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Abstract
Understanding operational characteristics of flash SSDs has
been a challenging task due to their complex and closed
internals. The recent emergence of Zone Namespace (ZNS)
SSDs with their open interface allows the host software stack
to explicitly control elements of this complexity, specifically
around data placement, grouping, and garbage collection
operations. Despite offering more control to applications,
due to the opaque and layered nature of the software storage
stack, it remains an open challenge to understand, profile,
and reason about the data storage and placement decisions
on ZNS devices in an end-to-end manner. In this paper, we
present zns-tools, an eBPF-powered end-to-end data stor-
age events profiler (https://github.com/stonet-research/zns-

tools) for the whole ZNS-enabled storage stack, including the
NVMe/ZNS device driver, Linux block layer, file system, and
application. Using zns-tools we uncover diverse utilization
profiles of a ZNS device for the same workload (YCSB-A),
thus demonstrating the practical utility of zns-tools.

CCS Concepts: • General and reference→ Performance; •
Software and its engineering → Operating systems.
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1 Introduction
Flash solid state drives (SSDs) have fundamentally changed
the way we store and process data in computing. Their emer-
gence in the mainstream commodity computing has resulted
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in the redesigning of almost all aspects of the host storage
stack including (not limited to) the host interface [58, 63],
block layer [7, 34], I/O schedulers [21, 62], file systems [33],
applications [14] and distributed systems [4]. Despite the
aforementioned end-to-end changes to leverage the perfor-
mance characteristics of flash SSDs, reasoning about their
operational characteristics remains a challenge. A key part
of this challenge is the complex internal structure in which
flash devices are packed to hide the nature of underlying
flash chips (append-only writes, non-overwritable, requires
explicit chip erase operation) [35]. These chips are actively
managed by a piece of software known as the Flash Trans-
lation Layer (FTL) that runs inside an SSD, thus influencing
its performance [38]. The FTL design and SSD’s internal
structure are typically proprietary information, thus forcing
researchers into synthesizing unwritten contracts or guide-
lines about how to manage and extract the best performance
from SSDs by collecting and analyzing detailed performance
and operational trace events [20].

To address these issues, researchers have made a case for
open SSD interfaces that allow more explicit control over
SSD’s internal operations by the host software [8]. Exam-
ples of such open interfaces are Open channel SSDs [9, 59],
stream SSDs [65], software-defined flash (SDF) [43], and
more recently standardized NVMe SSDs with Zone Names-
pace Storage (ZNS) [6, 52, 60] and emerging NVMe Flexi-
ble Data Plane (TP-4641) [10]. The NVMe ZNS interface is
unique in this context as it is the only standardized and com-
mercially available open standard (FDP is still being ratified).
The new ZNS interface more accurately reflects flash chip
properties (captured as zones that support append-only, se-
quential writes). The ZNS interface provides explicit control
to the host software on the data placement, parallelism con-
trol, and flash chip erase operations before over-writing [13].
ZNS devices also have a set of new NVMe commands (reset,
finish, open, close) to manage zones. Table 1 provides a
high-level overview of the differences between an NVMe
SSD with and without ZNS capabilities. We will provide a
more detailed introduction to the ZNS devices in Section 2.

With this open interface, there is an opportunity to design
and implement an end-to-end, cross-layer profiling and trac-
ing framework. This framework can offer developers clear
visibility into the newly available data placement decisions,
scheduling events, and usage patterns, collectively referred
to as data-lifecycle events in this paper. Thus, developers can
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NVMe SSD without ZNS NVMe SSD with ZNS

Addressing Logical Block Address, or LBA zones and LBAs within a zone

Data reads from any LBA in sequential and random manner

Data writes sequential, random from any LBA only sequential LBA writes within a zone

Data placement implicit, SSD/FTL-managed explicit, host controls placement by writing data in separate zones

Garbage collection implicit, SSD/FTL-managed explicit, host managed via a NVMe/ZNS zone reset command

Parallelism implicit, SSD/FTL-managed implicit, but zone-level controls available to the host

Table 1. High-level comparison of NVMe flash SSDs without and with Zoned Namespaces (ZNS) [13].

leverage this information for better performance and device
management [52]. For example, by following the “Grouping
by death time” unwritten contract [20], data that is deleted
together (i.e., has the same death time) should be stored to-
gether in the same zone so that software can garbage collect
the whole zone when the data is deleted. In the past, such
efforts were often hampered by the lack of access to the SSD
internal state [18, 19].

