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ABSTRACT
Flash-based storage is known to suffer from performance
unpredictability due to interference between host-issued I/O
and device-side I/O management. SSDs with data placement
capabilities, such as Zoned Namespaces (ZNS) and Flexi-
ble Data Placement (FDP), expose selective device-side I/O
management operations to the host to provide predictable per-
formance. In this paper, we demonstrate that these host-issued
I/O management operations lead to performance interference
with host-issued I/O. Indeed, we find that the I/O management
operations introduced by ZNS and FDP create I/O interfer-
ence, leading to significant performance losses. Despite the
performance implications, we observe that ZNS research fre-
quently uses emulators (over 20 recently published papers),
but no emulator currently has function-realistic models for I/O
management. To address this gap, we identify ten ZNS I/O
management designs, explain how they interfere with I/O, and
introduce ConfZNS++, a function-realistic emulator with na-
tive I/O management support, providing future research with
the capability to explore these designs. Additionally, we intro-
duce two actionable host-managed solutions to reduce ZNS
management interference: ZINC, an I/O scheduler prioritizing
I/O over I/O management, and the softfinish operation,
a host-managed implementation of the finish operation. In
our experiments, ZINC reduces reset interference by 56.9%,
and softfinish reduces finish interference by 50.7%.
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Table 1: Performance models supported in ZNS emulators;
models with “—” are incomplete.

Model FEMU NVMeVirt ConfZNS ConfZNS++

Read and write ✗ ✓ ✓ ✓

Reset ✗ — — ✓

Finish ✗ ✗ ✗ ✓

Zone mapping ✗ ✗ ✗ ✓

CCS CONCEPTS
• Information systems → Storage management; Flash mem-
ory; • Software and its engineering → Secondary storage.

KEYWORDS
ZNS, Interference, NVMe Flash Storage, Emulation

1 INTRODUCTION
Solid-state drives (SSDs) have become the de facto standard
for storing and processing data at high speeds. Today, SSDs
can deliver microsecond access latencies, millions of I/O oper-
ations per second, and gigabytes of bandwidth per second [53].
However, delivering predictable SSD performance is challeng-
ing due to the significant required management effort for flash-
based SSDs [2, 42] (e.g., garbage collection, parallelism man-
agement, wear-leveling). This flash management is tradition-
ally hidden from the host behind the block interface, which
exposes the SSD as a read/write anywhere device. To support
this block-based interface, an SSD manages media transpar-
ently in the background but causes significant performance
interference and, as a result, performance unpredictability in
both latency and throughput [4, 15, 19, 20, 24, 33, 41].

To resolve this unpredictability, researchers have advocated
for extending the conventional block-based SSD interface to-
ward a more host-controlled interface. Examples of such inter-
faces include Software-Defined Flash (SDF), Open-Channel,
Streams, and recently introduced Zoned Namespaces (ZNS)
and Flexible Data Placement (FDP) [1, 4, 5, 29, 48]. We call
SSDs, which support such interfaces, data placement SSDs.

https://doi.org/10.1145/3688351.3689160
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Data placement SSDs give the host more control through ex-
plicit I/O management operations and typically group data in
storage units, e.g., zones in ZNS.

Among these data placement SSDs, ZNS and FDP intro-
duce I/O management operations to finish storage units,
which allow the host to instruct the device to write out the unit
with dummy data to release storage resources. This process
of filling a unit is a key part of the reliability management
of flash-based media, as it ensures that all media pages are
programmed, either due to two-phase programming [6], pro-
gram disturbs [10], or other media-related requirements [7].
In addition to finish, ZNS offers the ability to explicitly
reset a zone, which invalidates any data associated with the
zone and allows the host to reuse the zone for writing again.

While interference between I/O operations (i.e., read–
write) is a well-studied phenomenon in data placement
SSDs [3, 14, 41, 54, 58], interference caused by I/O manage-
ment operations has yet to receive attention. This understudy
is despite initial evidence demonstrating that I/O management
operations (e.g., finish) have a non-negligible impact on
I/O performance [45]. The source of such interference lies in
how SSD-internal resources (e.g., NAND chips, dies, planes,
channels, caches) are shared between storage units, I/O oper-
ations, and I/O management operations [59].

In this paper, we take a step back and systematically ex-
plore the design space of I/O management operations. We
first demonstrate and quantify the performance (interference)
of finish and reset on I/O operations on two types of com-
mercially available SSDs: one with ZNS support, the Western
Digital Ultrastar DC ZN540, and another with FDP support,
which remains anonymous. We make eight observations, re-
port three key findings, and introduce a novel quantitative
model to quantify management interference, which together
indicate that management interference is significant.

While I/O management interference is significant, we
report that all currently available ZNS emulators, i.e.,
FEMU [40], NVMeVirt [35], and ConfZNS [59], do not
have a function-realistic performance model for management
operations. For example, they use a static cost for manage-
ment operations, which has a dynamic cost. Further on, they
assume a direct mapping of zones to physical resources, but
mappings can be dynamic in ZNS [18, 45]. Despite this lack
of performance realism, these emulators have been widely
used in recently published literature [11–13, 18, 21, 22, 31,
35, 37–39, 43, 44, 46, 51, 55, 59, 62, 68, 69], which may not
accurately reflect the performance when zones are finished.

