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Abstract
KV-stores are extensively used databases that require per-
formance stability. Zoned Namespace (ZNS) is an emerging
interface for flash storage devices that provides such stabil-
ity. Due to their sequential write access patterns, LSM trees,
ubiquitous data structures in KV stores, present a natural
fit for the append-only ZNS interface. However, LSM-trees
achieve limited write throughput on ZNS. This limitation
is because the largest portion of LSM-tree writes are small
writes for the write-ahead log (WAL) component of LSM-
trees, and ZNS has limited performance for small write I/O.
The ZNS-specific zone append operation presents a solution,
enhancing the throughput of small sequential writes. Still,
zone appends are challenging to utilize inWALs. The storage
device is allowed to reorder the data of zone appends, which
is not supported by WAL recovery. Therefore, we need to
change the WAL design to support such reordering.
This paper introduces ZWALs, a new WAL design that

uses zone appends to increase LSM-tree write throughput.
They are resilient to reordering by adding identifiers to each
append along with a novel recovery technique. We imple-
ment ZWALs in the state-of-the-art combination of RocksDB
and ZenFS and report up to 8.56 times higher throughput
on the YCSB benchmark. We open-source all our code at
https://github.com/stonet-research/zwal.

CCS Concepts: • Information systems → Storage man-
agement; Flash memory; • Software and its engineering
→ Secondary storage.
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1 Introduction
Log-structured merge-tree (LSM-tree) based KV-stores are
extensively used databases, with workloads ranging from
graph processing to machine learning [5, 7, 12]. KV-stores
store application data as KV-pairs with the PUT operation.
The average KV-pair size issued by applications is small (e.g.,
1 KiB) [5], resulting in many small writes to the LSM-tree.
This paper focuses on optimizing LSM-tree write throughput
for small writes on ZNS, an emerging storage interface.

We visualize the LSM-tree PUT operation in Fig. 1. Large se-
quential writes achieve higher throughput than small writes,
therefore, LSM-trees buffer KV-pair updates in memory and
periodically flush data to storage. The LSM-tree first store
KV-pairs inside volatile memory to a size-bounded compo-
nent known as the memtable. When this memtable is suffi-
ciently large, the LSM-tree flushes the memtable to a tree-like
structure on storage. To ensure no data is lost on shutdown,
the LSM-tree writes PUT operations to an on-storage log
known as the write-ahead log (WAL). The WAL maintains all
KV-pair changes over time. When the KV-store restarts, the
LSM-tree recovers its state using a process known as WAL
recovery. WAL recovery reads all WAL data sequentially and
(re)applies it to the memtable. Data must be applied sequen-
tially, as only the most recent change to a KV-pair is valid.
The WAL is crucial for achieving high write throughput
because each PUT writes to the WAL.
LSM-trees are typically deployed on fast and highly par-

allel NVMe flash SSDs. Flash storage performs better with
sequential- than with random writes [17], precisely the ac-
cess pattern of LSM-trees. However, with NVMe the SSD
issues internal management operations that compete for
storage resources with LSM-trees. This competition results
in unstable throughput, which hinders achievable LSM-tree
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Figure 1. LSM-tree PUT operation with write I/O or zone
append for the WAL.

throughput [3, 34]. Therefore, researchers and industry have
proposed leveraging different interface(s) for flash SSDs [3,
4, 22]. One such interface is the recently standardized Zoned
Namespaces (ZNS) interface [3]. ZNS presents the storage as
sequential write-only regions known as zones and exposes
the management operations to applications. ZNS delivers sta-
ble throughput by exposing these operations. Consequently,
ZNS has led to several LSM-tree designs [21, 27, 31].

While ZNS achieves stable LSM-tree throughput, it leads
to significant write throughput challenges for the WAL com-
ponent of the LSM-tree. ZNS prohibits applications from issu-
ing write I/Os concurrently to the same zone. ZNS prohibits
this because (1) write I/Os need to be issued to sequential
addresses of the zone (sequential write-only zones), and (2)
SSDs are free to reorder I/O requests [30]. Consequently,
PUTs to the WAL are serialized, limiting throughput to the
WAL as only 1 PUT can be processed concurrently [28].

