
Columbo: A Reasoning Framework for
Kubernetes’ Configuration Space
Matthijs Jansen, Sacheendra Talluri, Krijn Doekemeijer,
Nick Tehrany, Alexandru Iosup, Animesh Trivedi

m.s.jansen@vu.nl

https://atlarge-research.com/mjansen/

Columbo
Open-source Code

Machine 1 .. N

Containerization

2

Container benefits:

- Virtualization with little overhead
- Portable and reproducible

packaging and execution

In data centers:

- Many containers across many machines
- Resource managers govern life cycle

CNCF 2024 Annual Survey

3

The production standard

80% uses Kubernetes

The new normal

Over 90% uses containers

CNCF 2024 Annual Survey

4

But: Containers are difficult to use

Kubernetes Configuration Complexity

5

Architecture with 9
distributed components

- Control plane:
Decision making

- Data plane:
Decision execution

Configuration API:

- 234 resources
- 1598 parameters

Configurations Are Important

6

Goal: Tune configurations to optimize container deployment latency
- Google Kubernetes Engine deploys only 7% faster
- Configuration tuning with our approach: Deploys 37% faster

Configuration Tuning Strategy

Approaches
- Brute force? No → Too many parameters, slow updates
- Users to restrict parameter space? No → Requires expertise
- Root-cause analysis? Yes → Fast and user-friendly

Stage 1User
Workload Stage 2 Stage X Running

Container

Pipeline Stage Parameter Object Current value Demanded

3 Batch Size Pods 5 100

Columbo’s Configuration Tuning

8

Workload Deployment Pipeline

9

6 stages: Unique data object / components control loop
26 steps: Move data between components

Analytical Performance Model

10

Best case: Objects are independent and are processed in parallel
So: Benchmark execution of 1 container, extrapolate to demand

Columbo Day-to-day Operation

11

Use case: 1600 containers over 16 worker, 1 control plane node
Bottleneck detection:
- Benchmark finds 97% execution time in phase 3, step 9
- Analytical baseline predicts <1% of execution time in this step

Resolve Bottleneck with Parameter Rules

12

1. Map configuration parameter to pipeline stages / steps
a. Automatic analysis of documentation and source code
b. Filter for performance-sensitive parameters

2. Define parameters’ current value and matching object
a. Extract from documentation / source code and pipeline

One-time effort → Expert can augment this automated approach

Stage Step Parameter Current Value Scales with

3 8 InitialBatchSize 1 #pods

4 14 KubeApiQPS 50 #pods

We have
1600 pods

Columbo Day-to-day Operation

13

Update InitialBatchSize to 1600 to resolve bottleneck
Columbo Run 2: 80.9 seconds to 31.1 seconds
- Benchmark finds 97% execution time in phase 4, step 14
- Analytical baseline predicts ~6% of execution time in this step

Columbo Day-to-day Operation

14

Update KubeApiQPS to 1600 to resolve bottleneck
Columbo Run 3: 80.9 seconds to 16.9 seconds → 79.1% reduction
- CPU utilization at 100%
- No further optimization possible unless resources are added

Optimize Deployment Method

15

100 containers over:
- 100 kubectl calls
- 1 call, 100 jobs
- 1 job, 100 pods
- 1 pod, 100 cont.

Results:
- Cont.: -16%
- Pod: +1%
- Job: +5%
- Call: -37%

End-to-end Impact of Columbo

16

Setup:
- 100GB TPC-DS on Spark
- Spark control plane and

workers on Kubernetes
- 400 Spark workers run

4 queries with cold starts

Findings:
- Avg. deployment time: -29%

- Similar to microbench.
- Avg. end-to-end time: -17%

Spark startup

K8s deploys workers

Processing

Conclusion

17

We present Columbo:
- Automatically detect and

resolve bottlenecks for
Kubernetes configurations

- Columbo reduces
deployment time (avg. 28%)
and total execution time
(17% for Spark)

Open-source and free-to-use Columbo
Open-source Code

m.s.jansen@vu.nl

atlarge.science/mjansen

