
Testing Container Orchestration Systems: A Literature Review

He Wen
Vrije Universiteit Amsterdam

Matthijs Jansen
Vrije Universiteit Amsterdam

Daniele Bonetta
Vrije Universiteit Amsterdam

Abstract

With the rise of microservices and cloud-native applications,
container orchestration systems have become essential for
managing the complexity of containerized service infrastruc-
ture. They enable organizations to automate deployment,
scale services dynamically, and ensure high availability in
distributed environments. Therefore, it is crucial to validate
the correctness of container orchestration systems. This pa-
per systematically identifies key testing objectives for COSs,
encompassing functionality, resiliency, performance, security,
and observability. We conduct a comprehensive literature re-
view of state-of-the-art testing techniques, organizing them
into a structured taxonomy. Additionally, we highlight re-
search gaps and challenges, providing insights into future
research directions for improving COS validation.

1 Introduction

Containers have gained significant attention in recent years
for their ability to encapsulate software and its dependencies
within standalone, self-contained units. By isolating processes
at the operating system level, containers allow multiple users
and applications to share the resources of a single compute
node. While similar to virtual machines (VM), containers
are lightweight [26] and offer benefits like easy deployment,
testing, and application composition. These characteristics
have made containers a foundational technology for modern
software architectures, particularly in the context of microser-
vices [37] and cloud-native applications [57].

As microservices and cloud-native architectures grow, man-
aging containerized services has become more complex, lead-
ing to the widespread adoption of container orchestration
systems (COS). By simplifying both initial deployments and
ongoing management of multiple containers as a single unit,
COSs provide a framework for managing containers at scale.
They are essential for automating deployments, scaling ser-
vices as needed, and ensuring high availability in distributed
environments.

Therefore, testing COSs is a vital process for validating
service functionality as well as maintaining system reliabil-
ity, performance, and security. According to Cloud Native
Computing Foundation (CNCF) Annual Survey 2023 [22],
84% of surveyed organizations are using or evaluating Ku-
bernetes [10], one of the most popular COSs. As organiza-
tions increasingly rely on container orchestration to manage
their infrastructure, the need for rigorous testing practices has
grown.

However, traditional testing methodologies often fall short
in capturing the complexity of COSs due to their dynamic
and distributed nature. Containers can be created, terminated,
or rescheduled across nodes, making consistent testing con-
ditions difficult to maintain [66, 78]. Testing for scalability
and resource management requires specialized techniques
that account for dynamic resource allocation [54]. Security
testing is similarly challenging due to container and network
isolation risks [72,90]. Additionally, failure modes are varied,
with failures and partial outages that traditional tests might
overlook [6, 88].

There has been an active and continuing research in
container orchestration testing, including chaos engineer-
ing [7, 56, 79], bug analysis [6, 48, 88], and security valida-
tion [47, 93]. However, there has not been a recent and thor-
ough survey of testing objectives and techniques of COSs. This
literature review aims to provide a comprehensive overview
of existing research on testing strategies for COSs. It explores
the main testing objectives and the current state of testing
practices. By synthesizing existing work, this review seeks
to identify research gaps and suggest future directions for
advancing testing methodologies in container orchestration
environments. The main contributions of this literature review
are as follows:

1. Identification of key testing objectives: This review
analyzes the core components and execution pipeline of
COS to extract their primary operational tasks. Based on
this analysis, this review identifies the primary objectives
of testing in container orchestration environments, which



Table 1: Evaluation of related publications

Publication Year Container Orchestration Testing Objectives
Nachiyappan et al. [53] 2015 ✔ Cloud testing dimensions & tools & challenges

Weerasiri et al. [86] 2017 ✔ Taxonomy of cloud resource management techniques

Pahl et al. [57] 2017 ✔ ✔ Container-based technologies classification framework

Bachiega et al. [5] 2018 ✔ ✔ Survey on container performance evaluation

Bertolino et al. [8] 2019 ✔ Cloud testing classification framework

Casalicchio et al. [14] 2019 ✔ ✔ Taxonomy of container and container orchestrator

Sultan et al. [72] 2019 ✔ ✔ Survey on container security and solutions

Rodriguez et al. [64] 2019 ✔ ✔ Taxonomy of container orchestration systems

Watada et al. [85] 2019 ✔ ✔ Trends & challenges in containerization

Casalicchio et al. [15] 2020 ✔ ✔ Study of SotA container technologies

Goodarzy et al. [29] 2020 ✔ Cloud resource management using ML

Zhong et al. [94] 2022 ✔ ✔ Taxonomy of ML-based container orchestration solutions

Queiroz et al. [61] 2023 ✔ ✔ Container virtualization in real-time industrial systems

Solayman et al. [69] 2023 ✔ Container virtualization in IoT

Malhotra et al. [49] 2024 ✔ ✔ Container maintenance

This literature review 2025 ✔ ✔ ✔ Testing container orchestration systems

serve as the foundation for understanding the purpose
and direction of existing testing practices. (Section 4)

2. Design of a taxonomy of testing approaches: The re-
view introduces a structured taxonomy of testing meth-
ods and techniques, organized by the identified testing
objectives. This taxonomy offers a framework for ana-
lyzing the breadth and depth of testing practices in COSs.
(Section 5)

3. Investigation of research gaps and future directions:
The review uncovers unresolved research challenges and
proposes future research directions to advance testing
methodologies, providing insights to container orches-
tration testing practices. (Section 6)

2 Related Work

Table 1 illustrates the increasing body of literature reviews as
containerization has gained popularity. Existing studies have
explored various dimensions of container-related technolo-
gies, including cloud testing methodologies, resource man-
agement techniques, and container orchestration framework
taxonomies. While related work provides valuable insights
into the components and operations of COSs, systematic re-
search on testing COSs remains limited. This study aims to
fill that gap by contributing a focused literature review on
testing COSs, bridging existing research domains, identifying
existing contributions to COS testing, and outlining the need
for future work in validating COS behavior.

Cloud Testing. Cloud testing has been extensively stud-
ied, with researchers exploring various dimensions of testing
methodologies and tools. Nachiyappan et al. [53] present
a study that identifies key testing dimensions, compares
cloud testing tools, and highlights the associated challenges.
Bertolino et al. [8] extend this research by introducing a clas-
sification framework that segments cloud testing into Testing
in the Cloud (TiC), Testing of the Cloud (ToC), and Testing of
the Cloud in the Cloud (ToiC). These studies provide a foun-
dational understanding of cloud testing practices, which can
be extended to the unique complexities of COS environments.
However, while cloud testing frameworks can offer useful in-
sights, they do not directly address the orchestration-specific
challenges of distributed, containerized systems. This high-
lights the need for a literature review focusing specifically on
testing COSs.

Cloud Resource Management. Efficient resource manage-
ment is critical to optimizing cloud and containerized envi-
ronments. Weerasiri et al. [86] propose a multidimensional
taxonomy that facilitates the systematic analysis, comparison,
and classification of cloud resource orchestration technologies.
Furthermore, Goodarzy et al. [29] explore machine learning
(ML) techniques for resource management, illustrating how
ML algorithms can enhance cloud resource allocation and
optimization. These studies collectively inform the develop-
ment of more adaptive and efficient resource management
strategies for COSs. While resource management is tightly
coupled with COSs, the impact of resource orchestration, es-
pecially container orchestration, on system correctness and

2



reliability has not been systematically explored from a testing
perspective.

Container-related Technologies. The evolution of con-
tainer technologies has motivated considerable research into
their performance [5], security [72], and orchestration capa-
bilities. Pahl et al. [57] systematically classify and compare
research on container-based technologies, focusing on their
cloud applications. Watada et al. [85] perform a detailed
study of research trends and challenges in various aspects
of containerization such as container networking, security, or-
chestration, and performance analysis. Similarly, Casalicchio
et al. [15] present a taxonomy of state-of-the-art container
technique solutions from aspects of containerized applica-
tion performance, orchestration, and cyber-security. While
existing studies provide an understanding of container-based
technologies and evaluation approaches, they have not fully
addressed the challenges in container orchestration.

Container Orchestration. The orchestration of cloud and
containerized environments has been the subject of extensive
research, with studies focusing on classification and analysis.
Casalicchio et al. [14] provide a comprehensive survey of
container orchestration technologies, introducing a taxonomy
that classifies orchestration solutions based on resource limit
control, scheduling mechanisms, and other key features. This
taxonomy serves as a structured framework for understanding
the capabilities and distinctions among COSs. Rodriguez et
al. [64] further contribute by proposing a taxonomy that clas-
sifies COSs from the perspectives of scheduling, application
models, and resource management. While these studies pro-
vide valuable insights into how COSs function, they do not
deeply explore how these orchestration processes should be
tested to ensure the correctness and robustness of COSs.

3 Research Methodology

This literature review follows the methodology by Kitchen-
ham et al. [36], including three main phases: planning the
review (Section 3.1), conducting the review (Section 3.2),
and reporting the results (Section 5, 6).

3.1 Planning the Review
The main goal of this literature review is to understand the
main objectives and state-of-the-art approaches in testing
COS. In particular, this literature review aims to answer the
following research questions:

• RQ1: What are the main objectives for testing container
orchestration systems?

• RQ2: What are the current test methods, techniques,
and tools mainly used in container orchestration systems
testing?

• RQ3: What are the research gaps and future research
directions of container orchestration systems testing?