To address write I/O’s limited throughput, ZNS has intro-
duced an operation known as zone appends. Zone appends
allow concurrent write operations to a zone, saturating de-
vice parallelism and significantly increasing small write through-
put [2]. High concurrency makes it a good alternative to use
for WALs [2, 28, 32]. Nevertheless, we can not interchange
zone appends for write I/O’s without modifications. The
main challenge is that zone appends are issued to a zone, not
an address, and only return their address on completion. This
address can be anywhere in a zone, and consequently, the
SSD can reorder WAL data. Thus, the WAL needs to be resis-
tant to data reordering. Therefore, current WAL designs on
ZNS (such as RocksDB + ZenFS [36]) only use write I/O or
only allow scaling zone appends by increasing threads [28].
We visualize the reordering challenge as “?” in Fig. 1.

This work proposes ZWALs, a zone append-friendly WAL
for ZNS. ZWALs improve write throughput on ZNS and are
resilient against data reordering. They achieve this feat by
adding 64-bit atomically increasing sequence numbers to
each PUT request. The sequence numbers specify the absolute
ordering of data and are used to infer the order within the
WAL. On recovery, the WAL reads all of its KV-pair changes
and then sorts them back into their original order using the
sequence number. After sorting, the LSM-tree applies the
changes in sequence. Considering that LSM-tree WALs are
generally only recovered during database startup and WALs

are small (e.g., 32MiB), we consider trading WAL read for
better write throughput acceptable. To reduce the overhead
of reordering and to prevent reading the entire WAL, we
introduce the notion of WAL barriers. A ZWAL synchronizes
all zone appends at a barrier. Barriers ensure that a read to
the WAL only needs to read and sort between subsequent
barriers, increasing WAL read performance.
We implement ZWALs in ZenFS, a state-of-the-art custom

file system backend for RocksDB, and report that ZWAL leads
to significantly higher write throughput than traditional
WALs on commercially available ZNS SSDs, up to 33.02%
higher throughput on the YCSB benchmark suite. Similarly,
we repeat our experiments on the ConfZNS [33] emulator
and report that with high internal parallelism, ZWAL can
deliver up to 8.56 times higher write throughput on YCSB.
In this paper, we make the following key contributions:

1. We characterize the performance of the zone append
operation and explain how we can leverage them for
WALs.

2. We design and implement ZWALs—a new WAL design
for ZNS zone appends.

3. We evaluate ZWALs on both the micro- and macrolevel.
4. We open-source the code of our ZWAL implementation

at https://github.com/stonet-research/zwal.

2 Motivation: Why use zone appends?
Below, we demonstrate a performance characterization of
zone appends. The design of ZWAL relies on high write con-
currency and throughput for small writes. In this section, we
show how zone appends lead to higher write concurrency
and throughput than write I/O to motivate their use-case
in WALs. In our benchmarking, we use fio [19] (v3.32) as a
workload generator. We use the io_uring storage interface
with NVMe passthrough [20] since the Linux block layer
does not support zone appends and follow recommended
io_uring performance optimizations [10]. We modify fio to
support zone appends for passthrough (∼10 LOC). We show
the rest of our benchmarking setup in Tab. 1.

We evaluate the concurrency of zone appends by increas-
ing the queue depth (QD)—the maximum number of con-
current zone appends—and measure throughput in I/O op-
erations per second (IOPS). Since ZNS prohibits multiple
write I/Os to the same zone, we only evaluate write I/O at
QD 1. We issue all requests at a granularity of 8 KiB, which
we evaluate as the optimal request size (i.e., lowest request
latencies). Fig. 2a shows the throughput of zone appends in
IOPS (y-axis, higher is better) with increasing QD (x-axis).
Zone appends scale up to a QD of 4, beyond which the de-
vice’s peak bandwidth is reached according to the device’s
specification sheet. We observe that write throughput is up
to 2.41 times higher for zone appends (at high QD) than for
write I/Os. At QD 1, write I/O leads to higher through-
put (10.01%). We also investigate the impact of request size

https://github.com/stonet-research/zwal
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Figure 2. ZNS write throughput of zone appends and writes.

on the difference between zone append and write through-
put. While writes to the WAL are small, state-of-the-art file
systems such as ZenFS buffer writes, resulting in large peri-
odic writes (e.g., 1MiB). The results (not shown) reveal that
for larger requests (32 KiB and beyond), throughput is similar
for both write and zone appends at any QD. In short, zone
appends have higher write concurrency and throughput than
write I/Os for small sequential writes (confirming [11]).

