
Serverless Computing for Next-generation Application Development

A R T I C L E I N F O

Keywords:
Serverless
Function-as-a-Service
FaaS
Edge Computing
Resource Management
Scheduling

A B S T R A C T

Serverless computing is a cloud computing model that abstracts server management, allowing developers to
focus solely on writing code without concerns about the underlying infrastructure. This paradigm shift is
transforming application development by reducing time to market, lowering costs, and enhancing scalability. In
serverless computing, functions are event-driven and automatically scale in response to events such as data
changes or user requests. Despite its advantages, serverless computing presents several research challenges,
including managing state for ephemeral functions, mitigating cold start delays, optimizing function composition,
debugging, efficient auto-scaling, resource management, and ensuring security and compliance. This special
issue focused on addressing these challenges by promoting research on innovative solutions and exploring the
potential of serverless computing in new application domains.

1. Introduction

Serverless computing is an emerging paradigm for developing,
deploying, and operating cloud applications. It represents a progression
towards greater abstraction in virtualization technology, evolving from
bare metal to virtual machines, containers, and Functions-as-a-Service
(FaaS) and beyond. Serverless computing simplifies the user experi-
ence by outsourcing infrastructure and operational tasks to the service
provider, offering high agility and reduced costs in application devel-
opment without requiring (much) operational expertise from users.
Functions in serverless computing are typically event-driven, triggered
by various events such as changes in a data source, user requests, mes-
sages added to a queue, or records inserted into a database. With serv-
erless, users only pay for the resources they consume, eliminating the
need for provisioning and paying for resources in advance.

Despite its commercial success and benefits, serverless computing
presents several open research challenges, including managing state for
ephemeral functions, addressing cold start issues, optimizing function
composition, debugging and monitoring, efficient auto-scaling and
resource management, and ensuring security and compliance. While
serverless has been successfully applied to various domains such as web
and mobile backends, it is also expected to play a significant role in
scaling High- Performance Computing (HPC) and High-Performance
Data Analytics (HPDA), developing smart applications relying on IoT
technologies, facilitating the adoption of AI/ML/DL techniques, and
enabling Big Data processing, among others. The development of these
applications introduces new challenges specific to these domains,
necessitating further advancements in serverless technology and dedi-
cated research attention.

This special issue aims to promote high-quality research on recent
serverless computing advances to support existing and emerging

applications and to inspire related research efforts. In the remaining part
of this editorial article, we provide the details of editorial process, the
accepted papers, and future research challenges.

2. Editorial Process

All manuscripts submitted to this special issue (SI) were subjected to
a thorough single-blind review process, ensuring a high standard of
scholarly assessment. Each submission was carefully reviewed and
evaluated by a committee of at least two internationally recognized
experts in the field, who possess deep expertise and a comprehensive
understanding of the subject matter. The review process was guided by
several key criteria, including the manuscript’s alignment with the
topics covered in this SI, the originality and novelty of the research
presented, and the scientific rigor and methodological soundness
demonstrated in the study. Additionally, reviewers assessed the rele-
vance and practicality of any proposed use cases, the potential impact of
the findings on the broader scientific community, and the overall
readability and clarity of the manuscript. These stringent criteria
ensured that only the highest-quality contributions were selected for
publication, reflecting the latest advancements and innovative ap-
proaches in the field.

The collective involvement of authors and reviewers from around the
world has been instrumental in shaping the success of our SI. Fig. 1 il-
lustrates the representation of contributions to our SI, showing both 67
reviewers and 39 submitted papers from various countries. The figure
reflects the diverse international engagement and underscores the col-
lective efforts that have contributed to the success of this SI. The list of
reviewers can be found in the Acknowledgments section, and an over-
view of submissions and accepted articles is provided in the following
section.

