
An I/O Characterizing Study of Offloading LLMModels
and KV Caches to NVMe SSD

Zebin Ren
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Krijn Doekemeijer
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Tiziano De Matteis
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Christian Pinto
IBM Research Europe

Dublin, Ireland

Radu Stoica
IBM Research Europe
Zurich, Switzerland

Animesh Trivedi
IBM Research Europe
Zurich, Switzerland

Abstract
With the popularity of generative AI, LLM inference has
become one of the most popular cloud workloads. Modern
popular LLMs have hundreds of billions of parameters and
support very large input/output prompt token sizes (100K–
1M). As a result, their computational state during LLM infer-
ence can exceed thememory available onGPUs. One solution
to this GPU memory problem is to offload the model weights
and KV cache to the host memory. As the size of the models
and prompts continue to increase, researchers have started
to explore the use of secondary storage, such as SSDs, to
store the model weights and KV cache. However, there is
a lack of study on the I/O characteristics and performance
requirements of these offloading operations. In order to have
a better understanding of the performance characteristics of
these offloading operations, in this work, we collect, study,
and characterize the block layer I/O traces from two LLM
inference frameworks, DeepSpeed and FlexGen, that support
model and KV cache offloading to SSDs. Through our analy-
sis of these I/O traces, we report that: (i) libaio-based tensor
offloading delivers higher I/O bandwidth for both writing
and reading tensors to/from the SSDs than POSIX; (ii) the
I/O workload of model offloading is dominated by 128KiB
reads for both DeepSpeed and FlexGen in the block layer; (iii)
model offloading does not saturate NVMe SSDs; and (iv) the
I/O workload of KV cache offloading contains both read and
write workloads dominated by 128 KiB requests, but the av-
erage bandwidth of read is much higher than write (2.0 GiB/s
vs. 11.0MiB/s). We open-source the scripts and the I/O traces
of this work at https://github.com/stonet-research/cheops25-
IO-characterization-of-LLM-model-kv-cache-offloading-nvme

CCS Concepts: •General and reference→ Empirical stud-
ies; • Software and its engineering→ Secondary storage.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1529-7/2025/03.
https://doi.org/10.1145/3719330.3721230

Table 1. Do popular LLMs (FP8) fit in GPU memory?

GPU model (Nvidia) A100 H100 L40S H200
(40/80GiB) (80 GiB) (48 GiB) (141 GiB)

Granite3.1-8B [6] ✓ ✓ ✓ ✓

Mistral-Large [8] ✗ ✗ ✗ ✓

GPT3-175B [20] ✗ ✗ ✗ ✗

OPT-175B [5, 60] ✗ ✗ ✗ ✗

Llama3-405B [7] ✗ ✗ ✗ ✗

Keywords: Large language model, Model offloading, KV
cache offloading, SSDs
ACM Reference Format:
Zebin Ren, Krijn Doekemeijer, Tiziano De Matteis, Christian Pinto,
Radu Stoica, and Animesh Trivedi. 2025. An I/O Characterizing
Study of Offloading LLM Models and KV Caches to NVMe SSD.
In 5th Workshop on Challenges and Opportunities of Efficient and
Performant Storage Systems (CHEOPS ’25), March 30-April 3, 2025,
Rotterdam, Netherlands. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3719330.3721230

1 Introduction
With the popularity of generative AI, Large Language Model
(LLM) inference has become one of the most popular cloud
workloads. Modern LLMs (e.g., IBM Granite, Meta Llama,
OpenAI GPT-4, Google Gemini) are trained using trillions of
tokens and contain hundreds of billions of parameters [6, 7,
15, 45]. This increase in model size leads to a higher quality
of generated text and sampling efficiency [16, 34]. At the
same time, there is an increased demand for long-context
LLMs that support context windows up to 1M tokens for
complex applications such as repository-level code under-
standing [18, 32] and long-document processing [42, 57].
As a result, the memory requirement of LLM inference has
grown significantly over the past few years [22]. The speed
at which the memory requirement increases is much faster
than the speed at which GPU memory sizes increase, thus
approaching and, in some cases, exceeding the memory sizes
found in typical GPUs (see Tab. 1).
Multiple solutions have been proposed to address this

memory pressure, such as quantization [23, 24, 27], leverag-
ing model sparsity [13, 53], sharing of computational and
model state [29, 59], compression [43], model parallelism [52],

https://orcid.org/0000-0003-1466-0002
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0002-9158-6849
https://orcid.org/0000-0001-7060-2742
https://orcid.org/0009-0005-8089-866X
https://orcid.org/0000-0003-3586-7168
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3719330.3721230
https://doi.org/10.1145/3719330.3721230
https://doi.org/10.1145/3719330.3721230

CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ren et al.

Q K V

Multi-Head
Attention

Add and Norm

Feed Forward

Add and Norm

Positional
Encoding

Input Embedding

Layer 2 - n

Linear

Softmax

Output

MatMul

Scale

Mask

SoftMax

MatMul

Figure 1. State-of-the-practice LLM transformer architecture

and memory offloading [11, 13, 51]. GPU memory offload-
ing techniques are the focus of this work. In GPU memory
offloading, an LLM inference serving framework can offload
the model weights and KV cache to CPU memory or to
storage devices during the LLM inference process1. As long-
context LLMs are becoming common, the KV cache size has
increased significantly [12, 57], and these KV caches may
require long-term storing in a multi-turn conversations to
restore the context so that the KV cache can be reused for
future incoming requests [29].
The current focus of the community is largely on CPU

offloading. However, recent interest has been in the integra-
tion of external storage to support emerging large models
that can approach 100–1,000sGiB, (see Tab. 1) that can be
stored more efficiently (i.e., cost, energy) on SSDs. Integrat-
ing external NVMe SSDs further enables various deployment
and optimization opportunities, including sharing, optimiz-
ing, and managing LLM context states among multiple LLM
inference requests [29, 48, 59]. Despite this, there is a lack of
systematic study on the storage usage and the performance
requirements of SSDs when offloading the GPU memory
usage to SSDs during inference. This is the focus of this
work.

The two main components for offloading during LLM in-
ference are (i) the model weights (i.e., model offloading) and
(ii) the key-value cache (i.e., KV cache offloading). The size
of the memory consumed by the model depends on the size

1This work focuses on memory offloading during the LLM inference opera-
tion, not during model training. See §8 for related work discussion.

of the model and the quantization used. Due to the auto-
regressive nature of the modern transformer architecture
used in LLMs [56], during the iterative generation of out-
put tokens, the LLM serving framework typically caches the
keys and values of previously generated tokens (KV cache).
The size of the KV cache depends on multiple factors, in-
cluding the input and output token lengths, batch size, and
the number of attention heads and layers. This work aims
to characterize the SSD usage (access patterns and perfor-
mance) of the model and KV cache offloading process during
the LLM inference process. We use two state-of-the-art LLM
inference frameworks, DeepSpeed Zero inference [14] and
FlexGen [51], for this study with the OPT models [60] since
both frameworks natively support the OPT models. We con-
duct our study on a GCP g2-standard-32 instance with the
NVMeVirt framework [37] to emulate a fast NVMe device
in memory. In §3, we give a more detailed description and
motivation of our setup. During the serving process, when
GPU memory is offloaded to the SSD, we collect block-level
I/O traces, characterize these I/O traces, and report four main
findings. Based on this analysis, we discuss the role the stor-
age devices can play in supporting LLM inference during the
offloading process.

