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Storage QoS demands are increasing

1 yottabyte
each year!

Big data, HPC

Requires QoS! Block SSDs are fast, but...




Block SSDs do not deliver QoS

Block write throughput

Block SSD 1250
(2]
@ 1000
S 750
. | - )
\ a 500
c
Host 1/0O 5 250
o
c 0
= 0 5 10 15 20

Time (minutes)

[1] IEEE CLUSTER’23, Krijn Doekemeijer; Nick Tehrany; Balakrishnan Chandrasekaran; Matias Bjgrling; Animesh Trivedi, Performance characterization of NVMe Flash

Devices with Zoned Namespaces (ZNS)

N

VU

2


https://ieeexplore.ieee.org/author/37090089981
https://ieeexplore.ieee.org/author/37090090830
https://ieeexplore.ieee.org/author/37087047439
https://ieeexplore.ieee.org/author/37089155712
https://ieeexplore.ieee.org/author/37087080930

Block SSDs do not deliver QoS

Block write throughput

Block SSD 1250
Stable 1000

performance

(MiB/s)

5, Host 1/0O

0 5 10 15 20

Time (minutes)

[1] IEEE CLUSTER’23, Krijn Doekemeijer; Nick Tehrany; Balakrishnan Chandrasekaran; Matias Bjgrling; Animesh Trivedi, Performance characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS) 2

N

VU


https://ieeexplore.ieee.org/author/37090089981
https://ieeexplore.ieee.org/author/37090090830
https://ieeexplore.ieee.org/author/37087047439
https://ieeexplore.ieee.org/author/37089155712
https://ieeexplore.ieee.org/author/37087080930

Block SSDs do not deliver QoS

Block write throughput

Block SSD — 1250
@ 1000
Interference = /59
~2 500
H
> 250
S
E 0
= 0 5 1 15 20

Time (minutes)

+
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Solution: data-placement SSDs

e Expose I/O management to host

e Example: ZNS, FDP

e Achievable stable I/O performance
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Solution: data-placement SSDs

e Expose I/O management to host
e Example: ZNS, FDP

e Achievable stable 1/O performance ZNS write throughput
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Host I/O management interferes

e \We observed all ZNS I/O management operations to interfere
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Host I/O management interferes

e \We observed all I/O management operations to interfere with 1/O
e For example on read:

ZNS Average Read Throughput
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e ZNS performance is only stable if /O management is done efficiently
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What we will discuss today

Key problem: How to deal with I/O management performance interference?
Our solutions:

S1 - Characterize: ZNS I/O management interference

S2 — Emulate: ConfZNS++

S3 — Mitigate: 2x host solutions



Background: ZNS SSDs

e /NS: Storage as a series of disjoint sequential write zones
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Background: ZNS SSDs

e /NS: Storage as a series of disjoint sequential write zones
e Limited resources: limited number of active zones

Zone 1 Zone 2 Zone 3 Zone 4
> > >
inactive active active inactive max 2 active




Background: I/O management

e How do we release a zone’s resources?

Host fill...
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Background: I/O management

e How do we release a zone’s resources?
e \What if we do not have data — I/O management operations!
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Background: I/O management

e How do we release a zone’s resources?
e \What if we need to delete — I/O management operations!

Host fill.... Finish Reset
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Background: I/O management interference
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S1 - Finish interference on I/O

Experiment: Reading from ZNS with concurrent finish operations
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Finish on read interference

No interference @ \\ith interference

— 2500 178
= 2000

5y

g 1500 6

S 1000 16 32

T 500 |12 4 8

S 0

0] 50 100 150 200 250 300 350

Throughput (MiB/s)




S1 - Finish interference on I/O

Experiment: Reading from ZNS with concurrent finish operations
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S1 - What else did we characterize?

e 8 key performance observations! (see paper)
e Finish interferes significantly on:

o Write

o Read
e Reset interferes significantly on:

o Write Finish I/O Reset /O

Interferes! Interferes!

eeeeeeeeeeeeeeeeeeeeeeeeee

DC ZN540 DC ZN540

ZONED > T ZONED >
TORAGE & Torsce €



S2 - Emulation: ConfZNS++

Problem: No emulator has function-realistic management performance

Consequence: Host software performance is not representative
Solution: Our ConfZNS++ emulator

Supported performance models

Emulator 1/0: Reset Finish Zone
Read/Write mapping

ConfZNS v — X X

ConfZNS++ v v v v

V U [1] SYSTOR’23, Inho Song, Myounghoon Oh, Bryan Suk Joon Kim, Seehwan Yoo, Jaedong Lee, and Jongmoo Choi, ConfZNS: A Novel Emulator for Exploring Design Space
V) of ZNS SSDs
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S2 - ConfZNS++: finish design




S2 - ConfZNS++: finish design

1. What request size?
2. Pause between requests?
3. Preempt on concurrent [/O?

How to fill...? .
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S2 - ConfZNS++: finish design