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

https://doi.org/10.1016/j.future.2024.107573

Future Generation Computer Systems 164 (2025) 107573

Available online 21 October 2024
0167-739X/© 2024 Published by Elsevier B.V.

www.sciencedirect.com/science/journal/0167739X
https://www.elsevier.com/locate/fgcs
https://doi.org/10.1016/j.future.2024.107573
https://doi.org/10.1016/j.future.2024.107573
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.107573&domain=pdf

3. Overview of the Articles

A total of 39 papers were submitted to this SI. Of these, 6 were desk-
rejected by the editors, and 16 were rejected following the review pro-
cess. Ultimately, 17 articles were accepted, resulting in an acceptance
rate of 43.6%. The accepted articles explore a wide range of applica-
tions, including Big Data processing, workflow automation, machine
learning, AI, and IoT, across diverse domains such as cloud and edge
computing environments. They propose various frameworks and meth-
odologies to enhance performance and efficiency, spanning different
architectures from microservices-based applications to cutting-edge
technologies like Quantum Computing. Overall we categorized articles
into five subtopics:

1. Performance Optimization and Cold Start Management
2. Serverless Architecture and Infrastructure
3. Edge Computing and IoT
4. Machine Learning and AI Integration
5. Workflow and Application Composition

In the following subsections, we provide a brief overview of the
accepted articles featured in the SI.

3.1. Performance Optimization and Cold Start Management

Fireman et al [4] in “Prebaking Runtime Environments to
Improve the FaaS Cold Start Latency” address the challenge of cold
start latency in Function-as-a-Service (FaaS) platforms, where delays
occur due to the time needed to provision resources and start runtime
environments. The authors propose a technique called Prebaking, which
uses the CRIU (Checkpoint/Restore In Userspace) tool to create snap-
shots of warmed function instances. These snapshots can later be
restored to significantly reduce the startup time for functions. Their
experiments, conducted on OpenFaaS with runtimes like Node.js, CPy-
thon, and JVM, show that Prebaking improves function start-up times by
up to 25 times, even for complex functions. The study also compares
Prebaking with the SEUSS technique and concludes that Prebaking of-
fers better performance, making it a practical solution for reducing cold
start latency in serverless platforms.

Similarly in “Holistic Cold-start Management in Serverless
Computing Cloud with Deep Learning for Time Series”, Nguyen [9]
addresses the cold-start problem in serverless computing particularly in
time-sensitive applications. Current cold-start management solutions
work in isolated silos, lacking communication across system levels. The
author propose a 2-prong cold-start management policy using a Tem-
poral Convolutional Network (TCN) to predict function arrivals,
enabling continuous feedback between management policies. Evalua-
tion results show reliable performance, offering a more holistic and

efficient approach to cold-start management that supports AI-driven,
self-adaptive computing systems.

Tran and Kim [14] in “Optimized Resource Usage with Hybrid
Auto-scaling System for Knative Serverless Edge Computing”
address limitations in Knative’s serverless platform auto-scaling, where
current horizontal scaling approaches do not account for the need to
dynamically adjust resources per instance. Existing hybrid auto-scaling
solutions perform poorly with multiple concurrent services and
require significant modifications to Knative. Instead, the authors
developed Kubernetes operators and custom resources to assist Kna-
tive’s auto-scaler with optimal hybrid auto-scaling configurations based
on traffic predictions. Their solution adjusts resource levels, target
concurrency, and instance numbers dynamically, improving resource
efficiency by up to 20% compared to default Knative auto-scaling
methods, without modifying Knative’s components.

Finally, in “Embedding Automated Function Performance
Benchmarking, Profiling and Resource Usage Categorization in
Function as a Service DevOps Pipelines”, Katevas et al. [6] develop a
comprehensive pipeline that captures both function-level metrics (e.g.,
wait time, execution time) and resource usage (e.g., CPU, memory). It
clusters functions based on their resource consumption patterns,
enabling more precise performance analysis. By applying this pipeline to
four functions, the authors demonstrate that a two-stage load generation
process significantly improves profiling accuracy. Moreover, the method
reduces concurrency overheads in function co-placement, enhancing
performance and increasing confidence in the FaaS cost model. Future
work will expand the profiling dataset and explore how function inputs
impact resource usage classification.