However, building a detailed data-lifecycle event profiler
can be a challenging task for multiple reasons. First, due
to the complexity of and interactions among the modern
storage stack and applications, it is not immediately clear at
what level or granularity one should profile an application.
System call-level tracing is one of the most popular ways
to build an I/O profile of an application [2]. However, such
profiling excludes any application-level data management
events such as a B+-tree node splitting, or SSTables com-
paction in an LSM tree. Beyond that, the dynamic tracing of
I/O calls can have a high overhead, whereas static tracing
may require source code modifications or re-compilation.
The selection and complexity of using the right tool from
the available options also makes the decision non-trivial [5].

Secondly, the opaque and layered architecture of the mod-
ern storage stack makes it challenging to trace events across
different layers that use different I/O abstractions. For ex-
ample, an application interacts with file names or file de-
scriptors, a file system manipulates inode structures, and the
block layer only processes block addresses. Thus, identifying
which file name or inode triggered an I/O event to which
block address requires visibility and complex translations
across different layers and layer-specific abstractions. This
complexity is also apparent in the number of different ways
an NVMe ZNS device can be integrated into a system (at the
block level, file system, or application-level).

Lastly, the choice of a trace format and the lack of standard
visualization tools also make building a profiler a challenging
task. Many past tools often use tool-specific format options
that can be outdated or worse, lack any documentation [2].
The close coupling between a visualization framework and
the tool-format also makes it difficult to build new visualiza-
tions for the collected traces. To summarize, there is a need
for a structured approach for an end-to-end data-lifecycle

event tracing and profile building in order to assist applica-
tion developers to best leverage modern, open SSD interfaces
like ZNS.
To address the aforementioned challenges in this paper,

we present zns-tools, an eBPF-powered, cross-layer storage
profiling tool. zns-tools uses the Linux eBPF framework
that has evolved into a versatile framework that allows users
an unprecedented amount of online in-place trace collection
and visibility into various kernel subsystems using simple
C-like pseudo-code. All modern profiling tools internally
leverage eBPF due to its light-weight JIT-based architec-
ture, support for various dynamic/static profiling with ker-
nel or application-level probes, expressive data structures
(shared kernel-user maps, arrays, counters), and extensive
documentation with an active community [15]. We use an
eBPF-supported nanosecond-resolution timestamping mech-
anism to build a cross-layer timeline for data-lifecycle events.
zns-tools follows the Model-View-Controller design pat-
tern where event collection (using eBPF probes), processing
(building end-to-end timelines, offline) and visualization pro-
cesses are decoupled.
zns-tools uses the standard JSON format for the event

traces (can also be extended to other timeseries formats like
Panda Timeseries) that can then be visualized using dedi-
cated frameworks like Perfetto or Chrome (Section 3). zns-
tools consists of three levels of subtools: zns-tools.nvme
for the Linux block layer and NVMe device driver-level trac-
ing, zns-tools.fs for file system-level tracing (F2FS and Btrfs
supportedwith ZNS) and zns-tools.app for application-level
end-to-end tracing (currently done for RocksDB).

Our primary contributions in this work include:

• Making a case for building an end-to-end, cross-layer
storage profiler and analysis tool to reason about the
NVMe ZNS SSDs utilization with the host software
stack and applications (Section 2).

• zns-tools, an end-to-end eBPF-powered framework
that collects, analyzes and visualizes data-lifecycle
events across the layered storage stack including
the block layer and device driver (zns-tools.nvme),
file systems (zns-tools.fs) and applications (zns-
tools.app) (Section 3).
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• We demonstrate the utility of zns-tools by identify-
ing the vastly uneven use of ZNS SSDs for the same
user-level workload, YCSB-A (Figure 2). We further
illustrate its visualization capabilities by showing an
end-to-end application-level data-lifecycle event trace
visualization for RocksDB with F2FS in Figure 3.

• zns-tools are open-sourced and currently available
at https://github.com/stonet-research/zns-tools.