1. What request size?
2. Pause between requests?
3. Preempt on concurrent [/O?

O (2)
Vo > Size? I Size? }

(1 page) (1 page)
For example
e
Size?
(2 pages)
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S2 - ConfZNS++: finish interference

Experiment: Reading from ZNS with concurrent finish operations
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Experiment: Reading from ZNS with concurrent finish operations
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S2 - ConfZNS++: finish interference

Experiment: Reading from ZNS with concurrent finish operations

Finish on read interference
No interference ® 16 KiB finish ® 64 KiB finish
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S2 - ConfZNS++: finish interference

Experiment: Reading from ZNS with concurrent finish operations

Finish on read interference
No interference ® 16 KiB finish ® 64 KiB finish
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S2 - ConfZNS++: what else?

e ConfZNS++ has:
1. 3x Finish designs
2. 5x Reset designs
3. 2x Zone mapping designs

e Highly configurable to support adding new decisions

VU¥ 14



S3 - Reducing interference

e Demonstration of reducing interference:
1. Softfinish — host-managed finish
2. ZINC — management aware I/O scheduler

4
Write Read Finish Reset Write Read Finish Reset
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S3 - Softfinish background

e Finish control knobs?

Finish Host fill...
® B P
¥ No control... y Oblique...
d
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S3 - Softfinish background

e Finish control knobs?
o Explicit finish: too transparent
o Host fill: too oblique

Finish Host fill...
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S3 - Softfinish background

e Finish control knobs?
o Explicit finish: too transparent
o Host fill: too oblique
e Idea: Combine finish and host filling

Finish Host fill...
@ > + @ >
¥ No control... @ > y Oblique...
e ©, -
yOblique. .
>
VU i




S3 - Softfinish design

e Transparent host filling with control knobs

Softfinish(write granularity, pause) @

@ > > +granularity

pause

+granularity

®» © ®
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S3 - Softfinish results

Experiment: Softfinish at different granularities on read performance

Finish on read interference
finish e softfinish 16KiB e softfinish 8KiB+pause

. 2500 5
-}

< 2000

£ 1500 64

S 1000 g 632

& 500924 "

& 0

(al

O 50 100 150 200 250 300 350

Throughput (MiB/s)




S3 - Softfinish results

Experiment: Softfinish at different granularities on read performance

Finish on read interference
finish e softfinish 16KiB e softfinish 8KiB+pause
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ABSTRACT Table 1: Performance models supported in ZNS emulators;
Flash-based storage is Known to suffer from performance models with “—" are incomplete.
due to between host-issued /O

and device-side I/O management. SSDs with data placement
capabilities, such as Zoned Namespaces (ZNS) and Flexi-
ble Data Placement (FDP), expose selective device-side I/0
‘management operations to the host to provide predictable e
formance. In this paper, that these host-i:

1/O management operations lead to performance interference
with host-issued 1/O. Indeed, we find that the I/O management
operations introduced by ZNS and FDP create /O interfer-
ence, leading to significant performance losses. Despite the
performance implications, we observe that ZNS research fre-
quently uses emulators (over 20 recently published papers),
but no emulator currently has function-realistic models for /O
management. To address this gap, we identify ten ZNS 1/0
management designs, explain how they interfere with 1/0, and
introduce ConfZNS++, a function-realistic emulator with na-
tive I/O management support, providing future research with
the capability to explore these designs. Additionally, we intro-
duce two actionable host-managed solutions to reduce ZNS
management interference: ZINC, an 1/O scheduler prioritizing
1/O over I/O management, and the soft finish operation,
ahost-managed implementation of the £1ni sh operation. In
our experiments, ZINC reduces reset interference by 56.9%,
and softfinish reduces finish interference by 50.7%.
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Model FEMU NVMeVirt  ConfZNS ~ ConfZNS++
Readand x r v v
Reset x - = 7
Finish x x x v
Zone mapping x x x v
CCS CONCEPTS
; on systems — Flashmem-
ory; » Software and its engineering — Secondary storage.
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1 INTRODUCTION

ations per second. and gigabytes of bandwidth per second [53].
Hawever, defivering predictable SSD performance s challeng-
ing due o the significant required management effort for flas
based SSDs [2, 42] (e.g.. garbage collection, parallelism man-
agement, wear-leveling). This flash management is tradition-
ally hidden from the host behind the block interface, which
exposes the SSD as a read/write anywhere device. To support
this block-based interface, an SSD manages media transpar-
ently in the background but causes significant performance
interference and, as a result, performance unpredictability in
both latency and throughput [4, 15, 19, 20, 24, 33, 41].

To resolve this unpredictability. researchers have advocated
for extending the conventional block-based SSD interface to-
ward a more host-controlled interface. Examples of such inter-
faces include Software-Defined Flash (SDF), Open-Channel,
Streams, and recently introduced Zoned Namespaces (ZNS)
and Flexible Data Placement (FDP) [1, 4, 5, 29, 48]. We call
SSDs, which support such interfaces, data placement SSDs.

SYSTOR '24, September 23-24, 2024, Virtual, Israel

More details/results in the paper ...