Our key contributions in this work are:
• Performance benchmarking of DeepNVMe, an I/O library
for tensor transfer between CPU/GPU memory and SSDs
with two I/O interfaces, POSIX and libaio.

• Collect and characterize block-level SSD traces when the
LLM inference frameworks offload the LLM models and
KV caches to SSDs.

• To facilitate reproduction, we open-source the design and
implementation of our code and traces at https://github.
com/stonet-research/cheops25-IO-characterization-of-LLM-
model-kv-cache-offloading-nvme.

2 Background on LLM Inference
In this section, we provide background on LLM inference,
KV cache, and common LLM offloading techniques.

2.1 Large Language Model Inference
In this work, we focus on transformer-based LLMs.We visual-
ize such an LLM design in Fig. 1. Transformers are composed
of a series of transformer blocks. The input to each block first
passes through the self-attention layer. In this self-attention
layer, each input token is multiplied by a weight matrix to
get the Q (query), K (key), and V (value) vectors. Then, the
self-attention mechanism generates the embedding vectors,
which captures the relationships between the input tokens.
In order to extract multiple features, it is a common prac-
tice to use multi-head attention in a layer, where each head
extracts different features. Then, the embedding vectors of
different attention heads are concatenated and passed to the
feed-forwarded layer (FFL).

https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme
https://github.com/stonet-research/cheops25-IO-characterization-of-LLM-model-kv-cache-offloading-nvme

An I/O Characterizing Study of Offloading LLM Models and KV Caches to NVMe SSD CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 2. Details of the GCP benchmarking environment

Component Configuration details

GCP Instance g2-standard-32
CPU Intel(R) Xeon(R) @ 2.20GHz, 32 cores
Memory 128GiB
GPU NVIDIA L4, 24GiB memory
Software Ubuntu 22.04.1, kernel 6.8.0-1020-gcp, NVMeVirt

(commit 17f6f4d), FlexLLMGen 0.1.7, DeepSpeed 0.16.1

The LLM inference process contains two stages that al-
ways happen in sequence: the prefill stage and the decode
stage. During the prefill stage, the input tokens are passed
to the model. The model then generates the KV cache and
the first output token. During the decode stage, the LLM
generates the output tokens in an auto-regressive manner.
In each pass of the model, the model takes the input tokens
and all previously generated output tokens to generate the
next output token (thus, the input length increases with
each pass). The generation of new tokens stops when it
reaches a predefined maximum generation length or the
end-of-sequence (EOS) token. Multiple queries are usually
batched to achieve high GPU utilization in multi-tenant en-
vironments, where multiple inferences happen concurrently.

2.2 Key-value Cache
In LLM inference, each output token depends on all the
inputs and previously generated output tokens (§2.1). By
default, when generating a new output token, all key-value
embeddings of these inputs and previously generated output
tokens are regenerated, leading to repeated computation.
Therefore, a common optimization is to cache the previously
generated key and value embeddings (i.e., input and output
tokens) to prevent regeneration. This caching is referred to
as KV cache and typically resides in the GPU memory and
becomes a large part of the GPU memory consumption dur-
ing the LLM inference process [57]. Offloading is essential to
reduce memory requirements since all key and value embed-
dings of input and previously generated output tokens are
cached, i.e., the total KV cache size increases linearly with
the context window. Specifically, long-context LLMs, which
currently support up to a 1M content window, require a large
KV cache that can be too large for the GPU [57]. For exam-
ple, a recent work reports that the LLaMa-65B model with
4× A100 GPUs can generate KV cache entries at 13.9 GiB/s,
which exhausts the memory of any modern GPU in tens of
seconds [29].

2.3 Memory and SSD Offloading
One solution to reduce the pressure on the GPU memory
of LLM inference is to offload the model and KV cache to
CPU memory and/or storage devices such as SSDs. Both
the model and KV cache can be configured to be offloaded
separately where the nature, granularity, and requirements

of the offloading depend on the inference framework used,
such as HuggingFace accelerate [4], DeepSpeed [14], and
FlexGen [51]. The core idea behind offloading is that due
to the iterative nature of computation in LLM serving, the
required context (model or KV cache) can be fetched from
host memory or storage devices as needed, thus lowering
the memory requirements of GPUs as the GPUs do not have
to hold all the model and KV cache data in GPU memory all
the time during the LLM inference process.

3 Experimental Setup
Hardware and Software Environment: Tab. 2 shows our
experimental setup. We use a g2-standard-32 GCP instance
for this characterization study. Considering that the goal
of our characterization is to study storage I/O patterns and
identify framework capabilities without artificially being
impacted by the slow(er) storage that comes with the GCP
instance, we leverage the NVMeVirt framework to emulate a
fast NVMe SSD in memory [37, 44]. We emulated a 96GiB
SSD (NVM model) (64GiB for DeepSpeed) in DRAM and
dedicated four isolated CPU cores to process I/O requests.
In our microbenchmarks with fio [10], an NVMeVirt NVM
SSD can support 9.3 𝜇s of access latency (4 KiB request), 2.6
million IOPS (4 KiB request) with 16 threads, and a bandwidth
of 5.3 GiB/s with single thread issuing 512 KiB requests which
can be scaled up to 16.9GiB/s with four threads. With this
performance profile, we ensure that the speed of the NVMe
SSD is not the bottleneck when gathering and characterizing
I/O traces during the offloading process. We use this device
for our characterization study in the remainder of the paper.
Selection of LLM Inference Frameworks: For our eval-
uation, we require the LLM inference frameworks to sup-
port SSD offloading. Model and KV cache offloading to CPU
memory are widely supported by popular frameworks such
as vLLM, DeepSpeed, and FlexGen [14, 38, 51]. However,
SSD offloading has only recently gained attention [29] and
is selectively available in open-source frameworks. In our
investigation, we evaluate the DeepSpeed [3, 11] and Flex-
Gen [2, 51] frameworks. DeepSpeed supports model offload-
ing to SSDs for inference [14]. However, from the repositories
examples [11], we infer that DeepSpeed only supports model
offloading, not KV cache offloading to SSDs. FlexGen sup-
ports both model and KV cache offloading to SSDs. There
are also other LLM inference frameworks but we do not use
them for various reasons. For example, the recently published
AttentionStore [29] also supports offloading KV caches to
SSDs, but their code is not publicly available. Alternate to
these frameworks that are recently proposed optimizations
like the disaggregated decoding-prefill architecture [61] and
LMCache [21, 43, 59] that externalize the KV cache from
inference frameworks for distributed or GPU-parallel setups.
In this work, we focus on a single machine, single GPU case,

CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ren et al.