We design our work for SSDs with high parallelism within
zones (i.e., intra-zone parallelism). The commercial SSD we
evaluated scales up to QD 4, we also explore the configura-
tion space for ZNS with higher intra-zone parallelism using
the emulator ConfZNS [33]. We tailor the emulated SSD for
high intra-zone parallelism (exact configuration in the source
code). In all further experiments (unless explicitly stated), we
utilize this emulated SSD. Fig. 2b shows the throughput of
8 KiB zone appends for this SSD. On this SSD, zone appends
scale up to QD 32. For larger request sizes, we observe similar
performance for write I/Os and zone appends.

In conclusion, zone appends lead to higher write through-
put and concurrency than write I/Os for small request sizes
with high QD. Therefore, we recommend zone appends for
applications that issue frequent small writes, e.g., WALs.

3 Design and Implementation of ZWAL
In this section, we detail the design and implementation of
ZWAL. First, we explain ZWAL’s design goals and how their
design differs from a traditional WAL. Second, we explain
how we implement ZWAL within the ZenFS file system.

3.1 ZWAL Design
We design ZWALs, a new type of WAL for ZNS SSDs. The
design is not limited to LSM-trees and is applicable to other
databases, such as SQLite [15]. Further on, it can be used
for any storage medium/interface that reorders write re-
quests. Nevertheless, we limit our discussion to LSM-trees
on ZNS and use ZenFS as a reference model, to explain how
we change an existing WAL design for ZNS (more about this
in §6). We design ZWALs around three key WAL character-
istics: (1) WALs are write-heavy and primarily issue small
writes; (2) WALs are read during database recovery only, and;

(3) WALs are typically small (i.e., 64MiB [14]). The key in-
sight is that WAL performance is dominated by small writes
to the WAL and reads only happen sporadically. Hence we
consider trading lower read performance for increased write
performance an acceptable trade-off. Our design goal is to
increase write performance and match peak zone append
performance (see §2). In a WAL, we differentiate between
four major operations: writing to the WAL, recovering all
data from the WAL, allocating a WAL and deleting the WAL.
We explain the design using Fig. 3, representing ZWAL’s de-
sign.
WAL write. On a WAL write, the data of a PUT request

is written to the end of the WAL. In ZenFS’s design this
eventually results in a write I/O to the zone’s write pointer.
If another PUT operation is issued concurrently, it has to wait
for the previous PUT to finish. To increase concurrency, ZWALs
issues zone appends to the head of a zone and do not wait for
zone appends to finish. As a result, multiple PUT operations
can be written to the WAL concurrently. Considering that
zone appends can be reordered, the WAL has no guarantee
on the order of PUT requests. A ZWAL achieves resilience
against reordering by prepending each WAL write with a
small header (128-bit) ( 1 ). We refer to the combination of
WAL data and header as a WAL entry. The header (depicted
in yellow) exists out of a 64-bit sequence number and the
WAL entry’s size. Sequence numbers increase atomically and
represent the absolute data ordering. For example, the first
write to a WAL has sequence number 0, and the tenth write
9. Each WAL maintains its own sequence number to negate
the risk of rollover (i.e., it is unlikely for a WAL to be 264
pages). The size of an entry is used to infer the location of the
subsequent appended WAL entry (if any). An alternative to
WAL headers is using the address returned by zone appends
to determine where data is stored. The disadvantage of this
solution is that the return address is ephemeral, requiring
another write to storage to store this address.

