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Abstract

Due to popularity and strict performance requirements, online games are a workload of interest
for the performance engineering community. The gaming industry yields over $192 billion in
revenue and engages over 3.2 billion players [23]. Modifiable virtual enviroments (MVEs) are an
emerging game sub-genre with persistence functional requirements. Most popular MVE game -
Minecraft - is played by over 140 million people monthly [4], and the Metaverse - a prominent
modifiable virtual environment application - market is expected to grow up to 507 billion dollars
by 2030 [27]. While storage can and does affect gaming performance and is central for MVE’s
persistent information storage, there yet is no investigation on how MVEs use it and how it
can affect MVE performance. There yet is no available MVE storage traces, no information
on the correlation between storage system-level performance and MVE users’ Quality of Service
(QoS). There is, as well, yet no tool available to measure the impact. Current research consensus
outlines a need for application-specific benchmarking when considering the correlation between
storage system-level performance and the user-level performance [25]. Existing MVE benchmarks
[29]; however, they do not focus on storage performance and limit the exploration supporting
only a limited set of workloads. This paper covers this gap. We start the paper by studying
the system-level storage traces exerted by different MVE user behavior and construct a model
aiding in understanding MVE user storage interaction. Based on this model, we construct a
benchmark - PokeSto - supporting trace-based workloads and enabling the exploration of storage
influence on MVE user QoS. Finally, we use the benchmark to evaluate the correlation between
storage performance and user QoS for a popular MVE server implementation - PaperMC. Our
results indicate that there is little correlation between the storage system-level performance and
experienced user QoS.
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1 Introduction

1.1 Context

The gaming industry is the world’s largest entertainment industry - worldwide, games engage over 3.2
billion players [4] and yield over $192 billion in revenue [23]. In this work, we focus on modifiable virtual
environments (MVEs) — a game genre with a defining characteristic of persistent and modifiable
virtual environments. Players can change almost every part of the world, including players’ and
world’s states, by attacking players, removing blocks, building blocks, interacting with NPCs, etc.
These changes are persistently stored. MVE’s biggest representative - Minecraft - played by over
140 million people around the globe [4] and the prominent class of MVE application - Metaverse - is
predicted to grow to a 507 billion dollar market by 2030 [27].

MVEs are interesting to study due to their large current and anticipated economic and societal
impact. In addition to the aforementioned large market for MVEs, MVEs are an application with a
high societal impact in spheres such as primary school education or employee training [31]. By 2030,
the MVEs are expected to engage over 2.6 billion people and impact our society by enhanced remote
learning, working, social interaction, and more. For our research, MVEs are interesting due to their
persistence requirement - MVEs are fast-paced games that need to store all the user modifications
persistently using a storage I/O. As the importance of MVEs is growing, there is, as well, an increase
in quality of service (QoS) requirements. We already know that even for non-persistent games, the
storage I/O can impact performance, and the improvements to storage I/O can increase the user-level
metrics such as asset loading times [3]. However, despite growing MVE importance and its inherent
need for constant interaction with storage I/0, there is still no research into how the storage I/0
performance can impact the user-level MVE performance.

1.2 Problem

The key challenge of this project is the identification of the relationship between the storage I/O
performance and the user-level performance under various workloads. This relation is not clear, and
even for storage-demanding workloads, such as MySQL workloads, a transition from HDD to storage
class memory having a 10000 latency difference [5] yields only 7 times performance improvement [22].
The application-specific translation of storage performance to user-level performance is well known in
the performance research community. Therefore, it is the application-specific storage benchmarks that
are the current state-of-practice in the community [25]. The application-specific storage benchmarks
are already largely adopted by the database performance research community with benchmarks such
as YCSB [12] or RockDB [10]. We argue that with an increase in societal importance of MVE and
their need for storage I/O interaction to sustain a persistent state, there is a case to be made for
MVE-specific storage benchmark. MVEs tend to be closed-source applications that employ a large
number of undocumented to the general public storage optimizations. MVEs, as well, are sandbox
games with a large workload exploration space. Each player’s behavior can yield different storage
patterns, making the MVE storage exploration increasingly challenging.

Work has already been done to benchmark a limited subset of MVE player workloads and address
MVE scalability concerns [29]. However, existing works do not address the interaction between the
MVE and the storage I/O and their impact on the user-level performance. Additionally, current works
limit the workloads and do not allow the configuration of MVE workloads at sufficient granularity to
represent edge-case player behavior or extend the workloads with player behavior that is unique to a
particular server.

In this paper, we cover this gap. We begin by investigating the correlation between the MVE player
behavior and the storage interactions, outlining the user-storage interaction model. Then, based on
the model, we construct PokeSto - an MVE-specific storage benchmark allowing to (i) construct trace-
based workloads which can be used to replicate infinitely diverse player behavior at a high level of
granularity, and (i) emulate a storage device allowing to test the MVE against storage devices with
different storage latency and throughput. We publish the benchmark as an open-source artifact on
GitHub. Using this benchmark, we evaluate the impact of storage system-level performance on user-
level performance for a popular MVE server implementation - PaperMC. We find that there is little
correlation between the system-level storage performance and experienced user performance, with a
possibility of running up to 4 MVE instances on the same storage device without any performance
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degradation.

1.3 Research Questions

In this report, we answer the research questions:

RQ1 What is the relation between user interactions and MVE storage accesses?

MLGs depend on large-scale storage services to operate with good performance. However, it
is not clear how these applications interact with the underlying storage systems, and therefore,
it is unknown how these storage systems affect MLG performance and other non-functional
properties. Modeling these interactions is challenging for three main reasons. First, MLGs
are interactive systems whose workload is determined by user activity, which leads to complex
workloads that are difficult to capture and reproduce. Second, commercially successful MLGs
are typically distributed as closed-source systems, making it difficult to observe their internal
behavior. Third, and finally, there are no standardized methods for creating models that link
application- and systems-level behavior.

RQ2 How to design and implement a benchmark to evaluate MLG performance based on our storage
model?

Because the performance interaction between MLGs and their underlying storage systems are
determined by complex workloads and system dynamics, evaluating their performance requires
real-world experiments. Performing such experiments efficiently requires a benchmark or perfor-
mance evaluation framework, but no such system exists. However, designing and implementing
such a benchmark is challenging because there is no standardized method for designing such
systems.

