
Energy Consumption of Heuristic
Kubernetes Schedulers

Alfred Daimari, Matthijs Jansen, Daniele Bonetta
Vrije Universiteit, Amsterdam, the Netherlands

Abstract—Optimizing and understanding energy
consumption is essential for cost reduction in
modern cloud native environments. This pa-
per evaluates the energy consumption of the Ku-
bernetes Default Scheduler and two heuristics
based open source schedulers, Descheduler and
Poseidon under realistic workloads. This study
contributes by providing actionable insights by
evaluating the energy efficiency and consump-
tion of schedulers that use predefined static con-
straints, like Descheduler, against Poseidon’s dy-
namic scheduling approach. Furthermore, we ex-
plore the potential of integrating Service Level
Objectives (SLOs) into our chosen schedulers to
further improve energy efficiency.

I. Introduction

As cloud-native environments continue to scale, optimiz-
ing resource usage, particularly energy consumption, has
become a key priority for reducing operational costs [17].
Kubernetes is the leading platform for container orches-
tration in the cloud, and the scheduler used within a
Kubernetes cluster plays a central role in managing re-
sources. The scheduling strategies that various sched-
ulers use significantly impact the energy consumption of
the cluster. One such example is the Heats scheduler,
which was able to create energy savings of upto 8.5% [18].
Hence, evaluating the energy consumption of available
Kubernetes schedulers is key in helping make informed
decisions and gaining insights into operational costs of
Kubernetes clusters.

Existing surveys [4, 8] on Kubernetes scheduling al-
gorithms primarily focus on performance metrics like
throughput, latency, and task completion time. En-
ergy consumption often receives less attention in Kuber-
netes scheduler surveys. The publication [1] that intro-
duces the Firmament scheduler (part of Poseidon sched-
uler) only analyzes task response times and runtimes,
and lacks an evaluation of energy consumption. This re-
port contributes by evaluating the energy consumption of
two open-source heuristic schedulers, which are the De-
scheduler [5]—a well-known scheduler in the Kubernetes
community with 4600 Github stars—and Poseidon [6]—
the only open-source Kubernetes scheduler based on the
novel Firmament scheduler [1]. The goal of this report is
to contribute to the growing body of research on energy-
efficient Kubernetes scheduling. In doing so, it seeks
to further the understanding of how different schedul-
ing strategies can impact energy consumption. To our

knowledge, there is no research on energy consumption
for the schedulers we have chosen.

Integrating SLOs into scheduling strategies can signifi-
cantly contribute to energy efficiency [3]. By dynam-
ically adjusting resource allocations based on real-time
workload demands and pre-defined SLOs, systems can
reduce overprovisioning and idle resource usage. Addi-
tionally, our report explores whether integrating Service
Level Objectives (SLOs) into our chosen schedulers can
further increase energy efficiency without significantly de-
creasing performance.

The report is structured as follows:

• Section II describes why heuristic schedulers are
important in the context of energy efficiency. It also
contains a description of how the Poseidon, Default
and Descheduler schedulers function and how their
scheduling decisions may affect energy efficiency.

• Section III contains a description, specifics and dif-
ferences of the benchmarks used to evaluate the
schedulers.

• Section IV outlines the experimental design used to
evaluate the schedulers, ensuring reproducibility of
results.

• Section V presents an in-depth analysis of the re-
sults, discussing the performance, energy efficiency,
and energy consumption of the schedulers.

• Section VI summarizes the findings and offers
insights into the implications of the study for
Kubernetes-based resource management and en-
ergy optimization.

II. Kubernetes Schedulers

Kubernetes schedulers can be classified into four types
based on the optimization techniques they use to find
the best pod placement, which are mathematical model-
ing, heuristics, metaheuristics, and machine learning [4].
Mathematical modeling schedulers model the schedul-
ing problem as ILP problems (Integer Linear Program-
ming) and are not scalable [4]. ML-based schedulers
also struggle with pod placement latency in large Ku-
bernetes clusters which run huge numbers of microser-
vices due to their computing overhead [8] thereby directly
affecting quality of service. For large-scale scheduling
of microservices, in theory, metaheuristic schedulers—
schedulers that use population-based optimization algo-
rithms inspired by the intelligent processes and behaviors
arising in nature [19]—should have comparatively lower

1



computation requirements and be scalable. However, in
a container scheduling survey [4] conducted by Ahmad
et al., it was observed that none of the ML, ILP, and
meta-heuristic schedulers had scalability as an objective,
whereas 7 of 20 heuristic schedulers had it.

Heuristic-based schedulers are the most scalable solu-
tions for managing large-scale clusters due to their low
scheduling overhead. They are widely used in large clus-
ters, where the primary goal is rapid decision making.
Their large scale makes them ideal candidates for energy-
efficient enhancements because even small reductions in
energy consumption can lead to substantial savings in op-
erating costs. Their scale presents opportunities for sub-
stantial energy savings. This positions heuristic-based
Kubernetes schedulers as an important focus for research,
evaluation, and innovation regarding energy consump-
tion. This is why we chose to evaluate the energy con-
sumption of two heuristic-based schedulers.

2.1 Default Scheduler

The Default scheduler, also called Kube-scheduler, is the
baseline scheduler in our evaluation. It uses resource re-
quests, node availability, and affinity rules to schedule a
pod on a node. The goal of the scheduler is to filter out
nodes that do not meet the pod’s resource requests. The
scheduler selects a node in a two-step operation, filter-
ing and scoring. Filtering and scoring are implemented
by two types of components: Predicates and Priorities.
Predicates indicate whether a node can run a pod or not,
whereas Priorities score a node between 0 and 10. Ku-
bernetes has a default set of Predicates and Priorities
that cover a fair amount of common use cases. The De-
fault scheduler uses Predicates to create a list of available
nodes. It then scores (0 - 10) the nodes using Priorities.
The node with the highest score is given preference for
running the pod.