As discussed in §2, the ideal request size for appends might
differ from the page size, and KV-pairs may be significantly
smaller than the page size. Therefore, ZWAL’s design allows
for buffering (similar to ZenFS). On writing to the WAL, the
WAL first copies data to a buffer ( 2 ). Once the buffer is full
or the WAL is synced (e.g., fsync, close), we write the data
to the SSD using a zone append ( 3 ). Practitioners should
decide on the WAL buffer size; larger buffers generally lead
to higher throughput but lower persistence guarantees. Note
that regardless of the buffer size, ZNS does not allow zone
appends to cross zone boundaries. If a zone append request
crosses a boundary, the ZWAL splits the request, one to each
zone, each with its own sequence number.

WAL recovery. DuringWAL recovery, an LSM-tree scans
itsWAL sequentially and applies the read data to itsmemtable.
An LSM-tree reads a few KiB at a time and assumes the data
is in sequential order. However, a ZWAL is stored out of order
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Figure 3. Overview of a ZWAL, depicting the stages of writing
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on the SSD; hence, the ZWAL needs to restore its original or-
der. A ZWAL achieves this by creating mappings from logical
addresses (i.e., offsets) to physical addresses. On a read, it
first finds the WAL entry corresponding with a logical ad-
dress. It finds this entry using the information in the WAL
headers. Since sequence numbers are monotonically increas-
ing and data is only appended to the WAL, WAL entries
with a higher sequence number have a strictly higher logical
address. Specifically, the logical address of the WAL entry
with sequence number x is equal to the logical address of
the WAL entry x-1 plus its size. For example, a PUT with
sequence number 1 is stored at the logical address of PUT 0
plus the size of PUT 0. On a read to the WAL, the ZWAL reads
the entry with the corresponding logical address.
Retrieving WAL headers is challenging; each WAL entry

has a potentially different size, and hence—apart from the
first request—the ZWAL can not infer a priori where WAL
headers are stored. That is because, for each entry, we first
need to know its size to determine where the subsequent
entry is stored. Since we do not know where WAL headers
are stored a priori, the ZWAL needs to be scanned sequentially,
from first to last, entry by entry. A naive implementation
would (re)read the entire WAL for each read request, but this
does not scale. An alternative solution is to read the WAL
once and keep a mapping to logical addresses in memory,
but this requires memory proportional to the WAL size. For
ZWALs, we opt for an alternative: we use barriers. A ZWAL
inserts barriers at a predefined page interval—defined as
𝑃𝑏𝑎𝑟𝑟𝑖𝑒𝑟 . At a barrier the ZWAL syncs all zone appends (i.e.,
wait for all to be completed). Requests are ordered between
subsequent barriers, i.e., an append beyond a barrier has a
strictly higher physical address than an append before the
barrier. On a read, the ZWAL first finds the closest barrier, and
then it reads all data up to the subsequent barrier ( 4 ). It finds
the closest barrier with: 𝑓 𝑙𝑜𝑜𝑟 (𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑎𝑑𝑑𝑟𝑒𝑠𝑠/𝑃𝑏𝑎𝑟𝑟𝑖𝑒𝑟 ). Af-
ter reading all data between the two barriers, it creates a
mapping from sequence number to WAL entries. Then it
sorts the mapping on sequence number (can be limited to
metadata updates) ( 5 ). In this design, a ZWAL is only required
to read and maintain a mapping of up to 𝑃𝑏𝑎𝑟𝑟𝑖𝑒𝑟 pages at
a time, reducing both I/O and memory footprint to a con-
figurable upper limit. As an optimization, this mapping can
be cached, as reads are sequential and subsequent reads are

Table 1. Details of the benchmarking environment

Component Configuration details

CPU Dual socket Intel(R) Xeon(R) Silver 4210 CPU@ 2.20GHz,
2 sockets, 10 cores/socket, 20 virtual cores/socket