RQ3 What is MVE scalability on different storage devices?

MLGs are large distributed systems that are typically deployed on cloud computing infrastructure
and depend on their underlying storage services. However, because there exists no commonly
accepted set of experiments for this purpose, improving our understanding in this area requires
designing novel experiments.

1.4 Related Work

The case for application-specific benchmarking In this paper, the authors outline the necessity
of application-specific benchmarking as a result of non-linear application-specific correlation between
the storage system-level performance and user-level performance. [25]

Yardstick: A benchmark for Minecraft-Like Services In this paper, the authors present a
Yardstick - a generalizable benchmark for MVE applications. The authors, as well, use the benchmark
to assess the MVE scalability under the increased player count for different server implementations.
[29]

1.5 Societal Relevance

This work goes in line with the Dutch Computer Systems Manifesto [18] and addresses the goals of
manageability and responsibility of ICT infrastructure. The ICT infrastructure became essential
for a large share of Dutch GDP and is a substantial requirement for many jobs [18]. The dependence
of our society on the ICT infrastructure makes the performance and reliability of that infrastructure
an important concern for Dutch society. The results of this thesis, including the MVE user-storage
interaction model, benchmark PokeSto, and the evaluation of PaperMC, a popular MVE server imple-
mentation [7], improve understanding of how applications use the ICT infrastructure and provide the
tooling that can be used to determine optimal ICT configurations to host these applications.



1.6 Research Relevance

The results of this thesis improve the understanding of how a popular application, MVEs, uses the
storage devices under different user interactions. This thesis, as well, provides a tool for further in-
vestigations into the correlation between storage system-level performance and user-level performance.
Finally, in this thesis, we evaluate the correlation between the storage performance and user-level per-
formance for a popular MVE server implementation - PaperMC [7] - expanding the knowledge on the
types of systems that are optimal to use for hosting this application.

1.7 Plagiarism Declaration

This thesis work is my own work, and has not been copied from any other source (person, Internet, or
machine), and has not been submitted elsewhere for assessment.



Table 1: Summary on included user interactions.

User interaction Read/Write Data interacted with

Server join Read Terrain, NPC, and player data
Terrain modification (block place-  Write Terrain data

ment or removal)

Server leave Write Terrain, NPC, and player data
Position change Read / Write Terrain data, NPC data
Player attack Write Player data

Player killing NPC Write NPC data

2 System Model

In this section, we answer RQ1 by studying MVE user storage interaction and summing it up into the
MVE user-storage interaction model. We begin the section by studying MVE storage accesses patterns
observed when executing a subset of user interactions in Section 2.1. Then, based on the observed
1/0 patterns, we identify several MVE storage 1/O routines and construct a generative model in
Section 2.2. Finally, based on the generative model, we construct a full user-storage interaction model
in Section 2.3. This model, answering an RQ1, serves as a road-map to both MVE developers and
performance engineers on the persistent data handling techniques employed by MVEs.

2.1 Studying MVE storage accesses

We analyze MVE storage accesses by recording I/O patterns triggered by a subset of user interactions.
The studied subset, chosen for convenience, is summarized in table 1. While a particular MVE can
have a wider set of user interactions available or some interactions listed in the section, unavailable,
we consider the list of observed I/O patterns as comprehensive. The selected set of user interactions
yields I/O patterns targeting both reads and writes of persistent data of all the types we considered for
this section - terrain, NPC, and player data. To execute user interactions, we used the mineflayer
library [11]. To trace storage accesses, we use strace [28] - a Linux-based tool for trapping system
calls. We traces all related file-system calls - openat, close, write, read, pread64, etc. As an
implementation reference, we choose PaperMC - a state-of-the-practice, high-performing MVE server
implementation [7]. We are interested, in particular, in server as it where the game state, shared
among connected players, is stored.

As a result, we found out that there is a correlation between the total number of I/O operations
and the number of unique regions used in workload execution. Storage accesses are random and
have a small request size not exceeding 8 KiBs, which is dictated by the structure of MVE region
files. Accesses can be subdivided into instantaneous and delayed depending on the time of execution
with respect to the execution time of the triggering user interaction. If the interaction is delayed, its
execution is dictated in accordance with some policy that dictates both the synchronization interval
and the maximum IOPS during the synchronization.

Observation 1. PaperMC vertically separates different data types using different di-
rectories for each. We start by analyzing the structure of the data stored as a result of PaperMC
execution. PaperMC uses file-based storage, which is the reason in later sections we trace storage
accesses on the file system level. Using the information about file structure, in the later sections, we
reverse engineer the purpose of individual file system requests and explain them in terms of user inter-
actions that trigger them. We summarize the observed directory structure in fig. 1. From the diagram,
we exclude the Minecraft-specific division of terrain into dimensions, and exclude Minecraft-specific
points of interest data, which saves the information about places of interest such as ender portals
or villages, on the Minecraft map. Every data type - terrain, NPC, and player data - is stored in a
specific folder. Using this properly, later, by analyzing the path of executed file system operations, we
distinguish write and read operations by accessed data type. Player data is stored on a per-player basis
within a corresponding file. Terrain and NPC data, on the other hand, is stored on a per-region basis,
with every file further subdivided into sub-regions [1]. Every terrain and NPC subregion contains block
data and NPC data, respectively. Dividing region data into smaller sub-regions can help to subdivide
the map into smaller units, minimizing the number of bytes that need to be accessed either for data
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Figure 2: IOPS from teleportation

update or retrieval. The drawback, however, is the increase in the number of I/O operations. The
decision of subregion size, therefore, is a trade-off for a particular MVE between the number of bytes
accessed and the number of issued I/O operations.