However, some issues may arise in the Default scheduler
regarding efficient use of resources. The scheduling policy
used by the Default scheduler only influences pod place-
ment when a pod is created. This initial snapshot of the
cluster when a new pod arises may no longer hold true
as the cluster continues to run. Some of the reasons why
pods need to be moved around are the following.

1. Nodes are over or underutilized

2. Taints and labels are added or removed from the
nodes, pod/node affinity requirements are not sat-
isfied anymore

3. Some nodes failed and pods are moved to other
nodes

4. New nodes are added to the cluster

5. Several pods may be moved to less desirable nodes

In the Default scheduler, the Kubelet—the “node agent”
that manages Kubernetes pods—in each node is solely
responsible for pod eviction. The pod is evicted when
it uses more resources than the amount it initially re-
quests. Post-eviction, the pods enter a pending state and
are then reassigned to a different node by the scheduler.
Each Kubelet is unable to perform optimal evictions be-
cause it lacks visibility of the overall cluster state and

Figure 1: Descheduler using RemoveDuplicates
strategy

makes decisions based on its own local state. This can
lead to inefficient use of resources and a decrease in en-
ergy efficiency.

2.2 Descheduler

The issues mentioned in the previous section 2.1 hint at
a need for a global pod eviction strategy for the cluster.
This is what the Descheduler [5] tries to improve upon.
The Descheduler’s main goal is to maintain “a balanced
and optimal cluster” by evicting running pods from nodes
even if they do not violate resource requests. The defini-
tion of what a balanced and optimal cluster is depends
on the strategy used. An example of RemoveDuplicates
strategy is shown in Figure 1.

For the benchmarks in this report, two strategies were
used, lowNodeUtilization and highNodeUtilization. Both
strategies come standard with the scheduler and are the
only strategies which our benchmark can support.

2.2.1 Low Node Utilization

This strategy finds nodes that are underutilized and tries
to schedule pods onto them. The goal of this strategy
is to maintain a uniform utilization across all nodes in
the cluster. It first finds nodes that are overutilized and
evicts pods from them, hoping that these evicted pods
would get scheduled onto underutilized nodes by the De-
fault scheduler. There are two configurable parameters
in this strategy; they are called thresholds and target-
Thresholds.

If a node’s usage is below the set threshold, for all (CPU,
memory, number of pods, etc.), the node is considered
underutilized. The requested resource requirements of a
pod, which are defined in its manifest file, are considered
to calculate the resource utilization of a node.

targetThresholds is used to calculate potential nodes from
where pods could be evicted. If the usage of a node is
above the set targetThresholds, the node is considered
over-utilized. Any node whose resource utilization is be-
tween thresholds and targetThresholds is considered ap-
propriately utilized or balanced and is not considered for
eviction. The thresholds and targetThresholds can be
configured for CPU, memory, and the number of pods.

2.2.2 High Node Utilization

This strategy finds underused nodes and evicts pods from
these nodes. The goal of this strategy is to compactly
schedule pods onto a few nodes and prevent a sparse pod

2



Figure 2: Poseidon scheduler architecture

distribution across the cluster. It has only one config-
urable parameter, which is thresholds. The underutiliza-
tion of nodes is determined by the set thresholds, which
can be configured for CPU, memory, and the number of
pods. Resource utilization is calculated as the current re-
sources requested on the node, which are defined in each
pod’s manifest file.

2.2.3 Limitations

In real-world scenarios, workloads are often bursty, char-
acterized by sudden and unpredictable traffic spikes.
These abrupt changes are challenging to anticipate using
basic metrics and typically require advanced forecasting
techniques, such as machine learning and deep learning
models [20]. When workloads exhibit significant variabil-
ity, the Descheduler’s strategies may prove inefficient, as
their parameters are often tuned based on assumed work-
load patterns that may not align with such erratic behav-
ior. This could lead to a decrease in energy efficiency.

2.3 Poseidon Scheduler

The limitations of a scheduler that uses preset schedul-
ing parameters, as described in 2.2.3 hint at a need for
an adaptive scheduler that optimizes its actions based on
real-time data. The Poseidon scheduler [6] solves the is-
sue of optimizing bursty workloads by using a minimum-
cost flow network. As shown in Figure 2, the Poseidon
Kubernetes scheduler comprises two components. The
Poseidon component is responsible for managing the pods
in the cluster, and the Firmament component implements
a flow network.

The Poseidon component also keeps track of real-time
changes in the cluster and maintains a global view of the
entire cluster and updates the flow network in the Firma-
ment component. After the Firmament component opti-
mizes the flow network, the Poseidon component starts
placing or removing pods from different nodes in the clus-
ter.

2.3.1 Firmament Scheduler

The Firmament Scheduler was introduced in the paper
Firmament: Fast and centralized cluster scheduling at
scale [1]. It is a centralized scheduler that can scale to
10,000 machines at subsecond latency. The Firmament
scheduler assigns multiple jobs to the nodes using a batch
approach. Once it has a list of jobs, it maps all available

Figure 3: Firmament: Resource-aware Flow Net-
work

jobs to nodes using a flow network. Each job-to-node
assignment is listed as an edge in the flow network with
a defined cost. Using a min-cost flow network, it tries
to find the most cost-effective strategy to place the jobs
onto the cluster.