DRAM 256 GiB, DDR4
ZNS Western Digital Ultrastar DC ZN540 1TB, PCIe 3.0
OS Ubuntu (v22.04), kernel (v6.3.8, built from source)

likely to appear in the same barrier. In our design, we ex-
pect the recovery cost to be slightly higher than that of
traditional WALs and to scale proportionally (O(𝑛 log𝑛) for
sorting) with the barrier size.
WAL allocation. On WAL allocation, storage resources

are allocated for the WAL. On ZenFS, this involves assigning
a zone to the WAL. This zone is not exclusive to the WAL
and can be shared with other LSM-tree components. A ZWAL
has more restrictions. A ZWAL requires dedicated zones for
WALs (“W” in Fig. 3). This requirement is because of two rea-
sons. Firstly, this is to prevent other LSM-tree components
from issuing writes to the same zone as zone appends, as
this would require zone appends to wait for writes to fin-
ish (nullifying their advantages). Secondly, ZWAL’s recovery
procedure requires all WAL data to be stored contiguously.
After reading the data of a PUT, the subsequent read to the
WAL will read the data next to this PUT. It does not check
if this data belongs to the WAL. A solution (unverified) is
to add the filename to the WAL header. The WAL can then
ignore the entry if the filename does not match its name.

WALdeletion. OnWAL deletion, its storage resources are
released. ZenFS does not treat WAL deletion differently from
other data and neither do ZWALs. Since a ZWAL has a dedicated
set of zones, it is safe to reset (a ZNS-specific operation to
mark a zone for deletion) all WAL zones at any point in time.
Deletion can be done actively (i.e., immediately) or lazily (i.e.,
when the zones are needed).

3.2 ZWAL Implementation
We implement ZWALs in RocksDB’s ZenFS file system since
it is the state-of-the-art for ZNS [3, 31, 36]. ZWALs issue zone
appends using io_uring with NVMe passthrough since the
Linux block layer does not support zone appends (§2). To
separate data from WAL zones, a dedicated set of zones is re-
served for WALs between ZenFS’s metadata and data zones;
see Fig. 3 (“W” is WAL, “M” is metadata, “D” is data). The
exact number of WAL zones (“W”) is configurable during
formatting. We also implement configurable barriers, config-
urable in multiples of the page size.

To support ZWALs in RocksDB, wemodify one function. On
aWAL delete, RocksDB firstmovesWALs to an archival direc-
tory and only physically deletes them at a later point in time.
Since we use a limited number of zones for WALs, this will
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Figure 4. RocksDB throughput for db_bench with fillrandom
and 4KiB requests; ZWAL configured at QD 32.

quickly lead to out-of-space errors—hence, we force RocksDB
to delete old WALs immediately. Additionally, RocksDB can
only delete a WAL if all column families that use a WAL are
flushed. Therefore, it is important to flush all column families
regularly forWALs to prevent out-of-space errors (automized
by setting the max WAL size). Note that RocksDB provides
various WAL filters, we do not expect filters to function
differently for ZWALs.

4 ZWAL Evaluation
In this section, we evaluate the performance of ZWAL’s im-
plementation in RocksDB + ZenFS. First, we compare ZWAL’s
write throughput to raw zone append’s (§2) and conventional
ZenFS’s write throughput. Next, we analyze ZWAL’s recovery
time and compare it against conventional ZenFS’s recovery
time. Then, we measure ZWAL’s performance with YCSB [9]
application workloads. Lastly, we evaluate the impact of the
barrier size onWAL throughput and recovery time. Note that
unless stated, we use a barrier size equal to the SSD’s zone
size. We show our benchmarking configuration in Tab. 1.

4.1 WALWrite Performance
We design ZWALs to improve write throughput—in this sec-
tion, we evaluate if throughput is also improved in practice.
ZenFS and ZWALs both buffer write requests for the WAL as it
can lead to significant throughput improvements (at the cost
of lesser persistence). Due to its performance potential, we
also investigate the impact of buffer size on throughput, en-
abling practitioners to make a trade-off between throughput
and persistence. We evaluate both WALs with RocksDB’s
db_bench [14] benchmark and the fillrandom workload, with
5GiB of 4 KiB KV-pairs. We configure ZWALs to issue zone
appends at a maximum QD of 32 (optimal; see Fig. 2b).