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96

Tensor Size (MiB)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

POSIX
libaio

(a) Read tensor to CPU

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96

Tensor Size (MiB)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

POSIX
libaio

(b) Write tensor from CPU

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96

Tensor Size (MiB)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

POSIX
libaio

(c) Read tensor to GPU

1 2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96

Tensor Size (MiB)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

POSIX
libaio

(d) Write tensor from GPU

Figure 2. Tensor offloading — Average bandwidth when transferring tensors between CPU and SSD (a–b); and between GPU and
SSD (c–d)

not a distributed setting. For these reasons, we use Deep-
Speed for the model offloading and FlexGen for the model
and KV cache offloading experiments.
Models and setup:We use OPT models for evaluation, as
they are supported by both DeepSpeed and FlexGen [60]
natively with FP16 quantization (a commonly used quantiza-
tion). We use the largest model supported by the hardware
for model offloading, which is OPT-13B for DeepSpeed in-
ference and OPT-30B for FlexGen. We use dummy models
since our experiments do not compare the accuracy of the
models, where the dummymodels are generated by the Deep-
Speed examples and FlexGen framework [2, 11]. For model
offloading, we also set the number of input tokens to 256
and the output tokens to 32. We have verified that neither
the number of input nor output tokens affects the decode
performance. For DeepSpeed, we use 64GiB of the main
memory for NVMeVirt SSD and 96GiB for FlexGen. For KV
cache offloading, we disable model offloading. Thus, we use
OPT-6.7B since this is the largest model that fits completely
into the GPU memory (24GiB). We set the number of input
and output tokens to 256 for KV cache offloading to show the
I/O workload with a longer context than model offloading.
In Appendix A, we show all the commands that we run

in our evaluations for this paper. A more complete set of
scripts and our trace datasets are available in our artifact
repository.

4 Transferring Tensors with DeepNVMe
Before we do a framework-level evaluation, we evaluate the
performance of tensor transfer between the SSD and the
CPU/GPU memory since this tensor transfer is used during
the model and KV cache offloading. The DeepSpeed frame-
work has an I/O library (DeepNVMe) for transferring tensors
between the SSD storage devices and CPU or GPU mem-
ory [1]. We evaluate the bandwidth of transferring tensors
between CPU–SSD and GPU–SSDwith the DeepNVMe library.
The I/O bandwidth for the tensor transferring allows us to
understand how fast we can transfer model and KV cache
tensors directly from and to the storage devices. Specifically,
in this section, we investigate Question #1: What is the

tensor transferring bandwidth in DeepNVMe between
the CPU/GPU memory and the SSDs, and what does
this bandwidth depend on?

To answer this question, we evaluate the impact of tensor
size, I/O engines, and offloading methods on the bandwidth
of transferring tensors with DeepNVMe. The tensor size is
the total transfer size during offloading. The DeepNVMe li-
brary offers two different I/O engines: a synchronous POSIX
API, and a high-performance asynchronous API based on
libaio. Offloading tensors from the GPU is expected to lead
to lower bandwidth than CPU offloading because the data is
transferred via the CPU memory. DeepNVMe’s experiments
use single-threaded I/O, and we run each configuration five
times and report both the average bandwidth and the stan-
dard deviation. We plot our results in Fig. 2, which shows the
I/O bandwidth (y-axis, higher is better) with an increasing
tensor size (x-axis). We have two observations:
1. libaio based asynchronous tensor offloading delivers

higher tensor transfer bandwidth than POSIX for all eval-
uated scenarios. For example, offloading a 4GiB tensor
with libaio delivers up to 2.9×, 3.3×, 2.8× and 5.5× higher
bandwidth than POSIX for reading tensors to CPU, writing
tensors from CPU, reading tensors to GPU, and writing
tensors from GPU respectively;

2. Neither POSIX nor libaio can achieve the single thread
maximum bandwidth (maximum 4.1GiB/s when reading
tensors to CPU with libaio) shown in our baseline per-
formance (5.3 GiB/s) of NVMeVirt SSD with fio.
Answer #1: DeepNVMe provides higher tensor transfer-

ring bandwidth from/to SSDs with asynchronous libaio than
with the synchronous POSIX interface, up to 5.5× bandwidth,
but it still has a lower maximum bandwidth than the per-
thread bandwidth achieved with fio. libaio achieves up to
5.5× bandwidth than POSIX. However, the maximum single-
thread bandwidth achieved by DeepNVMe is still 22.6% lower
than the baseline performance of the NVMeVirt SSD with fio.

5 Model Offloading
In this section, we characterize the I/O access patterns and
performance when offloading the models to the NVMeVirt

An I/O Characterizing Study of Offloading LLM Models and KV Caches to NVMe SSD CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

0 1 2 3 4
Time (minutes)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

read
write

(a) Batch size = 1

0 1 2 3 4
Time (minutes)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

read
write

(b) Batch size = 16

Figure 3. Model offloading with DeepSpeed — SSD I/O band-
width over time for OPT-13B

SSD with the DeepSpeed and FlexGen frameworks. We eval-
uate both frameworks with the largest OPT models they
support out-of-the-box, which are OPT-13B for DeepSpeed
and OPT-30B for FlexGen, respectively.

Question #2: What are the I/O access patterns of
model offloading? To study the I/O access patterns that
the frameworks request to the underlying SSD, we collect
block-level I/O traces concurrently with our LLM inference
workload using the bpftrace tool.With bpftrace, we probe
using the block_rq_issue tracepoint and collect the I/O op-
eration’s type (i.e., read or write), request size, and accessed
sectors. In Fig. 3 and Fig. 4, we show the read- and write band-
width (y-axis) during inference over time (x-axis). In the plot,
the bandwidth is the per-second aggregated bandwidth (to
reduce plotting noise). We have the following observations:
1. When the SSD model offloading is enabled, we observe

that all the writes occur at the start of the experiment.
When the number of writes reduces and approximates
zero, we observe an increase in reads from the SSD. We
hypothesize that the number of writes reduces because
the model data is not updated during the inference; hence,
the model that is offloaded to the SSD does not need to be
(re)written after the initial offloading operation.

2. The dominant request size for the block-level reads and
writes is 128 KiB requests (not plotted). Neither DeepSpeed
nor FlexGen provides any configuration parameter to tune
the request size issued to the file system (and to the block
layer).

3. The SSD’s sectors are uniformly accessed by both frame-
works, indicating no hot spot in the I/O access pattern (not
plotted).

4. We report similar I/O access patterns (i.e., bandwidth, ac-
cess ratio) across the ext4 and xfs file systems (not plot-
ted). Thus, in our experiments, the choice of file system
has a minimal impact on the I/O access patterns.
Answer #2: The I/O workload of both DeepSpeed and Flex-

Gen inference with model offloading is dominated by 128 KiB
reads that access a set of sectors uniformly. We only observe
writes at the start of the offloading.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (minutes)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

read
write

(a) Batch size = 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (minutes)

1
2
3
4
5
6
7
8
9

10

B
an

d
w

id
th

(G
iB

/s
)

read
write

(b) Batch size = 16

Figure 4. Model offloading with FlexGen – SSD I/O bandwidth
over time for OPT-30B

Question #3: Can FlexGen or DeepSpeed saturate
the performance of an NVMe SSD with model offload-
ing? To answer this question, we compute the average read
bandwidth of DeepSpeed and FlexGen during the experi-
ments. The average read bandwidth achieved by DeepSpeed
and FlexGen is 4.9 GiB/s and 2.6 GiB/s, respectively, which
is significantly less than the SSD’s saturation point.