The firmament scheduler has three policies: load-
spreading policy, quincy policy, and network-aware
policy, but the Poseidon scheduler has extended the
network-aware policy to handle CPU and memory. For
the benchmarks in this report, a multidimensional CPU-
memory cost model was used.

2.3.2 Firmament Resource-Aware policy

Overcommitting a node’s network bandwidth, CPU, or
memory of a node leads to slower response times. Figure
3 shows a diagram of how a flow network is set up for
Poseidon’s resource-aware policy for the CPU, network,
or memory. Every task or work, represented by Tij , is
directed to an RA or resource aggregator. The RAs have
edges connected to nodes that are represented by Mij .
For every job assigned to the machine, an edge is drawn
from the RA to the node. The weight of the edge is the
amount of resource used by the job. This weight is up-
dated dynamically as the use of resources changes over
time. The jobs are only assigned by the RA when there
are enough resources on the node. Unscheduled jobs are
stored in vertices tagged with Ui.

III. Benchmark Design

Many publications on Kubernetes scheduling mecha-
nisms [10, 9] use the Sock Shop benchmark [7], but it
only includes ten microservices and does not reflect real-
world workloads [21]. While other benchmark suites that
have been released by academia and industry [12, 13, 14]
exist, they focus on simpler single-tier or small-scale ap-
plications, which differ significantly from modern cloud
deployments [2]. To effectively evaluate the energy con-
sumption of Kubernetes schedulers and to gain con-
crete actionable insights, a benchmark with complex
and tightly coupled microservice dependencies is needed.
DeathStarBench [2] which is being developed by the SAIL
group at Cornell University, addresses this by providing
diverse, end-to-end systems like Hotel Reservation, Me-
dia Microservices, and Social Network, which reflect the
complexity of real-world cloud environments. The sub-

3



Figure 4: Dependency graph: Media Service

Figure 5: Dependency graph: Social Network
Service

sections below(3.1-3.3) describe how each of these end-
to-end systems differ from each other.

3.1 Microservice count

The various microservices Hotel Reservation includes are
user management, user profile management, a recommen-
dation system, ratings, reviews, hotel search, and a front-
end service. Most of these services have their own respec-
tive MongoDB and memcached services to handle their
storage and caching requirements. It consists of 12 mi-
croservices.

As shown in Figure 4, Media Service consists of microser-
vices that allow users to search and browse information
about movies, including their plot, photos, videos, cast,
and review information. Users can also insert new re-
views for a specific movie. It also consists of an authenti-
cation module. It also includes a recommendation system
and auxiliary services that are not shown in the figure.
As of now, the benchmark hasn’t yet implemented the
streaming service. It consists of about 38 unique mi-
croservices.

As shown in Figure 5, Social Network consists of mi-
croservices that for allow composing and displaying
posts, for advertisements, search engines, etc. Users can
create posts embedded with text, media, and links. The
system also includes machine learning plugins, such as
ads and recommendation engines, a search service us-
ing Xapian, and microservices to record and display user
statistics. It consists of 36 unique microservices.

3.2 Communication

Hotel Reservation consists mainly of synchronous com-
munication for tasks like booking management and pay-

Table 1: Hotel Reservation - Route Request
Probability

Service Name Request probability

search 0.6
recommend 0.39

user 0.005
reserve 0.005

ment processing, with some asynchronous messaging for
background tasks.

Social Network consists of a mix of synchronous and
asynchronous communication, with real-time messaging,
notifications, and background processes handling inter-
actions, updates, and notifications.

Media Service consists of only synchronous calls that are
made for user interactions such as media browsing, read-
ing reviews, and purchasing.

3.3 Throughput and Traffic

Hotel Reservation generates relatively low data through-
put, as user interactions are mostly transactional and
involve fewer data points per user session.

Social Network generates high data throughput due to
dynamic user interactions and content updates, with fre-
quent changes in user-generated data (posts, comments,
likes, etc.).

Media Service generates a medium-level of data through-
put as it consists mainly of reading movie reviews, rec-
ommendations, and ads.

3.4 Workload

Each end-to-end service in the benchmark generates its
workload in a fairly similar fashion. Every available
HTTP route in an end-to-end service is given a prob-
ability of being requested. For each benchmark, the set
probability for each HTTP route mimics real-world API
calls [2]. The workload generator then allows us to set
the number of requests per second. One example of the
set probabilities for service HTTP routes for the hotel
reservation benchmark is given in table 1.

IV. Experimental Setup

The experiments were run on a Kubernetes cluster of
3 virtual machines that was created using the contin-
uum framework [11]. The host system is running Ubuntu
22.04.5 LTS, powered by an Intel Xeon Silver 4210R pro-
cessor, with 20 cores running at 3.2 GHz and 256 GB
of memory. Each VM is running Ubuntu 20.04, with 4
cores and 16 GB of memory. The VM which is named
‘kube-controller‘ in our graphs is the control plane node
and only houses all the components necessary for cluster
orchestration and management.

The energy data from the VMs was collected using
Scaphandre [16]. The key metrics collected were:

• Energy consumption for each node in microwatts.

• CPU Usage upto pod level.

• Memory Usage upto pod level.

• Total requests completed in 20 minutes.

4



(a) Default scheduler (b) Descheduler

Figure 6: Energy Consumption (Hotel Reserva-
tion Benchmark): x-axis represents time(s), y-
axis represents energy consumption in microwatts
(normalized) at time t.