Fig. 4 shows the throughput (y-axis) with increasing buffer
sizes (x-axis). The larger the buffer size, the more PUT re-
quests theWALmerges into one I/O request (e.g., with 16 KiB
buffers and 4KiB requests, every 4 requests are merged).
ZWALs outperform ZenFS’s WALs for all evaluated buffer
sizes, from a 1.92 times throughput increase with 256KiB
buffers to 13.94 times with 4 KiB buffers. The peak through-
put of ZenFS’s WALs (not shown) is achieved with a 1MiB
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Figure 5. (a) WAL recovery time within RocksDB; (b) ZWAL
recovery latency breakdown.

buffer and is 48.71 KIOPS. We do not show results with buffer
sizes larger than 256 KiB because of an implementation bug
in ZWALs. From these results, we conclude that ZWALs signif-
icantly increase LSM-tree write throughput on ZNS SSDs
with high intra-zone parallelism.

While not shown in a plot, ZWALs do not scale for I/O re-
quests larger than the zone append size limit (ZASL). ZASL
defines the maximum request size of zone appends; hence,
if requests are larger than ZASL, they need to be split into
multiple subrequests. If a request is split and each fragment
is sent individually, the SSD can reorder them. The current
ZWAL implementation does not support unordered fragmen-
tation and falls back to issuing one request at a time, send-
ing all request fragments serially, reducing performance sig-
nificantly. We can solve this challenge (not evaluated) by
supporting unordered fragmentations, e.g., by giving each
fragment its own sequence number.

4.2 WAL Recovery Time
We define recovery overhead as an increase in recovery
time (e.g., 10% longer recovery). In this section, we do a
quantitative analysis of the recovery overhead of ZWAL’s re-
covery procedure compared to ZenFS’s WALs. Further on,
we determine the relation between WAL size and recovery
time, facilitating the reasoning for WAL size configuration.
We first fill a WAL using db_bench with the fillrandom

workload. We use a minimal buffer size of 4 KiB and write
all data as 4 KiB KV-pairs to ensure that every I/O request
contains exactly one KV-pair (i.e., each PUT leads to its own
WAL entry). We evaluate WAL sizes ranging from the default
of 64MiB up to 4GiB. After filling the WAL, we reload the
database and measure WAL recovery time, measured from
the moment we open the WAL until we have read all data
and applied it to the LSM-tree’s memtable.
Fig. 5a shows the WAL recovery time (y-axis, lower is

better) with increasing WAL size (on the x-axis). ZWALs take
significantly less time to recover than ZenFS’s WALs, up to
13.86 times (6.13s compared to 84.9s) for a 1 GiB WAL. ZWALs
have a low recovery time because our read implementation
is optimized, particularly because we cache mappings of the
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Figure 6. YCSB throughput for RocksDB.

region between subsequent barriers. Instead of reading each
entry individually (i.e., what ZenFS does), we issue larger
read requests occasionally. We have confirmed this behavior
using a barrier size of 4 KiB, where our 1GiB recovery time
increases to 33.62 seconds (an increase of 2.43 times). ZWAL
recovery time increases proportionally with the WAL size.
To further investigate the recovery time of ZWALs (and

where its bottlenecks are), we conduct a latency breakdown,
shown in Fig. 5b. Notably, the recovery time is dominated by
applying entries to the memtable (close to 40%) and I/O (close
to 30%)—note that the exact percentages depend on WAL
size and hardware used. Sequential I/O is a large portion
of the recovery as the WAL reads synchronously—With fio,
we confirmed read throughput to be about 417MiB/s for
the emulated SSD at a granularity of 64 KiB (we evaluate
64 KiB as the average read size to the WAL). The combined
time it takes to sort and deserialize the WAL and copy data
from the in-memory buffers, while not negligible, is, in our
evaluations, 24.39% of the recovery time at most.
In short, ZWAL’s recovery time is up to 13.86 times lower

than ZenFS’s WAL recovery time. Its recovery time is domi-
nated by applying entries to the memtable, followed by I/O.