Observation 2: The number of file system accesses increases with the number of
requested regions. As terrain and NPC data are organized on a per-region basis, we tested how the
number of file system accesses scales when different numbers of regions are required to execute the
workload. To trigger a workload that requests a specified number of regions, we executed join and
teleportation on a non-pregenerated instance. The join workload is executed with a different number
of players spawning in unique regions, with every player spawning in the center of a region. Thus,
spawned players act as a proxy for the number of regions players spawn in. Each player is spawned in
the middle of the region, and therefore, 1 region is loaded per player. We determine that whenever this
interaction is executed, PaperMC has to read both terrain and NPC data for every new region players
spawn at. To test teleportation interaction, we teleport a varying number of players to the center of
unique regions. In this case, player count acts as a proxy for a number of regions where players are
teleported to. Due to the buffering, described further in this section, we teleport each player twice and
report only results obtained at the player’s second teleportation. We determine that after generating
terrain and NPC data, PaperMC will, at a pre-defined interval or whenever the player moves out of
the region, write the data back to storage. By testing both interactions, we record how the number of
file system accesses scales for interactions that trigger reads and writes. Our data indicates that the
number of file system accesses scales linearly with the number of regions used in the workload. We
show this both teleportation interaction in fig. 2.

Observation 3. PaperMC storage writes can be classified into instantaneous and de-
layed. We observed instantaneous writes when players teleport and delayed writes when players attack
NPCs. Instantaneous writes are the writes that are executed immediately after the player interaction.
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We find that when the region data is flushed to the storage, whenever a player leaves the region. We
show this in fig. 3. To record this data, we teleported 10 players in round-robin fashion at a 10-second
interval on a non-pre-generated world instance. We can observe that whenever a player leaves the
region, there is an increase in the cumulative I/O count. On the other hand, whenever a player hits
an NPC, the updates are buffered and flushed at pre-defined intervals. We show this in fig. 4. To
obtain this data, we executed player attacking NPCs workload with each player attacking NPCs in
their unique region, killing an NPC at 10-second intervals. We can observe the presence of interval-
based saves and interval changes depending on the number of players in the workload. The higher the
player count, the more frequent the saving interval - while during workload execution 5 and 10 players
save their state three time, 60 players’ saving interval is too high to observe any saves performed
within a given time frame. Executing behavior for longer is not feasible, as an increased number of
NPCs required to sustain killing NPCs at pre-defined intervals leads to performance instability, making
measurements not possible. We can also observe a decrease in throughput with an increased player
count. The increased saving interval and decreased throughput lead to greater inconsistency between
data saved in primary and secondary storage, as the data is persistently saved to storage at lower
intervals; however, a lower interference between data saving subroutines and server performance is a
known problem for vanilla Minecraft [30]. This inconsistency performance trade-off, later in work, we
refer to as policy.

Observation 4. PaperMC has primary random I/0O within files, with a majority of
request sizes of 4 or 8 KiBs. The R/W ratio varies depending on the world generation
state. We find out that all the files opened during PaperMC execution are opened in an indirect
mode. We note that during MVE gameplay, the R/W ratio always shows a higher number of writes.
Even when players are moving on pre-generated instances through both means of simple movement
and teleportation, the number of writes exceeds the number of executed reads. We show this in
Figure ba. We show that the majority of terrain and NPC accesses are non-sequential in Figure 5b.
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We define sequentially as the percentage of consecutive writes and reads. We define storage access to
be sequential if pp + ba = cp where pp stands for the previous access pointer, ba stands for the number
of bytes accessed, and cp stands for the current access pointer. File system randomness arises from
PaperMC file structure, dividing region files into subregions (chunks) having a size of multiple of 4KiB
and header sections that have pointers to the beginning of different subregions within files [2]. The
header size is set to be 8 KiBs and sub-region sizes are multiples of 4 KiBs. This can be observed, as
well, in the request size distribution in Figure 5. Whenever either the region or NPC data are read,
the reads are either 4 or 8 KiBs - first, the region header is read, and then the required subregions.
Writes are executed both in 8 KiBs for header updates and at sizes lower than 4 KiBs for subregion
update - the write size depends on the number of structures or entities within the region.
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Table 2: Generative model events.

User interaction Access count Unique file I/D R/W Data types
count
Region load 1 per region + 1 per subregion 1 per region I R Terrain and NPC
Region flush 1 per region + 1 per subregion 1 per region I R Terrain and NPC
NPC update 1 per region + 1 per subregion 1 per region D A% NPC
Player update 1 per player 1 per player I AW Player data
Player load 1 per player 1 per player I R Player data
Terrain modification 1 per region + 1 per subregion 1 per region D A% Terrain data

°7 Player update 07 67
packet hreads Persistent
MVE client Game state O data handling
update packet reads st
] i i . orage
Game loop tick |93 WIth | Data retrieval | read call servic?as
routines
50 ms
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Legend Background threads saves )
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Figure 6: User storage interaction high-level overview.

2.2 Generative model for MVE interactions

Based on the results from Section 2.1, we construct the generative model in Table 2. To make a
model generalizable to other MVEs we introduce a notion of I/O routines. I/O routine is an
MVE function that handles the persistent data. We consider this abstraction generalizable to MVE
interactions not included in the storage access study in Section 2.1 as implementation of different user
interactions are likely to reuse abstracted persistent data handling routines rather than re-implementing
different persistent data handling for each user interaction. While there can be more storage handling
subroutines, we only focus on the ones that were triggered by studied actions from Section 2.1. We
consider our list comprehensive, as listed interactions encompass both reading and writing for all data
types. We summarize the I/O subroutines in Section 2.1. There, we also, classify whether they were
observed to trigger immediate (I) or delayed (D) storage interactions. This classification is important
as immediate I/O subroutines will flush data onto the storage right after user actions, while delayed I/O
subroutines will first buffer up the data and flush it in bursts. The final list of low-level I/O subroutines
we consider is - region load, region flush, NPC update, player update, player load, and terrain
modification. These I/O subroutines are be called when player is joining or changing their
position, player is leaving a game or changing their position, player is attacking NPCs,
player is attacking the other player or updating the inventory, player joining the game,
or player placing or removing blocks, respectively. It is important to note that immediate and
delayed classification is only applicable to writes; reads are always executed immediately.

2.3 Modeling MVE user-storage interaction

This section present the user-storage interaction model, which we base on information obtained in
Section 2.3 and on our abstraction of I/O routines summarized in Section 2.2. This model answers
the RQ1 and serves as a road-map for understanding MVE user-storage interactions. This is useful
for both (i) MVE developers and (ii) performance engineers.

We first introduce the high-level reference model for user-storage interaction in Figure 6. There we
define @ MVE client - machine accepting inputs from a user and rendering an output on their screen

11
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Figure 7: Full user storage interaction model.