3.2. Serverless Architecture and Infrastructure

Werner and Tai [16] in “A Reference Architecture for Serverless
Big Data Processing” address the challenges of processing large-scale
data with FaaS platforms, which are not originally designed for big
data tasks. To overcome limitations and improve performance, the au-
thors propose CREW, a serverless data processing framework that le-
verages application-platform co-design. CREW reduces entry barriers,
costs, and outperforms traditional big data frameworks, making serv-
erless data processing a viable alternative for complex tasks, while
anticipating the development of specialized serverless platforms for
diverse applications.

In another work using FaaS for Big Data processing, titled “Server-
less-like platform for container-based YARN clusters”, O’scar Cas-
tellanos-Rodr’ıguez et al. [17] introduce a serverless platform based on
Hadoop YARN for running Big Data workloads with dynamic, real-time
resource scaling. Unlike traditional FaaS models, which are limited to
handling simple, stateless functions, this platform supports more com-
plex applications through the deployment of serverless YARN clusters.
Experimental results demonstrate significant improvements in perfor-
mance and resource efficiency, with up to a 41% reduction in runtime
and a 50% improvement in CPU usage compared to standard YARN.
Future developments aim to extend the platform to other container
engines and Big Data frameworks.

A novel article “QFaaS: A Serverless Function-as-a-Service
Framework for Quantum Computing” by Nguyen et al [10] in-
troduces a Quantum Function-as-a-Service framework, called QFaaS,
designed to simplify quantum software development in the Noisy
Intermediate-Scale Quantum (NISQ) era. By leveraging serverless
computing, DevOps practices, and hybrid quantum-classical computa-
tion, QFaaS facilitates quantum application development in cloud en-
vironments. It integrates multiple quantum development kits (Qiskit,
Q#, Cirq, and Braket), quantum simulators, and cloud providers like
IBM Quantum and Amazon Braket. The framework mitigates cold start
issues and automates backend selection, enabling developers to create
quantum functions across different platforms. Experimental results
showcase QFaaS’s potential, though some limitations of quantum

Fig. 1. Geographic distribution of 67 reviewers and 39 submitted papers for the
Special Issue (SI).

A.N. Toosi et al. Future Generation Computer Systems 164 (2025) 107573

2

serverless computing require further research.
In “Pattern-based Serverless Data Processing Pipelines for

Function-as-a-Service Orchestration Systems”, Mathew et al. [8]
address the challenge of vendor lock-in in serverless computing,
particularly for FaaS orchestration, which relies on vendor-specific
languages to build complex data processing pipelines. To mitigate this,
the authors propose a generic, provider-agnostic model for serverless
pipelines using well-established enterprise integration and workflow
patterns. These patterns are mapped to vendor-specific orchestration
languages, enabling the transformation of provider-agnostic models into
executable workflows across different platforms. An industrial case
study involving Garmin demonstrates the approach’s effectiveness, with
positive results in execution efficiency. The authors suggest extending
the method to additional FaaS orchestrators and propose building a
community to further refine and expand the pattern-based approach.

3.3. Edge Computing and IoT

Tusa et al. [15], in “Microservices and Serverless Functions –
Lifecycle, Performance, and Resource Utilisation of Edge-based
Real-time IoT Analytics”, conduct a performance evaluation of
Microservices and FaaS functions for real-time IoT analytics in edge
computing environments. Microservices generally offer better latency
and resource efficiency, especially with large data streams, but require
more developer effort for deployment. Serverless functions, such as
those in OpenFaaS and similar tools, simplify development and provide
auto-scaling capabilities, though they may suffer from higher latency in
parallel processing scenarios. The authors conclude that the choice be-
tween these architectures depends on the specific IoT use case and the
constraints of edge resources.