3.2 Conducting the Review

This section outlines the approach used to identify, select,
and analyze relevant studies. The process of conducting the
review includes defining publication selection criteria, ap-
plying a snowballing [87] strategy to enhance coverage, and
systematically extracting and evaluating key insights from the
reviewed works.

Publication Selection. To obtain relevant publications for
this review, we conducted a comprehensive search across dig-
ital libraries, including Google Scholar1, dblp2, and Semantic
Scholar3.

We formulated a structured query string to target key con-
cepts related to container orchestration and testing method-
ologies. The search included keywords such as "container
orchestration" and "testing" and was performed by
matching terms within the title, abstract, and keyword fields of
publications. Given that Kubernetes and Docker Swarm [24]
are the two most widely used COSs, their testing methodolo-
gies were explicitly included in the query. The search was
restricted to English-language papers published between 2019
and 2025.

After gathering an initial set of related publications, we
identified the primary testing objectives by analyzing their
core topics and referencing the architecture outlined in Sec-
tion 4. To ensure comprehensive coverage, we conducted
a secondary query using keywords corresponding to vari-
ous testing objectives, including "functional testing",
"fault injection", "performance", and "security".

The final query string is as shown in Listing 1.

Listing 1: Query String
( ’ c o n t a i n e r ’

or ’ c o n t a i n e r o r c h e s t r a t i o n ’
or ’ c o n t a i n e r management ’
or ’ c o n t a i n e r o r c h e s t r a t i o n sys tem ’
or ’ c o n t a i n e r o r c h e s t r a t i o n framework ’
or ’ K u b e r n e t e s ’ or ’ Docker Swarm ’ )

and
( ’ f u n c t i o n a l ’ or ’ f a u l t i n j e c t i o n ’

or ’ chaos e n g i n e e r i n g ’
or ’ p e r f o r m a n c e ’ or ’ s c a l a b i l i t y ’
or ’ s e c u r i t y ’ or ’ o b s e r v a b i l i t y ’ )

and
( ’ t e s t ’ or ’ t e s t i n g ’

or ’ v a l i d a t i o n ’ or ’ v e r i f i c a t i o n ’ )

1Google Scholar: https://scholar.google.com/
2dblp: https://dblp.org/
3Semantic Scholar: https://www.semanticscholar.org/

3

https://scholar.google.com/
https://dblp.org/
https://www.semanticscholar.org/


Table 2: Inclusion and exclusion criteria

Inclusion Criteria

- Studies presenting or benchmarking container orchestration
architecture, platform, or framework
- Studies related to testing containerized services
- Studies presenting container testing issues or goals
- Studies presenting container orchestration testing issues or
goals
- Studies presenting container orchestration testing strategies
or tools

Exclusion Criteria

- Studies discussing general cloud computing, virtualization,
or microservices without linking to COS
- Blog posts, theses, and unpublished preprints (e.g. arXiv)

The obtained publications were then evaluated according to
the Inclusion and Exclusion Criteria defined in Table 2. The
inclusion criteria focuses on studies that directly contribute to
understanding COS and their testing methodologies. Studies
addressing testing challenges, goals, and tools for COS are
prioritized. To ensure a comprehensive review, studies that ex-
amine general container testing challenges are also included,
as these often reveal relevant orchestration-related insights.
The exclusion criteria filters out studies that lack direct rele-
vance to COS. Furthermore, non-peer-reviewed sources are
omitted to maintain the reliability and academic rigor of the
review.

Snowballing. To enhance the comprehensiveness of the lit-
erature review, snowballing is employed as a complementary
search strategy. This includes backward snowballing, which
examines reference lists of selected papers to identify foun-
dational works on COS architectures and testing strategies,
and forward snowballing, which explores citations of selected
papers to uncover recent research that builds upon or extends
their findings.

Data Extraction and Analysis. The collected publication
data is systematically processed in order to obtain relevant in-
formation to address the research objectives. The publications
are categorized by labels from multiple dimensions, including
testing objective, testing strategy, and context.

4 Testing Objectives of COS

To address RQ1, we analyze several reference architectures
[3, 64] to establish a systematic mapping between the COS’s
primary components and their corresponding testing objec-
tives. Our analysis follows a two-step approach. First, we
review the key responsibilities of COSs as identified in prior

Application / Service

Service
Management

Resource
Management Scheduling

Infrastructure

Cluster Manager Matser

Container

Agent

Worker

Container

Agent

Worker

...

Compute Cluster

Figure 1: Architecture for Container Orchestration Systems
(COS)

work. Second, we examine each component’s primary duty
according to the previous step.

4.1 Reference Architecture
Khan [35] highlights responsibilities such as cluster state
management, scheduling, high availability, fault tolerance,
security, networking, service discovery, continuous deploy-
ment, monitoring, and governance. In addition, Andreadis et
al. [3] propose a detailed model that defines four fundamen-
tal responsibilities: job processing, task processing, scheduler
management, and resource management. Rodriguez et al. [64]
further emphasize the inter-component interactions that shape
the overall COS workflow.

As shown in Figure 1, four main layers are identified in the
reference architecture: the Application/Service layer, the Clus-
ter Manager Master, the Compute Cluster, and the physical
Infrastructure.

From a high-level perspective, the end-user application or
service is built, packaged into containers, and deployed to
the Compute Cluster via the orchestration system (Cluster
Manager Master). The underlying hardware or virtualized
Infrastructure provides the foundational resources needed to
host the clusters, which can be either VMs, cloud infrastruc-
tures, physical machines, or edge devices.

Cluster Manager Master. The cluster manager master
serves as the core component of a COS. The service manage-
ment module provides high-level functional capabilities for
building, deploying, and managing applications. It is respon-

4



Application / Service

④ Security &
Vulnerability (§5.4)

① Functional &
Integration (§5.1)

② Fault Tolerance
& Resiliency (§5.2)

⑤ Observability &
Monitoring (§5.5)

Compute Cluster

Service
Management

Resource
Management Scheduling

Cluster Manager Matser

③ Performance &
Scalability (§5.3)

Figure 2: Mapping from components to testing objectives for Container Orchestration Systems (COS)

sible for launching containers on cluster nodes, supporting
service discovery, ensuring service readiness, and continu-
ously monitoring task life cycles. The resource management
module is responsible for the efficient allocation and pro-
visioning of resources, including memory, CPU/GPU, disk
space, local and persistent volumes, and virtual networking
components. This module tracks resource consumption in
real time, provisions new nodes when necessary, and balances
resource usage. The scheduling module manages task place-
ment across cluster nodes, orchestrates scheduling hierarchies,
and resolves competing task priorities. It also manages various
stages of the task life cycle, such as preemption, rescheduling,
and replication, to ensure the efficient and reliable execution
of tasks across the cluster.

Compute Cluster. The compute cluster forms the execu-
tion layer of a COS, consisting of multiple worker nodes
that run containerized workloads. Each worker node includes
two primary components: the container and the agent. The
container encapsulates the application and its dependencies,
providing an isolated runtime environment. The agent acts as
a local control point, communicating with the cluster manager
master to receive and execute scheduling decisions, monitor
resource usage, and report the node’s status. The agent is also
responsible for managing container life-cycle events, includ-
ing starting, stopping, and restarting containers based on the
master’s directives.

4.2 Testing Objective Mapping
Each of the COS components plays a crucial role in ensuring
system correctness, reliability, and efficiency. However, their
complexity introduces potential points of failure that require
rigorous testing. As the central control plane of the COS,
the Cluster Manager Master manages service deployment,
resource allocation, and task scheduling. Given its critical role,
failures at this level can cause widespread service disruptions
or performance bottlenecks. To systematically validate COS
behavior, we map the architectural components of Cluster

Manager Master to corresponding testing objectives. Figure
2 illustrates this mapping, providing a visual summary of the
relationships.

The Service Management Module is responsible for de-
ploying and maintaining applications by launching containers
and managing service discovery. Failures in this functionality,
such as unsuccessful container launches or broken service dis-
covery, can lead to application downtime or incorrect routing.
To address this, Functional and Integration Testing is required
to validate container lifecycle management and inter-service
communication. Additionally, this module ensures service
availability through readiness checks and continuous mon-
itoring. Ineffective readiness probes or monitoring failures
may cause delayed failure detection or improper failovers.
Therefore, Observability and Monitoring Validation is nec-
essary to verify the accuracy of collected metrics and logs.
Furthermore, this module governs service isolation and ac-
cess control, ensuring security in multi-tenant environments.
Misconfigurations could result in privilege escalation or unau-
thorized access, making Security and Vulnerability Testing
critical for validating authentication, authorization, and net-
work policies.

The Resource Management Module ensures efficient allo-
cation and provisioning of computing resources, dynamically
balancing workloads across nodes. Failures in this function,
such as resource exhaustion or inefficient scaling, can de-
grade performance and cause service starvation. Performance
and Scalability Testing is essential to evaluate how well the
module handles dynamic workload changes. Additionally,
the module is responsible for real-time resource tracking to
optimize cluster efficiency. Inaccurate tracking may lead to
over-provisioning or under-utilization, necessitating Observ-
ability and Monitoring Validation to ensure accurate telemetry
and reporting. Finally, workload reallocation during failures
is a key responsibility, preventing service disruptions by redis-
tributing workloads to healthy nodes. Failures in this function
could lead to prolonged outages or increased response times,
requiring Fault Tolerance and Resiliency Testing to validate
resource reallocation under stress conditions.