- and @ MVE server - machine accepting requests from multiple clients, processing their inputs, and
sending out state updates to render. Within the server, there are a number of @ threads that are
responsible for processing player interactions. Among those of high importance is a main thread with
a game loop tick. This game loop ticks at a pre-defined speed, sending out updates to the players -
in Minecraft’s case, the loop tick interval is 50 ms. The performance of the game loop tick is crucial
- if tick time exceeds a pre-defined value, users will experience performance lag. All the blocking
tasks, therefore, can be offloaded to a number of background threads. To interact with persistent data,
threads use a number of @ persistent data handling subroutines that, in turn, fetch the persistent

data from the @ storage service.
A more detailed view is summarized in Figure 7. The model starts with a @ user. A user

communicates with a @ MVE client - an application running on the user’s computer - through a
means of some input device like a keyboard or a mouse. The client, in turn, renders a game and
outputs it through means of some output device(s) like a screen or audio speakers. Whenever a player
does any user interaction like walking, placing a block, etc, a client communicates this data to the MVE
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server. @ MVE server, in turn, periodically sends state updates that the MVE client outputs to the
user. The player actions are sent to the @ main thread with a game loop tick running inside. There is
also a G background worker threads that process user actions and generates region data on demand.
Processing the user interactions, game threads interact with @ in-memory data. In-memory data

stores a representation of @ active map containing information about G players, @ terrain, and @
NPCs within the active map. We define an active map as a collection of currently rendered regions.
For every 0 terrain and @ NPC region that is part of the map, the in-memory data contains loaded
sub-regions and the file header. The file header is stored to be able to selectively update or fetch sub-
regions. Synchronization of in-memory data with persistently stored data and retrieval of persistently
stored data into in-memory data is done by a number of @ game I/0 threads that call a number of
I/0O routines. The subroutines that we included in the model are the same ones that we included in the
generative model in Section 2.2. The subroutines responsible for reading - @ data retrieval routines
- have a number of event triggers, like the player moving into a not-yet-loaded region that triggers
the read. If MVE compresses stored data, it can also have a decompression routine. The subroutines
responsible for writing - @ - data saving routines have some policy according to which they perform
the writes. We classify these policies into instantaneous, triggered by some event, and write to the
storage immediately, and delayed, storing updates in a buffer and then flushing them at some interval.
If compression is used, a data-saving routine can also have a compression routine attached. Data
saving and retrieval routines write to the storage using @ file system using either direct or indirect
writes. Indirect reads and writes go through file system performance optimization components - a
page cache and write buffer, respectively. Direct reads and writes, in turn, are executed directly on
the 0 storage service. The storage service contains @ NPC directory with corresponding NPC

region files, @ terrain directory with corresponding terrain region file, and player data directory with
corresponding player data files. Both NPC and terrain files are subdivided into different subregions
and contain a region mapper to dynamically fetch and update subregions. FEach terrain and NPC
subregion contains information on the blocks and NPCs within the file, respectively.

13



3 Design and Implementation of PokeSto

In this section, we design and implement PokeSto - MVE scalability with a storage services focus. The
benchmark is based on the user-storage interaction model presented in Section 2.3 and of importance to
(i) MVE server operators in finding our required hardware for desired QoS, (i) infrastructure providers
in determining storage QoS requirements, and (ii;) MVE developers in finding out the required level of
application storage requirements. We start the section by posing a number of benchmark requirements
in Section 3.1. Then, we offer a high-level overview of benchmark design in Section 3.2. Then, we
show the novel elements of design - the trace-based workloads and virtualized storage in Section 3.3
and Section 3.4. Finally, based on the analysis of the yielded storage patterns in Section 2.1 and the
constructed storage model in Section 2.2, we design a number of MVE storage workloads in Section 3.7
and costruct a number of relevant system and user-level metrics in Section 3.6.

3.1 Benchmark Requirements

We construct the following benchmark requirements (BR).

BR1 System compatibility - as MVEs can be executed on a number of systems, the benchmark has
to assume as little as possible on the implementation of the system. Our benchmark design
requires only POSIX file support. This is a reasonable assumption as file abstraction is used by
the majority of storage systems.

BR2 Behavior coverage - MVEs are sandbox games with infinitely many behavior combinations. As
different types of MVE servers focus on different game mechanics - for example, a PvP server will
focus on player fighting - there is no average MVE user behavior. To be relevant for a full range
of MVE servers, benchmark player emulation should support all user interactions presented in
Section 2.3.

BR3 Relevant storage simulation - allowing the user to benchmark the MVE with a wide range of
storage configurations, the benchmark must incorporate a configurable, in terms of throughput
and latency of the storage device, storage simulation.

BRA4 Relevant storage and user QoS metrics - to provide the user with actionable insights based on
the benchmark run, the benchmark should capture a relevant set of metrics that reflect both
system-level storage performance and user-level QoS.

BR5 Reproducibly - to ensure scientific validity, obtained results must be reproducible.

3.2 Design Overview

We summarize PokeSto design that satisfies the benchmark requirements presented in Section 3.1
in Figure 8. The benchmark design is based on the general MVE benchmark - Yardstick - allow-
ing different MVEs to be tested on the basis of the same benchmark architecture. The novelties of
our benchmark are trace-based workloads, storage service simulation, and behavior gener-
ation component. All benchmark novelties are further discussed in their respective sections. Our
benchmark design starts with the @ user that can either supply a @ user-level game trace perfectly
reflecting user activity of their server or generate one with the behavior type most appropriate for
their use case using the @ behavior generator component. As some user actions depend on the virtual
world structure, for example, users can remove only existing blocks, and user can supply their MVE
world data. Alternatively, the user can use a @ world setup routing that ensures an identical system
under test (BF5) during different benchmark runs. Player traces are executed using the @ player
emulation component that simulates player actions on top of the running @ MVE instance. MVE
instance is running on top of some o file system, which is, in turn, running on top of a @ simulated
storage service. The user can set up this storage service by specifying a static latency and throughput
(BF3). Both file system and user-level metrics are pulled by a @ metrics collector component that
collects both relevant user QoS and file system usage data. The result data is then stored at the
pre-defined G storage location.
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Figure 8: PokeSto design overview.