Mahdizadeh and Abrishami [7], in “An assignment mechanism for
workflow scheduling in Function as a Service edge environment”,
address the challenge of deploying FaaS applications in edge computing,
where resource constraints and geographic limitations hinder efficient
task execution. The authors propose a dynamic resource allocation
strategy that models FaaS workflows as directed acyclic graphs and in-
troduces two methods: Highest Bid First Mechanism (HBFM) and Warm
Function First Mechanism (WFFM). These methods aim to optimize
resource use, prioritize critical tasks, and reduce workflow completion
time. Experimental results demonstrate that these mechanisms outper-
form traditional methods in both efficiency and fairness in resource
allocation.

In another work on microservices applications, Hussain and Amini-
Salehi [5] focused on improving the resiliency of Industry 4.0 applica-
tions deployed on resource-limited fog computing systems at remote
industrial sites, in their paper titled “Resource Allocation of Industry
4.0 Micro-service Applications Across Serverless Fog Federation”.
The authors propose a serverless platform for fog federation to enhance
elasticity and manage real-time, fault-intolerant workloads. Their
approach includes partitioning microservice-based workflows using a
graphbased model and developing a Bayesian resource allocation
strategy to maximize on-time task completion. Experimental results
show that the proposed methods increase deadline meet rates by 15-18%
and improve system scalability compared to existing techniques, making
it more effective in oversubscribed and disaster-prone environments.

Khansari and Sharifian [3] in a closely related area proposed a novel
IoT microservice composition approach hosted on the fog layer in their
article titled “A Scalable Modified Deep Reinforcement Learning
Algorithm for Serverless IoT Microservice Composition Infrastruc-
ture in the Fog Layer”. Their approach uses a modified Deep Rein-
forcement Learning (DRL) algorithm that dynamically adapts to changes
in the IoT environment while considering cloudlet computing capacities
and link bandwidths. The serverless architecture combines the advan-
tages of serverless and fog computing, enabling efficient resource pro-
visioning, scalability, low latency, and high security. The proposed
DRL-based Microservice Chaining at Fog Layer (DRLMCF) algorithm

optimizes microservice composition by minimizing resource utilization
and reducing delays. The DRLMCF algorithm operates autonomously
using a Partially Observable Markov Decision Process (POMDP) and can
scale without relying on a central controller, making it ideal for
distributed IoT environments. Evaluations demonstrate significant im-
provements, including up to a 57.3% reduction in end-to-end delay and
an 84% increase in successfully chained microservices compared to
existing methods.

3.4. Machine Learning and AI Integration

“Efficient and scalable covariate drift detection in machine
learning systems with serverless computing” by Sisniega et al. [2]
introduces a serverless-based architecture for efficient batch covariate
drift detection in machine learning (ML) systems, focusing on
edge-to-cloud environments. By separating ML inference from drift
detection tasks, the proposed solution improves scalability,
cost-effectiveness, and system reliability. Future work aims to extend
this approach to handle streaming data and incorporate broader ML
model monitoring capabilities, including performance tracking and
explainability features.

Huang et al. [12] in “GeoPM-DMEIRL: A Deep Inverse Rein-
forcement Learning Security Trajectory Generation Framework
with Serverless Computing” present a framework for generating
high-utility vehicle trajectories while protecting privacy. The method
leverages AWS Lambda for training reinforcement learning models and
applies a Geo-aware local differential privacy mechanism (GeoPM) to
perturb trajectories while adhering to real-world traffic rules. Using A2C
reinforcement learning and Deep Maximum Entropy Inverse Rein-
forcement Learning, the system optimizes trajectory generation.
Experimental results show that their approach improves data utility by
54.6% and enhances privacy protection by 30.7%. Serverless computing
significantly reduces the model training time compared to local training
methods.