2 Background and Motivation
In this section, we provide the necessary background on
ZNS SSDs (Section 2.1), the complexity within the layered
and opaque storage stack (Section 2.2), and various ZNS
integration options in the storage stack that make end-to-
end tracing challengeing (Section 2.3).

2.1 NVMe with Zone Namespace (ZNS) SSDs
NVMe SSDs with Zoned Namespaces (ZNS) offer a funda-
mentally new way in which applications interact with the
underlying storage device [6, 60]. Table 1 shows the bird’s
eye view of high-level differences between NVMe SSDs with-
out and with zone namespaces. A ZNS-capable SSD exposes
its storage capacity as a set of fixed-size zones (each made
up of multiple blocks) instead of the traditionally used block-
oriented design. The concept of zones closely maps to the
concept of flash erasure units. Like with any NVMe SSD,
reads can be issued to any Logical Block Address (LBA) with
ZNS SSDs. However, unlike an NVMe SSD, ZNS SSDs only
allow zones to be sequentially written in an increasing LBA
addresses within a zone. Before a zone can be rewritten, it
must be explicitly reset, like the erase operation on flash
chips. Resetting a zone (Garbage Collection, GC) is the respon-
sibility of the host software (the kernel, or the application).
To initiate a zone reset, there is a new NVMe command
called reset on ZNS devices. While device internal paral-
lelism and data placement are still managed on the device,
the host has some control over parallelism and placement
with zone-level controls by grouping and writing data in
different zones [13].
ZNS SSDs make it easier to capture previously hidden

events like GC and communicate their characteristics to the
SSD designers about how devices are used. For example, since
applications now explicitly issue zone resets, GC events
can be accurately measured. This control on GC makes it
possible to understand its effects on wear-leveling and/or
performance isolation. However, this does require tooling
to become available. Currently, no such tooling exists. We
argue that there should be a framework that can show how
data is stored and managed in a layered storage stack on top
of ZNS devices. To create such a framework, it should show:
(1) where data is stored on ZNS; (2) how much I/O is issued
to each zone; (3) which zones trigger the most GC and how
data moves between zones because of GC.

NVMe ZNS
SSD
Device

Kernel

A B C D

ZNSZNS

Translation
Layer

F2FS

File System
(ZNS support)

ZoneFS
Btrfs

Applications:
RocksDB, fio

io_uring 
passthrough

libzbd

User
Space

File system
posix

ZenFS

I/O Scheduler (e.g., mq-deadline)Block
Layer

Figure 1. The current integration options for ZNS in the
Linux storage stack (2024). Configuration (a) shows the in-
tegration of a conventional SSDs; (b) shows the changes
at the block layer level to accommodate ZNS devices; (c)
shows file system adaptations (F2FS, Btrfs) for ZNS; (d) shows
application-specific integration (e.g., Zenfs for RocksDB) and
io_uring passthrough (ioctl()-ish interface) to ZNS.

2.2 Layered Storage Stack
Applications typically do not directly interface with the un-
derlying SSDs, but through a layered storage stack with
multiple abstractions in-between. Layered designs are bene-
ficial as they lead to a modular application design, but they
result in semantic gaps between the layers. There is such a
gap because each layer only exposes part of its API to the
next layer, leading to a narrow communication window. Such
strict layering can result in an intention mismatch between
the application (passed with the POSIX fadvise and fcntl
calls), file system, and underlying block storage device.
We report on two issues related to the mis-grouping of

data due to the semantic gap in the state-of-the-practice com-
bination of RocksDB and F2FS for ZNS. Data grouping based
on access patterns is a commonly used technique through
which log-based file systems (FS) like F2FS group data to-
gether in a single erase unit to reduce the GC overheads.
The first issue happens for all applications using F2FS/ZNS
where F2FS reclassifies data after doing FS-level GC for its
own log-structured segments1. Typically, a log-structured file
system like F2FS segregates data based on its access/update
frequency (known as the temperature) and store data with
the same/similar temperature together in a single erasure
unit like F2FS segments. When an application hints that a
file is hot (i.e., it may be frequently accessed), new writes to
this hot file are correctly stored to a hot segment and zone.
However, later when it does segment cleaning with GC, F2FS
needs to clean zones and re-group valid data around. Dur-
ing this process, F2FS re-groups the data by changing the
temperature of the data (hot to cold) and storing them in

1Confusingly enough, F2FS also uses the terms like zone and garbage col-
lection. The discussion in this section pertains only to the file system-level
terms, not the ZNS SSD.

https://github.com/stonet-research/zns-tools
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a single cold segment2. Such an application-transparent re-
classification violates the application’s expectation that may
have hinted that the file is hot.