4.3 Application Workload YCSB
We evaluate the application performance of ZWALs using
the state-of-the-practice Yahoo Cloud Services Benchmark
(YCSB) [9] workloads A (50% reads, 50% updates), B (95%
reads, 5% updates), D (95% reads, 5% insertions) and E (95%
scans, 5% insertions). These workloads are selected as they
use PUTs, i.e., write to the WAL. Note that an update consti-
tutes a read and a write in sequence. Before each load phase
we reset all ZNS zones and reformat the file system. All
workloads have the same load phase; filling the database
with 25GiB of KV-pairs for the commercially available SSD
and 20GiB for the emulated SSD. In the run phase, we issue
1 million operations for each workload. We set the RocksDB
write buffer- and target file- size equal to the zone size and
the KV-pair size to 4 KiB and 1 KiB (default YCSB size) for the
emulated and commercially available device, respectively.
The WAL buffer size is 8 KiB, and we issue zone appends at
a maximum QD 32 (see Fig. 6).

Fig. 6a shows the YCSB throughput for the emulated SSD.
The largest throughput increases occur in the load phase (8.56
times)—matching Fig. 2b—since it only issues PUT requests to
the WAL. The run phase also shows significant performance
increments, but to a smaller degree (e.g., up to 2.96 times for
workload D), because these workloads include reads, and the
read and write requests compete for the same SSD resources.
Repeating the experiment (not shown) with larger buffer
sizes shows little throughput benefits for ZWALs, similar to
what we observed in §2.

Fig. 6b shows the throughput for the commercially avail-
able SSD. Akin to the emulated device, there are signifi-
cant throughput improvements for the workloads that are
PUT-heavy, such as the load phase (27.39%) and workload
D (33.02%), and less for update or scan-heavy workloads,
such as A (12.51%) and E (6.26%). Throughput differences
for this device are less because zone appends scales up to
QD 4 (see Fig. 2a). Similar to previous experiments, repeated
experiments with larger buffers show no significant perfor-
mance differences between write I/Os and zone appends.
In conclusion, ZWALs lead to significant throughput im-

provements on commercially available ZNS SSDs (up to
33.02%) for PUT-heavy workloads. However, throughput im-
provements are less for workloads that include a mix of
writes and reads (e.g., 6.26% for scan-heavy workloads).

4.4 Barrier Size Performance
Below, we evaluate the impact of barrier sizes on ZWAL’s
performance. We repeat all experiments from §4.1 and §4.2
on the emulated SSD and evaluate with barrier sizes ranging
from one page to an entire zone.

We observe (not visualized) that larger barrier sizes (16MiB)
lead to significantly higher write throughput. For example,
we observe 4.13 times higher write throughput with 16MiB
barriers (28.25 KIOPS) than with 4 KiB barriers (1.99 KIOPS).
However, beyond a threshold (>16MiB), further increasing
the barrier size has less impact on the throughput (a 3.91%
increase from 16MiB to a zone-sized barrier). The reason
that throughput is increased for larger barriers is that barri-
ers act as synchronization points, forcing the requests that
cross a barrier to wait for all previous requests. This effect
becomes especially prevalent when the barrier size is smaller
than 𝑠𝑖𝑧𝑒𝑏𝑢𝑓 𝑓 𝑒𝑟 ∗𝑄𝐷𝑚𝑎𝑥 , since it lowers the effective QD.
We also observe that larger barrier sizes significantly de-

crease WAL recovery time (again, not visualized). We ob-
serve up to 5.20 times shorter recovery times with zone-sized
barriers (6.13s) than with 4KiB barriers (31.87s). Similar to
the throughput experiment, we observe no significant effect
on total recovery time beyond a (device-specific) threshold
(>16MiB). The decrease in recovery time can be explained
due to higher read throughput from storage. Data is read
from storage in a granularity of the distance between sub-
sequent barriers. Therefore, with small barriers, ZWALs read
smaller chunks of data. This leads to many small reads and
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small reads generally take longer to complete than a few large
reads. We observe up to 14.51 shorter I/O read time for zone-
sized barriers (1.95s) compared to 4 KiB barriers (28.23s).