3.5. Workflow and Application Composition

In “Serverless Application Composition Leveraging Function
Fusion: Theory and Algorithms”, Czentye and Sonkoly [1] introduce
novel algorithms employing function fusion techniques to address the
complexities of state management and multicore resources in serverless
applications. The research tackles the NP-complete problem of
latency-constrained tree partitioning, proposing a bicriteria approxi-
mation scheme and a greedy heuristic for deriving cost-efficient con-
figurations quickly. Extensive simulations demonstrate that these
methods outperform existing solutions in runtime performance, and
further cost reductions of 3-6% are possible with allowable latency
violations.

Ristov et al. [11], in their article titled “CODE: Code once, deploy
everywhere serverless functions in federated FaaS” introduce the
CODE framework, designed to simplify the deployment of serverless
functions in federated FaaS environments. CODE significantly reduces
developer effort and the lines of code (LoC) needed, by up to 81.8%
compared to traditional FaaS provider SDKs and up to 9.23× less than
Infrastructure-as-Code (IaC) frameworks. It also allows dynamic selec-
tion of storage providers and supports faster deployment, with AWS
deployment being up to 6× quicker than on GCP. The framework pro-
motes a “code once, deploy everywhere” approach, facilitating
multi-region and multi-provider FaaS deployments.

Finally, the article “ExDe: Design space exploration of scheduler
architectures and mechanisms for serverless data-processing” by
Talluri et al. [13] presents a framework to explore the complex design
space of scheduling architectures and mechanisms in serverless
data-processing systems. The framework provides an easy-to-use
abstraction for testing and evaluating different scheduler designs.
ExDe enables system designers to examine various architectures and

A.N. Toosi et al. Future Generation Computer Systems 164 (2025) 107573

3

mechanisms, such as fat nodes and work-stealing, to achieve the same
objective of low task slowdown. The framework is open-source and al-
lows for extensive performance evaluations in a cost-effective and timely
manner, promoting the exploration of various scheduling designs.

4. Research Challenges and Future Directions

While the articles in this SI offer valuable insights, key challenges in
serverless computing remain, particularly in resource management,
stateful execution, and QoS guarantees. These gaps continue to limit
serverless computing’s full potential for the next-generation of cloud-
native applications. In this section, we highlight some of the unre-
solved issues and future research directions.

• Resource Management and Scheduling: Serverless systems face
challenges in optimizing resource allocation and task scheduling.
Future research should focus on developing more efficient, adaptive
schedulers that can handle diverse workloads, minimize latency, and
optimize cost-performance trade-offs, particularly in complex,
distributed environments like edge and compute continuum.

• QoS and Latency Guarantees: Serverless architectures often lack
QoS guarantees, especially in latency-sensitive applications.
Research should address how to offer better QoS assurances and
reduce unpredictable latency in serverless platforms, potentially
through hybrid approaches combining serverless with other
computing paradigms.

• State Management: Managing state across stateless serverless
functions is difficult. Research should focus on designing frameworks
that enable more efficient state handling, allowing for better coor-
dination and performance in stateful applications without violating
the principles of serverless.

• Cost Optimization: While serverless offers cost-efficiency, pricing
models can become complex with unpredictable workloads.
Research should explore new cost models and optimization tech-
niques to make serverless platforms more transparent and cost-
effective for users.

• Application Portability and Interoperability: With various cloud
providers offering serverless platforms, ensuring seamless migration
and interoperability between different environments remains a
challenge. Future research should explore standards and frameworks
that allow for greater portability across heterogeneous serverless
environments.

• Edge, Compute Continuum and IoT Integration: As serverless
computing extends to edge and IoT devices, challenges related to
limited resources, network variability, and energy efficiency arise.
Research should focus on adapting serverless models to edge
computing and compute continuum environments, ensuring efficient
function execution and resource management in constrained and
geographically dispersed settings.