The second issue is RocksDB- and F2FS-specific. RocksDB
writes Sorted Strings Table (SSTable) files to a file system
in two passes, raw data (the table) and a small footer (less
than a page), both stored in the same file. After writing
the raw data RocksDB flushes the file system, thus leaving
only the footer in the page cache. If the number of dirty
pages in the page cache is below a threshold of 16 pages
(DEF_MIN_HOT_BLOCKS) with a few more conditions3,
F2FS classifies the footer data as hot, thus overriding any
previous RocksDB hint on the SSTable (where SSTables are
considered as cold data).
The aforementioned simplified but real examples illus-

trate the complexity associated with data classification and
placement-related decisions made within the layered and
opaque storage stack with semantic gaps.

2.3 ZNS Integration Options
Having discussed the complexity of the layered storage stack,
the availability of ZNS-related events (zone commands) fur-
ther complicates the end-to-end control reasoning. A ZNS
SSD can be integrated into the host storage stack in multi-
ple manners. Figure 1 shows multiple possible options for
the ZNS integration. Configuration-A shows the standard
NVMe stack with a file system, block layer, and SSD device
(without the ZNS interface). In configuration-B, a ZNS SSD
device can be integrated above the block layer, but below
the file system so that file systems do not require any modi-
fication to work with the ZNS SSD [12]. This design choice
also implies that file systems do not have visibility into the
ZNS utilization and operations, thus defeating the purpose of
the ZNS interface. For example, here both file systems (e.g.,
F2FS) and ZNS SSDs will perform independent GC opera-
tions without any coordination. Configuration-C is a native
file system-level integration of ZNS SSDs where file systems
are modified to become ZNS-aware, thus further unifying
file system level and ZNS level operations [47, 54]. Currently,
within the Linux kernel, F2FS and Btrfs file systems are ZNS-
aware. Lastly, a direct application-level integration is also
possible for maximum semantic integration of ZNS and appli-
cation data storage semantics. An example of this approach
is RocksDB’s domain-specific ZenFS storage backend for
ZNS SSDs [6, 61].
With these ZNS integration options, how user data is

stored, which layer made the data placement and group-
ing decisions, and in which file, or data segment, or zone
data is stored become important questions to answer. The
availability of ZNS makes some of these decision-making
more explicit, but these decisions must be analyzed in an

2
https://github.com/torvalds/linux/blob/v6.8-rc7/fs/f2fs/gc.c#L1285.

3
https://github.com/torvalds/linux/blob/v6.8-rc7/fs/f2fs/data.c#L3063.

end-to-end manner to reason about the performance and
operational characteristics of the ZNS-supporting storage
stack.

3 zns-tools: Design and Implementation
Having established our motivation for an end-to-end, cross-
layer data-lifecycle event collection and profiling tool, in
this section, we present the design and implementation of
one such tool: zns-tools. zns-tools is a collection of three
tools (so far) that collect, process, and visualize data-lifecycle
management-related events in the Linux storage stack (origi-
nally developed for the v5.19 version). We made the follow-
ing design choices with zns-tools:

• Do one thing well: Instead of building a single, über-
all framework for I/O profiling, we follow the UNIX
(pipe) philosophy4 and aim to design multiple, single-
purpose tools that can trace and profile data-lifecycle
events from multiple layers. The scope of these tools is
restricted to a single layer of storage (application, file
system, and block with device driver). Ideally, these
tools can be combined, like the UNIX pipe abstraction,
to build a complex tracing DAG. However, in the cur-
rent implementation they work independently. We are
working on improving the design.

• Keep it modular and standardized:We follow the
Model-View-Controller (MVC) paradigm in the design
of zns-tools where data collection (the controller),
processing (the model), and visualization (the view),
are decoupled from each other, thus offering flexibility
in optimizing and upgrading the individual component.
For example, the output format can be chosen to any
of the multiple available formats (currently supported
JSON) and can be visualized using any of the multiple
frameworks possible (Perfetto, Google Chrome).