Therefore, there is an explicit need to explore the design
space of host-issued I/O management operations, incorporate
them into emulators, and control I/O management interfer-
ence. In this work, we take a two-pronged approach to address
this need for ZNS. First, we identify ten key I/O management
operation design choices and incorporate them into a new

emulator, ConfZNS++. ConfZNS++ is implemented as an
extension of the recently published, state-of-the-art ConfZNS
emulator [59] and extends the emulator with explicit support
for I/O management operations and zone mappings. In Con-
fZNS++, we incorporate seven of our discussed I/O manage-
ment operation designs. As shown in Tab. 1, ConfZNS++ pro-
vides a more function-realistic performance model, allowing
host-based software to explore I/O management designs. We
verified ConfZNS++ by demonstrating similar performance
trends to the ZN540 SSD and prior research [14, 28, 44].

Second, we design and implement two novel host-managed
solutions to reduce I/O management interference: ZINC, a new
I/O scheduler, and the softfinish operation, finish
implemented on the host. ZINC (ZNS interface-aware NVMe
command scheduler) relies on the assumption that I/O man-
agement operations typically run in background processes
with lower urgency than foreground I/O. ZINC prioritizes
I/O over I/O management and reduces reset interference
by 56.9%. Softfinish implements finish on the host
instead of the device to give the host more control over in-
terference. Conventional finish transparently informs the
SSD to fill a zone with writes, but when and how the zone is
filled is beyond the host’s control. As an alternative, finish
can be implemented obliquely on the host by manually writ-
ing the unoccupied part of the zone. Softfinish uses this
alternative; it uses host-managed write operations to fill
zones and reduces finish interference by 50.7%.

We summarize our key contributions in this work as fol-
lows:

• We identify and quantify the performance interference
of ZNS I/O management operations (i.e., reset and
finish) on I/O operations for a commercially avail-
able NVMe ZNS device and showcase that finish’s
latency model generalizes to ZNS and FDP SSDs.

• We introduce a quantitative model to quantify manage-
ment on I/O performance interference.

• We design and implement ConfZNS++, a function-
realistic emulator with performance (interference) mod-
els for management operations and zone mapping.

• We propose two methods to mitigate ZNS manage-
ment performance interference on the host, I/O sched-
uler ZINC, which reduces reset interference by up to
56.9%; and softfinish, finish implemented in
host software, which reduces finish interference by
up to 50.7%.

• We publish all our code and data at https://github.com
/stonet-research/systor-confznsplusplus-artifact to
encourage reproducible research.

https://github.com/stonet-research/systor-confznsplusplus-artifact
https://github.com/stonet-research/systor-confznsplusplus-artifact
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Figure 1: Normalized ZNS finish and FDP handle
update latency with increasing storage unit occupancy.

2 MOTIVATION
In this section, we motivate addressing I/O management per-
formance interference by giving background on I/O manage-
ment operations, demonstrating that these operations are not
endemic to ZNS but to flash management, and conducting
an I/O management interference study on ZNS. Last, we
introduce a quantitative I/O management interference model.

2.1 Background on I/O Management
SSDs with data placement support, such as ZNS and FDP, are
designed to manage data placement efficiently. This efficiency
is achieved by defining a storage unit that aligns with the phys-
ical characteristics of the underlying media. The result is an
implicit contract that enables the host and device to collab-
orate on data placement. In the case of ZNS, this efficiency
is demonstrated through the use of zones, where the storage
capacity is divided into sequential-write-only zones with a set
of LBAs managed as a single unit. Similarly, FDP introduces
reclaim units, which the host can access through a reclaim
unit handle. This handle serves as a reference to a writeable
storage unit at any given time and is passed together with
a specific write operation. The focus of this work is on two
prevalent I/O management operations: finish and reset.
Finish: Due to the limited resources within an SSD and
media-related requirements [6, 9], an SSD typically only sup-
ports a small number of active storage units. An active storage
unit is a partially written unit that is yet to be filled. For exam-
ple, for the ZN540 SSD, there is a maximum of 14 active/open
zones, i.e., zones that can be in a partially written state.

Due to this limit, the host does not always have sufficient
data to write into a specific storage unit and may, therefore,
choose to “finish” a storage unit prematurely to increase the
number of units where it can place its data. A finish is issued
with finish in ZNS and handle update in FDP. Issuing
this I/O management operation informs the device that it
should free up resources by finishing up the unit. However,
this is not a free operation.

Fig. 1 illustrates the costs of finishing storage units at dif-
ferent occupancies. The three lines represent the normalized

Table 2: Benchmarking environment.

CPU Dual socket Intel(R) Xeon(R) Silver 4210 CPU @
2.20GHz, 10 cores/socket, no hyper-threading

DRAM 256 GiB, DDR4

Storage WD Ultrastar® DC ZN540 ZNS 1TB SSD. 904 zones
with zone capacity 1,077 MiB; anonymous FDP SSD “A”
and ZNS SSD “B” and “C”

Software Ubuntu 22.04, kernel 6.3.8, modified fio with append
and finish support (based on v3.32)

time it takes to finish a storage unit (i.e., zone or reclaim unit)
at a given occupancy for three commercially available SSDs:
A ZN540 SSD, a TLC-based FDP SSD “A,” and a TLC-based
ZNS SSD “B.” Interestingly, they each show the same be-
havior and the time to finish a storage unit directly correlates
to its occupancy (a prior study showed similar results [14]).
To provide a guiding reference to the normalized results, it
takes approximately one second to finish a nearly empty zone
on the ZN540. Further, this finishing time equals the cost of
writing the zone on the ZN540. This equality is due to the
finish internally filling up the unoccupied pages of the zone
with writes, i.e., a finish is a series of device-issued writes.