Answer #3: Although DeepSpeed achieves 63.3% higher
bandwidth than the maximum read tensor bandwidth to CPU
in the previous section (3.0 GiB/s), neither of them achieves the
maximum per-thread bandwidth of the NVMeVirt SSD with
fio (5.3 GiB/s).

6 KV Cache Offloading with FlexGen
In this section, we characterize the I/O access patterns and
performance when offloading the KV cache to the NVMeVirt
SSD with FlexGen. We disable model offloading to ensure
all SSD I/O is due to the KV cache offloading operations. In
order to fit the model in the GPU memory while leaving
space for the KV cache, we use a smaller model (OPT-6.7B)
than the models used in §5. Further on, to simulate long-
context scenarios (i.e., a typical use-case for KV-caching), we
set the number of input tokens to 256 and the output tokens
to 256 per request and use a batch size of 64.

Question #4: What are the I/O access patterns of KV
cache offloading? In Fig. 5, we show the read and write
bandwidth (y-axis) during the inference workload. Unlike
model offloading, we observe that the KV cache offloading
has a slightly lower read- (2.0 GiB/s) and write (11.0MiB/s)
bandwidth than the model offloading. Furthermore, the read
bandwidth of the KV cache is significantly higher (186.2×)
than the write bandwidth because the KV cache is written
once but read multiple times during the inference process.
Further on, we observe that the dominant request size in the
block layer is 128 KiB for both reads and writes. Lastly, we
observe that the KV cache I/O access pattern to the SSD is
not uniform. In Fig. 6, we show the CDF of how many times
each used sector (i.e., any sector read more than once) is read
during the inference workload. In this CDF plot, the y-axis
presents the percentage of requests that are accessed at least
as many times as the value on the x-axis. We observe the

CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ren et al.

0 5 10 15 20 25

Time (minutes)

1

2

3

B
an

d
w

id
th

(G
iB

/s
)

read
write

Figure 5. KV Cache offloading with FlexGen – SSD I/O bandwidth
over time for OPT-6.7B (batch size = 64). The y-axis is up to
3 GiB/s.

ratio to increase linearly with the access count until a peak
of around 256 times. This peak is expected because the KV
cache for the input tokens is accessed once each time a new
token is generated, and the total number of output tokens
is 256. Each pass generates the KV cache for the new input
token, and all the following token generations access this
previously generated KV cache.

Answer #4: In our evaluation, FlexGen KV cache offload
operation has much higher read bandwidth requirements than
write bandwidth (up to 186.2×). Additionally, both reads and
writes are dominated by 128 KiB requests. The sectors in KV
cache offloading are accessed non-uniformly.

7 Discussion
AreModernNVMeSSDsReady for LLM InferenceWork-
loads?We have taken the first step in this direction by char-
acterizing SSD access patterns during the model and KV
cache offloading operations. Modern high-speed SSDs such
as a Samsung 990 Pro can deliver close to 6–7GiB/s band-
width (sequential, PCIe 4.0, m.2) [9], which matches closely
to what we observed DeepSpeed can leverage. However, we
are aware of the fact a more comprehensive investigation
is required to explore the complete spectrum. For example,
we are planning to explore the impact of more powerful
GPUs than L4 (e.g., A100 and H100), which have signifi-
cantly higher decoding speeds, thus requiring faster access
to the offloaded model and KV caches. Additionally, in a
multi-GPU and multi-SSD setup, the impact of NUMA, GPU-
SSD affinities, I/O scheduling, CPU architecture (e.g., PCIe
complex, lane sharing, and oversubscription), data transfer
mechanism (GPUDirect vs. CPU coordinated), etc. can play
a non-trivial role.
What role can SSD manufacturers play here? SSD in-
ternals are known to be complex [41] leading to various
internal flash translation layer (FTL) implementations and
designs. A big part of this complexity comes from offering the
conventional read-anywhere, write-anywhere-and-anytime

0 50 100 150 200 250 300
Access count

0.0

0.2

0.4

0.6

0.8

1.0

A
gg

re
ga

te
d

ra
ti

o

Figure 6. KV Cache offloading with FlexGen – CDF of how many
times each used sector is read OPT-6.7B (batch size = 64)

I/O interface on top of write-once, read-many, and erase
flash NAND chips. As we explore in this work, model, and
KV cache, offloading workloads (i) use large I/O sizes (i.e.,
128 KiB) and (ii) are dominated by reads; hence, there is an
opportunity to optimize the storage devices for this emerging
important class of workload. In this context, NVMe inter-
faces such as ZNS and FDP, which give more control over
data placement, QoS isolation, and parallelism management,
are of special interest [19, 25, 26, 33].
KV Cache Management in LLM: KV cache management
has emerged as a first-class problem for LLM inference work-
loads [40]. The capability to externalize and offload the KV
cache opens up further opportunities regarding concepts
such as compression/encoding [43], efficient scheduling via
disaggregated prefill-decoding architectures [48], caching
and blending [59], and streaming with fault tolerance [54].
We believe that access to a fast, efficient, and optimized stor-
age (local and/or distributed) will play an important role
regarding when and where LLM states can be (re)stored for
efficient distributed request serving.

8 Related Work
Model Training and NVMe:While this paper focuses on
model and KV cache offloading during inference, SSDs are
also widely used in model training. For example, various
works use SSDs in model training to overcome the memory
wall [17, 36, 55]. BLAS-on-flash [55] is a library for flash-
based matrix operations when the working set can not fit
into the GPU memory. FlashNeuron [17] offloads the in-
termediate data to SSDs to increase the batch size, which
enables higher GPU utilization. Behemoth [36] is a flash-
centric DNN training system that uses NAND flash chips to
replace the conventional HBM in conventional accelerators.
DeepSpeed ZeRO-Offload [50] provides three stages that sup-
port offloading optimizer states, gradients, and parameters
from the GPU memory. Our work focuses on SSD offloading
with inference. The offloading mechanism in DeepSpeed can
be used with inference. Thus, we select DeepSpeed as one of
our evaluated frameworks.

An I/O Characterizing Study of Offloading LLM Models and KV Caches to NVMe SSD CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Model and KV cache offloading for LLM inference:
Model and KV cache offloading is widely used in LLM in-
ference to reduce GPU memory usage. Below, we detail the
state-of-the-practice and the state-of-the-art studies for such
offloading. HuggingFace accelerate [4] allows initializing
empty weights as placeholders and fetching the weights into
GPU memory on demand. DeepSpeed [14, 49] supports of-
floading the model to the CPU or storage devices. CachedAt-
tention [29] caches the KV cache in multi-turn conversations
for reuse. These offloading frameworks offload the full model
or KV cache without considering the sparsity of the model
weights or neuron activations.