Doekemeijer, Maisenbacher, Ren, Tehrany, Bjorling, and Trivedi
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Figure 2: Finish interference on (a) wri te; (b) read.

Setup: Our benchmarking setup is shown in Tab, 2. We de-
ploy all our benchmarking workloads on the ZN540 ZNS
SSD. To confirm the generalizability of our £inish interfer-
ence results, we repeated our £inish experiments on ZNS
SSD and made similar observations. We evaluate the in-
terference of all /O management (i.e., f inishand reset)
operations on all /O operations exposed by ZNS. ZNS ex-
poses two /O operations for writing: wr ite and append;
and one operation for reading: read.

We ) i by running
afio [25] process with two concurrent threads: a foreground
thread running /O and an interfering background thread run-
ning /0 management. Both threads are spatially separated
(disjoint zones). We measure performance as the foreground
thread’s average throughput and P95 latency.

We scale the foreground thread’s 1/O using a setup similar
1o a previous study [14]. We define scalability in the concur-
rency level (CL), which is the number of concurrently issued
operations. Write is inter-zone scalable (concurrent oper-
ations in disjoint zones), and append and read are intra-
zone scalable (concurrent operations in a single zone). With
inter-zone scalable operations we increase CL with the num-
ber of threads, each to a disjoint zone, and with intra-zone scal-
able operations we increase CL by increasing a single thread’s
queue depth o a single zone. Forwrite and append, we
use concurrency levels 1-7, and for read 1-128 in powers
of 2 (based on each operation’s saturation point).

‘We scale the background thread’s management operations
by increasing its intensity. Intensity is the maximum allowed
throughput per second and is controlled by throttling an op-
eration to a percentage of its peak performance (e.g., 50%).
Before each workload, we first measure the operation’s peak
performance to determine the intensities to evaluate. In a
workload, each £inish is additionally preceded by a single
page write as finish only affects zones with data; we
assume this write’s interference is negligible.

For reset and read we prefill their assigned zones.
We modify fio to support finish and append as work-
loads and exclusively use the io_uring passthrough mecha-
nism [26]. io_uring passthrough delivers operations directly

200 250 500
(KIOPS)

(@) On wri te with inter-zone (b) On read with intra-zone
concurrency. concurrency.

Figure 3: Reset interference on (a) write; (b) read.

{0 the NVMe device driver, bypassing the block layer, which
achieves performance close to the device hardware.
Finish interference: We now evaluate the interference
of £finish on I/O. Fig. 2 shows finish on /O interfer-
ence. The figure shows /O performance in KIOPS (x-axis,
higher is better) and P95 latency (y-axis, lower is better). The
points on the lines represent the CL, and we observe that
the throughput and latency increase monotonically with the
CL (hence, one line is annotated). Each line is presented
with a different percentage, indicating £ inish intensity. We
measure peak finish throughput as 1.1 GiB/s (~1 IOPS);
for example 25% equals approximately one operation every
four seconds. In the plot, when an I/O operation saturates
the device, a queuing effect takes place where the throughput
remains stable, but latency increases sharply. We call this
point the saturation point. For example, write’s saturation
point is at the knee of the 0% line (CL=3, 149.3 KIOPS at
25.7 ps). Note that we do not plot append interference as
it is comparable to write interference except for 50% past
CL>2; append throughput decreases past this point (we do
not know the reason for this anomaly). The similarity between
write and append is expected as both issue the same op-
erations to flash; they only differ in their implementation
firmware (e.g., acceleration).

We observe that £inish interferes significantly with all
three 1/0 operations and make four observations. First (Obs
#1), write operations (i.e., write and append) do not ex-
perience interference before their saturation point (CL=3
in Fig. 2a). Write performance at CL<3 is identical for all
finish intensities. Second (Obs #2), write interference is
significant beyond the saturation point and increases with the
concurrency level. Write interference is highest at CL=7
(marked “A” and “B™), where it achieves 150.0 KIOPS and
1019 ps in isolation and 131.1 KIOPS (12.6% lower) and
128.5 s (20.7% higher) at 50% £inish. Third (Obs #3),
we observe that finish on read interference occurs irre-
spective of the saturation point (Fig. 2b), i.e., occurs at all
concurrency levels. At CL=1, read achieves in isolation
11.3KIOPS and 95.7 s, and at 50% finish, 7.8 KIOPS
(31.4% lower) and 272.4 pis (2.8x higher). Fourth (Obs #4),
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Take-away message

1. SSD I/O management interferes with 1/O performance!
2. Data placement SSDs (ZNS, FDP...) expose management
e Host-controllable interference!
3. This Interference was not available in emulators...
e ConfZNS++ adds support to ZNS emulators
4. Two solutions to reduce interference on the host

Paper:
https://atlarge-research.com/pdfs/2024-confznsplusplus.pdf

Source code:
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https://atlarge-research.com/pdfs/2024-confznsplusplus.pdf
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Thank you for listening!

Contact information:
e Mail: k.doekemeijer@vu.nl
e GitHub: https://qithub.com/stonet-research/systor-confznsplusplus-artifact
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