Furthermore, we performed the same benchmark on a QLC-
based ZNS SSD “C,” which utilizes a write-back SLC buffer
(see [57]) before writing to QLC. In that specific case, there
was no link between the finish time and occupancy. We as-
sume this is because data is initially stored in the SLC buffer,
thus hiding the late write of the QLC. We, therefore, limit our
study to SSDs without such write-back buffers.
Reset: Specific to the ZNS interface, it offers the capability
to “reset” a zone through a single atomic operation, reset.
Resetting a zone invalidates all host data associated with that
specific zone and enables it to be written again. The reset
explicitly informs the device that the physical resources as-
sociated with the zone can be recycled and reused for other
purposes (e.g., to serve writes to another zone). This type
of operation is often metadata-heavy on the SSD, as it must
perform significant updates to its mapping table [27] to un-
map each logical block address to be invalid. Furthermore,
recycling the media enables various designs, such as delaying
block erasures or issuing them immediately. While our eval-
uated SSDs show that they delay erasures until new writes
occur, we explore various other designs in §4.

To summarize, both I/O management operations compete
for the same resources as I/O. Therefore, we now explore the
interference of these two operations on I/O performance.

2.2 I/O Management Interference Study
Below, we demonstrate the quantitative evidence of interfer-
ence between I/O and I/O management operations on ZNS.
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Figure 2: Finish interference on (a) write; (b) read.

Setup: Our benchmarking setup is shown in Tab. 2. We de-
ploy all our benchmarking workloads on the ZN540 ZNS
SSD. To confirm the generalizability of our finish interfer-
ence results, we repeated our finish experiments on ZNS
SSD “B” and made similar observations. We evaluate the in-
terference of all I/O management (i.e., finish and reset)
operations on all I/O operations exposed by ZNS. ZNS ex-
poses two I/O operations for writing: write and append;
and one operation for reading: read.

We benchmark I/O management interference by running
a fio [25] process with two concurrent threads: a foreground
thread running I/O and an interfering background thread run-
ning I/O management. Both threads are spatially separated
(disjoint zones). We measure performance as the foreground
thread’s average throughput and P95 latency.

We scale the foreground thread’s I/O using a setup similar
to a previous study [14]. We define scalability in the concur-
rency level (CL), which is the number of concurrently issued
operations. Write is inter-zone scalable (concurrent oper-
ations in disjoint zones), and append and read are intra-
zone scalable (concurrent operations in a single zone). With
inter-zone scalable operations we increase CL with the num-
ber of threads, each to a disjoint zone, and with intra-zone scal-
able operations we increase CL by increasing a single thread’s
queue depth to a single zone. For write and append, we
use concurrency levels 1–7, and for read 1–128 in powers
of 2 (based on each operation’s saturation point).

We scale the background thread’s management operations
by increasing its intensity. Intensity is the maximum allowed
throughput per second and is controlled by throttling an op-
eration to a percentage of its peak performance (e.g., 50%).
Before each workload, we first measure the operation’s peak
performance to determine the intensities to evaluate. In a
workload, each finish is additionally preceded by a single
page write as finish only affects zones with data; we
assume this write’s interference is negligible.

For reset and read we prefill their assigned zones.
We modify fio to support finish and append as work-
loads and exclusively use the io_uring passthrough mecha-
nism [26]. io_uring passthrough delivers operations directly
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Figure 3: Reset interference on (a) write; (b) read.

to the NVMe device driver, bypassing the block layer, which
achieves performance close to the device hardware.
Finish interference: We now evaluate the interference
of finish on I/O. Fig. 2 shows finish on I/O interfer-
ence. The figure shows I/O performance in KIOPS (x-axis,
higher is better) and P95 latency (y-axis, lower is better). The
points on the lines represent the CL, and we observe that
the throughput and latency increase monotonically with the
CL (hence, one line is annotated). Each line is presented
with a different percentage, indicating finish intensity. We
measure peak finish throughput as 1.1 GiB/s (∼1 IOPS);
for example 25% equals approximately one operation every
four seconds. In the plot, when an I/O operation saturates
the device, a queuing effect takes place where the throughput
remains stable, but latency increases sharply. We call this
point the saturation point. For example, write’s saturation
point is at the knee of the 0% line (CL=3, 149.3 KIOPS at
25.7 𝜇s). Note that we do not plot append interference as
it is comparable to write interference except for 50% past
CL>2; append throughput decreases past this point (we do
not know the reason for this anomaly). The similarity between
write and append is expected as both issue the same op-
erations to flash; they only differ in their implementation
firmware (e.g., acceleration).

We observe that finish interferes significantly with all
three I/O operations and make four observations. First (Obs
#1), write operations (i.e., write and append) do not ex-
perience interference before their saturation point (CL=3
in Fig. 2a). Write performance at CL<3 is identical for all
finish intensities. Second (Obs #2), write interference is
significant beyond the saturation point and increases with the
concurrency level. Write interference is highest at CL=7
(marked “A” and “B”), where it achieves 150.0 KIOPS and
101.9 𝜇s in isolation and 131.1 KIOPS (12.6% lower) and
128.5 𝜇s (20.7% higher) at 50% finish. Third (Obs #3),
we observe that finish on read interference occurs irre-
spective of the saturation point (Fig. 2b), i.e., occurs at all
concurrency levels. At CL=1, read achieves in isolation
11.3 KIOPS and 95.7 𝜇s, and at 50% finish, 7.8 KIOPS
(31.4% lower) and 272.4 𝜇s (2.8× higher). Fourth (Obs #4),
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finish on read interference increases significantly with
the concurrency level. At the highest concurrency level,
CL=128 (marked “C” and “D”), read achieves in isola-
tion 294.5 KIOPS and 749.6 𝜇s and at 50% finish only
169.1 KIOPS (42.6% lower) and 2.2 ms (2.9× higher). For all
I/O operations, finish interference is due to both operation
types sharing the same hardware resources.
Reset interference: We now evaluate reset interference
on I/O. Fig. 3 shows reset on I/O interference. Note that
we do not plot reset on append as it interferes similarly
to reset on write. The percentage indicates reset in-
tensity as a percentage of the peak reset throughput. Note
that the SSD performs reset faster than a typical media
erase operation; hence, we assume that the reset operation
is solely performing internal book-keeping operations, e.g.,
invalidating LBA entries. We measure its peak throughput
(100% reset) to be 62 IOPS with an average latency of
16 ms (>62 GiB/s). This peak performance is confirmed by
earlier research, which evaluated ZN540’s reset latency to
be high (i.e., 15–30 ms) [14].