3.3 Trace-Based Workloads

Our benchmark design is based on trace-based workloads. Those, compared to Yardstick’s workloads
have an advantage of (i) reproducibility (BR5), and (i) simulation of arbitrary complex behavior
(BR2). Experiment reproducibility is achieved by allowing to, as well, supplying persistent world
data or supplying world setup traces that ensure world persistent data on top of which the workload is
executed, stays the same for different benchmark runs. Representation of arbitrarily complex behavior
is useful to the benchmark users, as it can be used to benchmark player behavior relevant to their
particular use case. To ensure that arbitrarily complex behavior can be executed in a reproducible
manner, we propose a player emulation design summarized in Figure 9.

At each run, the @ trace file, containing in every line the (i) action timestamp, (77) action type,
and (%) action parameters, is read by the @ player emulation component. At the interval of 50 ms
- Minecraft tick loop interval - @ main thread will check if any actions need to be executed. If there
are, this action will be passed onto a @ player thread, which is unique for every emulated player.
This player thread executes actions one by one, which is consistent with the way the player’s actions
are executed in a real-world gameplay scenario. Ensuring actions are run sequentially, every user
action is put into the @ action queue, which is attached to a @ consumer that consumes actions one
by one whenever the previous action has completed. Whenever the action is fetched, it is executed
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Table 3: Latencies Used to Report Results.

Latency Throughput Reference Storage Configuartion

0 ps 19.2 GB/s Baseline, ideal memory-like storage configuration [9]

7 ps 10 GB/s Storage-class Intel-Optane-like memory [20]

50 us 5 GB/s NVMe SSD [26]

100 us 550 MB/s SATA SSD [16]

1 ms 4 GB/s io2 Block Express, 102, gp3, gp2, st1 optimistic approximation [8]

6 ms 140-160 MB/s HDD or i02 Block Express, i02, gp3, gp2, st1 pessimistic approximation

(8] [24] [15]

by a corresponding @ action handler that notifies the consumer back whenever the action has been
completed. For the actions that can fail, the action handlers can, as well, incorporate a timeout after
which the action is marked as completed.

3.4 Simulated Storage

To evaluate the effect of storage system-level performance on user-level QoS, the benchmark incorpo-
rates a storage simulation with a configurable (i) throughput and (i) latency. The structure of the
storage component is summarized in Figure 10. There, a user can specify a static throughput and
latency of the storage device. Whenever the @ file system sends read or write requests, the @ block
layer will put it in the @ request queue from which the requests are dequeued according to the @
clock, which controls the latency and throughput emulation. All storage operations are executed on

memory, guaranteeing negligible read and write overheads. Whenever the operation completes, it
is put in the @ completion queue, where, through the block layer notification, the file system fetches
the result of the operation. As both the latency and throughput of storage devices vary greatly for
each device model and can change depending on the workload and the storage device load [13], we
select, for convenience, a ballpark latency and throughput performance baseline, which are presented
in Table 3.
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Table 4: Behavior list for generation.

Behavior

Action frequency equivalent (per

second)

Focus

Instance start and termination
Player exploration

Joining and leaving

Player attack

Player terrain modification
NPC attack

Instance start and terminations

Regions explored

Players joined or left
Issued attacks

Blocks removed or added

NPCs killed

On-demand provisioning

Parkour, elytra flying, any server
with infinite world

Server load variability

PvP servers

Build, survival servers

Survival server, NPC farms

Median load with max—min load range for region 0

3.5 Behavior Generation
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Figure 11: Performance Variability [21]

To allow the user to test the workload in the absence of user activity traces, we construct a list of
player behaviors that can be used out of the box. This is beneficial as it allows the stakeholders to test
MVE player behavior that is yet to be present on their servers. This can be useful in estimating the
required resources to launch a new server type, for example, a PvP server. Each generated behavior
is a list of similar actions. For each player behavior, there is some metric of periodicity - a unit that
expresses how often the action is executed on the server. For example, for players joining and leaving,
this metric is players leaving per second and players joining per second.

Each behavior included presents a particular interest to some server type or commonly observed
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Figure 12: Different servers and game structures.

Table 5: Benchmark Metrics Overview.

Metric Level Focus Method
Number of file system requests System Required operation count Strace
Number of bytes requested System Required throughput Strace
Tick time Application Server user-level performance Telegraf
Completion latency Application User perceived latency Timer

world structures. Player exploration workloads are interesting for any server that has an explorable
big world in which players can move. As well, it is of particular interest to parkour [6] or elytra
racing servers [14] (shown in Figure 12a and Figure 12b) where players do not modify the terrain
but only load already existing one. Player fighting is of particular interest to PvP servers, which are
focused solely on fighting behavior. Joining and leaving is particularly interesting to all servers due to
observed performance variability Figure 11; however, of particular interest of large-scale servers that
can experience large bursts. Both terrain modification and NPC attack are interesting for a survival
server, as all mining, building, and killing NPCs are part of the resource retrieval game mechanic.
Terrain modification workload is, as well, of particular interest to the building servers. Those servers
tend to be in creative mode with players focused on solely on building. NPC attack workload is of
particular interest to the farm (Figure 12d) - a structure to kill large numbers of NPCs either manually
or automatic for a resource gain.

3.6 Metrics

This section defines a list of collected system-level and user-level metrics. System-level metrics reflect
the file system usage. That information can be used by (i) server operators, (i) infrastructure op-
erators, and (%ii) further researchers. (i) Server operators can use to estimate both a total request
count and the requested bytes that are required for their server. This is especially relevant for server
operators using pay-as-you-go cloud infrastructure in cost estimation. Knowing the total number of
requests and the number of requests (ii), infrastructure operators can use this information to estimate
the required number of operations and bytes that their storage infrastructure can support. Further
researchers can use the storage traces for MVE emulation and use it for further research into the per-
formance improvement of cloud-based storage services. User-level metrics can be used by stakeholders
to estimate the required storage service QoS level for a particular use case. A summary of benchmark
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Table 6: Benchmark Workload Overview.

Workload Triggers Behaviors

Read event trigger = Data retrieval subroutine  instance start-up, players joining, movement on
pre-generated instance

Interval-based save Data saving subroutine Position static behaviors such as player fight,
trigger NPC attack, or terrain modification.
Event-based save Data saving subroutine. instance termination, movement on non-
trigger pregenerated instance

metrics is provided in Table 5.

