be
an exceptional event but should be baked into the users’ normal
operating procedure.

5 FAILURE PATTERNS OVER TIME
This section conducts time series analyses to examine the failure
patterns over time, including: (1) Weekly and daily incident distri-
butions, (2) Auto-correlations in different time intervals; and (3)
Daily service available time.

5.1 Temporal Distributions

Observation #8: OpenAI and Anthropic’s services failures exhibit
periodic patterns that more frequent on weekdays than on weekends.
However, Character.AI has fewer failures on Tuesdays and Wednes-
days. All services show a diurnal pattern of failures, typically peaking
from 8:00 to 16:00.

To investigate the temporal distributions of LLM incidents, we
aggregate service incidents by day of week in Figure 7a, and hour
of day in Figure 7b. Incident times are given in local time (PDT)
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Figure 9: Service daily availability by scaled outage minutes [%]. Some services started reporting later (see Section 3.2).

Table 7: Service availability by scaled outage minutes (from all periods).

Service Min Max Mean Median =100% >=99.999% >=99.99% >=99.9% >=99% >=90% <90%

API-OpenAI 80.57% 100.0% 99.82% 100.0% 92.68% 92.68% 92.68% 92.84% 95.30% 99.77% 0.23%
ChatGPT 77.15% 100.0% 99.66% 100.0% 88.85% 88.85% 88.85% 89.20% 93.10% 99.12% 0.88%
DALL·E 74.17% 100.0% 99.78% 100.0% 95.88% 95.88% 95.88% 95.88% 96.77% 99.28% 0.72%

Playground 82.57% 100.0% 99.94% 100.0% 98.08% 98.08% 98.08% 98.16% 98.88% 99.84% 0.16%

API-Anthropic 85.44% 100.0% 99.92% 100.0% 94.02% 94.02% 94.02% 94.26% 97.61% 99.76% 0.24%
Claude 82.02% 100.0% 99.84% 100.0% 93.06% 93.06% 93.06% 93.06% 97.13% 99.52% 0.48%
Console 82.56% 100.0% 99.89% 100.0% 93.54% 93.54% 93.54% 93.54% 97.61% 99.76% 0.24%

Character.AI 85.33% 100.0% 99.59% 100.0% 90.88% 90.88% 90.88% 91.19% 94.03% 98.11% 1.89%

as they were originally reported in PDT. OpenAI and Anthropic’s
services display a clear weekday pattern in incidents, with signifi-
cantly more failures on weekdays than on weekends. In contrast,
Character.AI follows a different pattern, with fewer failures occur-
ring on Tuesdays and Wednesdays. This may be due to the differing
purposes of using LLM services: Character.AI is primarily used for
leisure [69], while API and conversational services are more often
used for work-related tasks, such as writing and coding [66]. All
services exhibit a diurnal pattern, with incident peaks occurring
during typical work hours, such as 8:00 to 16:00, and lower at night
hours. Similar periodic failure patterns are also found in machine
learning jobs [14, 15, 65], deep learning jobs [38], and general user
request in BurstGPT workloads [67].

5.2 Auto-correlations
Observation #9: LLM service failures have strong monthly auto-
correlations, with OpenAI incidents showing longer-lasting correla-
tions than Anthropic. Both services display distinct weekly periodicity.

We investigate if a failure is immediately followed by another fail-
ure and how often it happens. Figure 8 depicts the auto-correlation
for the number of incidents at month, week, and day granularities.
Confidence intervals are drawn as the blue area. By default, this is
set to a 95% confidence interval, suggesting that correlation values
outside of this area are significant, which are real patterns rather
than random noise. Lags represent the time intervals at which a
time series is compared to itself, and autocorrelation measures how
similar a time series is to itself at different lags.

For OpenAI, the auto-correlation plots display significant posi-
tive correlations up to lag 3 on a monthly scale and up to lag 12 on a

weekly scale, indicating that both monthly and weekly incidents are
strongly related to their previous values. Anthropic shows similar
correlations with shorter lags, with up to lag 1 for monthly data and
lag 7 for weekly data, likely affected by Anthropic’s shorter opera-
tional history. The consistent but gradual decay in auto-correlations
at every 7-day interval for both OpenAI and Anthropic suggests
strong weekly periodic behavior, supporting our previous findings
in Figure 7. Compared to the auto-correlations observed in ML
failures from the previous study [15], the auto-correlation in LLM
service failures shows stronger periodic trends. The periodic char-
acteristics can be utilized to predict future incidents, similar to
workload failure predictions [40].