• Keep it lightweight: Lastly, we leverage eBPF, which
is shown to be a versatile, comprehensive, but light-
weight data event collection and processing frame-
work. zns-tools are written as a set of Python/C
utilities that use the Linux/eBPF-based filtering and
event collection framework. eBPF probes can be put
in the Linux kernel as well as in userspace application
code dynamically to construct an end-to-end cross-
layer timeline using eBPF-supported timestamps. To-
day, eBPF has a vibrant software ecosystem around it,
https://ebpf.io/.

zns-tools works by running the command as root while
the under-benchmarking application is running. When the

4Basics of the Unix Philosophy, “Make each program do one thing well”, http:
//www.catb.org/~esr/writings/taoup/html/ch01s06.html. Originally taken
from the Bell System Technical Journal, 57, Forward on UNIX Time-Sharing
System by M.D. McIlroy, E.N. Pinson and B.A. Tague (July-August 1978) at
https://archive.org/details/bstj57-6-1899/page/n3/mode/2up.

https://github.com/torvalds/linux/blob/v6.8-rc7/fs/f2fs/gc.c#L1285
https://github.com/torvalds/linux/blob/v6.8-rc7/fs/f2fs/data.c#L3063
https://ebpf.io/
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
http://www.catb.org/~esr/writings/taoup/html/ch01s06.html
https://archive.org/details/bstj57-6-1899/page/n3/mode/2up
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Figure 2. reset visualization using zns-tools.nvme for the identical YCSB workload-A (update heavy workload, 50% read,
50% write) running on multiple ways ZNS SSDs can be leveraged by a storage stack. The zones are enumerated with their zone
numbers from 0 (bottom, left) to 63 (top, right). Figure 2e has a different heatmap scale (0-100). These heatmap visualizations
are done using Seaborn: statistical data visualization framework.

tool runs, it collects both application-specific and system-
wide events with timestamps (bpf_ktime_get_ns) to build
an end-to-end timeline. The tools currently hold all tracing
data in memory while tracing (100s–1,000 of MiBs, depend-
ing on the tracing frequency and details) and eventually
write out to JSON files when stopped. We have also tested an
alternate design where trace data is written periodically or
after a certain number of events, thus relaxing the require-
ments for the memory capacity needed. This design is tested
in small examples, but not implemented for all tools. In the
coming subsection, we provide a more detailed description
of three specific tools that constitute zns-tools right now.

3.1 zns-tools.nvme
zns-tools.nvme collects and visualizes events collected from
the Linux block and NVMe device driver layer. Specifically,
the tool traces individual I/O and zone management oper-
ations over a user-defined time period and generates visu-
alizations. Tracing such data is useful for investigating the
access patterns (data grouping, placement) at the device-
level independently of file system and application-level I/O
patterns. For example, the tool can be used to study the num-
ber of resets per zone to study the impact of data writing
and wear-leveling. zns-tools.nvme utilizes BPFtrace [24],
which inserts probes into the Linux kernel functions, that
upon being triggered (i.e., the function being called), initi-
ate data collection. The tracing script captures the NVMe
commands events and based on the type of command (I/O or
management) extracts further details (size of payload, time,
number of zones resets, etc.). It then maps each command
to its corresponding zone to generate zone-specific traces.
Currently, it traces ZNS write, append, read, and reset
operations, but it can be extended to more operations (e.g.,
finish operations) and triggering conditions by writing a
few lines of eBPF filters.
Uniquely, zns-tools.nvme also supports tracing in an

NVMe virtualized environment within the QEMU/VM frame-
work. Here, the zone reset command sets the function ar-
gument for the type of command to REQ_OP_DRV_OUT, indi-
cating that the host driver (e.g., vfio-pci when using the