We make four observations. First (Obs #5), reset on
write interference (Fig. 3a) is significant, but only at high
intensities (i.e., 25% and beyond). At the highest CL from 0%
reset intensity to 25% and to 50% rates, the peak through-
put degrades from 149.3 KIOPS to 124.8 KIOPS (16.5%
lower) and 97.6 KIOPS (34.6% lower than 0%), respectively.
Second (Obs #6), reset has a significantly greater impact
on write throughput than tail latency. Third (Obs #7), there
is only reset interference past the saturation point (CL=3).
Fourth (Obs #8), unlike ZNS write operations, reset has
negligible interference on read (Fig. 3b). This implies that
reset and data writing commands share either ZNS internal
flash channels, dies, or metadata structures in spite of the
fact that these commands are issued to disjoint sets of zones;
hence competing for resources. In the case of read, no such
bottleneck is seen, with a slight performance difference due to
command scheduling overheads (as indicated by the slightly
diverging lines at high concurrency levels in Fig. 3b).

2.3 I/O Management Interference Model
Since no standardized model to quantify the interference level
exists, we define a first-order quantifiable model to reason
about interference levels among I/O management operations.
This model is inspired by the earth mover’s distance in a 2D
space. We denote management interference as 𝑀 𝐼𝑛𝑡𝑒𝑟 . We
model 𝑀 𝐼𝑛𝑡𝑒𝑟 in terms of two variables, P95 latency, and
IOPS throughput, as we increase the concurrency level. We
define 𝑀 𝐼𝑛𝑡𝑒𝑟 as the throughput/latency deviation between an
operation running in isolation (iso) and an operation running
concurrently with other operation(s) (int)—larger deviations
indicate more interference. The model’s intuition is that for
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two curves (with and without interference), we calculate the
distance between each concurrency level’s two points in a
normalized 2D space. We model 𝑀 𝐼𝑛𝑡𝑒𝑟 as:

𝑀 𝐼𝑛𝑡𝑒𝑟 =
1

𝑛

𝑛∑︁
𝑖=1

√︁
𝛼 × (Δ𝑇𝑖 )2 + 𝛽 × (Δ𝐿𝑖 )2 (1)

With:
[𝛼 + 𝛽 = 1, 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1]

Δ𝑇𝑖 = (
𝑇 𝑖𝑛𝑡
𝑖 −𝑇 𝑖𝑠𝑜

𝑖

𝑇 𝑖𝑠𝑜
𝑖

) (2)

Δ𝐿𝑖 = (
𝐿 𝑖𝑛𝑡
𝑖 − 𝐿 𝑖𝑠𝑜

𝑖

𝐿 𝑖𝑠𝑜
𝑖

) (3)

In our model, T constitutes throughput and L latency. The Δ𝑇
(Equation 2) and Δ𝐿 (Equation 3) capture the relative differ-
ence in throughput and latency between iso (0% interference)
and int (>0% interference) for a given concurrency level. In-
teger i indicates this level and scales up to user-configured
maximum of n. Equation 1 takes the root mean square sum
of the relative shift in throughput and latency with 𝛼 and 𝛽

weights (currently: both 0.5). Workloads can configure the
weights based on their affinity for throughput or latency.

In this work, we bound our workloads between 0–50%
interference, with interference having a decreasing monotonic
impact on the isolated performance run (i.e., 50% interference
having more impact than 25% interference). For example,
we show two points in Fig. 2b, C (T: 294.50 KIOPS, L:
749.57 𝜇s) on 0% interference, and D (T: 169.09 KIOPS, L:
2,179.02 𝜇s) on 50% interference. Based on these numbers,
we calculate the single interference level for CL=128 as:√︃
0.5 × ( 169.01−294.50294.50 )2 + 0.5 × ( 2179.02−749.57749.57 )2 =

1.38. The 𝛼 and 𝛽 values significantly impact the re-
sulting 𝑀 𝐼𝑛𝑡𝑒𝑟 value. For example, interference at CL=128
is latency-dominant, and reducing its interference is thus
more important for latency-sensitive applications (e.g.,
write-ahead logs). Setting the 𝛼 to 0 and the 𝛽 to 1 leads to
an 𝑀 𝐼𝑛𝑡𝑒𝑟 of 1.91, and setting the 𝛼 to 1 and the 𝛽 to 0 leads
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to 0.43. In our setup, we have not explored this scenario
and keep both values equal; however, we envision an online
optimized/explorer using model equations with 𝛼 and 𝛽

values emphasized for throughput or latency.
Apart from the graphs shown thus far (Fig. 2, Fig. 3), we

run additional combinations of I/O and I/O management op-
erations. Fig. 4 shows our results for all I/O and management
combinations for the interference quantification between 0%
and 50% interference. We report that the interference values
are different for each combination but omnipresent. There are
combinations that have high interference (finish on read,
1.17) and combinations with low interference (reset on
read, 0.05). Note that finish on append is higher than
finish on write due to the earlier-mentioned anomaly.
Based on the differing 𝑀 𝐼𝑛𝑡𝑒𝑟 values, the host should treat I/O
management operations accordingly.