Many frameworks exploit the sparsity of models, activa-
tions, or the different importance of different tokens to re-
duce the traffic in offloading. LLM-in-a-flash [13] focuses on
mobile devices and exploits the sparsity of ReLU in the FFN
layer to reduce traffic between GPU and storage. PowerIn-
fer [53] also exploits the sparsity of activations but only sup-
ports CPU offloading. FlexGen [51] is designed for latency-
insensitive applications by batching and offloading to run
LLM inference with limited memory. In our experiments,
we take the simplest offloading strategy, which is to offload
the whole model and KV cache instead of utilizing spar-
sity to reduce the I/O traffic. InfiniGen [39] offloads the KV
cache for long-context generations and exploits the different
importance of tokens to reduce the traffic. There are also
studies that use in-storage processing in addition to offload-
ing [35, 46, 58], but these devices are less readily available
than traditional SSDs, which limits their usage.
LLM serving: LLM serving is designed to serve the LLMs
in real workloads where various kinds of queries constantly
come to the serving system, and the service providers usu-
ally need to achieve throughput and latency guarantees.
vLLM [38] proposes PagedAttention to avoid wasting GPU
memory for pre-allocating the KV cache for future generated
tokens in GPU memory. ServerlessLLM [28] and DeepSpeed-
FastGen [30] split the input into chunks. LoongServe [57]
focus on long-context LLMs.

A recent trend is to separate the prefill and decode stages
and distribute their computation across servers since they
have different computational characteristics [31, 47, 48, 54,
61]. These methods require migrating the KV cache from the
prefilled servers to the decode servers and are orthogonal to
our single-server approach. Mooncake [48] proposes a KV
cache-centric serving framework that balances throughput
and latency. Our work focuses on the most straightforward
case for inference and does not take this complexity into the
evaluation.

9 Conclusion
In this paper, we investigate the I/O characteristics of of-
floading LLM models and KV caches to SSDs during LLM

inference using two state-of-the-art LLM inference frame-
works: DeepSpeed and FlexGen. Our results show that in
a straightforward offloading setup (i.e., single CPU, single
workload) (1) the I/O workload in LLM inference with model
offloading using both DeepSpeed and FlexGen is dominated
by 128KiB reads, (2) in our setup, model offloading does
not saturate NVMeVirt devices which can provide up to
16.9 GiB/s of bandwidth and (3) the I/O workload of KV cache
offloading contains both read and write requests dominated
by 128 KiB, but the read bandwidth is higher than the write
bandwidth (2.0 GiB/s vs. 11.0MiB/s). Though these findings
are not surprising in itself, with this work we have taken the
first step in analyzing the characteristics of I/O workload
for SSD-based GPU memory offloading in LLM inference
and made the I/O traces that we collected for the analysis
publicly available. Based on these findings, we presented a
discussion (along with opportunities) on SSD designs and
KV cache management.

Acknowledgments
We thank the CHEOPS’25 reviewers for their invaluable and
constructive feedback. This work is funded by The Dutch
Research Council (NWO) grant number OCENW.KLEIN.561,
Netherlands-funded projects NWO OffSense and GFP 6G
FNS, and EU-funded projects MCSA-RISE Cloudstars and
Horizon Graph-Massivizer. Krijn Doekemeijer is funded by
the VU PhD innovation program. The authors would also like
to thank the AtLarge group at Vrije Universiteit Amsterdam
for their help with the paper.

References
[1] Accessed: 2025-02-26. DeepSpeed DeepNVMe. https://www.

deepspeed.ai/tutorials/deepnvme/.
[2] Accessed: 2025-02-26. FMInference/FlexLLMGen. https://github.com/

FMInference/FlexLLMGen.
[3] Accessed: 2025-02-26. GitHub DeepSpeed. https://github.com/

microsoft/DeepSpeed.
[4] Accessed: 2025-02-26. HuggingFace Accelerate. https://huggingface.

co/docs/accelerate/index.
[5] Accessed: 2025-02-26. HuggingFace: OPT model. https://huggingface.

co/docs/transformers/en/model_doc/opt.
[6] Accessed: 2025-02-26. IBM Granite 3.1: Powerful Perfor-

mance, Longer Context, New Embedding Models and More.
https://www.ibm.com/new/announcements/ibm-granite-3-1-
powerful-performance-long-context-and-more.

[7] Accessed: 2025-02-26. Introducing Meta Llama 3: The Most Capable
Openly Available LLM to Date. https://ai.meta.com/blog/meta-llama-
3/?utm_source=chatgpt.com.

[8] Accessed: 2025-02-26. Mistral: Model Weights. https://docs.mistral.ai/
getting-started/models/weights/.

[9] Accessed: 2025-02-26. Samsung 990 pro. https://semiconductor.
samsung.com/consumer-storage/internal-ssd/990-pro/.

[10] Accessed: 2025-02-26. Welcome to FIO’s documentation! https://fio.
readthedocs.io/en/latest/.

[11] Accessed: 2025-02-26. ZeRO-Inference: 20X Faster Infer-
ence Through Weight Quantization and KV Cache Offloading.
https://github.com/microsoft/DeepSpeedExamples/blob/master/
inference/huggingface/zero_inference/README.md.

https://www.deepspeed.ai/tutorials/deepnvme/
https://www.deepspeed.ai/tutorials/deepnvme/
https://github.com/FMInference/FlexLLMGen
https://github.com/FMInference/FlexLLMGen
https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/transformers/en/model_doc/opt
https://huggingface.co/docs/transformers/en/model_doc/opt
https://www.ibm.com/new/announcements/ibm-granite-3-1-powerful-performance-long-context-and-more
https://www.ibm.com/new/announcements/ibm-granite-3-1-powerful-performance-long-context-and-more
https://ai.meta.com/blog/meta-llama-3/?utm_source=chatgpt.com
https://ai.meta.com/blog/meta-llama-3/?utm_source=chatgpt.com
https://docs.mistral.ai/getting-started/models/weights/
https://docs.mistral.ai/getting-started/models/weights/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/990-pro/
https://semiconductor.samsung.com/consumer-storage/internal-ssd/990-pro/
https://fio.readthedocs.io/en/latest/
https://fio.readthedocs.io/en/latest/
https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/zero_inference/README.md
https://github.com/microsoft/DeepSpeedExamples/blob/master/inference/huggingface/zero_inference/README.md

CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ren et al.