NVMe passthrough to the VM) is responsible for the request.
The user can decide when to stop the script by hand by
sending the SIGINT signal. Upon termination of the trac-
ing scripts, all collected data is written to a file, followed by
post-processing to generate a visualization of the various
collected information. A unique benefit of ZNS devices is
the representation of zones, thus allowing collected data to
be grouped and represented on the basis of a zone.
To illustrate the utility of zns-tools.nvme, we run an

identical workload on a number of ZNS-supporting data-
base/file systems and quantify the workload’s reset profile.
The number of resets is directly linked to the number of Pro-
gram/Erase (P/E) cycles that an SSD can undergo before ex-
hausting flash chips. Visualizing this information gives a di-
rect approximation of the wear-level capabilities of the ZNS-
aware software stack. We run experiments on an emulated
NVMe ZNS device (QEMU v6.0.0) with 64 zones of size
64MiB (4GiB in total). Our workload is the YCSB workload-
A (update heavy workload, 50% read, 50% write) [11] on
RocksDB (v7.4.3) [17], MongoDB (v6.06) [41], and Post-
greSQL (v9.6.24) [39] as storage backend targets. With
RocksDB, we have three configurations of a storage backend:
(i) the default POSIX backend with ZNS/F2FS (configuration
(c) in Figure 1); (ii) a ZNS-specific domain-specalized file
backend, called ZenFS [6, 61] (configuration (d) in Figure 1);
and (iii) a POSIX backend with an aged F2FS [28].
Figure 2 shows a heatmap visualization of trace data col-

lected (about 10–100s of KiB). Here, each cell represents a
zone, enumerated from the bottom left (zone 0) to the top
right (zone 63). The color of the cell indicates the total num-
ber of resets issued to the zone (since startup). Blue squares
indicate zones to which no reset commands were issued at
all while the darker colours represents more resets issued
(captured by the scale of the heatmap). There are three inter-
esting observations here. Firstly, for an identical workload,
these ZNS-enabled storage stacks show vastly different re-
set profiles. We report that the PostgreSQL ZNS stack issues
a large number of resets, as shown in Figure 2-(d). Addi-
tionally, we can identify that in the case of F2FS, one of the
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bottom left zones (zone 2) is heavily utilized. This zone cor-
responds to a warm node zone initialized by F2FS, where
the inodes of files are written. Secondly, file system aging
has a significant impact on the reset profile as shown by Fig-
ure 2e. Aging of F2FS is done by executing the same YCSB-A
workload 10× times. Lastly, the domain-specific RocksDB
ZNS-file system, ZenFS (Figure 2b), does a limited amount of
wear-leveling across the device and re-uses the same zones
over and over again, thus leading to a few zones which are
frequently reset. In comparison, F2FS has a more even distri-
bution of resets (Figure 2a). All these results demonstrate a
need and the utility of such trace collection and visualization
tools to study the impact of various integration levels of ZNS
devices as shown in Figure 1.

3.2 zns-tools.fs
zns-tools.fs has two specific tracing responsibilities: (1)
capture file I/O events to their block-level storage locations
by extracting file placement information from the file system;
(2) capture file system-specific semantic information such as
data grouping or heat-based file extent classification. Both of
these pieces of information are critical for understanding the
data placement and grouping decisions made by a file system.
ZNS SSDs require an explicit file system level garbage col-
lection procedure [51]. With ZNS SSDs and a log-structured
file system, the location of the file data is thus dynamic and
changes constantly based on (i) the user-initiated events like
file read/writes; and (ii) the file system-initiated events such
as garbage collection with heat segregation. zns-tools.fs
aims to capture and report traces of both of these kinds of
events.
zns-tools.fs retrieves file location mappings (extent-

oriented) from the Linux kernel using the ioctl() syscall
with the FIEMAP flag5. Both ZNS-compliant file systems (F2FS
and Btrfs) support this call. A file location is represented
by contiguous storage extents (LBA address-length pair),
and a file can have multiple non-contiguous extents. With
FIEMAP, file systems that implement the tracking of extents
return the extent information to the ioctl() caller. By iter-
ating over the logical range of a file, zns-tools.fs retrieves
data mappings of all the extents for a particular file. The
collected file extents are then mapped to their respective
zone(s) containing the file’s data using their logical LBA ad-
dress ranges. For example, on a ZNS SSD with a zone size
of 1MiB, logical addresses between [0, 1𝑀𝑖𝐵) fall within the
first zone, [1𝑀𝑖𝐵, 2𝑀𝑖𝐵) on the second zone, and so on. The
zone size and zone size ranges can be queried with the ZNS
device using a zonemanagement command.With all informa-
tion about file extents, their addresses, address-to-zone map-
pings, zns-tools.fs reports a detailed profile of the extent
distribution (min, max, percentiles), zone-level placement
information, and hole or fragmentation statistics. Holes (of