(a) Hotel Reservation (b) Media Microservices

Figure 7: Energy Consumption (Poseidon Sched-
uler): x-axis represents time(s), y-axis represents
energy consumption in microwatts (normalized)
at time t.

Each workload was run for a duration of 20 minutes and
executed three times. The requests per second were set
at 100, 500, and 1000. The number of threads used to
create these requests in the host system was set to 50.
The HTTP requests in each workload were directed to
the kube-controller VM where, for each benchmark, the
Nginx service or the front-end service was exposed using
NodePort. For each benchmark, for every service deploy-
ment, the number of replicas was set to one. To check
whether service level objectives could be integrated into
our selected schedulers, workloads were run when the
VM’s vcpu quota was set at 50%, 80% and 90% using
virsh.

To replicate the experiments described in this paper, we
have made our implementation and data publicly avail-
able on GitHub [15]. The repository 1 contains the source
code, configuration files, and detailed instructions for re-
producing the results.

V. Evaluation2

Observation 1: Performance and energy consumption
of the Default scheduler and Descheduler are identical.

This is caused by the technique Descheduler uses to re-
move the pods. As mentioned above, the Descheduler
uses the resource requests defined in the manifest file to
schedule pods. Since the defined limits do not exceed the
thresholds defined for the lowNodeUtilization strategy,
scheduling does not occur during the entire workload. In
addition, Descheduler uses the default scheduler for the
initial placement of the pod, which is why its energy con-

Table 2: Total requests completed (20mins) and
tail latency (99%) for different schedulers and
benchmarks

Scheduler Benchmark Requests Latency (ms)

Default Hotel 697134 8.3
Default Media 458754 3.16
Default Social 71517 17.53

Poseidon Hotel 740117 7.62
Poseidon Media 521431 11.25
Poseidon Social 71108 17.81
Poseidon Media 80% 421964 1.82

Descheduler low Hotel 689512 8.48
Descheduler high Hotel 691177 8.41

(a) Poseidon 80% (b) Default Scheduler

Figure 8: Energy Consumption (Media Microser-
vices Benchmark): x-axis represents time(s), y-
axis represents energy consumption in microwatts
(normalized) at time t.

sumption metrics are identical. For the Descheduler to
function correctly, the resource requests in the pods need
to be aligned with the expected load during runtime. Fig-
ure 6 shows the similar energy consumption of the De-
fault and Descheduler schedulers, respectively. Table 2
shows the performance of both schedulers.

For lowNodeUtilization, the thresholds were set between
35 and 50. Even though the CPU usage goes beyond the
thresholds set when workloads are run with around 1000
requests per second, the Descheduler does not move the
pods around.

Similar behaviour is seen in the highNodeUtilization
strategy. This is because DeathStarBench’s resource re-
quests defined in the manifest file are above the high-node
utilization’s CPU threshold, which is set at 20. This be-
havior of the Descheduler is seen across all benchmarks.

Observation 2: The Poseidon scheduler is not energy
efficient when microservices are not heavily coupled.

As shown in Table 2, Poseidon outperforms the Default
scheduler with 6% more requests handled in the hotel
benchmark. The hotel benchmark only has about 12
unique microservices and consists of simple user inter-
actions. Here, Poseidon handles 6% more requests but
uses 13% more energy than the default scheduler. Re-
fer to Table 3 for efficiency metrics. When microservices
are not heavily coupled, the Default scheduler is able to
achieve high throughput and utilization without any op-
timizations. When Poseidon tries to further optimize for
more throughput, it leads to inefficient energy usage.

1github link: https://github.com/AlfredDaimari/kubernetes-energy
2The y-axis of the energy consumption graphs have been normalized to a common scale, allowing for direct comparison across all

energy consumption graphs.

5



Observation 3: Under low traffic (upto 500 requests
per second), energy consumption and performance is
fairly similar across all schedulers.

Up to 500 requests per second for each benchmark,
energy consumption is fairly identical, and there does
not exist a substantial difference in energy consumption
among schedulers. When CPU and RAM resources are
not heavily utilized, Poseidon maintains a balanced dis-
tribution of pods (similar to the Default scheduler) and
does not move pods around because worker nodes are
still underutilized.

Observation 4: Poseidon is best suited for services
number of unique microservices is large and just a few
services receive bulk of the traffic.

Poseidon outperforms the Default scheduler and is more
energy efficient in cases where the number of unique mi-
croservices is fairly large like the Media benchmark which
has 38 microservices. Poseidon is able to move related
pods to the same node, maximizing CPU utilization,
leading to better throughput and energy efficiency. The
Poseidon scheduler handles 13% more requests but uses
only 2% more energy. Refer to Figures 7(b) and 8(b) for
the respective energy consumption of the Poseidon and
the default schedulers for the media microservices bench-
mark. As shown in Table 3, Poseidon is 11% more energy
efficient than the Default scheduler.

Observation 5: When requests transition from multi-
ple microservices to a cache, Poseidon consumes similar
energy to the Default scheduler, as the dependency on
managing distributed microservices diminishes.

As shown in Table 2, the performance of Poseidon and
the Default scheduler is comparable for the Social Net-
work benchmark, despite it comprising 36 unique mi-
croservices. This similarity arises because, after a few
minutes of runtime, all traffic is directed to the Redis
cache service.

Observation 6: Poseidon scheduler cannot schedule
all pods consistently.