5 Related Work
The recent standardization of ZNS has given rise to a plethora
of active research [1, 3, 23], with numerous proposals evalu-
ating the ZNS integration into the design of KV-stores and
zone append integration into applications [1, 16, 28, 32].
There are a couple of WAL designs for ZNS [28, 29, 32].

WALTZ [28] uses zone appends to increase write concur-
rency and allowsmultiple concurrent RocksDB client threads
to zone append to the same zone concurrently. The biggest
difference with ZWALs is that WALTZ issues zone appends
synchronously within threads (i.e., waits for completion).
Such an approach prevents a complicated recovery but does
not allow for concurrent writes within a single thread. Pu-
randare et al. propose issuing small zone appends in WALs
instead of buffering [32]. This work, however, does not take
into consideration data recovery from reordered zone appends.
Several applications employ zone appends in their de-

sign [1, 16, 23, 35]. Most of these applications use the return
address of zone appends and, as a result, either require an
extra I/O operation for persistence [16] or do not need to be
persistent [1]. RAIZN [23] is similar to ZWALs since it uses se-
quence numbers. However, the recovery procedure is differ-
ent due to the nature of RAID—only the most recent number
for each data entry is valid (i.e., no sorting needed), and the
number of valid entries is explicitly maintained elsewhere.
This would not scale for WALs as it requires maintaining the
entries elsewhere (i.e., an additional write).
Our concept of sequence numbers in ZWALs is based on

cross-referencing logs (CRL) [8, 18]. CRLs use per-thread
logs (WALs) and use sequence numbers to infer ordering
between those logs. We apply this concept to a situation
where only one log exists, but the log itself can be reordered.

6 Discussion and Future Work
The current ZWAL implementation is tightly coupled to the
ZenFS file system. This coupling is because ZWALs have to
issue zone appends to storage directly, which requires modi-
fying the file system or issuing I/O to storage directly from
an application. The advantage of this approach is its trans-
parency to applications; the disadvantage is the need to mod-
ify file systems. We modify ZenFS to treat all I/O to “.log”
files differently by storing data in separate zones and using
zone appends. However, such a file system modification is
generally applicable to other ZNS-friendly file systems (i.e.,
F2FS [26] and Btrfs [13]). F2FS, for example, already uses file
extensions to estimate file hotness (i.e., cold, warm, hot) and
stores data with different temperatures separately [26]. To

support ZWALs in F2FS, we propose adding an extra classifica-
tion forWAL-like files such as “.log” and allocating a separate
region for this data, similar to our ZenFS implementation.
This paper focuses on WALs for LSM-trees in a local set-

ting. However, our design extends beyond this configuration.
Firstly, ZWALs are beneficial for any application that makes
use of WALs. As such, we propose adding ZWALs to SQLite’s
WAL mode [15]. Secondly, we argue that ZWALs are also valu-
able for distributed settings. A common database optimiza-
tion is to store WAL data on a separate storage device [6].
Furthermore, storage disaggregation is ubiquitous and ap-
proaching the performance of local storage [24, 25]. Storing
WAL data to different storage devices prevents WAL traffic
from interfering with other I/O traffic and allows multiple
databases to share one device for WAL traffic. The design of
ZWAL comes with the additional benefit that the ZNS device
does the scheduling for concurrent applications. Currently,
ZWALs store WAL data in different logical areas than the rest;
as a next step, we will deploy ZWALs to separate (remote) de-
vices and measure their performance characteristics. Lastly,
we propose extending our work beyond WALs and optimiz-
ing other components of the LSM-tree for ZNS, such as the
write path of flush and compaction operations.

7 Conclusion
Zoned Namespace (ZNS) SSDs enable stable throughput for
LSM-trees, but are known to lead to write throughput chal-
lenges in the LSM-tree’s WAL. In this work, we utilize the
ZNS-specific zone append operation to address this challenge
and showcase that our approach improves write throughput
significantly. We believe the contributions of this work show-
case the potential of zone appends beyond LSM-trees as our
sequence number procedure is generally applicable, encour-
aging the further utilization of zone appends in applications
and data structures. To facilitate further research, we pub-
lish the artifacts of this study at https://github.com/stonet-
research/zwal.
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