5.3 Service Availability Over Time

Observation #10: ChatGPT is the least consistently available service,
with only 88.85% of days fully available, followed by Character.AI
at 90.88%. Availability of Anthropic’s services declined after April
2024, possibly due to product release and the sharp increase in user
demands.

We provide a high-level view of what level of service reliabil-
ity a user can expect in this section. Figure 9 shows the service
daily availability by scaled outage minutes, from February 2023 to
August 2024. We categorized availability into five levels based on
their value ranges. Days without outages, which mean full service
availability, are colored green, while days with longer outage du-
rations are represented by colors closer to red. Table 7 gives the
specific statistics of service availability. DALL·E and Playground
have the highest availability, with 95.88% and 98.08% of days fully
accessible, respectively. In contrast, ChatGPT is the least available
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(b) Conditional probabilities of co-occurrence outages. Notes: y-axis =
service A, x-axis = service B, cells = P(A|B).

Figure 10: Co-occurrence of outages between service pairs.

service, with only 88.85% of days fully accessible. Availability of An-
thropic’s services declined after April 2024, possibly due to product
release and the sharp increase in user demands [2, 3]. Character.AI
also shows noticeable instability, with only 90.88% of days fully
available and over 1.89% of days with availability falling below 90%.

6 CO-OCCURRENCE OF FAILURES
This section examines the co-occurrence of failures across services.
When an outage occurs in one service, do other services also ex-
perience outages? How about the impacted range of incidents for
different services and providers? To address these questions, we
analyze (1) the co-occurrence of outages, and (2) the impact range
of incidents.

6.1 Co-occurrence of Outages

Observation #11: Co-occurrence is particularly high among services
from the same provider, suggesting a strong interdependence between
those services. For Anthropic’s services, the likelihood of any two
services experiencing outages on the same day is over 80%, indicating
a severe lack of isolation across different services.

The Figure 10a shows the number of co-occurring outages across
different services on the same day. The counts of outages may be
affected by the maximum number of outages. For example, the
number of co-occurrences among Anthropic services is lower than
for OpenAI services, however, the probability of co-occurrence
among Anthropic services is higher. To avoid this impact of the
number of outages, we also give the conditional probabilities of
co-occurring outages in Figure 10b. The conditional probability
indicates the likelihood that if service B experiences an outage,
service A will also experience an outage. For instance, the 49.21% in
row 1, column 2 means that if ChatGPT is down, there is a 49.21%
chance that OpenAI’s API will also experience an outage on the
same day. The probability that service A is also outage while service
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Figure 11: Impact Services of OpenAI and Anthropic inci-
dents, respectively.

B is outage can be formulated in:

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃 (𝐴) × 𝑃 (𝐵) =

𝑂𝐴𝐵

𝑂𝐵
(4)

𝑂𝐴𝐵 represents the number of days when both services A and B
experience outages simultaneously, while 𝑂𝐵 indicates the number
of days that service B has an outage.

The heatmaps show that co-occurrence is notably high among
services from the same provider. For OpenAI services, the API is
more likely to have an outagewith DALL·E (78.26%) and Playground
(87.50%) than ChatGPT (49.21%). For Anthropic’s services, the like-
lihood of any two services experiencing outages on the same day is
extremely high over 80%, this may be caused by a lack of isolation
across different services. There is no correlation observed between
services from different providers. The lack of correlation suggests
that user can use one service as the other’s backup to increase their
reliability. The difference in co-occurrence between OpenAI and
Anthropic suggests that outages could be reduced through better
service isolation.
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Table 8: Percentage of the number of impacted services.

1 2 3 4

OpenAI 57.63% 31.44% 2.73% 8.20%
Anthropic 12.82% 15.38% 71.79% -

6.2 Impact Range of Incidents

Observation #12: 71.79% of Anthropic incidents affect all its services,
compared to only 8.20% for OpenAI.

The incident reports indicate that one incident can impact several
services, which is the impact range of incidents. Figure 11 gives the
impacted services combinations of OpenAI and Anthropic incidents
based on their reports, respectively. For Anthropic, the majority
of incidents (71.79%) impact its 3 services jointly. However, for
OpenAI, only 8.20% of services are impacted together, and over half
(57.63%) of incidents affect a single service.