[12] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav S. Gulavani, Alexey Tumanov, and Ramachandran
Ramjee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. In 18th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2024, Santa Clara, CA, USA, July
10-12, 2024, Ada Gavrilovska and Douglas B. Terry (Eds.). USENIX
Association, 117–134. https://www.usenix.org/conference/osdi24/
presentation/agrawal

[13] Keivan Alizadeh, Seyed-Iman Mirzadeh, Dmitry Belenko, S. Khatam-
ifard, Minsik Cho, Carlo C. del Mundo, Mohammad Rastegari, and
Mehrdad Farajtabar. 2024. LLM in a Flash: Efficient Large Language
Model Inference with Limited Memory. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for
Computational Linguistics, 12562–12584. https://doi.org/10.18653/V1/
2024.ACL-LONG.678

[14] Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan,
Cheng Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia
Zhang, Jeff Rasley, and Yuxiong He. 2022. DeepSpeed-Inference: En-
abling Efficient Inference of Transformer Models at Unprecedented
Scale. In SC22: International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, Dallas, TX, USA, November 13-18,
2022, Felix Wolf, Sameer Shende, Candace Culhane, Sadaf R. Alam,
and Heike Jagode (Eds.). IEEE, 46:1–46:15. https://doi.org/10.1109/
SC41404.2022.00051

[15] Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, AndrewM. Dai, Anja Hauth,
Katie Millican, David Silver, Slav Petrov, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily
Pitler, Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James
Molloy, Michael Isard, Paul Ronald Barham, Tom Hennigan, Benjamin
Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan Doherty,
Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Piqueras, Maxim Krikun,
Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca Roelofs, Anaïs White,
Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran
Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al.
2023. Gemini: A Family of Highly Capable Multimodal Models. CoRR
abs/2312.11805 (2023). https://doi.org/10.48550/ARXIV.2312.11805
arXiv:2312.11805

[16] Sher Badshah and Hassan Sajjad. 2024. Quantifying the Capabilities
of LLMs Across Scale and Precision. CoRR abs/2405.03146 (2024).
https://doi.org/10.48550/ARXIV.2405.03146 arXiv:2405.03146

[17] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom
Jang, Tae Jun Ham, and Jae W. Lee. 2021. FlashNeuron: SSD-Enabled
Large-Batch Training of Very Deep Neural Networks. In 19th USENIX
Conference on File and Storage Technologies, FAST 2021, February 23-25,
2021, Marcos K. Aguilera and Gala Yadgar (Eds.). USENIX Association,
387–401. https://www.usenix.org/conference/fast21/presentation/bae

[18] Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D.
C., Arun Iyer, Suresh Parthasarathy, Sriram K. Rajamani, Balasubra-
manyan Ashok, and Shashank Shet. 2024. CodePlan: Repository-Level
Coding using LLMs and Planning. Proc. ACM Softw. Eng. 1, FSE (2024),
675–698. https://doi.org/10.1145/3643757

[19] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,
Damien Le Moal, Gregory R. Ganger, and George Amvrosiadis. 2021.
ZNS: Avoiding the Block Interface Tax for Flash-based SSDs. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 689–703. https://www.usenix.org/conference/atc21/
presentation/bjorling

[20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[21] Yihua Cheng, Kuntai Du, Jiayi Yao, and Junchen Jiang. 2024. Do
Large Language Models Need a Content Delivery Network? CoRR
abs/2409.13761 (2024). https://doi.org/10.48550/ARXIV.2409.13761
arXiv:2409.13761

[22] Krishna Teja Chitty-Venkata, Sparsh Mittal, Murali Emani, Venkatram
Vishwanath, and Arun K. Somani. 2023. A Survey of Techniques for
Optimizing Transformer Inference. J. Syst. Archit. 144 (2023), 102990.
https://doi.org/10.1016/J.SYSARC.2023.102990

[23] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer.
2022. GPT3.int8(): 8-bit Matrix Multiplication for Transformers at
Scale. In Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html

[24] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis
Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov,
Torsten Hoefler, and Dan Alistarh. 2024. SpQR: A Sparse-Quantized
Representation for Near-Lossless LLM Weight Compression. In
The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.
https://openreview.net/forum?id=Q1u25ahSuy

[25] Krijn Doekemeijer, Dennis Maisenbacher, Zebin Ren, Nick Tehrany,
Matias Bjørling, and Animesh Trivedi. 2024. Exploring I/O Manage-
ment Performance in ZNS with ConfZNS++. In Proceedings of the
17th ACM International Systems and Storage Conference (Virtual, Israel)
(SYSTOR ’24). Association for Computing Machinery, New York, NY,
USA, 162–177. https://doi.org/10.1145/3688351.3689160

[26] Krijn Doekemeijer, Nick Tehrany, Balakrishnan Chandrasekaran, Ma-
tias Bjørling, and Animesh Trivedi. 2023. Performance Character-
ization of NVMe Flash Devices with Zoned Namespaces (ZNS). In
2023 IEEE International Conference on Cluster Computing (CLUSTER).
118–131. https://doi.org/10.1109/CLUSTER52292.2023.00018

[27] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2023.
OPTQ: Accurate Quantization for Generative Pre-trained Transform-
ers. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net.
https://openreview.net/forum?id=tcbBPnfwxS

[28] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. 2024. ServerlessLLM: Low-
Latency Serverless Inference for Large Language Models. In 18th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024, Ada Gavrilovska
and Douglas B. Terry (Eds.). USENIX Association, 135–153. https:
//www.usenix.org/conference/osdi24/presentation/fu

[29] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic,
Junbo Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. 2025. Cost-
efficient Large Language Model Serving for Multi-turn Conversations
with CachedAttention. In Proceedings of the 2024 USENIX Conference on
Usenix Annual Technical Conference (Santa Clara, CA, USA) (USENIX
ATC’24). USENIX Association, USA, Article 7, 16 pages.

https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://doi.org/10.18653/V1/2024.ACL-LONG.678
https://doi.org/10.18653/V1/2024.ACL-LONG.678
https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.48550/ARXIV.2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.48550/ARXIV.2405.03146
https://arxiv.org/abs/2405.03146
https://www.usenix.org/conference/fast21/presentation/bae
https://doi.org/10.1145/3643757
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2409.13761
https://arxiv.org/abs/2409.13761
https://doi.org/10.1016/J.SYSARC.2023.102990
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
https://openreview.net/forum?id=Q1u25ahSuy
https://doi.org/10.1145/3688351.3689160
https://doi.org/10.1109/CLUSTER52292.2023.00018
https://openreview.net/forum?id=tcbBPnfwxS
https://www.usenix.org/conference/osdi24/presentation/fu
https://www.usenix.org/conference/osdi24/presentation/fu

An I/O Characterizing Study of Offloading LLM Models and KV Caches to NVMe SSD CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[30] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad
Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via
MII and DeepSpeed-Inference. CoRR abs/2401.08671 (2024). https:
//doi.org/10.48550/ARXIV.2401.08671 arXiv:2401.08671

[31] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang
Xu, Shuang Chen, Hao Feng, Chenxi Wang, Sa Wang, Yungang Bao,
Ninghui Sun, and Yizhou Shan. 2024. Inference without Interference:
Disaggregate LLM Inference for Mixed DownstreamWorkloads. CoRR
abs/2401.11181 (2024). https://doi.org/10.48550/ARXIV.2401.11181
arXiv:2401.11181

[32] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin
Pei, Ofir Press, and Karthik R. Narasimhan. 2024. SWE-bench: Can
Language Models Resolve Real-world Github Issues?. In The Twelfth
International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/
forum?id=VTF8yNQM66

[33] Kanchan Joshi, Anuj Gupta, Javier Gonzalez, Ankit Kumar, Kr-
ishna Kanth Reddy, Arun George, Simon Lund, and Jens Axboe.
2024. I/O Passthru: Upstreaming a Flexible and Efficient I/O Path
in Linux. In 22nd USENIX Conference on File and Storage Technologies
(FAST 24). USENIX Association, Santa Clara, CA, 107–121. https:
//www.usenix.org/conference/fast24/presentation/joshi