System-level metrics include (i) total number of requests and a (ii) a total number of requested
bytes. Both metrics are recorded using strace tool - a Linux-based tool for trapping file system calls.
We record file system-level metrics for reproducibility (BF5) and system compatibility requirements
(BF1) - for storage-level metrics, we want the results to be reproducible independent of the imple-
mentation of the underlying system. Additionally, recording storage accesses at that level allows for
reverse-engineering the semantic meaning of the requested data, ensuring a higher scientific validity of
results. For example, semantic meaning can be deduced by accessing file names or directory names.
User-level metrics include the (i) tick time and () completion latency. Tick time is recorded
via Telegraf [17] - a tool that we use to measure Minecraft performance, and completion latency is
measured by a UNIX get time of the day timer. We distinguish between these two metrics as while
(i) shows the performance that will be perceived by all the players independently of the user(s) that
execute an interaction and (%) task completion time is observed only by the user(s) that execute an
interaction.

3.7 Workloads

We base executed workloads on the model presented in Section 2. We want our set of workloads to
cover all the points of application interaction with the storage services. Those are (i) instantaneous or
(i1) delayed data saving I/O routines or (iii) data retrieval I/O routines. Shown in Section 2.1, every
workload can be triggered via some user interactions. Thus, every workload defined in PokeSto must
execute a behavior that leads to the type of interaction prescribed by its focus. The list of workloads,
their focus, and associated behaviors is defined in Table 6. Using the benchmark, users can test
behaviors outside of the executed workload scope; however, using the proposed workloads suggests the
possible performance impact. For example, workload focusing on (7) interval-based saving can be used
to show performance degradation at the time of saves at pre-defined intervals, while () event-based
saving and (%ii) can show performance degradation at the time of event execution. Every workload
is defined through a: (i) number of players, (i) player count, (i) action frequency per player, (iv)
region count. Both (4) and (iii) act as proxies for the total number of actions that are executed during
a time interval. There needs to be (i) present as there is likely to be some limit for the number of
actions a player can execute at a time. As well presence of (i) is important as it can change the
number of accesses issued to update or retrieve players state. (i) Number of regions as the MVE
map is organized into separate regions, and increasing the region count will lead to an increase in the
number of accesses and number of unique files. It is important to also note that for the region to
become active, there needs to be at least one player present. Thus, at all times (i77) <= (i) must hold.
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Table 7: Experiment Overview.

Focus v DV Interest group Section
Effect of storage latency and Active re- User QoS  MVE operators Section 4.3
throughput on MVE scalability gion count

Effect of storage collocation on Instance User QoS Cloud infrastructure Section 4.4
MVE scalability count operators

4 Evaluation

In this section, we evaluate the scalability of the popular MVE server implementation - PaperMC - using
a PokeSto designed and implemented in Section 3. We start this section by defining the experiment
setup in Section 4.1. Then, we summarize the main findings and provide MVE infrastructure operators
with a number of insights in Section 4.2. Later, in Section 4.3 and Section 4.4, we analyze the single
and multiple instance scalability.

4.1 Experiment Setup

We designed our evaluation to answer RQ3, primarily focusing on MVE scalability, focusing both
on single instance scalability and multi-instance scalability where multiple PaperMC instances are
collocated on the same storage drive. We summarize the experiments and their focus in Table 7.
To address the research question, we begin the investigation by assessing the relationship between
the storage medium used and the MVE instance scalability. We asses both the average use case and
stress-test use-cases. We define stress-test use-cases as ones yielding the highest number of storage
accesses. We use the number of regions used in the workload as a proxy for instance scalability. We
consider this as a good proxy to asses the MVE scalability on a particular storage device since, in
Section 2.1, we show that its increase increases both the number of file accesses and the number of
unique files accessed. Having information on single instance scalability, we move on to multi-instance
setup, where we investigate the impact of MVE collocations on the same storage drive. In this case, our
proxy for scalability is the number of collocated instances. The focus of experiments in both cases is
the translation of storage-level performance into user-level performance, and in both cases, user QoS,
measured in metrics defined in Section 3.6, tick time, and task completion latency, is a dependent
experiment variable.

To conduct an exhaustive investigation of single instance scalability, we test a popular MVE server
implementation - PaperMC [7] - against all three workloads described in Section 3.7 - read-trigger,
instantaneous write-trigger, delayed write-trigger. For each workload, we select the player
behavior that yields (i) storage behavior prescribed by a workload, (i) found to be the most storage-
intensive, and (7i4) representative of MVE player behavior. For read-trigger, that is players joining;
for instanteneous write-trigger it is players teleporting on non-pregenerated instances, and for de-
layed write-trigger it is players attacking NPCs. To emulate player behavior, we use benchmark’s
trace-based workloads (Section 3.3). To execute player interactions, the component uses the mine-
flayer [11] library. We measure experiment results using the metrics collector component introduced
in Section 3.2, recording both system-level and user-level metrics. User-level metrics are recorded
using Telegraph for tick time and a get time of the day UNIX timer for task completion time.
System-level metrics are captured by strace - Linux-based file system tracing tool [28].

For consistency reasons, we use the same setup throughout all experiments. The storage is emulated
using nullblock tool [19] - a Linux-based block device emulation tool. Used storage latencies and
throughputs are summarized in Section 3.4. Every experiment is executed using PaperMC 1.8.1 - the
latest version at the time of the beginning of the project. PaperMC ran on top of the ext4 file system
- a default Linux file system. The Linux kernel version used is 5.12.0+ and the Ubuntu version used
is 20.04 LTS. For hardware, we used an available research compute cluster with Intel(R) Xeon(R)
Silver 4210R CPU with TurboBoost disabled and 256 GB RAM. All the experiments were then
run in a QEMU virtualized space with 64 GB of RAM and 16 CPU cores allocated. Each Minecraft
instance was allocated 32 GB of RAM to ensure that RAM is not a bottleneck. To ensure that
the system is not bottlenecked by terrain generation, we allocate 12 worker threads - considerably
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Table 8: System under test overview.