• Debugging and Monitoring: Debugging and monitoring serverless
applications remain difficult due to their distributed and stateless
nature. Future research should aim at developing advanced tools that
improve visibility, debugging, and performance tracking for server-
less functions in real-time.

Acknowledgments

We would like to express our sincere gratitude to the Editor-in-Chief,
Prof. Michela Taufer, and the entire team at Future Generation Computer
Systems (FGCS) for their invaluable support in bringing this SI to
fruition.

The success of SI would not have been possible without the timely
and valuable contributions of our reviewers. We sincerely appreciate the
significant time and effort they dedicated to evaluating manuscripts and
offering insightful feedback that greatly enhanced the quality of the
submissions. It is our pleasure to extend our thanks to the all reviewers,

listed below in alphabetical order.
- Alireza Furutanpey (TU Vienna, Austria)
- Anna Kobusin’ska (Poznan’ University of Technology, Poland)
- Anupama Mampage (University of Melbourne, Australia)
- Arun Ravindran (University of North Carolina at Charlotte, US)
- Ashiq Anjum (University of Leicester, UK)
- Ciprian Dobre (University Politehnica of Bucharest, Romania)
- Claudio Cicconetti (Institute of Informatics and Telematics – National

Research Council, Italy)
- Cristina Abad (Escuela Superior Polit́ecnica del Litoral, Ecuador)
- Darko Andrǒcec (University of Zagreb, Croatia)
- David Bermbach (TU Berlin, Germany)
- Dena Petvu (West University of Timisoara, Romania)
- Donkyu Baek (Chungbuk National University, South Korea)
- Florin Pop (University Politehnica of Bucharest, Romania)
- George Kousiouris (Harokopio University of Athens, Greece)
- Gwanggil Jeon (Incheon National University, South Korea)
- Hadi Tabatabaee Malazi (University College Dublin, Ireland)
- Huaqing Li (Southwest University, China)
- Istv́an Pelle (Budapest University of Technology and Economics,

Hungary)
- Jim Basilakis (Western Sydney University, Australia)
- Jõao Henriques (University of Coimbra,Portugal)
- Jośe Sim̃ao (Polytechnic Institute of Lisbon, Portugal)
- Joseph Doyle (Queen Mary University of London, UK)
- Laiping Zhao (Tianjin University, China)
- Loris Belcastro (University of Calabria, Italy)
- Luciano Baresi (Politecnico di Milano, Italy)
- Mustafa Rafique (Rochester Institute of Technology, US)
- Mahdi Abbasi (Bu-Ali Sina University, Iran)
- Marco A. S. Netto (Microsoft, US)
- Marco Lapegna (University of Naples Federico II, Italy)
- Maria Rodriguez (University of Melbourne, Australia)
- Martin Grambow (TU Berlin, Germany)
- Massimo Villari (University of Messina, Italy)
- Mauro Femminella (University of Perugia, Italy)
- Milǒs Simíc (University of Novi Sad, Serbia)
- Mohammad Reza Heidarpour (Isfahan University of Technology, Iran)
- Mohammad S. Aslanpour (Monash University, Australia)
- Mohsen Amini Salehi (University of North Texas, US)
- Muhammad Sadaqat Janjua (Purdue University, US)
- Nadia Zeghib (Universit́e Constantine 2, Algeria)
- Narayanamoorthi Thilagavathi (Anna University, India)
- Nikola Tankovíc (Juraj Dobrila University of Pula, Croatia)
- Óscar Castellanos-Rodŕıguez (Universidade da Coruña, Spain)
- Pablo Serrano (Universidad Carlos III de Madrid, Spain)
- Patrizio Dazzi (University of Pisa, Italy)
- Philipp Raith (TU Wien, Austria)
- Praveen Kumar Donta (Stockholm University, Sweden)
- Redowan Mahmud (Curtin University, Australia)
- Rodrigo Calheiros (University of Western Sydney, Australia)
- Saeed Sharifian (Amirkabir University of Technology, Iran)
- Saeid Abrishami (Ferdowsi University of Mashhad, Iran)
- Sashko Ristov (University of Innsbruck, Austria)
- Sebastian Werner (TU Berlin, Germany)
- Shitharth Selvarajan (Leeds Beckett University, UK)
- Shreshth Tuli (Imperial College London, UK)
- Siddharth Agarwal (University of Melbourne, Australia)
- Ŝınic̆a Alboaie (Universitatea Alexandru Ioan Cuza Iasi, Romania)
- Stefan Nastic (TU Wien, Austria)
- Sukhpal Gill (Queen Mary University of London, UK)
- Tessema Mindaye Mengistu (Virginia Tech, US)
- Thiago Emmanuel Pereira (Universidade Federal de Campina Grande,