[34] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Ben-
jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. 2020. Scaling Laws for Neural Language Models. CoRR
abs/2001.08361 (2020). arXiv:2001.08361 https://arxiv.org/abs/2001.
08361

[35] Junkyum Kim, Myeonggu Kang, Yunki Han, Yanggon Kim, and Lee-
Sup Kim. 2023. OptimStore: In-Storage Optimization of Large Scale
DNNs with On-Die Processing. In IEEE International Symposium on
High-Performance Computer Architecture, HPCA 2023, Montreal, QC,
Canada, February 25 - March 1, 2023. IEEE, 611–623. https://doi.org/
10.1109/HPCA56546.2023.10071024

[36] Shine Kim, Yunho Jin, Gina Sohn, Jonghyun Bae, Tae Jun Ham, and
Jae W. Lee. 2021. Behemoth: A Flash-centric Training Accelerator for
Extreme-scale DNNs. In 19th USENIX Conference on File and Storage
Technologies, FAST 2021, February 23-25, 2021, Marcos K. Aguilera and
Gala Yadgar (Eds.). USENIX Association, 371–385. https://www.usenix.
org/conference/fast21/presentation/kim

[37] Sang-Hoon Kim, Jaehoon Shim, Euidong Lee, Seongyeop Jeong,
Ilkueon Kang, and Jin-Soo Kim. 2023. NVMeVirt: A Versatile Software-
defined Virtual NVMe Device. In 21st USENIX Conference on File and
Storage Technologies (FAST 23). USENIX Association, Santa Clara, CA,
379–394. https://www.usenix.org/conference/fast23/presentation/
kim-sang-hoon

[38] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Sto-
ica. 2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium
on Operating Systems Principles, SOSP 2023, Koblenz, Germany, Oc-
tober 23-26, 2023, Jason Flinn, Margo I. Seltzer, Peter Druschel, An-
toine Kaufmann, and Jonathan Mace (Eds.). ACM, 611–626. https:
//doi.org/10.1145/3600006.3613165

[39] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024.
InfiniGen: Efficient Generative Inference of Large Language Models
with Dynamic KV Cache Management. In 18th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2024, Santa Clara,
CA, USA, July 10-12, 2024, Ada Gavrilovska and Douglas B. Terry (Eds.).
USENIX Association, 155–172. https://www.usenix.org/conference/
osdi24/presentation/lee

[40] Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu,
Xuejia Chen, Nicole Hu, Wei Dong, Qing Li, and Lei Chen. 2025. A

Survey on Large Language Model Acceleration based on KV Cache
Management. arXiv:2412.19442 [cs.AI] https://arxiv.org/abs/2412.
19442

[41] Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami, and
Haryadi S. Gunawi. 2022. Fantastic SSD Internals and How to Learn
and Use Them. In Proceedings of the 15th ACM International Conference
on Systems and Storage (Haifa, Israel) (SYSTOR ’22). Association for
Computing Machinery, New York, NY, USA, 72–84. https://doi.org/
10.1145/3534056.3534940

[42] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. 2024.
Long-context LLMs Struggle with Long In-context Learning. CoRR
abs/2404.02060 (2024). https://doi.org/10.48550/ARXIV.2404.02060
arXiv:2404.02060

[43] Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang,
Qizheng Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Anantha-
narayanan, et al. 2024. Cachegen: KV Cache Compression and Stream-
ing for Fast Large Language Model Serving. In Proceedings of the ACM
SIGCOMM 2024 Conference. 38–56.

[44] Microsoft. 2025. NVMeVirt: A Versatile Software-defined Virtual
NVMe Device. https://github.com/snu-csl/nvmevirt.

[45] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
https://doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[46] Xiurui Pan, Endian Li, Qiao Li, Shengwen Liang, Yizhou Shan, Ke Zhou,
Yingwei Luo, Xiaolin Wang, and Jie Zhang. 2024. InstInfer: In-Storage
Attention Offloading for Cost-Effective Long-Context LLM Inference.
CoRR abs/2409.04992 (2024). https://doi.org/10.48550/ARXIV.2409.
04992 arXiv:2409.04992

[47] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient
Generative LLM Inference Using Phase Splitting. In 51st ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2024,
Buenos Aires, Argentina, June 29 - July 3, 2024. IEEE, 118–132. https:
//doi.org/10.1109/ISCA59077.2024.00019

[48] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu,
Weimin Zheng, and Xinran Xu. 2024. Mooncake: A KVCache-centric
Disaggregated Architecture for LLM Serving. CoRR abs/2407.00079
(2024). https://doi.org/10.48550/ARXIV.2407.00079 arXiv:2407.00079

[49] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and
Yuxiong He. 2021. ZeRO-infinity: Breaking the GPU Memory Wall
for Extreme Scale Deep Learning. In International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2021,
St. Louis, Missouri, USA, November 14-19, 2021, Bronis R. de Supinski,
Mary W. Hall, and Todd Gamblin (Eds.). ACM, 59. https://doi.org/10.
1145/3458817.3476205

[50] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In
Proceedings of the 2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021, Irina Calciu and Geoff Kuenning (Eds.).
USENIX Association, 551–564. https://www.usenix.org/conference/
atc21/presentation/ren-jie

[51] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. FlexGen: High-Throughput Generative Inference of Large
Language Models with a Single GPU. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA (Proceedings of Machine Learning Research, Vol. 202), Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (Eds.). PMLR, 31094–31116. https:
//proceedings.mlr.press/v202/sheng23a.html

[52] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
CoRR abs/1909.08053 (2019). arXiv:1909.08053 http://arxiv.org/abs/

https://doi.org/10.48550/ARXIV.2401.08671
https://doi.org/10.48550/ARXIV.2401.08671
https://arxiv.org/abs/2401.08671
https://doi.org/10.48550/ARXIV.2401.11181
https://arxiv.org/abs/2401.11181
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.usenix.org/conference/fast24/presentation/joshi
https://www.usenix.org/conference/fast24/presentation/joshi
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/HPCA56546.2023.10071024
https://doi.org/10.1109/HPCA56546.2023.10071024
https://www.usenix.org/conference/fast21/presentation/kim
https://www.usenix.org/conference/fast21/presentation/kim
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://arxiv.org/abs/2412.19442
https://arxiv.org/abs/2412.19442
https://arxiv.org/abs/2412.19442
https://doi.org/10.1145/3534056.3534940
https://doi.org/10.1145/3534056.3534940
https://doi.org/10.48550/ARXIV.2404.02060
https://arxiv.org/abs/2404.02060
https://github.com/snu-csl/nvmevirt
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/ARXIV.2409.04992
https://doi.org/10.48550/ARXIV.2409.04992
https://arxiv.org/abs/2409.04992
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.48550/ARXIV.2407.00079
https://arxiv.org/abs/2407.00079
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053

CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Ren et al.