Component Value

VM QEMU with 16 cores and enables hardware acceleration
CPU Intel(R) Xeon(R) Silver 4210R CPU with TurboBoost disabled
Core count 64

RAM 32 GB

Linux Version 5.12.0+

Ubuntu Version 20.04 LTS

File System (VM) Ext4

Version PaperMC v1.8.1

Worker threads count 12

World state Flat

World seed 42

higher thread count than recommended, even for the maximum number of players participating in our
experiments.

4.2 Main Findings

This section acts as a summary of the main findings and insights for both single-instance [SI] and
multi-instance [MI] scalability experiments (Section 4.3 and Section 4.4). The set of main findings is:

MF1 (SI) In our setup, a faster storage device can improve the lag tick occurring as a result of more
than 160 regions being loaded per second. [up to 3.5 improvement from HDD and 2.7 from io2
from memory-like storage baseline] (Section 4.3).

MF2 (SI) In our setup, for any other workloads and metrics measured, there is no difference between
using HDD and ideal-case memory-like storage device (Section 4.3).

MF3 (MI) In our setup, an HDD with a single request/response queues can handle at least up to four
PaperMC servers running in parallel (Section 4.4)

The set of main insights is:

MI1 (SI) Unless a server expects large join bursts, PaperMC operators can afford to go for lower
QoS storage (Section 4.3).

MI2 (MI) A server operator can collocate multiple PaperMC servers on a single storage drive without
any loss in performance (Section 4.4)

4.3 Single Instance Scalability

This section evaluates MVE single instance scalability for different storage devices, focusing on user
QoS measured in application-level metrics defined in Section 3.6. As defined in Section 4.1, this section
both considers average and stress-testing use-cases. As a result of this section, we find that storage has
almost no effect on PaperMC scalability, both for average and edge cases. The only scalability issues
that can be improved with faster storage are tick time lag occurring as a result of a large number of
reads. For every other experiment, there is no correlation between the used storage and observed MVE
scalability. As we test both average and the most storage-intensive behavior, we extrapolate that for
other player behaviors, storage will also not influence MVE scalability.

Observation 1. Under Yardstick-defined WalkAround [29] workload, storage does not
affect user-level performance. Under the Yardstick-defined baseline workload, there is no difference
between running PaperMC using memory-like storage or HDD. To obtain this data, we run the default
Yardstick WalkAround workload [29] with 10 players spawning in the center of the map. We show
the tick time when the PaperMC is run on top of HDD and memory-like storage in Figure 13. We
find that there is no significant correlation between the storage device and the experienced user-level
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performance. We hypothesize that storage does not affect user-level performance due to the low storage
request count compared to other workloads tested in this section. We show the IOPs both considering
and not considering the outliers in Figure 14.

Observation 2. For stress-test read-trigger workloads as those are defined in Sec-
tion 3.7, storage devices can improve experienced post-join lag; however, it does not
influence player join times. To obtain the data, we spawned every player on the border of 4 re-
gions. Therefore, whenever the player is spawned, they have to access region files corresponding to 4
unique regions, maximizing the number of unique files that need to be used. We, as well, put to the
maximum the player render distance - 32 chunks - to maximize the number of file system accesses that
need to be performed. Testing with an ideal storage case with memory-like throughput and latency,
we find out that, in our setup, the maximum number of regions that can be loaded in a second is
320. Attempting to run the workload with a higher region count leads to PaperMC crashing and
disconnecting joining players. Testing for different storage devices, we observe a correlation between
storage device and the file access latencies when a high number of regions are requested. We visualize

22



30 & io2
~é— hdd
25 —#— mem
)
£ 20+
L
2 154
£
[ 104
5_
O T T T T T T
0 50 100 150 200 250 300
Regions / second
Figure 16: Median join times.
60 -
° ° e Data points
—— Regression line
° ° .
50 A ° °
L] ] L]
E 201 ° ° ° .
% ) ° ° . .
E y = 0.557x + 25.557 ° ° o
g 30 . ° . . ®
" ° % ° °
20 F Se * ® e . * °e o
° [ ] L] L] ]
* 0e° oo ? . e L . .
% . H
10 :
0.0 05 10 15 20 25 30 35
Storage latency
Figure 17: Dependency of join time from storage latency
- 3500 - 02
—$— mem
— 3000
9] —— sclass
-E 2500 -{ &~ hdd
v &~ ssd
2 2000
Q
2 1500 A
[}
o
£ 1000
o
S 500
[«)]
[o)]
0 T T T T T T
0 50 100 150 200 250 300

Regions / second

Figure 18: 99th percentile join server tick.

it in Figure 15. The difference peaks when requesting 320 regions/second, with HDD showing 3 times
higher median latency and I02 showing 1.3 times higher median latency than with baseline memory-
like performance. However, when observing the join times, we can see that the join time increases
for a higher number of regions accessed, but there is no difference between low- and high-performance
storage devices. We show this in Figure 16 where we can also see that the experienced join time is
significantly higher than storage request latency. There is, as well, a high variability in join times,
making the storage device performance an insignificant factor on experienced player join time. To
validate this finding, we asses the correlation between experienced player join times and the storage
request latency for a particular region where the player is joining. We show it in Figure 17. While
there is some correlation between experienced join time and storage request latency, the data appears
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to be mostly random. However, by measuring the tick time after join burst, we find out that the
performance lag experienced after the burst can be decreased with high-performance storage devices.
We show this in Figure 18. At high request region counts, the experienced performance lag expressed
in 99th tick time percentile, can be decreased 3.5 times from HDD and 2.7 times from 102 when
comparing to the ideal memory-like storage case. There is no difference between SSD and faster
storage devices and an ideal memory-like case.

Observation 3. In our setup, storage has no effect on MVE scalability for instantaneous
write workloads as those are defined in Section 3.7. To the data, we first find the maximum
number of storage writes that can be achieved under teleportation player behavior. In teleportation
player behavior, players are teleported in a round-robin fashion at a pre-defined frequency. In our
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setup, to maximize the number of unique files in the workload, we teleport every player exactly on the
border of 4 regions. To maximize the number of file system accesses, we set the render distance for each
player to maximum. We find out that on ideal memory-like storage, as the number of players increases,
the highest teleportation frequency at which the server can operate without crashing decreases. We
show this in Figure 19. However, as the number of players decreases, so does the number of file system
accesses executed when flushing each region. We show this in Figure 20. The reason is that players do
not have enough time to generate the full region, which is also reflected in the experienced terrain load
times that we summarize in Figure 21. Combining both the number of storage accesses executed per
region and the maximum number of teleportations that the system can handle, we calculate the IOPs
executed during the region flushes. We visualize it in Figure 22. There, we observe that the access peak
for 8 players flushing 120 regions a minute. We take this data point, and for it, we record the system
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performance on different storage devices. We find that there is both no difference in system-level
file access latency experienced when the system is flushing the regions and no difference in user-level
metrics. We compare the total file access latency in Figure 24, and we compare server tick time in
Figure 23.