Brazil)
- Thomas Pusztai (TU Wien, Austria)
- Tianzhang He (University of Melbourne, Australia)

A.N. Toosi et al. Future Generation Computer Systems 164 (2025) 107573

4

- Tobias Pfandzelter (Technische Universiẗat Berlin, Germany)
- Tyler Skluzacek (Laboratory in Oak Ridge, US)
- Valeria Cardellini (University of Rome Tor Vergata, Italy)
- Valerio Bellandi (Universit`a degli Studi di Milano, Italy)
- Virginia Pilloni (University of Cagliari, Italy)

Closing Remarks

This special issue highlighted the key advances in serverless
computing, including performance optimization and cold start man-
agement, serverless architecture and infrastructure, edge computing and
IoT, machine learning and AI integration, and workflow and application
composition. The accepted articles reflect the growing breadth of serv-
erless computing and the ongoing efforts to overcome technical chal-
lenges in this space.

We hope this collection inspires further exploration and innovation
in serverless computing. We thank all authors, reviewers, and contrib-
utors for their efforts in making this issue a success.

References

[1] J́anos Czentye, Baĺazs Sonkoly, Serverless application composition leveraging
function fusion: theory and algorithms, Future Gener. Comput. Syst. 153 (2024)
403–418.

[2] Jaime Ćespedes Sisniega, Vicente Rodŕıguez, Gerḿan Molt́o, Álvaro Ĺopez Garćıa,
Efficient and scalable covariate drift detection in machine learning systems with
serverless computing, Future Gener. Comput. Syst. 161 (2024) 174–188.

[3] Mina Emami Khansari, Saeed Sharifian, A scalable modified deep reinforcement
learning algorithm for serverless iot microservice composition infrastructure in fog
layer, Future Gener. Comput. Syst. 153 (2024) 206–221.

[4] Daniel Fireman, Paulo Silva, Thiago Emmanuel Pereira, Luis Mafra,
Dalton Valadares, Prebaking runtime environments to improve the faas cold start
latency, Future Gener. Comput. Syst. 155 (2024) 287–299.

[5] Razin Farhan Hussain, Mohsen Amini Salehi, Resource allocation of industry 4.0
micro-service applications across serverless fog federation, Future Gener. Comput.
Syst. 154 (2024) 479–490.

[6] Vasileios Katevas, Georgios Fatouros, Dimosthenis Kyriazis, George Kousiouris,
Embedding automated function performance benchmarking, profiling and resource
usage categorization in function as a service devops pipelines, Future Gener.
Comput. Syst. 160 (2024) 223–237.

[7] Samaneh Hajy Mahdizadeh, Saeid Abrishami, An assignment mechanism for
workflow scheduling in function as a service edge environment, Future Gener.
Comput. Syst. 157 (2024) 543–557.

[8] Anil Mathew, Vasilios Andrikopoulos, Frank J. Blaauw, Dimka Karastoyanova,
Pattern-based serverless data processing pipelines for function-as-a-service
orchestration systems, Future Gener. Comput. Syst. 154 (2024) 87–100.

[9] Tam n. Nguyen, Holistic cold-start management in serverless computing cloud with
deep learning for time series, Future Gener. Comput. Syst. 153 (2024) 312–325.