5
https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt

f2fs_submit_page_write 6

nvme_cmd_write 0

nvme_zone_reset 2

 VFS 2

 MM 4

compaction 3

�ush 4

 F2FS 3

 NVMe 0

 RocksDB 1



 Search or type '>' for commands or ':' for SQL mode

Figure 3. An end-to-end, cross-layer data-lifecycle event
visualization example using zns-tools.app. This timeline is
generated using an input JSON trace file with Perfetto.

fragmentation levels) are an important performance-related
property that are known to cause severe performance degra-
dation [26, 28, 29, 44, 66] because they violate the unwritten
“Request Scale” contract that recommends large sequential
requests [20].

Though placement-level information can be extracted for
any FIEMAP-supporting file system, the extraction of seman-
tic information is file system specific. Here, zns-tools.fs
only supports F2FS which stores file data in multiple seg-
ments, and a single F2FS segment can contain data from
multiple files. By default, F2FS uses three classes of segment
temperature classification (hot, warm, cold) for two types
of data: file data, and file metadata (inodes). zns-tools.fs
supports classifying various file segments (in the F2FS par-
lance) by reading the segment hotness classification from the
Linux procfs6. Segments can also store information about
directory data (the files stored within). Hence, zns-tools.fs
is also capable of reading the F2FS superblock, checkpoints,
and the NAT table. Put together, zns-tools.fs reports for
any file or directory all of its F2FS segments, their hotness
classifications, the number of file extents contained within
each segment, the inode-to-zone mappings, and the location
of the segments on a ZNS SSD.

3.3 zns-tools.app
zns-tools.app does a collaborative userspace and kernel-
based tracing for various data-lifecycle related events to
build an end-to-end, time-based (nanoseconds-resolution),
cross-layer event profile. It has eBPF probes for two parts,
the kernel and a userspace application, to collect trace events.
We have a pre-defined (but extensible) number of eBPF
probes to collect trace events with timestamps (in nanosec-
onds) inside the kernel on the following particular function
call paths: (i) the VFS - mostly file I/O and hint syscalls
such as fcntl_set_rw_hint, vfs_create, vfs_fsync; (ii)
the F2FS file system and memory management related
6
/proc/fs/f2fs/nvme0n1/segment_info

https://www.kernel.org/doc/Documentation/filesystems/fiemap.txt
/proc/fs/f2fs/nvme0n1/segment_info
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Figure 4. zns-tools.fs runtime (y-axis, lower is better) on
F2FS with the number of files (the x-axis).

calls like f2fs_submit_page_write, move_data_block,
mm_do_writepages; (iii) the NVMe device command trac-
ing (uses zns-tools.nvme). For the userspace application,
we rely on the application developer to identify such a
function or call path of importance. We have done so for
RocksDB, where we trace NotifyOnCompactionBegin and
NotifyOnCompactionCompleted (among others) for LSM-
tree compaction events. The idea is that by collecting events
across the kernel and userspace, we can attribute events
across the stack, thus building an end-to-end profile. Fig-
ure 3 illustrates this end-to-end timeline generated from
traces using Perfetto. The figure shows a few selected events
(for brevity) with their timelines from five layers (bottom to
top): RocksDB, MM, VFS, NVMe, and F2FS. Such a timeline
visualization gives an understanding of how the different
RocksDB operations interacting with F2FS affect the utiliza-
tion of the ZNS storage space, file classification, and data
movement over time, thus making it easy to reason about
the decision making process by following the timeline.

4 Overheads of zns-tools
In this section, we briefly report on the tracing overheads of
zns-tools. Figure 4 reports the overheads associated with
the repeated calling of ioctl() call with FIEMAP to resolve
file extents and F2FS segment information.We report the run-
time (in seconds) of zns-tools.fs from an F2FS file system
mount point containing 1,000 to 100,000 files in a single di-
rectory. We observe that the runtime initially grows slowly
(below the linear cost) up to 25K files and then follows a
linear overhead growth pattern.
We also report the runtime overheads associated with

doing a full application tracing with the zns-tools.app (not
shown). In our experiments, zns-tools.app incurs a small
overhead of less than 10%. With fillrandom and overwrite
workloads in db_bench of RocksDB, the overheads are 7.44%
(164.85K IOPS without vs. 152.58K IOPS with tracing) and
3.15% (120.65K IOPS without vs. 116.85K IOPS with tracing),
respectively. Furthermore, the size of the trace file for the
visualization in Figure 3 is around 150MiB.