7 LIMITATIONS AND VALIDITY
The generality of our work is limited to the services we analyze.
We analyze LLM-related services from three popular operators,
including the currently most popular (OpenAI). However, other,
very different services could exist, e.g., allowing users to self-host
LLMs (e.g., Anyscale), and LLM services from big cloud providers
and/or used primarily internally (e.g., Google Gemini).

The accuracy of our failure dataset is limited to what the LLM
operators themselves report. That makes our data subject to the
operators’ bias. Prior work [26, 59] suggests the operator’s reports
already capture the most user-visible failures as those generate
widespread social media coverage, making it difficult for the op-
erators to hide failure; to confirm this for LLM services, we need
to collect data from other sources such as the user devices [10] or
user failure reports [26, 59].

The depth of our analysis regarding the root cause of failures is
limited. We glean limited information from the operators’ failure
reports regarding the hardware and software infrastructure. To
confirm our findings, we would ideally use detailed infrastructure
and application-level data. However, this requires active help from
the service operators, e.g., releasing their system traces as Google
did with its cluster workloads [23].

The scope of our work is limited to LLM services. We ignore
other deep learning services such as Image Generation (e.g., Stable
Diffusion, Midjourney), Translation (e.g., DeepL), etc. However, we
believe the operational characteristics of LLM services are valuable
in and of themselves. LLMs have gained broad general public adop-
tion and mindshare, as described in Section 1. LLM services now
also support multi-modal use cases such as image generation and
image-based question answering, making them some of the most
general deep learning tools currently available.

8 RELATEDWORK
Overall, this work complements the existing body of work on failure
characterization, modeling, and more generally failure-recovery,
with a focus on the emerging area of LLM services. Ours is the first
comprehensive, longitudinal data collection and empirical charac-
terization of public LLM services.

Operational failure characterization of workstations [34], HPC
sites [24], clouds [22], big data jobs [54], networks [47], storage de-
vices [1], CPUs [25], and GPUs [60] has led to improved application
designs and fault-tolerance mechanisms. Leading from these, we
have better failure detection [10, 26], checkpointing [21], retry [48],
and replication mechanisms [57]. However, these do not cover deep
learning and particularly LLM services.

There is existing work on operational characteristics of GPUs for
deep learning [39], ML jobs on HPC clusters [14], and deep-learning
clusters [35]. However, nowork has described the operational failure
characteristics of user-facing deep learning services. Our study
addresses this gap, focusing on LLMs.
Deep learning workloads have been characterized including their
GPU utilization [27, 38], network characteristics [9], and storage
characteristics [13]. User-facing machine learning workloads have
also been characterized [68]. The studies complement our work as
they explore different hardware/software stack layers. We comple-
ment the studies by enhancing the community’s understanding of
LLM failures at the user-facing application layer.
LLM workloads have been characterized at the preliminary-level
for training [28], fine-tuning [67, 70], and inference [37]. Failures
have been assessed briefly; e.g., found to occur frequently (∼9 hour
MTBF) in LLM training [28], compared to around 4 days MTBF for
the user-facing services in this work. Fine-tuning and inference
workloads have not been characterized, especially concerning fail-
ures. Ours is the first study to focus on failures occurring in public
LLM services, with unique contributions in longitudinal analysis
and in collecting comprehensive data from multiple services.

9 CONCLUSION
Understanding the characteristics of failures in the operation of
public LLM services has become a stringent problem, driven by the
rapid increase in the popularity of such services, market competi-
tiveness, and increasingly self-reported presence of such failures
by LLM service providers. Addressing this problem, in this work
we have conducted a comprehensive empirical characterization of
outages and incidents in public LLM services.

We have collected long-term failure data from 8 relevant services,
and produced corresponding outage and incident datasets under
the same failure model. We analyzed the failure characteristics of
these services, per service and overall, and specifically analyzed
MTTR and MTBF, time spent in various stages in the recovery
process, service availability over hourly and daily intervals, diurnal
and weekly availability distributions, auto-correlations; and failure
co-occurrence for pairs and groups of services per provider, and for
pairs of services across providers.

In our analysis, we emphasized over 10 observations, which scien-
tists, engineers, and users could include directly in their knowledge
base, and from which improvements to LLM systems could occur
in time.

For the future, we aim to lead a community effort where datasets,
collected long-term and processed to provide similar information,
can be shared. Future analysis could include the popular LLM ser-
vices powered by Google DeepMind’s Gemini and Mistral AI’s
Mixtral, and the promising emerging LLMs from US-, China-, and
Japan-based big tech companies, e.g., NVIDIA’s Nemotron.
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