In the hotel reservation benchmark, it was not able to
schedule 1-3 pods in some runs. Poseidon was con-
stantly marking these pods as unscheduled. The firma-
ment scheduler constantly put these pods in its U ver-
tices of its min-cost max-flow graph. These remaining
unscheduled pods had to be scheduled using the Default
scheduler.

Observation 7: Service Level Objectives can best be
integrated with the Poseidon scheduler for those bench-
marks where there are numerous microservices but only
a few receive most of the traffic.

While the Default scheduler and Descheduler cannot
schedule around deliberate throttling down of the CPU’s
frequency or CPU governor getting changed, the Posei-
don scheduler can. Figure 8(a) shows how Poseidon can
work around deliberate throttling down of a VM to just
80% CPU capacity and kube-controller to 50% CPU ca-
pacity. Compared to the Default scheduler, the throttled

Table 3: Default and Poseidon Scheduler Effi-
ciency Table 3

Benchmark Scheduler Efficiency

Hotel Default 477.65
Hotel Poseidon 446.33

Media Default 161.68
Media Poseidon 180.11

Media 80% Poseidon 183.81

Poseidon cluster handles 8% fewer HTTP requests, but
uses around 23% less energy, which is substantial. As
shown in Table 3, the throttled down Poseidon sched-
uler is the most energy efficient. It is 13% more energy
efficient than the Default Scheduler.

VI. Conclusion

This study highlights the varying effectiveness of Ku-
bernetes schedulers—Default, Descheduler, and Posei-
don—under different workload characteristics. Dynamic
schedulers like Poseidon demonstrate significant energy
efficiency improvements when deployed in environments
which are tightly coupled and consist of a large number of
unique microservices, especially when traffic is unevenly
distributed across services. However, in decoupled sys-
tems or scenarios where caching reduces interdependen-
cies, like the Social Network benchmark, the benefits of
such schedulers are limited. Notably, using Service Level
Objectives (SLOs) enhances the optimization potential
for schedulers; the Poseidon scheduler ended achieving
up to 23% savings and 13% greater energy efficiency
while keeping similar performance to the Default sched-
uler. These insights underline the importance of select-
ing schedulers based on workload properties to maximize
energy savings and operational efficiency in Kubernetes-
managed systems.

References

[1] I. Gog (2016). “Firmament: fast, centralized cluster
scheduling at scale”, M. Schwarzkopf, A. Gleave, R.
Watson, S. Hand, Usenix 2016.

[2] Y. Gan (2019). “An Open-Source Benchmark Suite
for Microservices & Their Hardware-Software Im-
plications for Cloud & Edge Systems”, Y. Zhang, D.
Cheng, Cornell 2019.

[3] M. Savasci (2024).“SLO-Power: SLO and Power-
aware Elastic Scaling for Web Services”. UMass
2024.

[4] I. Ahmad (2024). “Container scheduling techniques:
A Survey and assessment”, A. AlMutawa, L. Al-
salman, Science Direct 2020.

[5] Kubernetes Sigs (2020). “Descheduler”.

[6] Kubernetes Sigs (2020). “Poseidon-Firmament”.

[7] P. Bastide (2020). “Sock Shop”, C. Bade, V. Adhir-
wadkar.

[8] Yi Sun (2023). “A Review of Kubernetes Scheduling
and Load Balancing Methods”, H. Xiang, Q. Ye, J.

3Efficiency formula = Total Requests Completed/Total Energy Consumed (watt)

