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Why APIls/abstractions?

Less work for the user! Better resource management
by the provider
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Runtimes Can Use Complex Resource Management APls
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Runtimes Can Use Complex Resource Management APls

Reservation-based Scheduling:
If You’re Late Don’t Blame Us!
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Research Questions

RQ1. What API features are missing from commercial open-source resource

managers? x

X

X

X

RQ2. What is the performance cost of these missing features?
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Research Questions

RQO0. What is the reference architecture for resource manager APIs?

RQ1. What API features are missing from commercial open-source resource

managers? x

X

X
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RQ2. What is the performance cost of these missing features? %ﬁ
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Resource Manager API Ref. Arch. Design Process

Systematic Literature Survey
Keywords eg.: scheduler
AND (datacenter OR API)
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Resource Manager API Reference Architecture
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Resource Manager API Reference Architecture - Provision

WHEN
/ Event /
/

WHAT Provision
lease/release

User scale
resource migrate
preempt
recover

https://atlarge-research.com/pdfs/2024-icpe-datacenter-scheduler.pdf

Action

/

Relation

/

WHERE

Scheduler
resource

12




Resource Manager API Reference Architecture - Syntax
WHEN

/
/ Evel
User Resource <type: app, id: 1, runtime: 1h>
L 1IN Scheduler Resource <type: vm, cores: 8,
Provisil cpu—-freq: 2.4 Ghz, memory: 32 Gb>

WHAT o ose/reld WHEN Event<day: 11, month: 12, year: 2023>
User scale Scheduler
resource migrate resource
preempt

recover
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Resource Manager API Reference Architecture - Syntax
WHEN

/
/ Evel
User Resource <type: app, id: 1, runtime: 1h>
L 1IN Scheduler Resource <type: vm, cores: 8,
Provisil cpu—-freq: 2.4 Ghz, memory: 32 Gb>

WHAT o ose/reld WHEN Event<day: 11, month: 12, year: 2023>
User scale Scheduler
resource migrate resource
preempt

RQO. What is the reference architecture for resource manager APIs?
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Mapping Industrial Scheduler API Actions to Ref. Arch.
Schedulers

Action Sub-Action

Sp Co

Lease / release
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Ku = Kubernetes
S| = SLURM

Sp = Spark

Co = HTCondor
Ai = Airflow

® = Full support
D = Partial support
O = No support
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APIs Missing in Industrial Schedulers
Schedulers

Action Sub-Action Ka SI Sp Co A glu:S}T_uL?lgmeteS
Lease / release ® o o o o Sp = Spark
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Preempt » € O e O
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Configure schedulei Little Support for Data Management | @ = Full support
D = Partial support

|

Access mput

Access interm. O O > O O O = No support
Manage  Accessmetadata |[O O O O O
data Replicate O O e O O

Partition O O e O O

Recover » O e e O
Communicate B ® ) b D

https..; aucn yu-1 covaruivuiinpuior cucriLpL-ualaLLL G -SUTIVULIGE U



APIs Missing in Industrial Schedulers

Action Sub-Action Schedulers Ku = Kubernetes

Ku SI Sp Co Ai g|=SLURM
Lease / release ® O & O O S,-5park
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Preempt ) 6 O O O
Recover | No Support for Migration
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APIs Missing in Industrial Schedulers

Action  Sub-Action Schedulers __ Ku = Kubernetes

Ku SI Sp Co Ai g|=SLURM
Lease / release ® O & O O S,-5park

Scale ® O » O O Co=HTCondor
Provision Migrate IO O O O O] Ai=Airflow
Preempt ) 6 O O O
Recover | No Support for Migration
Configure scheduler | @ = Full support
Access input ) D = Partial support
Access interm. © = No support
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RQ1. What API features are missing from commercial open-source resource managers
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Cost of Missing APls - Experiments

3 Experiments Using the OpenDC Simulator
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Container Migration Experiment - Setup

DC Scheduler}
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Virtual Machines - Resource Underutilization

Bob’s CPU Core Usage Jim’s CPU Core Usage
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Oversubscription

1 CPU for 3 VMs
Oversubscription ratio = 3

Time sharing
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Oversubscription - Resource Contention
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Migration
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Container Migration
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Container Migration Experiment - Setup

Cluster Setup:
1 Physical Cluster
5 Kubernetes Virtual Clusters
512 Mbps migration speed
80% average CPU utilization target
Physical cluster size calibrated for each trace

3 Traces:

Google 2011 (~25 machines)
Azure 2017 (~65 machines)
BitBrains 2015 (~100 machines)
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Container Migration - Results - Azure P90 App Runtime
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Container Migration - Results - Azure P90 App Runtime
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Key Takeaways

e Distributed Systems Runtimes can take advantage of complex

APls for resource management
e Current open-source resource managers are missing complex
resource management abstractions
o Migrations, Data Management
e Complex abstractions offer performance benefits for some
workloads, but not all

o 17% to 81% improve in 90th percentile app runtime using container migration
callbacks for Azure trace, but not the Bitbrains trace

29
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Why didn’t these APIs make it into industrial schedulers?

1. New APIs/scheduling techniques only work for specific workloads
a. Widely-deployed schedulers need generality

2. Need to implement separately for different systems and system
versions

a. Can't use Spark 3.2 scheduler with Spark 2.4
b. Cannot use a SLURM scheduler with Kubernetes

https://atlarge-research.com/pdfs/2024-icpe-datacenter-scheduler.pdf
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Future Work - Kubernetes-based Embeddable Scheduler
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Future Work - Kubernetes-based Embeddable Scheduler
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Future Work - Kubernetes-based Embeddable Scheduler
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Key Takeaways

e Distributed Systems Runtimes can take advantage of complex

APls for resource management
e Current open-source resource managers are missing complex
resource management abstractions
o Migrations, Data Management
e Complex abstractions offer performance benefits for some
workloads, but not all

o 17% to 81% improve in 90th percentile app runtime using container migration
callbacks for Azure trace, but not the Bitbrains trace
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