1909.08053
[53] Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen. 2024. PowerInfer:

Fast Large Language Model Serving with a Consumer-grade GPU. In
Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles, SOSP 2024, Austin, TX, USA, November 4-6, 2024, Emmett
Witchel, Christopher J. Rossbach, Andrea C. Arpaci-Dusseau, and Kim-
berly Keeton (Eds.). ACM, 590–606. https://doi.org/10.1145/3694715.
3695964

[54] Foteini Strati, Sara McAllister, Amar Phanishayee, Jakub Tarnawski,
and Ana Klimovic. 2024. DéjàVu: KV-cache Streaming for Fast, Fault-
tolerant Generative LLM Serving. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net. https://openreview.net/forum?id=AbGbGZFYOD

[55] Suhas Jayaram Subramanya, Harsha Vardhan Simhadri, Srajan Garg,
Anil Kag, and Venkatesh Balasubramanian. 2019. BLAS-on-flash:
An Efficient Alternative for Large Scale ML Training and Inference?.
In 16th USENIX Symposium on Networked Systems Design and Im-
plementation, NSDI 2019, Boston, MA, February 26-28, 2019, Jay R.
Lorch and Minlan Yu (Eds.). USENIX Association, 469–484. https:
//www.usenix.org/conference/nsdi19/presentation/subramanya

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neural Information Processing
Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Asso-
ciates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[57] Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu,
and Xin Jin. 2024. LoongServe: Efficiently Serving Long-Context Large
Language Models with Elastic Sequence Parallelism. In Proceedings
of the ACM SIGOPS 30th Symposium on Operating Systems Principles,
SOSP 2024, Austin, TX, USA, November 4-6, 2024, Emmett Witchel,
Christopher J. Rossbach, Andrea C. Arpaci-Dusseau, and Kimberly
Keeton (Eds.). ACM, 640–654. https://doi.org/10.1145/3694715.3695948

[58] Chunhua Xiao, Shi Qiu, and Dandan Xu. 2022. Cop-Flash: Utilizing
Hybrid Storage to Construct a Large, Efficient, and Durable Computa-
tional Storage for DNN Training. In IEEE 15th International Conference
on Cloud Computing, CLOUD 2022, Barcelona, Spain, July 10-16, 2022,
Claudio Agostino Ardagna, Nimanthi L. Atukorala, Rajkumar Buyya,
Carl K. Chang, Rong N. Chang, Ernesto Damiani, Gargi Banerjee Das-
gupta, Fabrizio Gagliardi, Christoph Hagleitner, Dejan S. Milojicic,
Tuan M. Hoang Trong, Robert Ward, Fatos Xhafa, and Jia Zhang (Eds.).
IEEE, 209–218. https://doi.org/10.1109/CLOUD55607.2022.00041

[59] Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng
Zhang, Kuntai Du, Shan Lu, and Junchen Jiang. 2024. CacheBlend:
Fast Large Language Model Serving with Cached Knowledge Fusion.
arXiv preprint arXiv:2405.16444 (2024).

[60] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria
Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke
Zettlemoyer. 2022. OPT: Open Pre-trained Transformer Language
Models. CoRR abs/2205.01068 (2022). https://doi.org/10.48550/ARXIV.
2205.01068 arXiv:2205.01068

[61] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating
Prefill and Decoding for Goodput-optimized Large Language Model
Serving. In 18th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024, Ada
Gavrilovska and Douglas B. Terry (Eds.). USENIX Association, 193–
210. https://www.usenix.org/conference/osdi24/presentation/zhong-
yinmin

Notes: IBM is a trademark of International Business Ma-
chines Corporation, registered in many jurisdictions world-
wide. Intel and Intel Xeon are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United
States and other countries. Linux is a registered trademark of
Linus Torvalds in the United States, other countries, or both.
Java and all Java-based trademarks and logos are trademarks
or registered trademarks of Oracle and/or its affiliates. Other
products and service names might be trademarks of IBM or
other companies.

A Commands Used in Benchmarking
In this section, we show the exact command used in our
experiments. We replace the exact path in the commands by
[PATH]. For all the commands, we assume the DeepSpeed
and FlexGen are installed in the environment.
DeepNVMe test load and store:

python py_ s t o r e _ cpu_ t en so r . py −−
nvme_fo lder [PATH] −−mb_s ize 1 −−
loop 5

python py_ l oad_cpu_ t en so r . py −−
i n p u t _ f i l e [PATH] −− loop 5

bpftrace script, the arguments in the third line are the
major and minor values of the disk’s (SSD’s) device file:

/ / check major and minor :
/ / l s − l / dev / nvme0n1
t r a c e p o i n t : b l o ck : b l o c k _ r q _ i s s u e
/ args −>dev == ((2 5 9 << 20) | 4)
{

pr int f ("% l l u ,% s ,%d ,% l l u ,% d \ n " , nsecs
, args −>rwbs , args −>bytes , args
−> s e c t o r , args −> n r _ s e c t o r) ;

}

DeepSpeed inferencewithmodel offloading, we use a dummy
model for benchmarking.

deepspeed −−num_gpus 1 run_model . py −−
dummy −−model f a cebook / opt −13b −−cpu
− o f f l o a d −−d i sk − o f f l o a d −− o f f l o a d −
d i r [PATH] −−prompt − l en 256 −−gen−
l en 32 −− l oop s 1 −−batch − s i z e 1

FlexGen inference with model offloading, we use a dummy
model for benchmarking. We limit the size of the memory
that FlexGen can use.

http://arxiv.org/abs/1909.08053
https://doi.org/10.1145/3694715.3695964
https://doi.org/10.1145/3694715.3695964
https://openreview.net/forum?id=AbGbGZFYOD
https://www.usenix.org/conference/nsdi19/presentation/subramanya
https://www.usenix.org/conference/nsdi19/presentation/subramanya
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3694715.3695948
https://doi.org/10.1109/CLOUD55607.2022.00041
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://arxiv.org/abs/2205.01068
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin

An I/O Characterizing Study of Offloading LLM Models and KV Caches to NVMe SSD CHEOPS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

sudo systemd −run −−scope −−p rope r t y =
MemoryLimit =10G python3 −m
f l e x l lmg en . f l e x _ o p t −−model f a cebook
/ opt −30b −−path _DUMMY_ −− o f f l o a d −
d i r [PATH] −−prompt − l en 256 −−gen−
l en 32 −−num−gpu− ba t ch e s 1 −− pe r c en t
0 0 100 0 100 0 −−gpu−batch − s i z e 1

FlexGen inference with KV cache offloading. We limit the
size of the memory that FlexGen can use.

sudo systemd −run −−scope −−p rope r t y =
MemoryLimit =10G python3 −m
f l e x l lmg en . f l e x _ o p t −−model f a cebook
/ opt −6 . 7 b −−path _DUMMY_ −− o f f l o a d −
d i r [PATH] −−prompt − l en 256 −−gen−
l en 256 −−num−gpu− ba t ch e s 1 −−
pe r c en t 100 0 0 0 100 0 −−gpu−batch −
s i z e 1

	Abstract
	1 Introduction
	2 Background on LLM Inference
	2.1 Large Language Model Inference
	2.2 Key-value Cache
	2.3 Memory and SSD Offloading

	3 Experimental Setup
	4 Transferring Tensors with DeepNVMe
	5 Model Offloading
	6 KV Cache Offloading with FlexGen
	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Commands Used in Benchmarking