5



Functional Testing

Functional and
Integration Testing Integration Testing

Root-cause Analysis

Containerized Systems

Components of COS

Figure 3: Taxonomy of functional and integration testing for
Container Orchestration Systems (COS)

The Scheduling Module is tasked with placing tasks across
the cluster based on scheduling policies and available re-
sources. Inefficient scheduling can result in high scheduling
latency, poor resource utilization, and degraded performance.
Performance and Scalability Testing is necessary to measure
task placement efficiency and scheduling overhead. Further-
more, the module handles task preemption, rescheduling, and
replication to ensure continuous workload execution under
node failures or workload fluctuations. Ineffective reschedul-
ing strategies can lead to system instability or failed recovery,
making Fault Tolerance and Resiliency Testing essential for
validating task recovery mechanisms.

5 Taxonomy of COS Testing Objectives

To answer RQ2, we present a taxonomy of COS testing based
on testing objectives as mentioned in Figure 2. For each ob-
jective, the state-of-the-art testing techniques based on the
obtained publications are introduced.

5.1 Functional and Integration Testing

Observations:
O-1: Most studies emphasize automated testing frame-
works to reduce manual effort and enhances test cover-
age.
O-2: Most functional testing approaches focus on pre-
deployment validation rather than dynamically adapt-
ing to runtime changes in COSs.
O-3: Most functional testing approaches operate in a
single-cluster environment.
O-4: The verifications of core components of COS
mostly focus on controllers.

Ensuring the reliability of COSs requires rigorous func-
tional and integration testing to validate the correctness of
individual components and the seamless interaction of con-
tainerized services. As shown in Figure 3, this section ex-
plores key approaches to testing COSs, structured into three
main areas. First, functional testing ensures that both con-
tainerized applications and core COS components operate as
expected, covering automated frameworks, stress testing, and

model-based verification. Second, integration testing focuses
on validating interactions between microservices and orches-
tration layers, incorporating smoke testing and large-scale
system integration. Finally, root-cause analysis addresses de-
bugging challenges in COS environments, particularly in di-
agnosing failures across complex, distributed infrastructures.

The primary objective of functional testing in COSs is to
validate the correctness and expected behavior of both con-
tainerized applications and the orchestration infrastructure
itself. This encompasses two key aspects: (1) verifying that
containerized applications function as intended within the
orchestrated environment and (2) ensuring that the individ-
ual components of the COS operate according to specified
requirements.

To automate the process of testing containerized mi-
croservices, various approaches have been proposed to assess
application functionality. Astyrakakis et al. [4] introduce a
stress-testing framework that validates Kubernetes applica-
tions submitted to a public marketplace, ensuring they align
with their YAML descriptors and comply with cloud-native
principles such as scalability and redundancy. Expanding on
automated testing for cloud-native applications, Nikolaidis
et al. [55] propose Frisbee, a Kubernetes-native platform for
systematically testing containerized applications. Frisbee pro-
vides an integrated architecture for fault injection, system
interaction monitoring, and service structure modeling for
cloud-native systems within Kubernetes. By leveraging Ku-
bernetes’ abstraction, Frisbee overcomes the limitations of
traditional cloud testing approaches [8, 16], allowing engi-
neers to design tests in local environments and seamlessly
execute them across diverse infrastructures. Further refining
the validation of microservice behavior, Turin et al. [80] pro-
pose a formal model that simulates resource consumption and
scaling in Kubernetes-managed services, comparing simula-
tion results against real-world observations to ensure system
correctness.

Beyond application testing, COSs consist of numerous crit-
ical components, including schedulers, controller managers,
and network proxies, all of which must function reliably to
maintain system stability. Ensuring the correctness of core
orchestration components requires systematic verification
techniques. A model-based approach is often employed for
formal verification. Xu et al. [88] investigate Kubernetes Op-
erator bugs, categorizing common patterns and assessing their
impact on system stability. Addressing the need for automated
verification, Gu et al. propose Acto [30], an end-to-end test-
ing framework that models Kubernetes Operators as state
machines. By systematically exploring state transitions, Acto
verifies both operator correctness and the ability of managed
systems to achieve their intended states. Extending formal
verification to broader COS components, Liu et al. present
Kivi [43], a model-checking framework that encodes con-
trollers and their interactions as processes. Kivi exhaustively
verifies these interactions, identifying misconfigurations and

6



controller logic flaws that could compromise system behavior.
While functional testing validates individual components,

integration testing is essential for ensuring that containerized
services interact correctly and function cohesively under or-
chestration. As an initial step in this process, Cannavacciuolo
et al. [12] focus on smoke testing, introducing an automatic
test generator that derives test cases from predefined oracles.
Their approach includes platform sanity checks, log analy-
sis, response validation, and persistent volume verification.
Expanding on integration testing, Reile et al. [63] present
Bunk8s, a testing tool for microservices in Kubernetes. It in-
teracts with both the CI/CD pipeline and COS, launching and
coordinating test runner containers in test runner pods.

While functional and integration testing validates system
and component behavior, effective root-cause analysis is es-
sential for diagnosing and preventing infrastructure-related
bugs that may occur post-deployment. To diagnose failures in
distributed orchestration environments, Sun et al. [75] propose
an approach that reconstructs service execution histories to an-
alyze failures. Tang et al. [76] conduct an in-depth root-cause
analysis of cross-system interaction failures in modern cloud
system orchestrations and advocate for cross-system testing
and verification. Extending failure analysis beyond COSs,
Drosos et al. [25] conduct an extensive analysis of bugs in
Infrastructure as Code (IaC) software. Given the architectural
similarities between IaC and COSs, they suggest adapting
testing techniques from COSs to enhance IaC validation.

5.2 Fault Tolerance and Resiliency Testing

O-5: Fault injection in general is not limited to con-
tainerized applications but also extends to the COS
itself.
O-6: Both fault injection and chaos engineering rely
on predefined failure scenarios.
O-7: There are plenty of chaos engineering tools target-
ing Kubernetes, however, there is a lack of systematic
research on chaos engineering of COS.

To ensure the fault tolerance and resilience of COSs, vari-
ous testing methodologies have been developed to assess their
behavior under failure scenarios and validate their correctness.
As shown in Figure 4, this section examines three most popu-
lar approaches: fault injection, chaos engineering, and formal
verification, each contributing to a comprehensive reliability
assessment.

Fault injection is a widely adopted approach for evaluating
the robustness of cloud systems by deliberately introducing
faults into protocols and implementations [36, 44, 52]. In the
context of containerized services, Flora et al. [28] highlight its
significance in assessing the fault tolerance of COS managing
microservices. Various fault injection techniques have been
developed to target different categories of bugs in container-

Fault Injection

Fault Tolerance and
Resiliency Testing

Formal Verification

Chaos Engineering

Figure 4: Taxonomy of fault tolerance and resiliency testing
for Container Orchestration Systems (COS)

ized environments.
For instance, Lu et al. [45] introduce CrashTuner, a fault-

injection testing approach designed to detect crash recovery
bugs. CrashTuner leverages meta-information analysis to
automatically infer high-level system state variables, whose
access points serve as fault injection targets likely to reveal
errors. Addressing network partition bugs, Chen et al. [18]
propose CoFI, a consistency-guided fault injection technique
that strategically injects network partitions to expose consis-
tency violations in cloud systems. CoFI not only controls
when the partition begins but also determines the optimal
stopping point to maximize bug discovery. Beyond crash re-
covery and network faults, time-out bugs pose additional chal-
lenges in distributed environments. To address these, Chen et
al. [19] introduce Chronos, an automated testing framework
that employs fuzzing to dynamically generate fine-grained
delay sequences at runtime. Unlike traditional fault injection
techniques that rely on direct system perturbations, fuzzing in-
jects faults through malformed inputs, enabling the detection
of transient failures caused by unexpected delays in Chronos.

Apart from evaluating the fault tolerance ability of con-
tainerized systems, fault injection technique can also be uti-
lized to access the resiliency of COSs themselves. Focusing
on COS controllers, Sun et al. [73] introduce Sieve, an auto-
mated reliability testing tool that verifies whether controllers
can maintain correct system operations under common pertur-
bations. Their findings demonstrate that fault injection is an
effective method for assessing orchestration resiliency. Bar-
letta et al. [6] further reinforce this perspective by conducting
a comprehensive analysis of real-world Kubernetes failures.
Through fault injection experiments that modify the cluster
state data, they successfully reproduce known incidents and
uncover new failure patterns, highlighting the role of fault
injection in identifying vulnerabilities within COS.

While fault injection introduces specific failures to test sys-
tem behavior, chaos engineering [7] expands this approach
by systematically experimenting on distributed systems to
evaluate their resilience under real-world conditions. Unlike
conventional fault injection, which often targets predefined
failure scenarios, chaos engineering applies systematic disrup-
tions of various system components in a controlled environ-

7



ment to uncover unexpected weaknesses and improve system
reliability.

Camacho et al. [11] propose Chaos as a Software Product
Line, an architecture that enables fault injection as a config-
urable software product line in cloud environments, targeting
OpenShift and Kubernetes-based clusters. Similarly, Niko-
laidis et al. [56] introduce Frisbee, an automated chaos testing
platform for Kubernetes-based distributed applications. Fris-
bee employs an event-driven approach, integrating runtime
event collection with a scenario modeling language to define
and execute test cases dynamically.