2.4 A case for Addressing I/O Management
Interference

Based on our observations, we have three key findings:

(1) Finish has a significant impact on the tail latency and
throughput of all concurrent I/O operations.

(2) Reset has an impact on the tail latency and throughput
of concurrent writes and appends at high reset
intensity (faster than a zone can be written).

(3) Operations that fill up resources like finish are
present in multiple flash interfaces, e.g., in FDP, show-
casing a need for addressing interference beyond ZNS.

We have also evaluated if NVMe namespaces provide perfor-
mance isolation by repeating our experiments across multiple
namespaces. We still observed I/O management interference
across namespaces; hence, namespaces do not provide I/O
management performance isolation. Together, these findings
illustrate that (ZNS) SSDs have significant I/O management
interference that needs to be addressed.

3 HOST-MANAGED SOLUTIONS FOR
ADDRESSING INTERFERENCE

In this section, we showcase two actionable host-
managed solutions to control I/O management interference:
softfinish, an implementation of finish on the host,
and ZINC, a new I/O scheduler. Both are visualized in Fig. 5.

3.1 Softfinish
Finish fills a zone by writing the unoccupied pages in
a zone (§2.2) but does not give the host control over this
writing. The performance model is thus static and etched into
the SSD’s firmware. This inflexibility leads to a semantic gap
between the host and the device. This gap is due to the host
being oblivious to the writing (design options detailed in §4.1)
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Reset
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FinishRead/Write

Finish
Write(s)

ZNS SSD 

B

ZINC

Reset

Zone 1 Zone N...

FinishRead/WriteSoftfinish

 Write(s)

Finish
Write(s)

Figure 5: Host-managed solutions for ZNS: (A) state-of-the-
practice; (B) Combination of ZINC and softfinish.

and the device being oblivious to the host’s demands. Due
to this gap, the host can not control when and how finish
is executed. For example, when a finish is critical, it can
not be prioritized, and when concurrent I/O is more critical,
finish can not be slowed down. Further on, a finish can
not be controlled by I/O schedulers on the host. Therefore,
we propose softfinish, which replaces finish with a
series of host-managed writes.
Softfinish is host-managed and provides semantics to

control finish intensity, addressing the semantic gap. There
are two parameters to control this intensity: the granularity
of write requests and pauses between subsequent writes.
A softfinish with large writes completes faster, reduc-
ing latency but increasing 𝑀 𝐼𝑛𝑡𝑒𝑟 on concurrent I/O. Sim-
ilarly, 𝑀 𝐼𝑛𝑡𝑒𝑟 can be reduced by increasing the pause be-
tween writes. Another benefit of using writes is that any
host-managed I/O scheduler, e.g., ZINC, can schedule these
writes. I/O schedulers thus (re)gain control over finish.
Disadvantages of softfinish are that each write adds
round trip time to the finish latency, and softfinish
can not be hardware-accelerated on the SSD. Further on, every
write adds additional DMA traffic, increasing the perfor-
mance cost for softfinish, especially as the write gran-
ularity decreases. Softfinish should thus be used when
I/O is of higher urgency than I/O management performance.

3.2 ZINC I/O Scheduler
I/O interference on the host is commonly controlled with
I/O schedulers. These allow for improving performance QoS
without application changes. Instead, practitioners have to
swap the SSD’s attached scheduler. This transparency is ben-
eficial for addressing I/O management as the interference
model differs between SSDs (see §4), and altering applica-
tions for each SSD is costly. Previous research has shown
that I/O schedulers effectively address flash I/O interference,
e.g., write-on read-interference [23, 61, 66]. Therefore, we
postulate addressing I/O management interference with I/O
schedulers.

To this end, we design a scheduler, ZINC, that (1) accounts
for the highly asymmetric performance of I/O management
operations (e.g., up to 4 orders of magnitude differences from
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I/O); and (2) reduces I/O management interference for concur-
rent I/O. We design ZINC for generic I/O management opera-
tions but verify its applicability on the reset and finish
operations of the ZN540 SSD (§2.2). ZINC is designed as a
plug-and-play scheduler to allow switching the scheduler dur-
ing runtime and uses the Linux kernel I/O scheduler interface.
We base its read and write functionality on the state-of-
the-practice mq-deadline scheduler. The mq-deadline sched-
uler ensures that only one write is issued to a zone concur-
rently and is, therefore, frequently an application requirement
(e.g., ZenFS [65]). A disadvantage of mq-deadline’s design
is that it does not schedule I/O management operations but
immediately dispatches them (see Fig. 5).

ZINC dispatches I/O and I/O management operations from
software queues to hardware queues and prioritizes I/O over
management I/O operations. ZINC achieves prioritization by
sending I/O management operations at low intensity and throt-
tling them when necessary. Intensity is controlled with the
reset epoch parameter, which presents a static timing window
between issuing consecutive operations. I/O management op-
erations are always sent serially and are only dispatched at
the end of each window to reduce their intensity to one con-
current operation. At the end of each window, ZINC analyzes
the intensity of the concurrent workload—in particular, it
considers (1) the amount of I/O completed since the last is-
sued management operation; and (2) the latency cost of the
issued I/O management operation compared to the ongoing
I/O operation (i.e., their relative cost). ZINC uses this analysis
to decide whether to dispatch or retain an I/O management
operation. A management operation is dispatched if the num-
ber of issued (past and present) I/O operations has passed a
configurable threshold, write tokens, to ensure fairness. If this
threshold is not reached, the management operation is delayed
and retained in the management queue. To prevent starvation,
management operations are immediately dispatched after they
are retained for a fixed amount of windows, defined by maxi-
mum epoch holds. Lastly, since management operations do
not lead to interference at low concurrency levels (see §2.2),
management operations are, therefore, only retained in the
queue if the workload intensity is high, defined by a mini-
mum concurrency threshold. If the I/O intensity is lower than
this threshold, management operations are always dispatched
immediately. As a result, this threshold can also be used for
high priority I/O management operations (e.g., no more ac-
tive zones) because if the amount of concurrently-issued I/O
reduces, which typically happens if I/O needs to wait for high
priority operations, the threshold is no longer reached.