5 Related Work
There is a large body of work on studying the interaction of
a file system with storage devices by collecting, analyzing,
and visualizing operational traces. Flash SSDs, with their
complex internal logic and unwritten contracts, have also
been studied in detail for performance and operation char-
acterizations [23, 30, 31, 36] with the impact of GC opera-
tions [22, 32, 45, 56, 57]. Jung and Kandemir provide a thor-
ough and detailed empirical evaluation of six SSDs for their
read, write, TRIM (similar to ZNS reset command) interfer-
ence from background activities (GC and buffer flush) per-
formances [27]. In their seminal work, Traeger et al. identify
various pitfalls in file system benchmarking [55]. CodeMRI
is a framework to capture traces from a workload to build a
microprofile that can synthetically be scaled up and down to
study the impact of a workload on a storage system [1]. Lu et
al. report on an eight year file system evolution study, how-
ever, their study is donemanually by classifying and studying
various development patches [37]. In a similar spirit to zns-
tools, Prabhakaran et al. introduce techniques to study file
system behavior with semantic knowledge of events and
on-disk data structure layouts [46]. zns-tools extends such
motivation to include workloads with the new ZNS manage-
ment operations as well.
The collection of traces to study storage systems has a

long history. Ousterhout, et al. present one of the early re-
sults from trace collection, operational data analytics, and
simulator-based trace replay to study the impact of caches
on the file system performance [42]. Ellard and Seltzer make
a case for decoupling the NFS trace collection from the anal-
ysis [16]. Several block-level tracking tools exists (BCC’s
biotop, BCC’s bIOsnoop, DTraces’s IOsnoop), however, they
do not link the block-level I/O commands back to the file
system. IOScope uses eBPF assisted file offset-based I/O trac-
ing [50]. However, its tracing is limited to the files (at the VFS
level) and does not connect the file to its location, which can
change based on the file system and application level opera-
tions. Re-Animator [2] does system call level tracing using
Linux tracepoints that can include data payloads. AndroStep
with MobiBench is an I/O traces collection, reply, and analy-
sis framework in Android mobile devices [25]. Broadly there
is a rich history of collecting file system traces, analyzing
them, and replaying them to understand the impact of opti-
mizations [3, 16, 42, 49, 53]. Much of these works only focus
on basic read/write interfaces that are sufficient for HDDs,
but not SSDs with their expressive interface and active flash
management via an FTL. Our work focuses on developing
extensible and flexible mechanisms to collect the relevant
operational data for SSDs that can be used for modeling and
the visualization of the full stack storage operations (device,
file systems, and applications).
In a distributed setting, Wintermute [40] is a distributed

data analytics system that collects operational data and traces
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across multiple machines and software components to stitch
a single timeline for analysis. Apollo is a distributed teleme-
try data collection and storage framework that leverages ML
to identify the right data to collect [48]. Beacon is an I/O
trace collection framework for the Sunway TaihuLight super-
computer that collects various I/O events in a single system
for performance analysis and diagnosis [64]. In comparison
to these works, the focus of zns-tools is on collecting, ana-
lyzing, and visualizing operational trace data across multiple
storage stack layers (vertical integration) to reason about
data-lifecycle events with visualization.

6 Conclusion and On-Going Work
In this paper we have presented the design and implementa-
tion of the open-sourced zns-tools to collect, process, and
visualize data-lifecycle related events on NVMe ZNS stor-
age SSDs. The availability of an open SSD interface such as
ZNS, where the host software (block layer, file system, ap-
plications) controls various data management related events
motivates us to build such an end-to-end visualization tool.
As a next step, we aim to scale zns-tools on multiple high-
capacity devices (TBs SSDs), generalize the design to non-
ZNS ecosystems with the emerging NVMe FDP support,
and extend the zns-tools.app to other storage-heavy ap-
plications such as databases and HPC workloads (beyond
RocksDB). zns-tools is open-sourced and currently avail-
able on GitHub at https://github.com/stonet-research/zns-

tools.
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