[10] Hoa T. Nguyen, Muhammad Usman, Rajkumar Buyya, Qfaas: a serverless function-
as-a-service framework for quantum computing, Future Gener. Comput. Syst. 154
(2024) 281–300.

[11] Sashko Ristov, Simon Brandacher, Mika Hautz, Michael Felderer, Ruth Breu, Code:
code once, deploy everywhere serverless functions in federated faas, Future Gener.
Comput. Syst. 160 (2024) 442–456.

[12] Yi rui Huang, Jing Zhang, Hong ming Hou, Xiu cai Ye, Yi Chen, Geopm-dmeirl: a
deep inverse reinforcement learning security trajectory generation framework with
serverless computing, Future Gener. Comput. Syst. 154 (2024) 123–139.

[13] Sacheendra Talluri, Nikolas Herbst, Cristina Abad, Tiziano De Matteis,
Alexandru Iosup, Exde: design space exploration of scheduler architectures and
mechanisms for serverless dataprocessing, Future Gener. Comput. Syst. 153 (2024)
84–96.

[14] Minh-Ngoc Tran, YoungHan Kim, Optimized resource usage with hybrid auto-
scaling system for knative serverless edge computing, Future Gener. Comput. Syst.
152 (2024) 304–316.

[15] Francesco Tusa, Stuart Clayman, Alina Buzachis, Maria Fazio, Microservices and
serverless functions—lifecycle, performance, and resource utilisation of edge based
real-time iot analytics, Future Gener. Comput. Syst. 155 (2024) 204–218.

[16] Sebastian Werner, Stefan Tai, A reference architecture for serverless big data
processing, Future Gener. Comput. Syst. 155 (2024) 179–192.

[17] Óscar Castellanos-Rodŕıguez, Roberto R. Exṕosito, Jonatan Enes, Guillermo
L. Taboada, Juan Touriño, Serverless-like platform for container-based yarn clus-
ters, Future Gener. Comput. Syst. 155 (2024) 256–271.

Adel N. Toosia,*, Bahman Javadib, Alexandru Iosupc, Evgenia Smirnid,
Schahram Dustdare

a School of Computing and Information Systems, The University of
Melbourne, Melbourne, VIC, Australia

b School of Computer, Data and Mathematical Sciences, Western Sydney
University, Penrith, NSW, Australia

c Vrije Universiteit Amsterdam, Amsterdam, North Holland, Netherlands
d Department of Computer Science, William and Mary, Williamsburg, VA,

USA
e Distributed Systems Group, TU Wien, Vienna, Austria

* Corresponding author.
E-mail address: adel.toosi@unimelb.edu.au (A.N. Toosi).

A.N. Toosi et al. Future Generation Computer Systems 164 (2025) 107573

5

http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0001
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0001
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0001
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0002
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0002
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0002
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0003
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0003
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0003
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0004
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0004
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0004
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0005
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0005
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0005
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0006
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0006
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0006
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0006
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0007
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0007
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0007
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0008
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0008
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0008
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0009
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0009
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0010
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0010
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0010
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0011
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0011
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0011
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0012
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0012
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0012
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0013
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0013
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0013
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0013
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0014
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0014
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0014
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0015
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0015
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0015
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0016
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0016
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0017
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0017
http://refhub.elsevier.com/S0167-739X(24)00537-5/sbref0017
mailto:adel.toosi@unimelb.edu.au

	Serverless Computing for Next-generation Application Development
	1 Introduction
	2 Editorial Process
	3 Overview of the Articles
	3.1 Performance Optimization and Cold Start Management
	3.2 Serverless Architecture and Infrastructure
	3.3 Edge Computing and IoT
	3.4 Machine Learning and AI Integration
	3.5 Workflow and Application Composition

	4 Research Challenges and Future Directions
	Acknowledgments
	Closing Remarks
	References