Note that regardless of ZINC’s configurations, it is not de-
signed to be the best scheduler in every scenario; it is designed
to showcase that management interference can be reduced
for an application’s needs at the cost of the performance of

management operations. If this is not desirable, it can be
configured to be identical to no scheduler.

4 DESIGN AND IMPLEMENTATION OF
CONFZNS++

In this section, we discuss the design choices and their perfor-
mance implications for reset, finish, and zone mapping,
as well as how we implemented seven of them in ConfZNS++.

4.1 Finish
Finish informs an SSD to release a zone’s resources by
filling the zone. A zone is filled by writing the unoccupied
pages of the zone with dummy data (see §2.1). A finish is
thus equivalent to a series of subsequent writes but device-
issued instead of host-issued. When designing ZNS SSDs, it
should be specified when and how to issue these device-issued
writes. This design choice has direct performance implica-
tions not only for the performance of finish, but also for
concurrently running I/O. It affects I/O because device- and
host-issued I/O contend for the same flash resources. Current
literature does not detail finish designs; thus, we introduce
three different finish designs (in §5.2, we show their sim-
ilarities to physical ZNS SSDs in ConfZNS++). All these
designs are realistic methods of filling a zone.

We discuss the three finish designs around the inten-
sity of their writes. Higher intensity leads to more inter-
ference with concurrent I/O but lower finish latency. We
discuss two method types to control intensity: static (i.e.,
fixed) and dynamic. Static methods concern the write re-
quest granularity and pause time between subsequent write
requests. Larger requests lead to higher intensity as larger
requests block underlying resources for an extended duration.
Shorter pauses lead to higher intensity. Dynamic methods al-
ter finish behavior based on concurrent I/O. For example,
decreasing finish’s write intensity if there is concurrent
I/O. Intensity can be decreased by stalling or preempting
finish’ writes during heavy I/O load. Prioritizing one
I/O operation is a common optimization in I/O schedulers. For
example, Kyber and FIOS prefer read over write [49, 52].

4.2 Reset
As explained in §2.1, reset informs the SSD that a zone’s
physical resources are ready to be reused, and its flash blocks
should eventually be erased. The host, however, has no control
over when and how these erasures happen; the device dictates
these. In this section, we discuss five different reset designs,
their relation to erasures, and their implications for the host.

The first design choice is when to erase. This choice in-
volves two types of reset: synchronous and asynchronous.
A synchronous reset immediately erases a zone’s blocks,
giving the host control over block erasure. This design has the
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Figure 6: Storage operations for reset followed by two writes: (A) direct mapping; (B) dynamic lazy mapping.

advantage that the host can reduce erasure interference, e.g.,
by not concurrently issuing reset and I/O. A disadvantage
of synchronous reset is that it is stressful for NAND to be
in a prolonged erased state as it leads to more hardware errors
as time progresses [8]. Additionally, synchronous reset
leads to high I/O management latency as flash erasures are
expensive, i.e., a representative TLC NAND [30] takes 3.5 ms
to be erased compared to 700 𝜇s for a write (program). Asyn-
chronous reset defers erasures and only updates metadata.
Typically, for asynchronous reset blocks are only erased
when they need to be reused (reduces NAND stress by short-
ening the erased state). For example, the first write to a
zone erases all of the zone’s blocks, or the first write to a
block erases the respective block (see §4.3).

The second design choice is how to erase. This choice is
important because a zone’s blocks can be erased indepen-
dently. Further on, similar to reads and writes, each erasure
blocks the underlying flash resources until it is completed,
leading to interference. Thus, erasing a zone constitutes mul-
tiple independent erasures that each interfere with concurrent
I/O. An optimization that addresses this choice is partial
erasures [28, 44]. A partial erasure only erases a zone’s (par-
tially) occupied blocks; all empty blocks are ignored. This
design is useful if the host resets partially filled zones
as it reduces the number of erasures. Partial erasures lead
to reduced latency and longer flash endurance as erasing is
expensive. To implement partial erasures, an SSD needs to
know the write pointer of a zone and a zone’s block mapping.
The alternative to partial erasures is full erasures, erasing
all blocks unconditionally. The advantage of full erasures is
lower complexity; the disadvantage is an increased number of
erasures. A second reset design that addresses how to erase
is preemptive zone reset [28]. This design recognizes that
a reset is composed of multiple erasures and that a reset
can be paused between erasures. Pausing is beneficial if there
is a concurrent I/O workload. This design pauses resets
and preempts erasures if there is concurrent I/O. Preemption
reduces interference on concurrent I/O by decreasing reset
intensity. However, its disadvantage is that it increases the
time it takes for a block to be ready for writing (for both
synchronous and asynchronous reset).