6

https://www.usenix.org/system/files/conference/osdi16/osdi16-gog.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gog.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gog.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://ieeexplore.ieee.org/document/10701414
https://ieeexplore.ieee.org/document/10701414
https://ieeexplore.ieee.org/document/10701414
https://pdf.sciencedirectassets.com/280416/1-s2.0-S1319157822X00086/1-s2.0-S1319157821000562/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCICqLAVwbLRop0q%2FFSTC%2Bq2i%2FBgxmK3CPvXwd8qLp%2FTuTAiEA8sKwCNKTKgiId6DB8Veoz%2FzIWa%2BY6fThsBjA4D6b2wwqswUIfxAFGgwwNTkwMDM1NDY4NjUiDMtZcAHS8Prtu3ud0yqQBfE6sUBlufhTvwyvqf7Ira5d%2BWhS438oPFk%2Bh8q%2FLGq6zvHosFXyiaJpJ5eN8vJHoFRUCTK5iNF%2BeJZeVGActz0DE7SMQw%2BmTIYpFwvBit2UV4dNPT8%2BO1OaRYfdzdH1TqWt12xPG726UklncGm8m%2BGiXAfeVOz3jzKjwwPpPSnVubUlWlQY0HdHcDof2PqXrUBdGYZ2fiPxv6vMTVIokxEF4iFz91TyiB1UbcKpicxUd%2FbUFzETzF3JZfyr6qXb4P3Y0m%2BDmfJQhs8vbS4ZJD7HHvHn0VXlp%2BVuWO1XIJ%2By19wQDbqRb1X%2FksYjIqddWXCv1Sgo39mhsdgxuqqSDht3DxHe8DTRnhjjFHepmpx2Y%2B8Gk3Ya6OjMM6I5D6hY4FygMGBEYZNglr%2BHyueQCjrhqogm%2BShLo8HxVM%2FhWtnQndBzRvE5RtCl%2FWDySDJZZNbfrUpmeXatOOO5zcpoc0%2BAfdJccfNUMF1Bxk5vOgfqhQM1J8p7v7foZHzBlBGnAXV8e29RcY62ncJfmNlWUEK6crynNhO32CvirzGyVnDUnSMA3yQ8EazDQqDg2XjFUNiis4PmLHA6r46tfsuY35yZ%2B1Ce8Cm%2BUMMBQW66W9T1XmZvx3usP%2BHPb7KwruMCtZCja0BktyrIdMH7ojBIFaQ8kjZhfUXI5AgG5%2Bycbed3o1SIe1v2135zbiV8ZWqjcPlhkO3v%2FBPnxOCdMxUz64UAMUVzZsHoKM7IOrnpzi4w4%2FrdI%2FDjaqj%2F3r7b8QDh9zmOA2%2B4X27ggEDnul3Lldi7qv5IRaGOwPuJKgGLK3OZ8QVd7eicHzqSZkdvbr70k5AJ38ZIgA3BTK%2FhUIbGCWN62bKLEVJ%2FKoj2Xpev%2BYNiMLuD9LkGOrEBLzAxcJYwcAmOT8haWCRGeJTddLNQxDHaBbuTdR1dxY5ADqt9uxUUqRTExj5CHlC9AxO4BepyugzO2xon3grh9Uf4ASQnBKNRk8tOKo20qVOTZTQ1IR3YURFqZIUOfVgnjRppobBffkQdvoURBJwP0EG5PQ4ClFhzYhdBx9xC6V%2FTT5BG%2FxZb0Jx1JJ5MhzVp0%2ForZ7ZkgNfV6CycHw1SUOUn8r0zaKthWif0ck1MWLQq&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241119T230930Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY5NFSE7AJ%2F20241119%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=28221452cdd760a4cb6704bd775e7f6f4788e8f511aa3aaa0e62b2b12529c37b&hash=00efb2b9f3e398eef96dea37a38c211319c182398d2e44bb608f3812c9185c2d&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1319157821000562&tid=spdf-8c03bc54-0bcd-48a5-aab8-18107463724b&sid=512063206fa6974a8b99f3b664369bee5ebcgxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=08085c03565504055b07&rr=8e53de4aff721afa&cc=nl
https://pdf.sciencedirectassets.com/280416/1-s2.0-S1319157822X00086/1-s2.0-S1319157821000562/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCICqLAVwbLRop0q%2FFSTC%2Bq2i%2FBgxmK3CPvXwd8qLp%2FTuTAiEA8sKwCNKTKgiId6DB8Veoz%2FzIWa%2BY6fThsBjA4D6b2wwqswUIfxAFGgwwNTkwMDM1NDY4NjUiDMtZcAHS8Prtu3ud0yqQBfE6sUBlufhTvwyvqf7Ira5d%2BWhS438oPFk%2Bh8q%2FLGq6zvHosFXyiaJpJ5eN8vJHoFRUCTK5iNF%2BeJZeVGActz0DE7SMQw%2BmTIYpFwvBit2UV4dNPT8%2BO1OaRYfdzdH1TqWt12xPG726UklncGm8m%2BGiXAfeVOz3jzKjwwPpPSnVubUlWlQY0HdHcDof2PqXrUBdGYZ2fiPxv6vMTVIokxEF4iFz91TyiB1UbcKpicxUd%2FbUFzETzF3JZfyr6qXb4P3Y0m%2BDmfJQhs8vbS4ZJD7HHvHn0VXlp%2BVuWO1XIJ%2By19wQDbqRb1X%2FksYjIqddWXCv1Sgo39mhsdgxuqqSDht3DxHe8DTRnhjjFHepmpx2Y%2B8Gk3Ya6OjMM6I5D6hY4FygMGBEYZNglr%2BHyueQCjrhqogm%2BShLo8HxVM%2FhWtnQndBzRvE5RtCl%2FWDySDJZZNbfrUpmeXatOOO5zcpoc0%2BAfdJccfNUMF1Bxk5vOgfqhQM1J8p7v7foZHzBlBGnAXV8e29RcY62ncJfmNlWUEK6crynNhO32CvirzGyVnDUnSMA3yQ8EazDQqDg2XjFUNiis4PmLHA6r46tfsuY35yZ%2B1Ce8Cm%2BUMMBQW66W9T1XmZvx3usP%2BHPb7KwruMCtZCja0BktyrIdMH7ojBIFaQ8kjZhfUXI5AgG5%2Bycbed3o1SIe1v2135zbiV8ZWqjcPlhkO3v%2FBPnxOCdMxUz64UAMUVzZsHoKM7IOrnpzi4w4%2FrdI%2FDjaqj%2F3r7b8QDh9zmOA2%2B4X27ggEDnul3Lldi7qv5IRaGOwPuJKgGLK3OZ8QVd7eicHzqSZkdvbr70k5AJ38ZIgA3BTK%2FhUIbGCWN62bKLEVJ%2FKoj2Xpev%2BYNiMLuD9LkGOrEBLzAxcJYwcAmOT8haWCRGeJTddLNQxDHaBbuTdR1dxY5ADqt9uxUUqRTExj5CHlC9AxO4BepyugzO2xon3grh9Uf4ASQnBKNRk8tOKo20qVOTZTQ1IR3YURFqZIUOfVgnjRppobBffkQdvoURBJwP0EG5PQ4ClFhzYhdBx9xC6V%2FTT5BG%2FxZb0Jx1JJ5MhzVp0%2ForZ7ZkgNfV6CycHw1SUOUn8r0zaKthWif0ck1MWLQq&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241119T230930Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY5NFSE7AJ%2F20241119%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=28221452cdd760a4cb6704bd775e7f6f4788e8f511aa3aaa0e62b2b12529c37b&hash=00efb2b9f3e398eef96dea37a38c211319c182398d2e44bb608f3812c9185c2d&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1319157821000562&tid=spdf-8c03bc54-0bcd-48a5-aab8-18107463724b&sid=512063206fa6974a8b99f3b664369bee5ebcgxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=08085c03565504055b07&rr=8e53de4aff721afa&cc=nl
https://pdf.sciencedirectassets.com/280416/1-s2.0-S1319157822X00086/1-s2.0-S1319157821000562/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEOb%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCICqLAVwbLRop0q%2FFSTC%2Bq2i%2FBgxmK3CPvXwd8qLp%2FTuTAiEA8sKwCNKTKgiId6DB8Veoz%2FzIWa%2BY6fThsBjA4D6b2wwqswUIfxAFGgwwNTkwMDM1NDY4NjUiDMtZcAHS8Prtu3ud0yqQBfE6sUBlufhTvwyvqf7Ira5d%2BWhS438oPFk%2Bh8q%2FLGq6zvHosFXyiaJpJ5eN8vJHoFRUCTK5iNF%2BeJZeVGActz0DE7SMQw%2BmTIYpFwvBit2UV4dNPT8%2BO1OaRYfdzdH1TqWt12xPG726UklncGm8m%2BGiXAfeVOz3jzKjwwPpPSnVubUlWlQY0HdHcDof2PqXrUBdGYZ2fiPxv6vMTVIokxEF4iFz91TyiB1UbcKpicxUd%2FbUFzETzF3JZfyr6qXb4P3Y0m%2BDmfJQhs8vbS4ZJD7HHvHn0VXlp%2BVuWO1XIJ%2By19wQDbqRb1X%2FksYjIqddWXCv1Sgo39mhsdgxuqqSDht3DxHe8DTRnhjjFHepmpx2Y%2B8Gk3Ya6OjMM6I5D6hY4FygMGBEYZNglr%2BHyueQCjrhqogm%2BShLo8HxVM%2FhWtnQndBzRvE5RtCl%2FWDySDJZZNbfrUpmeXatOOO5zcpoc0%2BAfdJccfNUMF1Bxk5vOgfqhQM1J8p7v7foZHzBlBGnAXV8e29RcY62ncJfmNlWUEK6crynNhO32CvirzGyVnDUnSMA3yQ8EazDQqDg2XjFUNiis4PmLHA6r46tfsuY35yZ%2B1Ce8Cm%2BUMMBQW66W9T1XmZvx3usP%2BHPb7KwruMCtZCja0BktyrIdMH7ojBIFaQ8kjZhfUXI5AgG5%2Bycbed3o1SIe1v2135zbiV8ZWqjcPlhkO3v%2FBPnxOCdMxUz64UAMUVzZsHoKM7IOrnpzi4w4%2FrdI%2FDjaqj%2F3r7b8QDh9zmOA2%2B4X27ggEDnul3Lldi7qv5IRaGOwPuJKgGLK3OZ8QVd7eicHzqSZkdvbr70k5AJ38ZIgA3BTK%2FhUIbGCWN62bKLEVJ%2FKoj2Xpev%2BYNiMLuD9LkGOrEBLzAxcJYwcAmOT8haWCRGeJTddLNQxDHaBbuTdR1dxY5ADqt9uxUUqRTExj5CHlC9AxO4BepyugzO2xon3grh9Uf4ASQnBKNRk8tOKo20qVOTZTQ1IR3YURFqZIUOfVgnjRppobBffkQdvoURBJwP0EG5PQ4ClFhzYhdBx9xC6V%2FTT5BG%2FxZb0Jx1JJ5MhzVp0%2ForZ7ZkgNfV6CycHw1SUOUn8r0zaKthWif0ck1MWLQq&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20241119T230930Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTY5NFSE7AJ%2F20241119%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=28221452cdd760a4cb6704bd775e7f6f4788e8f511aa3aaa0e62b2b12529c37b&hash=00efb2b9f3e398eef96dea37a38c211319c182398d2e44bb608f3812c9185c2d&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S1319157821000562&tid=spdf-8c03bc54-0bcd-48a5-aab8-18107463724b&sid=512063206fa6974a8b99f3b664369bee5ebcgxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=08085c03565504055b07&rr=8e53de4aff721afa&cc=nl
https://github.com/kubernetes-sigs/descheduler
https://github.com/kubernetes-retired/poseidon
https://github.com/ocp-power-demos/sock-shop-demo
https://github.com/ocp-power-demos/sock-shop-demo
https://ieeexplore.ieee.org/document/10235497
https://ieeexplore.ieee.org/document/10235497
https://ieeexplore.ieee.org/document/10235497
https://ieeexplore.ieee.org/document/10235497