Expanding the scope beyond Kubernetes, Higgins et al. [31]
highlight the challenges of conducting chaos experiments in
multi-cloud Docker Swarm clusters and present Swarm Storm,
a framework designed to orchestrate chaos engineering exper-
iments in a cloud-agnostic environment with comprehensive
testing features. Meanwhile, Simonsson et al. [67] focus on
system call-level chaos testing in containerized applications.
Their tool, ChaosOrca, stands out by performing experiments
under production-like workloads without instrumenting the
application itself, ensuring minimal interference. Further re-
fining this approach, they introduce realistic error model gen-
eration, which aims to replicate failures that naturally occur
in production environments [92]. Finally, Ikeuchi et al. [32]
bridge chaos engineering with machine learning, presenting a
framework that utilizes failure injection tools to train a recov-
ery policy using deep reinforcement learning. Their approach
emphasizes automated self-healing mechanisms in container-
ized environments.

Similar to fault injection, while chaos engineering tech-
niques have been extensively applied to containerized appli-
cations, their impact extends beyond individual services to
the orchestration systems themselves. Several chaos engi-
neering tools have been proposed to assess the fault toler-
ance and resiliency capabilities of COSs by enabling con-
trolled disruption of network, pods, and control-plane compo-
nents [17, 39, 41, 68].

Although fault injection and chaos engineering effectively
expose weaknesses in COSs by simulating failures, they in-
herently rely on specific failure scenarios, thus they do not
provide exhaustive guarantees of correctness. In contrast, for-
mal verification offers a more rigorous approach by proving
safety and liveness across all possible system executions. To
ensure that COS components behave correctly under all con-
ditions, studies have explored verification techniques that
mathematically establish correctness of control components.

Liu et al. [42] propose a verification approach that mod-
els control components and their environment as parametric
transition systems, using symbolic model checking to verify
safety and liveness properties. Similarly, Sun et al. [74] in-
troduce Anvil, a framework for formally verifying that COS
controllers implement eventually stable reconciliation, a con-
cise temporal logic liveness property ensuring that the system
consistently converges to a correct state.

Performance Evaluation
Performance and

Scalability Testing
Scalability Testing

Comparative Analysis

Context-Specific
Assessments

Figure 5: Taxonomy of performance and scalability testing
for Container Orchestration Systems (COS)

5.3 Performance and Scalability Testing

O-8: Kubernetes generally outperforms its counter-
parts in resource efficiency and performance in com-
parative analyses.
O-9: Cluster provisioning time and failure recovery
time are common metrics for performance evaluation.
O-10: Kubernetes’ performance in specific context
(e.g. edge computing) varies significantly.
O-11: There is no universally accepted methodology
for evaluating COS performance across different use
cases.
O-12: Many evaluations on scheduling algorithms rely
on simulated workloads rather than real-world traffic
patterns.

As COSs are increasingly deployed in complex, large-scale
environments, evaluating their performance and scalability
becomes essential. Performance testing focuses on how effi-
ciently a COS manages resources, schedules workloads, and
handles failures, while scalability testing examines how well
it adapts to increasing demands and distributed workloads.
Researchers have approached this evaluation through compar-
ative benchmarking, deployment-specific assessments, and
large-scale stress testing.

As shown in Figure 5, this section presents key studies that
assess COS performance across different metrics, explore the
impact of scheduling strategies, and introduce tools designed
for large-scale benchmarking. By analyzing these works, we
gain insights into the trade-offs between efficiency, fault tol-
erance, and resource management in modern COSs.

Various studies have compared COS by analyzing their
efficiency across different deployment scenarios and per-
formance metrics. Pan et al. [59] compare Kubernetes and
Docker Swarm, assessing the overhead introduced at worker
nodes and the impact on inter-container communication. Their
findings highlight Kubernetes as generally more resource-
efficient than Swarm. Expanding the comparison scope,
Jawarneh et al. [33] conduct a comprehensive benchmark-
ing analysis of multiple COSs, including Docker Swarm,
Kubernetes, Apache Mesos, and Cattle. They examine both
qualitative aspects—such as resource management, service
management, and scheduling capabilities—and performance
metrics, including cluster provisioning time, application de-

8



Cluster Provisioning &
Initialization

Security and
Vulnerability Testing

Deployment

Runtime

Anomaly Detection &
Incident Response 

Figure 6: Taxonomy of security and vulnerability testing for
Container Orchestration Systems (COS)

ployment time under varying complexities, provisioning time
using local images versus Docker registry, and failover recov-
ery time. In a more structured evaluation, Straesser et al. [71]
introduce COFFEE, a systematic benchmarking framework
that correlates performance metrics with key orchestration
requirements. COFFEE evaluates COS performance across
three dimensions: container provisioning and networking, fail-
ure recovery, and rolling updates, providing a standardized
methodology for assessing orchestration efficiency.

Beyond general benchmarking, some studies dive into per-
formance evaluations within specific deployment contexts.
Cilic et al. [21] examine the performance of container orches-
tration systems in edge computing environments. Their evalu-
ation considers the efficiency of Kubernetes, K3s, KubeEdge,
and ioFog under conditions such as private network deploy-
ments, node heterogeneity, and resource-constrained edge
nodes. Offering insights into real-world resource allocation
challenges, Prahong et al. [60] assess COS effectiveness us-
ing a structured evaluation framework. Their study examines
key performance indicators, including request throughput,
response rate, and resource extension periods, across Kuber-
netes, Docker Swarm, and Apache Mesos.

Scalability testing, in contrast, focuses on how COS han-
dles increasing workloads and ensures efficient resource dis-
tribution as the system scales. Voievodin et al. [82] propose
a set of evaluation metrics for COS scheduling strategies,
including cluster resource utilization, container deployment
density, scheduling request satisfaction ratio, and fault toler-
ance. Expanding on this, their subsequent work [83] presents
a comprehensive application design for evaluating scheduling
strategies’ performance.

To model and analyze scheduling algorithms, Pan et al. [58]
develop a queuing theory-based framework for evaluating
three scheduling algorithms: FIFO, Capacity Scheduler, and
Fair Scheduler. Meanwhile, Straesser et al. [70] bridge the
gap between microservice performance simulation and mod-
ern COS frameworks by enabling realistic scalability testing
scenarios with minimal overhead.

Focusing on benchmarking large-scale Kubernetes deploy-
ments, Malleni et al. [50] introduce Kube-burner, a tool de-
signed for performance and scalability testing under large-
scale workloads. Kube-burner facilitates benchmarking by
automating resource creation, deletion, and patching at scale,
collecting detailed metrics via the Kubernetes API, and pro-
viding observability by scraping user-defined metrics under
load.

5.4 Security and Vulnerability Testing

O-13: Static analysis is a popular approach for security
validation.
O-14: There is a lack of research targeting COS
component-related security.
O-15: Machine learning-related approaches are popu-
lar for anomaly detection.
O-16: Most security testing research focus on Kuber-
netes.

As shown in Figure 6, the research on security and vulner-
ability testing of COS covers all stages of a COS lifecycle.

The security lifecycle of a COS consists of several criti-
cal stages, each presenting unique challenges and risks. The
process begins with cluster provisioning and initialization,
which involves setting up control planes, configuring nodes,
and defining network policies. At this stage, misconfigura-
tions, insecure defaults, exposed API endpoints, and weak
authentication mechanisms can create vulnerabilities that
attackers may exploit. The next stage, deployment, intro-
duces additional risks as applications are launched and secu-
rity policies are applied. Without proper admission controls
and privilege management, containers may gain excessive
permissions, leading to privilege escalation and unauthorized
access. Once deployed, the runtime phase focuses on protect-
ing active workloads from threats such as container escapes,
lateral movement, and API exploitation. To ensure the ongo-
ing security of the system, anomaly detection and incident
response are employed to provide continuous oversight of
COS activities. This phase identifies security threats in real
time, allowing for swift mitigation before they escalate. Ad-
dressing security concerns across all these phases is essential
for maintaining a resilient and secure container orchestration
environment.

During cluster provisioning and initialization, security
testing plays a crucial role in mitigating vulnerabilities related
to misconfigurations, insecure defaults, and weak authentica-
tion mechanisms. Rahman et al. [62] conduct an empirical
study on Kubernetes security, categorizing common miscon-
figurations and introducing SLI-KUBE, a static analysis tool
designed to quantify the frequency and severity of these se-
curity weaknesses. Mahajan et al. [46] highlight the security
implications of Kubernetes operators, emphasizing the need

9



for validation mechanisms to assess their impact on clus-
ter security. Expanding on this, Mahavaishnavi et al. [47]
propose a comprehensive security framework aimed at ad-
dressing orchestrator-level security concerns. Their approach
integrates real-time monitoring to detect misconfigurations,
privilege escalation attempts, and unauthorized access within
the orchestration infrastructure. Beyond general misconfig-
urations, Zheng et al. [93] target REST API vulnerabilities
in Kubernetes, introducing KubeFuzzer, a black-box fuzzing
tool that leverages Natural Language Processing (NLP) to
generate sophisticated request sequences, increasing the prob-
ability of discovering security flaws.