4.3 Zone Mapping
Another ZNS design choice is the mapping of zones to physi-
cal resources. The ZNS standard allows (re)mapping a zone
to different flash resources over an SSD’s lifetime; hence, the
host is oblivious to a zone’s flash resources. For example, a
zone can be remapped to different blocks after it is reset.
Remapping aids wear-leveling and allows asynchronous I/O
management operations to be implemented without blocking
the next I/O (i.e., no need to wait for a zone’s blocks to be
erased). We define two forms of zone mapping in ZNS: direct
and dynamic. We illustrate examples of both types in Fig. 6.

Direct mapping is a static mapping of zones to physical
resources (i.e., channels, ways, planes). Synchronous reset
for direct mapping is visualized in A (Fig. 6); reset erases
the zone’s blocks, and the subsequent write uses the same
flash resources as before the reset. Direct mapping allows
for a predictable performance model but has wear-leveling
challenges as writes are not evenly distributed.

Dynamic mapping addresses the wear-leveling challenge
as its mapping of zones to physical resources is not fixed [44].
Dynamic mapping also allows hiding the latency cost of I/O
management operations with asynchronous resets. For ex-
ample, if zone “X” is reset, the SSD can invalidate zone
“X” and transparently map “X” to new resources (while the
originally mapped resources are erased in the background). A
prominent form of dynamic mapping is lazy mapping [18, 44].
In lazy mapping, a zone is not mapped to physical resources
until it receives its first write. On the first zone write, the
SSD checks if empty blocks are available. If there are, the
zone is mapped to these blocks. If not, the zone is mapped to
non-empty (invalidated) blocks, and all of these blocks are
erased before the issued write. Lazy mapping’s procedure
of a reset followed by a write is visualized in B . Due to
postponing erasures, lazy mapping leads to erasure latency
on the first zone write. Alternatively, lazy mapping can be
implemented to only erase on the first write to a block,
spreading erasures over a zone’s writes.

4.4 ConfZNS++ Implementation
We have detailed ten designs for reset, finish and zone
mapping. Despite their performance implications, none of
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these designs are implemented in the state-of-the-art em-
ulators for ZNS. We detail the current state of function-
realistic ZNS emulation in Tab. 1. Both ConfZNS [59] and
NVMeVirt [35] have a function-realistic model for I/O op-
erations. They support direct mapping from zones to flash
resources, which includes channels, planes, and dies. Read
and write completion latency is implemented as the next
time a resource will be available (i.e., queues), and each
operation adds its respective configurable (e.g., SLC, TLC) la-
tency. However, as of writing, both emulators do not emulate
finish’s latency. They also do not support asynchronous
reset, partial erasures, or resource blocking erasures. Lastly,
they do not support dynamic zone mapping.

To address this gap, we introduce the ConfZNS++ emu-
lator, which supports seven of our discussed designs (we do
not implement preemptive reset, pauses in finish, or dy-
namic finish). ConfZNS++ is built on top of the ConfZNS
emulator because it is state-of-the-art; hence, ConfZNS++
has all of its I/O functionalities. ConfZNS++ additionally sup-
ports synchronous finish, implemented as a sequence of
sequential writes (same latency model and implementation).
These writes are issued one at a time and at a configurable
granularity, exposing the finish intensity design choice.
On write completion, ConfZNS++ issues a new write
unless the zone is full (respecting ZNS’ sequential write con-
straint). ConfZNS++ implements resource-blocking erasures,
synchronous and asynchronous reset, and partial and full
zone erasures. In order to support reset, we add block
mapping (apart from already extant plane, channel and die
mapping). With block mapping, each zone is linked to blocks,
parallelized, and striped over its channels, ways, and planes.
On a reset, a zone’s blocks are erased according to the
specified latency model, and their combined latencies are
added to the completion time of the respective channels and
planes. Synchronous reset adds latency to the underlying
resources immediately upon issuing a reset. With the asyn-
chronous reset model, the reset latency equals the round
trip time, and the erasures are fused with a later write or
append to a zone, see §4.3. In order to implement partial era-
sures, we only add the erasure latency of (partially) occupied
blocks, i.e., empty blocks add no latency. Lastly, ConfZNS++
supports lazy mapping, which is implemented as a queue of
virtual and physical zones. The host interacts with virtual
zones; physical zones are assigned on the first write to a zone.
If the physical zone has data, it is first erased.

5 EVALUATION
In this section, we establish the efficacy of our host-managed
solutions and showcase the implications of I/O management
designs using our ConfZNS++ emulator.
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Figure 7: Device- and software finish interference on I/O.

5.1 Host-managed Solutions for Addressing
Interference

In this section, we evaluate if we can reduce management
interference on the host for finish with softfinish
and reset with ZINC. The benchmarking setup is shown in
Tab. 2, and our workloads are identical to §2.2. We evaluate
using the commercially available ZN540 SSD.
Reducing finish interference with softfinish: To
evaluate if softfinish can reduce interference effec-
tively, we compare the operation against finish and estab-
lish the trade-offs its configurations provide. We implement
softfinish directly in fio and expose configurations for
write granularity and pause (§3). We repeat the finish
on write and read experiments from §2.2. We evaluate
softfinish’s configurations, at different granularities and
pause time. We configure softfinish with granularities
of 8 KiB (similar to write in §2.2), 16 KiB, and 256 KiB
and without a pause. We use these granularities to show the
impact of both small and large writes. Additionally, we
repeat the 8 KiB configuration with 50 𝜇s pauses.