Observation 4. Storage has no effect on MVE scalability for delayed write workloads.
As discussed in Section 2.1, PaperMC limits the throughput and increases the buffer flushing interval
for higher player counts. Therefore, to test MVE scalability under storage, we select the smallest
number of player count to reduce the performance overhead not related to storage performance. We
execute, on different storage devices, player NPC attack behavior with a total of 5 players. Maximizing
the number of unique files accessed, we spawn every player on the border of 4 regions. We validate
the results against different player counts and do not find any performance difference as well. To test
the scalability, we observe the storage tick for 10 seconds after the synchronization point - the moment
when PaperMC starts flushing NPC updates to the storage. Our results show that during the NPC
synchronization, there is no difference in the server tick time Figure 25.

4.4 Multi Instance Performance

In this section, we try to collocate multiple PaperMC server instances on the same storage drive. Our
motivation is the results of the Section 4.3 showing that there is little correlation between the storage
system-level performance and the user-level QoS. The results are important because running multiple
instances on the same storage drive decreases the number of drives required through resource sharing,
which is popular in cloud-based deployments. To obtain the results, we run the copies of Yardstick-
defined WalkAround [29] workload with 10 players spawning in the center of the maps and walking
around in a pre-defined perimeter. In our experimentation we test collocating 1, 2, and 4 instances,
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with each instance getting 2 CPU cores and 4GB of RAM. For experimentation, we chose the storage
configuration with the lowest QoS as described in Section 3.4.

Observation 5. Up to four MVE instances can be collocated on the same storage drive.
We show the results obtained for a different number of collocated instances in Figure 26. There, we
visualize the distribution of obtained server tick times. We observe that there is no correlation between
the number of instances run and the user-level performance. We hypothesize that this is a result of
high-levels of caching due to the players being located in overlapping regions as discussed in Section 2.3
and a low correlation between storage system-level performance and user-level performance for every
PaperMC instance as discussed in Section 4.3.
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5 Conclusion

In this paper, we investigated the correlation between the storage-level performance and MVE user-
level QoS. We began our exploration by studying the correlation between the user actions and the
storage accesses, and, based on collected data, we constructed a user-storage interaction model. Then,
using the model, we constructed an MVE storage benchmark - PokeSto - and published it as an open-
source artifact on GitHub. Finally, we used that benchmark to evaluate the effect of system-level
performance on MVE user-level performance for a popular MVE server implementation - PaperMC.

5.1 Answering the research questions

RQ1 What is the relation between user interactions and MVE storage accesses? We
found that MVE interacts with storage through a number of I/O routines. These routines
are triggered as a result of the executed player actions. For example, a player moving into a
new region will trigger associated read I/O routines. Each either reads or writes data to the
storage. Writes can be either instantaneous or delayed. Delayed writes happen according to
some policy and can adapt the delay and throughput based on server load. In case a similar
to Minecraft header-subregion file structure is employed, MVE will show random accesses of
request size dictated by the file structure.

RQ2 How to design and implement a benchmark to evaluate MVE performance based on
our storage model? To design and implement a storage MVE benchmark, we continuously
iterated over the (i) problem, (ii) benchmark requirements, and (iii) benchmark design. The
result, published as a GitHub open-source artifact, is a generalizable benchmark MVE with
trace-based workloads and storage simulation components.

RQ3 What is MVE scalability on different storage devices? Assessing the scalability of popular
MVE server implementation - PaperMC - we find, in observations 1-4, that there is little
correlation between the system-level performance and user-level performance, even for stress-
test workloads. We, as well, in observation 5, find that at least up to four PaperMC servers
can be collocated without any loss in performance.

5.2 Threats to validity

Limited scope of storage simulation. Real-world storage devices do not show a linear increase in
response latency with an increase in the number of storage requests [13]. This is not captured by our
storage simulation. As well, storage devices like NVMe or storage-class memories have several request
and response queues in comparison to one simulated by nullblk [13]. Finally, storage throughput and
latency can vary over time, which is not captured by our storage simulation.

Limited player behavior scope. We have picked, for convenience, only a small subset of player
behavior to be tested. However, there can be other types of player behavior having a different effect
on the storage, resulting in a different storage to user-level performance translation.

5.3 Future research

Improved storage simulation. The validity of the results would benefit from improved storage
simulation that would capture the real-world storage throughput and latency performance variability
and nonlinear scaling of response latency from the number of requests.

Large-scale player behavior archive and exploration The completeness of the results would
benefit from exploration of a larger set of player behaviors. The project would benefit from real-world
player behavior traces, which could be used to assess how the storage-level performance translates to
user-level performance under real-world conditions.
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6 Appendix

6.1 Abstract
GitHub repository

6.2 Artifact check-list (meta-information)

Obligatory. Use just a few informal keywords in all fields applicable to your artifacts and remove
the rest. This information is needed to find appropriate reviewers and gradually unify artifact meta
information in Digital Libraries.

e Program: Yardstick, Nullblk

e Compilation: none. Python 3.9 used of interpretation

e Binary: none

¢ Run-time environment: QEMU

e Hardware: Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz, 256 GB

e Execution: Python

e Metrics: storage, MVE Quality of Service

e Experiments: MVE single instance scalability, MVE multi instance scalability
e How much disk space required (approximately)?: 5 GB

e How much time is needed to prepare workflow (approximately)?: 0

e How much time is needed to complete experiments (approximately)?: user-defined. At
least 5 minutes

e Publicly available?: Yes

e Code licenses (if publicly available)?: None
e Data licenses (if publicly available)?: None
o Workflow framework used?: Ansible

e Archived (provide DOI)?: No

6.3 Description

How to access
GitHub
Software dependencies

Python, Jupyter, Nullblk
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