As the system transitions into the deployment phase, se-
curity risks shift towards vulnerabilities in container images,
policy misconfigurations, and compliance violations. Ensur-
ing that only secure and authorized configurations are de-
ployed is crucial in this stage. Kudo et al. [38] enhance Ku-
bernetes application security by validating resource mani-
fests during the admission process, preventing unauthorized
configurations. Kamieniarz et al. [34] further refine security
assessments by presenting a comparative analysis tool that
evaluates Kubernetes security postures under different con-
figurations, identifying weaknesses in resource policies and
compliance gaps. From a hardware security perspective, Fer-
nandez et al. [27] propose a container orchestration engine
that integrates hardware-based Trusted Execution Environ-
ments (TEE) to strengthen data protection at the infrastructure
level. Complementing these strategies, Zhu et al. [95] intro-
duce an automated system for Kubernetes AppArmor profile
generation. This system collects and transforms behavioral
data from distributed worker nodes into security policies, en-
forcing them seamlessly without service disruption.

During runtime, when containers actively interact with
networks, execute workloads, and manage sensitive data, real-
time security enforcement becomes paramount. Security vul-
nerabilities at this stage may arise from container escapes,
privilege escalation, lateral movement, and API exploitation.
Addressing these threats, Dell’Immagine et al. [23] present
KubeHound, a tool that detects security smells in microservice
applications by leveraging both static and dynamic analysis
techniques. Using similar approach, Verderame et al. [81] ex-
tend security automation within the DevOps pipeline, propos-
ing a framework that not only prevents vulnerabilities but also
actively mitigates runtime security risks through container
hardening, compliance verification, and runtime monitoring.
Moving beyond static defenses, Torkura et al. [79] adopt chaos
engineering principles, introducing security fault injection to
simulate real-world attack scenarios. This proactive approach
assesses infrastructure resilience by testing how systems han-
dle security failures affecting confidentiality, integrity, and
availability.

Extending runtime security, anomaly detection and inci-
dent response are critical for identifying, analyzing, and mit-
igating security threats in real time. As traditional monitoring

techniques struggle to keep pace with evolving attack vectors,
AI-driven security analytics have emerged as a promising
approach. Several studies [1, 2, 9, 13, 77] explore machine
learning and neural network-based models that analyze run-
time behaviors to enable real-time, multi-class threat detection
in Kubernetes environments. By continuously learning from
historical attack patterns and system anomalies, these models
enhance detection accuracy while reducing false positives.
Such adaptive security mechanisms ensure that containerized
environments remain resilient against both known and emerg-
ing cyber threats.

5.5 Observability and Monitoring Validation

O-17: LLM-related approaches are popular for enhanc-
ing COS observability.

Beyond security-specific anomaly detection, observability
plays a crucial role in maintaining the overall health, relia-
bility, and performance of Kubernetes-based environments.
Effective monitoring mechanisms not only detect security
threats but also help identify system failures, misconfigura-
tions, and operational inefficiencies. By leveraging advanced
monitoring frameworks, automated logging, and AI-driven
analytics, observability enhances system resilience and facili-
tates proactive incident response.

To address the challenges of change management in large-
scale cloud systems, Yan et al. [89] introduce Aegis, an end-
to-end analytical service for attributing the impact of control
plane changes across computing layers and service compo-
nents. Aegis helps mitigate the risks of misconfigurations
by alerting service teams and recommending the suspension
of potentially disruptive changes, thereby improving system
stability.

Enhancing observability within Kubernetes clusters, Mart
et al. [51] integrate automated anomaly detection and alerting
mechanisms with Prometheus, an open-source monitoring sys-
tem. Their approach enables real-time monitoring of cluster
performance metrics, allowing operators to detect irregular-
ities before they escalate into critical failures. Furthermore,
recent advancements in anomaly detection leverage Large
Language Models (LLMs) to improve automated monitor-
ing. Yu et al. [91] propose MonitorAssistant, an end-to-end
anomaly detection system that utilizes LLMs to automate
model configuration recommendations, achieve knowledge
inheritance, and generate guided anomaly reports. Similarly,
Wang et al. [84] introduce COMET, an innovative monitor-
ing framework that filters out non-critical logs and utilizes
an LLM for intelligent keyword extraction. This approach re-
duces noise in log data and improves the efficiency of anomaly
detection, making it easier to pinpoint critical system issues.

10



6 Research Challenges and Future Directions

In this section, following the literature review and taxonomy
of testing COS, we answer RQ3 by identifying research gaps
and challenges that could provide insights on future research
directions.

6.1 Research Challenges and Gaps

Despite the growing body of research on testing COS, several
critical challenges and research gaps remain unaddressed.

A key issue is the lack of a standardized benchmarking
suite for systematically evaluating testing techniques across
diverse deployment scenarios. While many studies introduce
valuable frameworks (e.g., COFFEE, Kube-burner, and Mon-
itorAssistant) and methodologies, there is currently no uni-
versally accepted benchmarking suite that enables a compre-
hensive comparison of testing techniques across diverse de-
ployment scenarios. The lack of standardized benchmarking
methodologies obstructs repeatability and limits the ability to
assess the effectiveness of different testing strategies in varied
environments.

One of the fundamental challenges in COS testing is the
verification of large-scale, highly dynamic systems. Cur-
rent formal verification models face state-space explosion,
lacking the scalability to handle dynamic scaling operations
and large-scale COS deployments with frequent state changes.
As large-scale COS dynamically adjust workloads, node con-
figurations, and networking policies in real time, existing
verification approaches struggle to scale efficiently, leaving
a gap in ensuring the correctness of orchestration behaviors
under real-world conditions.

Another significant gap lies in real-time adaptability
of testing methodologies. Current testing approaches (e.g.,
static analysis or chaos engineering) primarily rely on prede-
fined scenarios rather than dynamically adjusting to evolving
workloads and system behaviors (O-6, O-12). The develop-
ment of adaptive testing frameworks, which are capable of
evolving alongside the system based on real-time telemetry
and observability insights, remains an open research chal-
lenge.

Additionally, existing research mainly focuses on testing
microservices and applications deployed on COS, rather
than the orchestration system itself (O-7, O-14). While stud-
ies like Sieve and Anvil examine aspects of COS control-plane
reliability (O-4), the majority of testing frameworks priori-
tize workload resilience rather than the robustness of the core
components. Given that the orchestration layer is the back-
bone of modern cloud-native architectures, its failure could
lead to widespread system disruptions. However, there is a
notable lack of dedicated research on systematically testing
COS components.

Finally, existing COS testing frameworks predominantly
focus on traditional cloud environments, with limited research

addressing multi-cloud, hybrid, and edge computing con-
texts. These environments introduce unique challenges, in-
cluding heterogeneous resource constraints, intermittent con-
nectivity, and decentralized orchestration, which differ signifi-
cantly from centralized cloud infrastructures (O-10), leaving a
critical gap in validating COS resilience and efficiency across
diverse infrastructures.

6.2 Future Directions

Addressing the research gaps requires the development of
scalable, adaptive, and cross-environment testing methodolo-
gies.

A promising direction involves leveraging AI-driven adap-
tive testing techniques. AI-powered methods, such as ML-
based anomaly detection and automated test generation, can
dynamically adapt to evolving system states. Zhong et al. [94]
discuss the potential of ML-based container orchestration
technologies. Meanwhile, AI-related approaches have been
an emerging trend (O-15, O-17) and have proven their ef-
fectiveness in various scenarios, including misconfiguration
detection [40] and root-cause analysis [20, 65].

Moreover, to expand testing subjects and scenarios, a
stronger emphasis on testing COS components is essential to
enhance overall system reliability. Future research can explore
systematic testing methodologies for scheduler behavior, API
server interactions, controller-manager resilience, and cluster-
wide networking components. Meanwhile, as cloud comput-
ing architectures continue to evolve, future work should ex-
pand testing methodologies beyond traditional cloud envi-
ronments. Research on COS testing for multi-cloud, hybrid-
cloud, edge computing, and serverless platforms is still in its
early stages.

7 Conclusion

In this work, we have identified key testing objectives of con-
tainer orchestration systems (COS) by analyzing the system
architecture. Moreover, we have conducted a comprehensive
literature review on how container orchestration systems and
containerized services under their orchestration are tested
from different testing objectives in the state-of-the-art stud-
ies. Our findings highlight important research gaps, partic-
ularly in scalability, adaptability, and testing COS compo-
nents themselves. To address these challenges, we outlined
future directions that could help improve COS testing ap-
proaches. Advancing these methodologies will play a vital
role in enhancing security, stability, and scalability, ultimately
strengthening the reliability of containerized and cloud-native
ecosystems.

11



References

[1] ALMARAZ-RIVERA, J. G. An anomaly-based detection system for
monitoring kubernetes infrastructures. IEEE Latin America Transac-
tions 21, 3 (2023), 457–465.

[2] ALY, A., FAYEZ, M., AL-QUTT, M., AND HAMAD, A. M. Multi-class
threat detection using neural network and machine learning approaches
in kubernetes environments. In 2024 6th International Conference on
Computing and Informatics (ICCI) (2024), IEEE, pp. 103–108.

[3] ANDREADIS, G., VERSLUIS, L., MASTENBROEK, F., AND IOSUP, A.
A reference architecture for datacenter scheduling: design, validation,
and experiments. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, SC
2018, Dallas, TX, USA, November 11-16, 2018 (2018), IEEE / ACM,
pp. 37:1–37:15.

[4] ASTYRAKAKIS, N., NIKOLOUDAKIS, Y., KEFALOUKOS, I., SKIA-
NIS, C., PALLIS, E., AND MARKAKIS, E. K. Cloud-native application
validation & stress testing through a framework for auto-cluster de-
ployment. In 24th IEEE International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks, CAMAD
2019, Limassol, Cyprus, September 11-13, 2019 (2019), IEEE, pp. 1–5.