Yang, M. Xian, H. Wang, IEEE 2023.

[9] Q. Chen (2024).“Optimal Resource Allocation Us-
ing Genetic Algorithm in Container-Based Hetero-
geneous Cloud”, C. Wen, IEEE 2024.

[10] C. Guerrero (2024). “Genetic algorithm for multi-
objective optimization of container allocation in
cloud architectures”, I. Lera, C. Juiz, arXiv 2024.

[11] M. Jansen (2023), “Continuum: Automate Infras-
tructure Deployment and Benchmarking in the Com-
pute Continuum”, L. Wagner, A. Trivedi, A. Iosup,
ICPE 2023.

[12] M. Ferdman (2012). “Clearing the Clouds: A Study
of Emerging Scale-out Workloads on Modern hard-
ware. ” A. Adileh, O. Kocberber, ASPLOS 2012.

[13] J. Hauswald (2015). “Sirius: An Open End-to-End
Voice and Vision Personal Assistant and Its Impli-
cations for Future Warehouse Scale Computers.”, M.
Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khu-
rana, R.G. Dreslinski, T. Mudge, V. Petrucci, L.
Tang, J. Mars, ASPLOS 2015.

[14] H. Kasture (2016). “TailBench: A Benchmark Suite
and Evaluation Methodology for Latency-Critical
Applications.”, D. Sanchez, IISWC 2016.

[15] A. Daimari (2024), “Kubernetes Energy”

[16] Hubblo (2022). “Scaphandre: Energy consumption
metrology agent”

[17] A. Uchechukwu (2014). “Energy Consumption in
Cloud Computing Data Centers”, K. Li, Y. Shen,
IJ-CLOSER 2014.

[18] I. Rocha (2019). “HEATS: Heterogeneity- and
Energy-Aware Task-based Scheduling”, C. Göttel, P.
Felber, M. Pasin, R. Rouvoy, V. Schiavoni.

[19] K. Hussain (2018). “Metaheuristic research: a com-
prehensive survey”, M. Salleh, S. Cheng, Y. Shi,
Springer 2018.

[20] A. Rossi (2023). “Uncertainty-Aware Workload Pre-
diction in Cloud Computing, A. Visentin, S. Prest-
wich, K. N. Brown, arXiv 2023.

[21] M. Haytham (2021). “End-to-End Latency Predic-
tion of Microservices Workflow on Kubernetes: A
Comparative Evaluation of Machine Learning Mod-
els and Resource Metrics ”, O. El-Gayar, Research
& Publications 2021.

7

https://ieeexplore.ieee.org/document/10235497
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10385169
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10385169
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10385169
https://arxiv.org/pdf/2401.12698
https://arxiv.org/pdf/2401.12698
https://arxiv.org/pdf/2401.12698
https://arxiv.org/pdf/2401.12698
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2694344.2694347
https://github.com/AlfredDaimari/kubernetes-energy
https://github.com/hubblo-org/scaphandre
https://github.com/hubblo-org/scaphandre
https://www.researchgate.net/profile/Uchechukwu-Awada/publication/263580831_Energy_Consumption_in_Cloud_Computing_Data_Centers/links/00b7d53b561293aa31000000/Energy-Consumption-in-Cloud-Computing-Data-Centers.pdf?origin=journalDetail&_tp=eyJwYWdlIjoiam91cm5hbERldGFpbCJ9&__cf_chl_tk=jGSYKOlga9wbljW8xrTXT.eKS2it5KgDdXaTdZHR1Zw-1736714672-1.0.1.1-23Qd4ldxFY8Eb_Fo5LTTp8dRbi1E4FUVHoagPx29zIA
https://www.researchgate.net/profile/Uchechukwu-Awada/publication/263580831_Energy_Consumption_in_Cloud_Computing_Data_Centers/links/00b7d53b561293aa31000000/Energy-Consumption-in-Cloud-Computing-Data-Centers.pdf?origin=journalDetail&_tp=eyJwYWdlIjoiam91cm5hbERldGFpbCJ9&__cf_chl_tk=jGSYKOlga9wbljW8xrTXT.eKS2it5KgDdXaTdZHR1Zw-1736714672-1.0.1.1-23Qd4ldxFY8Eb_Fo5LTTp8dRbi1E4FUVHoagPx29zIA
https://www.researchgate.net/profile/Uchechukwu-Awada/publication/263580831_Energy_Consumption_in_Cloud_Computing_Data_Centers/links/00b7d53b561293aa31000000/Energy-Consumption-in-Cloud-Computing-Data-Centers.pdf?origin=journalDetail&_tp=eyJwYWdlIjoiam91cm5hbERldGFpbCJ9&__cf_chl_tk=jGSYKOlga9wbljW8xrTXT.eKS2it5KgDdXaTdZHR1Zw-1736714672-1.0.1.1-23Qd4ldxFY8Eb_Fo5LTTp8dRbi1E4FUVHoagPx29zIA
https://arxiv.org/abs/1906.11321?
https://arxiv.org/abs/1906.11321?
https://arxiv.org/abs/1906.11321?
https://link.springer.com/article/10.1007/s10462-017-9605-z
https://link.springer.com/article/10.1007/s10462-017-9605-z
https://link.springer.com/article/10.1007/s10462-017-9605-z
https://www.researchgate.net/publication/369540648_Uncertainty-Aware_Workload_Prediction_in_Cloud_Computing?
https://www.researchgate.net/publication/369540648_Uncertainty-Aware_Workload_Prediction_in_Cloud_Computing?
https://www.researchgate.net/publication/369540648_Uncertainty-Aware_Workload_Prediction_in_Cloud_Computing?
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1296&context=bispapers
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1296&context=bispapers
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1296&context=bispapers
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1296&context=bispapers
https://scholar.dsu.edu/cgi/viewcontent.cgi?article=1296&context=bispapers

	Introduction
	Kubernetes Schedulers
	Default Scheduler
	Descheduler
	Low Node Utilization
	High Node Utilization
	Limitations

	Poseidon Scheduler
	Firmament Scheduler
	Firmament Resource-Aware policy


	Benchmark Design
	Microservice count
	Communication
	Throughput and Traffic
	Workload

	Experimental Setup
	Evaluation
	Conclusion