[5] BACHIEGA, N. G., SOUZA, P. S. L., BRUSCHI, S. M., AND DO RÓ-
CIO SENGER DE SOUZA, S. Container-based performance evaluation:
A survey and challenges. In 2018 IEEE International Conference on
Cloud Engineering, IC2E 2018, Orlando, FL, USA, April 17-20, 2018
(2018), A. Chandra, J. Li, Y. Cai, and T. Guo, Eds., IEEE Computer
Society, pp. 398–403.

[6] BARLETTA, M., CINQUE, M., MARTINO, C. D., KALBARCZYK,
Z. T., AND IYER, R. K. Mutiny! how does kubernetes fail, and what
can we do about it? In 54th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2024, Brisbane,
Australia, June 24-27, 2024 (2024), IEEE, pp. 1–14.

[7] BASIRI, A., BEHNAM, N., DE ROOIJ, R., HOCHSTEIN, L.,
KOSEWSKI, L., REYNOLDS, J., AND ROSENTHAL, C. Chaos
engineering. IEEE Softw. 33, 3 (2016), 35–41.

[8] BERTOLINO, A., ANGELIS, G. D., GALLEGO, M., GARCÍA, B.,
GORTÁZAR, F., LONETTI, F., AND MARCHETTI, E. A systematic
review on cloud testing. ACM Comput. Surv. 52, 5 (2019), 93:1–93:42.

[9] BHARDWAJ, A. K., DUTTA, P., AND CHINTALE, P. Ai-powered
anomaly detection for kubernetes security: A systematic approach to
identifying threats. Babylonian Journal of Machine Learning 2024
(2024), 142–148.

[10] BURNS, B., GRANT, B., OPPENHEIMER, D., BREWER, E. A., AND
WILKES, J. Borg, omega, and kubernetes. Commun. ACM 59, 5 (2016),
50–57.

[11] CAMACHO, C., CAÑIZARES, P. C., LLANA, L., AND NÚÑEZ, A.
Chaos as a software product line - A platform for improving open
hybrid-cloud systems resiliency. Softw. Pract. Exp. 52, 7 (2022), 1581–
1614.

[12] CANNAVACCIUOLO, C., AND MARIANI, L. Automatic generation of
smoke test suites for kubernetes. In ISSTA ’22: 31st ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, Virtual Event,
South Korea, July 18 - 22, 2022 (2022), S. Ryu and Y. Smaragdakis,
Eds., ACM, pp. 769–772.

[13] CAO, C., BLAISE, A., VERWER, S., AND REBECCHI, F. Learning
state machines to monitor and detect anomalies on a kubernetes cluster.
In ARES 2022: The 17th International Conference on Availability,
Reliability and Security, Vienna,Austria, August 23 - 26, 2022 (2022),
ACM, pp. 117:1–117:9.

[14] CASALICCHIO, E. Container orchestration: A survey. In Systems
Modeling: Methodologies and Tools, A. Puliafito and K. S. Trivedi,
Eds. Springer, 2019, pp. 221–235.

[15] CASALICCHIO, E., AND IANNUCCI, S. The state-of-the-art in con-
tainer technologies: Application, orchestration and security. Concurr.
Comput. Pract. Exp. 32, 17 (2020).

[16] CAVALLI, A. R., HIGASHINO, T., AND NÚÑEZ, M. A survey on
formal active and passive testing with applications to the cloud. Ann.
des Télécommunications 70, 3-4 (2015), 85–93.

[17] CHAOSMESHAUTHORS. Chaosmesh.

[18] CHEN, H., DOU, W., WANG, D., AND QIN, F. Cofi: Consistency-
guided fault injection for cloud systems. In 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2020,
Melbourne, Australia, September 21-25, 2020 (2020), IEEE, pp. 536–
547.

[19] CHEN, Y., MA, F., ZHOU, Y., GU, M., LIAO, Q., AND JIANG, Y.
Chronos: Finding timeout bugs in practical distributed systems by
deep-priority fuzzing with transient delay. In IEEE Symposium on
Security and Privacy, SP 2024, San Francisco, CA, USA, May 19-23,
2024 (2024), IEEE, pp. 1939–1955.

[20] CHEN, Y., XIE, H., MA, M., KANG, Y., GAO, X., SHI, L., CAO,
Y., GAO, X., FAN, H., WEN, M., ZENG, J., GHOSH, S., ZHANG,
X., ZHANG, C., LIN, Q., RAJMOHAN, S., ZHANG, D., AND XU, T.
Automatic root cause analysis via large language models for cloud
incidents. In Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys 2024, Athens, Greece, April 22-25, 2024
(2024), ACM, pp. 674–688.

[21] CILIC, I., KRIVIC, P., ZARKO, I. P., AND KUSEK, M. Performance
evaluation of container orchestration tools in edge computing environ-
ments. Sensors 23, 8 (2023), 4008.

[22] CLOUDNATIVECOMPUTINGFOUNDATION. Cloud native computing
foundation annual survey 2023.

[23] DELL’IMMAGINE, G., SOLDANI, J., AND BROGI, A. Kubehound:
Detecting microservices’ security smells in kubernetes deployments.
Future Internet 15, 7 (2023), 228.

[24] DOCKER. Docker swarm.

[25] DROSOS, G., SOTIROPOULOS, T., ALEXOPOULOS, G., MITROPOU-
LOS, D., AND SU, Z. When your infrastructure is a buggy program:
Understanding faults in infrastructure as code ecosystems. Proc. ACM
Program. Lang. 8, OOPSLA2 (2024), 2490–2520.

[26] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO, J. An
updated performance comparison of virtual machines and linux contain-
ers. In 2015 IEEE International Symposium on Performance Analysis
of Systems and Software, ISPASS 2015, Philadelphia, PA, USA, March
29-31, 2015 (2015), IEEE Computer Society, pp. 171–172.

[27] FERNANDEZ, G. P., AND BRITO, A. Secure container orchestration
in the cloud: policies and implementation. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC 2019, Limassol,
Cyprus, April 8-12, 2019 (2019), C. Hung and G. A. Papadopoulos,
Eds., ACM, pp. 138–145.

[28] FLORA, J., GONÇALVES, P., TEIXEIRA, M., AND ANTUNES, N. A
study on the aging and fault tolerance of microservices in kubernetes.
IEEE Access 10 (2022), 132786–132799.

[29] GOODARZY, S., NAZARI, M., HAN, R., KELLER, E., AND ROZNER,
E. Resource management in cloud computing using machine learning:
A survey. In 19th IEEE International Conference on Machine Learning
and Applications, ICMLA 2020, Miami, FL, USA, December 14-17,
2020 (2020), M. A. Wani, F. Luo, X. A. Li, D. Dou, and F. Bonchi,
Eds., IEEE, pp. 811–816.

[30] GU, J. T., SUN, X., ZHANG, W., JIANG, Y., WANG, C., VAZIRI, M.,
LEGUNSEN, O., AND XU, T. Acto: Automatic end-to-end testing for
operation correctness of cloud system management. In Proceedings
of the 29th Symposium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023 (2023), J. Flinn, M. I. Seltzer,
P. Druschel, A. Kaufmann, and J. Mace, Eds., ACM, pp. 96–112.

12



[31] HIGGINS, T., JHA, D. N., AND RANJAN, R. Swarm storm: An au-
tomated chaos tool for docker swarm applications. In Proceedings of
the 33rd International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2024, Pisa, Italy, June 3-7, 2024 (2024),
P. Dazzi, G. Mencagli, D. K. Lowenthal, and R. M. Badia, Eds., ACM,
pp. 367–369.

[32] IKEUCHI, H., GE, J., MATSUO, Y., AND WATANABE, K. A framework
for automatic failure recovery in ICT systems by deep reinforcement
learning. In 40th IEEE International Conference on Distributed Com-
puting Systems, ICDCS 2020, Singapore, November 29 - December 1,
2020 (2020), IEEE, pp. 1310–1315.

[33] JAWARNEH, I. M. A., BELLAVISTA, P., BOSI, F., FOSCHINI, L.,
MARTUSCELLI, G., MONTANARI, R., AND PALOPOLI, A. Container
orchestration engines: A thorough functional and performance com-
parison. In 2019 IEEE International Conference on Communications,
ICC 2019, Shanghai, China, May 20-24, 2019 (2019), IEEE, pp. 1–6.

[34] KAMIENIARZ, K., AND MAZURCZYK, W. A comparative study on
the security of kubernetes deployments. In International Wireless
Communications and Mobile Computing, IWCMC 2024, Ayia Napa,
Cyprus, May 27-31, 2024 (2024), IEEE, pp. 718–723.

[35] KHAN, A. Key characteristics of a container orchestration platform to
enable a modern application. IEEE Cloud Comput. 4, 5 (2017), 42–48.

[36] KITCHENHAM, B. Procedures for performing systematic reviews.
Keele, UK, Keele University 33, 2004 (2004), 1–26.

[37] KRATZKE, N. About microservices, containers and their underesti-
mated impact on network performance. CoRR abs/1710.04049 (2017).

[38] KUDO, R., KITAHARA, H., GAJANANAN, K., AND WATANABE, Y.
Application integrity protection on kubernetes cluster based on manifest
signature verification. J. Inf. Process. 30 (2022), 626–635.

[39] LEDENEV, A. Pumba.

[40] LIAN, X., CHEN, Y., CHENG, R., HUANG, J., THAKKAR, P., ZHANG,
M., AND XU, T. Large language models as configuration validators.
In 2025 IEEE/ACM 47th International Conference on Software Engi-
neering (ICSE) (2024), IEEE Computer Society, pp. 204–216.

[41] LINKHORST, M. Chaoskube.

[42] LIU, B., KHERADMAND, A., CAESAR, M., AND GODFREY, P. B.
Towards verified self-driving infrastructure. In HotNets ’20: The 19th
ACM Workshop on Hot Topics in Networks, Virtual Event, USA, Novem-
ber 4-6, 2020 (2020), B. Y. Zhao, H. Zheng, H. V. Madhyastha, and
V. N. Padmanabhan, Eds., ACM, pp. 96–102.

[43] LIU, B., LIM, G., BECKETT, R., AND GODFREY, P. B. Kivi: Verifi-
cation for cluster management. In Proceedings of the 2024 USENIX
Annual Technical Conference, USENIX ATC 2024, Santa Clara, CA,
USA, July 10-12, 2024 (2024), S. Bagchi and Y. Zhang, Eds., USENIX
Association, pp. 509–527.

[44] LIU, H., WANG, X., LI, G., LU, S., YE, F., AND TIAN, C. Fcatch:
Automatically detecting time-of-fault bugs in cloud systems. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
2018, Williamsburg, VA, USA, March 24-28, 2018 (2018), X. Shen,
J. Tuck, R. Bianchini, and V. Sarkar, Eds., ACM, pp. 419–431.

[45] LU, J., LIU, C., LI, L., FENG, X., TAN, F., YANG, J., AND YOU,
L. Crashtuner: detecting crash-recovery bugs in cloud systems via
meta-info analysis. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada,
October 27-30, 2019 (2019), T. Brecht and C. Williamson, Eds., ACM,
pp. 114–130.

[46] MAHAJAN, A., AND BENSON, T. A. Suture: Stitching safety onto
kubernetes operators. In CoNEXT’20: Proceedings of the Student
Workshop, Barcelona, Spain, December 1, 2020 (2020), ACM, pp. 19–
20.

[47] MAHAVAISHNAVI, V., SAMINATHAN, R., AND PRITHVIRAJ, R. Se-
cure container orchestration: A framework for detecting and mitigating
orchestrator-level vulnerabilities. Multimedia Tools and Applications
(2024), 1–21.

[48] MAJUMDAR, R., AND NIKSIC, F. Why is random testing effective for
partition tolerance bugs? Proc. ACM Program. Lang. 2, POPL (2018),
46:1–46:24.

[49] MALHOTRA, R., BANSAL, A., AND KESSENTINI, M. A systematic
literature review on maintenance of software containers. ACM Comput.
Surv. 56, 8 (2024), 193:1–193:38.

[50] MALLENI, S. S., CANAVATE, R. S., AND CHALLA, V. Into the fire:
Delving into kubernetes performance and scale with kube-burner. In
Companion of the 15th ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE 2024, London, United Kingdom, May 7-11,
2024 (2024), S. Balsamo, W. J. Knottenbelt, C. L. Abad, and W. Shang,
Eds., ACM, pp. 89–90.

[51] MART, O., NEGRU, C., POP, F., AND CASTIGLIONE, A. Observability
in kubernetes cluster: Automatic anomalies detection using prometheus.
In 22nd IEEE International Conference on High Performance Com-
puting and Communications; 18th IEEE International Conference on
Smart City; 6th IEEE International Conference on Data Science and
Systems, HPCC/SmartCity/DSS 2020, Yanuca Island, Cuvu, Fiji, De-
cember 14-16, 2020 (2020), IEEE, pp. 565–570.

[52] MENG, R., PÎRLEA, G., ROYCHOUDHURY, A., AND SERGEY, I. Grey-
box fuzzing of distributed systems. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2023, Copenhagen, Denmark, November 26-30, 2023 (2023), W. Meng,
C. D. Jensen, C. Cremers, and E. Kirda, Eds., ACM, pp. 1615–1629.

[53] NACHIYAPPAN, S., AND JUSTUS, S. Cloud testing tools and its chal-
lenges: A comparative study. procedia computer Science 50 (2015),
482–489.

[54] NASCIMENTO, B., SANTOS, R., HENRIQUES, J., BERNARDO, M. V.,
AND CALDEIRA, F. Availability, scalability, and security in the migra-
tion from container-based to cloud-native applications. Comput. 13, 8
(2024), 192.

[55] NIKOLAIDIS, F., CHAZAPIS, A., MARAZAKIS, M., AND BILAS, A.
Frisbee: automated testing of cloud-native applications in kubernetes.

[56] NIKOLAIDIS, F., CHAZAPIS, A., MARAZAKIS, M., AND BILAS, A.
Event-driven chaos testing for containerized applications. In High
Performance Computing - ISC High Performance 2023 International
Workshops, Hamburg, Germany, May 21-25, 2023, Revised Selected
Papers (2023), A. Bienz, M. Weiland, M. Baboulin, and C. Kruse, Eds.,
vol. 13999 of Lecture Notes in Computer Science, Springer, pp. 144–
157.

[57] PAHL, C., BROGI, A., SOLDANI, J., AND JAMSHIDI, P. Cloud con-
tainer technologies: A state-of-the-art review. IEEE Trans. Cloud
Comput. 7, 3 (2019), 677–692.

[58] PAN, W., LI, S., LI, F., ZHANG, J., AND FANG, C. Performance
analysis of kubernetes job scheduling model based on queuing theory.
In 2024 IEEE 2nd International Conference on Sensors, Electronics
and Computer Engineering (ICSECE) (2024), IEEE, pp. 592–595.

[59] PAN, Y., CHEN, I., BRASILEIRO, F. V., JAYAPUTERA, G. T., AND
SINNOTT, R. O. A performance comparison of cloud-based container
orchestration tools. In 2019 IEEE International Conference on Big
Knowledge, ICBK 2019, Beijing, China, November 10-11, 2019 (2019),
Y. Gao, R. Möller, X. Wu, and R. Kotagiri, Eds., IEEE, pp. 191–198.

[60] PURAHONG, B., SITHIYOPASAKUL, J., SITHIYOPASAKUL, P.,
LASAKUL, A., AND BENJANGKAPRASERT, C. Automated resource
management system based upon container orchestration tools
comparison. Journal of Advances in Information Technology 14, 3
(2023).

[61] QUEIROZ, R., CRUZ, T., MENDES, J., SOUSA, P., AND SIMÕES, P.
Container-based virtualization for real-time industrial systems - A sys-
tematic review. ACM Comput. Surv. 56, 3 (2024), 59:1–59:38.

13



[62] RAHMAN, A., SHAMIM, S. I., BOSE, D. B., AND PANDITA, R. Secu-
rity misconfigurations in open source kubernetes manifests: An empiri-
cal study. ACM Trans. Softw. Eng. Methodol. 32, 4 (2023), 99:1–99:36.

[63] REILE, C., CHADHA, M., HAUNER, V., JINDAL, A., HOFMANN, B.,
AND GERNDT, M. Bunk8s: Enabling easy integration testing of mi-
croservices in kubernetes. In IEEE International Conference on Soft-
ware Analysis, Evolution and Reengineering, SANER 2022, Honolulu,
HI, USA, March 15-18, 2022 (2022), IEEE, pp. 459–463.

[64] RODRIGUEZ, M. A., AND BUYYA, R. Container-based cluster orches-
tration systems: A taxonomy and future directions. Softw. Pract. Exp.
49, 5 (2019), 698–719.

[65] SARIKA, P. K., BADAMPUDI, D., JOSYULA, S. P., AND USMAN,
M. Automating microservices test failure analysis using kubernetes
cluster logs. In Proceedings of the 27th International Conference on
Evaluation and Assessment in Software Engineering, EASE 2023, Oulu,
Finland, June 14-16, 2023 (2023), ACM, pp. 192–195.

[66] SHUKLA, S. Streamlining integration testing with test containers:
Addressing limitations and best practices for implementation. Inter. J.
Latest Engg. Manag. Res.(IJLEMR) 9 (2023), 19–26.

[67] SIMONSSON, J., ZHANG, L., MORIN, B., BAUDRY, B., AND MON-
PERRUS, M. Observability and chaos engineering on system calls for
containerized applications in docker. Future Gener. Comput. Syst. 122
(2021), 117–129.

[68] SOBTI, A. Kubemonkey.

[69] SOLAYMAN, H. E., AND QASHA, R. P. On the use of container-based
virtualisation for iot provisioning and orchestration: a survey. Int. J.
Comput. Sci. Math. 18, 4 (2023), 299–311.

[70] STRAESSER, M., HAAS, P., FRANK, S., HAKAMIAN, M. A., VAN
HOORN, A., AND KOUNEV, S. Kubernetes-in-the-loop: Enriching
microservice simulation through authentic container orchestration. In
Performance Evaluation Methodologies and Tools - 16th EAI Inter-
national Conference, VALUETOOLS 2023, Crete, Greece, September
6-7, 2023, Proceedings (2023), E. Kalyvianaki and M. Paolieri, Eds.,
vol. 539 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, Springer, pp. 82–98.

[71] STRAESSER, M., MATHIASCH, J., BAUER, A., AND KOUNEV, S.
A systematic approach for benchmarking of container orchestration
frameworks. In Proceedings of the 2023 ACM/SPEC International
Conference on Performance Engineering, ICPE 2023, Coimbra, Portu-
gal, April 15-19, 2023 (2023), M. Vieira, V. Cardellini, A. D. Marco,
and P. Tuma, Eds., ACM, pp. 187–198.

[72] SULTAN, S., AHMAD, I., AND DIMITRIOU, T. Container security:
Issues, challenges, and the road ahead. IEEE Access 7 (2019), 52976–
52996.

[73] SUN, X., LUO, W., GU, J. T., GANESAN, A., ALAGAPPAN, R.,
GASCH, M., SURESH, L., AND XU, T. Automatic reliability testing for
cluster management controllers. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022 (2022), M. K. Aguilera and H. Weatherspoon,
Eds., USENIX Association, pp. 143–159.

[74] SUN, X., MA, W., GU, J. T., MA, Z., CHAJED, T., HOWELL, J.,
LATTUADA, A., PADON, O., SURESH, L., SZEKERES, A., AND XU,
T. Anvil: Verifying liveness of cluster management controllers. In
18th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024 (2024),
A. Gavrilovska and D. B. Terry, Eds., USENIX Association, pp. 649–
666.

[75] SUN, X., SURESH, L., GANESAN, A., ALAGAPPAN, R., GASCH, M.,
TANG, L., AND XU, T. Reasoning about modern datacenter infrastruc-
tures using partial histories. In HotOS ’21: Workshop on Hot Topics in
Operating Systems, Ann Arbor, Michigan, USA, June, 1-3, 2021 (2021),
S. Angel, B. Kasikci, and E. Kohler, Eds., ACM, pp. 213–220.

[76] TANG, L., BHANDARI, C., ZHANG, Y., KARANIKA, A., JI, S.,
GUPTA, I., AND XU, T. Fail through the cracks: Cross-system in-
teraction failures in modern cloud systems. In Proceedings of the
Eighteenth European Conference on Computer Systems, EuroSys 2023,
Rome, Italy, May 8-12, 2023 (2023), G. A. D. Luna, L. Querzoni, A. Fe-
dorova, and D. Narayanan, Eds., ACM, pp. 433–451.

[77] TIEN, C.-W., HUANG, T.-Y., TIEN, C.-W., HUANG, T.-C., AND
KUO, S.-Y. Kubanomaly: Anomaly detection for the docker orchestra-
tion platform with neural network approaches. Engineering reports 1,
5 (2019), e12080.

[78] TIMONEN, S., SROOR, M., MOHANANI, R., AND MIKKONEN, T.
Anomaly detection through container testing: A survey of company
practices. In Product-Focused Software Process Improvement - 24th
International Conference, PROFES 2023, Dornbirn, Austria, December
10-13, 2023, Proceedings, Part I (2023), R. Kadgien, A. Jedlitschka,
A. Janes, V. Lenarduzzi, and X. Li, Eds., vol. 14483 of Lecture Notes
in Computer Science, Springer, pp. 363–378.

[79] TORKURA, K. A., SUKMANA, M. I. H., CHENG, F., AND MEINEL,
C. Cloudstrike: Chaos engineering for security and resiliency in cloud
infrastructure. IEEE Access 8 (2020), 123044–123060.

[80] TURIN, G., BORGARELLI, A., DONETTI, S., JOHNSEN, E. B., TAR-
IFA, S. L. T., AND DAMIANI, F. A formal model of the kubernetes
container framework. In Leveraging Applications of Formal Meth-
ods, Verification and Validation: Verification Principles - 9th Inter-
national Symposium on Leveraging Applications of Formal Methods,
ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part
I (2020), T. Margaria and B. Steffen, Eds., vol. 12476 of Lecture Notes
in Computer Science, Springer, pp. 558–577.

[81] VERDERAME, L., CAVIGLIONE, L., CARBONE, R., AND MERLO, A.
Secco: Automated services to secure containers in the devops paradigm.
In Proceedings of the 2023 International Conference on Research in
Adaptive and Convergent Systems, RACS 2023, Gdansk, Poland, August
6-10, 2023 (2023), ACM, pp. 10:1–10:6.

[82] VOIEVODIN, Y., ROZLOMII, I., AND YARMILKO, A. Approach to
evaluate scheduling strategies in container orchestration systems. In
Modeling, Control and Information Technologies: Proceedings of Inter-
national scientific and practical conference (2023), no. 6, pp. 292–295.

[83] VOIEVODIN, Y. V., AND ROZLOMII, I. O. Advanced software frame-
work for comparing balancing strategies in container orchestration
systems. In Proceedings of the 4th Edge Computing Workshop (doors
2024), Zhytomyr, Ukraine, April 5, 2024 (2024), T. A. Vakaliuk and
S. O. Semerikov, Eds., vol. 3666 of CEUR Workshop Proceedings,
CEUR-WS.org, pp. 60–69.

[84] WANG, Z., LI, J., MA, M., LI, Z., KANG, Y., ZHANG, C., BANSAL,
C., CHINTALAPATI, M., RAJMOHAN, S., LIN, Q., ZHANG, D., PEI,
C., AND XIE, G. Large language models can provide accurate and
interpretable incident triage. In 35th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2024, Tsukuba, Japan,
October 28-31, 2024 (2024), IEEE, pp. 523–534.

[85] WATADA, J., ROY, A., KADIKAR, R., PHAM, H., AND XU, B. Emerg-
ing trends, techniques and open issues of containerization: A review.
IEEE Access 7 (2019), 152443–152472.

[86] WEERASIRI, D., BARUKH, M. C., BENATALLAH, B., SHENG, Q. Z.,
AND RANJAN, R. A taxonomy and survey of cloud resource orchestra-
tion techniques. ACM Comput. Surv. 50, 2 (2017), 26:1–26:41.

[87] WOHLIN, C. Guidelines for snowballing in systematic literature stud-
ies and a replication in software engineering. In 18th International
Conference on Evaluation and Assessment in Software Engineering,
EASE ’14, London, England, United Kingdom, May 13-14, 2014 (2014),
M. J. Shepperd, T. Hall, and I. Myrtveit, Eds., ACM, pp. 38:1–38:10.

[88] XU, Q., GAO, Y., AND WEI, J. An empirical study on kubernetes
operator bugs. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2024, Vienna,
Austria, September 16-20, 2024 (2024), M. Christakis and M. Pradel,
Eds., ACM, pp. 1746–1758.

14



[89] YAN, X., HSIEH, K., LIYANAGE, Y., MA, M., CHINTALAPATI, M.,
LIN, Q., DANG, Y., AND ZHANG, D. Aegis: Attribution of control
plane change impact across layers and components for cloud systems.
In 45th IEEE/ACM International Conference on Software Engineer-
ing: Software Engineering in Practice, SEIP@ICSE 2023, Melbourne,
Australia, May 14-20, 2023 (2023), IEEE, pp. 222–233.

[90] YANG, Y., SHEN, W., RUAN, B., LIU, W., AND REN, K. Security
challenges in the container cloud. In 3rd IEEE International Conference
on Trust, Privacy and Security in Intelligent Systems and Applications,
TPS-ISA 2021, Atlanta, GA, USA, December 13-15, 2021 (2021), IEEE,
pp. 137–145.

[91] YU, Z., MA, M., ZHANG, C., QIN, S., KANG, Y., BANSAL, C., RA-
JMOHAN, S., DANG, Y., PEI, C., PEI, D., LIN, Q., AND ZHANG,
D. Monitorassistant: Simplifying cloud service monitoring via large
language models. In Companion Proceedings of the 32nd ACM Inter-
national Conference on the Foundations of Software Engineering, FSE
2024, Porto de Galinhas, Brazil, July 15-19, 2024 (2024), M. d’Amorim,
Ed., ACM, pp. 38–49.

[92] ZHANG, L., MORIN, B., BAUDRY, B., AND MONPERRUS, M. Maxi-
mizing error injection realism for chaos engineering with system calls.
IEEE Trans. Dependable Secur. Comput. 19, 4 (2022), 2695–2708.

[93] ZHENG, T., TANG, R., CHEN, X., AND SHEN, C. Kubefuzzer: Au-
tomating restful api vulnerability detection in kubernetes. Computers,
Materials & Continua 81, 1 (2024).

[94] ZHONG, Z., XU, M., RODRIGUEZ, M. A., XU, C., AND BUYYA, R.
Machine learning-based orchestration of containers: A taxonomy and
future directions. ACM Comput. Surv. 54, 10s (2022), 217:1–217:35.

[95] ZHU, H., AND GEHRMANN, C. Kub-sec, an automatic kubernetes
cluster apparmor profile generation engine. In 14th International Con-
ference on COMmunication Systems & NETworkS, COMSNETS 2022,
Bangalore, India, January 4-8, 2022 (2022), IEEE, pp. 129–137.

15


	Introduction
	Related Work
	Research Methodology
	Planning the Review
	Conducting the Review

	Testing Objectives of COS
	Reference Architecture
	Testing Objective Mapping

	Taxonomy of COS Testing Objectives
	Functional and Integration Testing
	Fault Tolerance and Resiliency Testing
	Performance and Scalability Testing
	Security and Vulnerability Testing
	Observability and Monitoring Validation

	Research Challenges and Future Directions
	Research Challenges and Gaps
	Future Directions

	Conclusion