Fig. 7a shows finish on write interference. The lines
with “Soft” use softfinish, “Device” uses finish, and
“pause” indicates 8 KiB with 50 𝜇s pauses. We make three
observations. First, finish’s interference model can be ac-
curately reproduced with softfinish on this SSD. 16 KiB
softfinish has the same interference on write as
finish (0.26𝑀 𝐼𝑛𝑡𝑒𝑟 ). Second, write granularity has a sig-
nificant impact on interference. 8 KiB at highest concurrency
reaches 137.5 KIOPS and 116.2 𝜇s (0.13𝑀 𝐼𝑛𝑡𝑒𝑟 ), compared
to 107.2 KIOPS and 150.5 𝜇s for 256 KiB (0.68𝑀 𝐼𝑛𝑡𝑒𝑟 , 5.4×
higher). Third, pause reduces interference significantly. 8 KiB
with pause reach 144.3 KIOPS and 109.1 𝜇s (0.17𝑀 𝐼𝑛𝑡𝑒𝑟 ).

Fig. 7b shows finish on read interference. We have
similar observations to finish on write interference.
256 KiB interference on read is similar to finish on
read interference (1.17𝑀 𝐼𝑛𝑡𝑒𝑟 ). 8 KiB interference is signifi-
cantly less than finish’s interference (1.06𝑀 𝐼𝑛𝑡𝑒𝑟 , 9.2%
lower), with a read throughput of 208.1 KIOPS (23.1%
higher) and latency of 1,957.9 𝜇s (10.15% lower). 8 KiB with



SYSTOR ’24, September 23–24, 2024, Virtual, Israel Doekemeijer, Maisenbacher, Ren, Tehrany, Bjørling, and Trivedi

0 25 50 75 100 125 150 175
Throughput (KIOPS)

0

25

50

75

100

125

150

P
9
5

la
te

n
cy

(µ
se

c)

1 2 3 4

5

6

7

mq-deadline

0% reset

50% reset

ZINC

0% reset

50% reset

Figure 8: Reset on write interference for I/O schedulers.

pause achieves the lowest interference compared to finish
0.58𝑀 𝐼𝑛𝑡𝑒𝑟 , 50.7% lower) with 260.9 KIOPS throughput
(54.3% higher) and 2,056.2 𝜇s latency (5.6% lower). Notably,
256 KiB on read interference is similar to finish, whereas
16 KiB on write interference is similar to finish. For all
configurations, the impact on throughput is higher than on
latency. Thus, for latency-sensitive host workloads, this solu-
tion does not significantly reduce the interference (e.g., for
8 KiB with pauses, 𝛼 = 0 and a 𝛽 = 1, the 𝑀 𝐼𝑛𝑡𝑒𝑟 is 0.06).

We also evaluated the impact of softfinish’s configura-
tions on softfinish’s performance (not visualized). Note
that softfinish adds additional DMA traffic. The over-
heads of this additional traffic should be benchmarked to un-
derstand the effectiveness of softfinish on different hard-
ware platforms; we leave this analysis to future work. In our
experiments, all reported numbers are inclusive of this over-
head. We observe that decreasing the granularity or increas-
ing the pause time decreases softfinish performance. If
running the write experiment for softfinishwith no in-
terference (no finish), throughput degrades from 1.1 IOPS for
256 KiB (identical to device-level finish) to 0.23 IOPS for
8 KiB (78.3% lower) and to 0.1 IOPS (95.1% lower) for 8 KiB
with pause. When running the experiment with concurrent
writes (CL=7, 50%), the performance of softfinish
performance decreases (expected), for example, to 0.30 for
256 KiB (0.14 for finish). Similar to what was observed
in §2.2(not plotted), both finish and softfinish la-
tency decreases with the zone occupancy. Softfinish
thus presents a clear trade-off between finish and I/O per-
formance. If completing softfinish is urgent (e.g., in the
foreground), it should be configured with large granularity
and no pause. If concurrent I/O has higher urgency (e.g., in
the background), small granularity and pauses should be used.

In short, softfinish reduces 𝑀 𝐼𝑛𝑡𝑒𝑟 from 0.26 to 0.17
for write and from 1.17 to 0.58 for read compared to
finish (up to 50.7% lower). Softfinish enables the
host to make a trade-off between finish and I/O perfor-
mance, a trade-off that finish does not provide.
Reducing reset interference with ZINC: We designed
the ZINC scheduler to reduce management interference; be-
low, we evaluate its efficacy. We implement ZINC as a kernel
module by extending the mq-deadline scheduler. To assess if

ZINC reduces reset interference in practice, we repeat the
benchmark from §2.2 and use the Linux storage stack instead
of passthrough to enable Linux I/O scheduler functionality.
The Linux storage stack leads to lower performance than
passthrough [26] but does not change the storage saturation
point or interference patterns. To ensure a fair comparison, we
compare ZINC against the state-of-the-practice mq-deadline.
The ZINC scheduler is configured with a minimum concur-
rency threshold and maximum epoch holds of 3, reset epoch
of 64 ms, and write tokens of 20,000. This configuration leads
to the lowest interference and bounds the reset dispatch
latency to a maximum of 192 ms. We obtained this configu-
ration through grid search and used multiples of the reset
latency as a stepsize for the reset epoch. In our grid search,
we consider throughput and latency interference equally im-
portant and evaluated with an 𝑀 𝐼𝑛𝑡𝑒𝑟 model with an 𝛼 and 𝛽

value of 0.5 (see §2.2). Dependending on the host’s needs,
only these values need to be changed to repeat the search.

Fig. 8 shows reset on write interference for both I/O
schedulers (we only plot 0% and 50%). We observe reset
interference to be significantly less for ZINC (0.11𝑀 𝐼𝑛𝑡𝑒𝑟 )
than for mq-deadline (0.17𝑀 𝐼𝑛𝑡𝑒𝑟 , 56.9% lower). At 50%
interference, ZINC has up to 35.5% higher throughput and
16.4% lower P95 tail latency (evaluated at CL=7) than mq-
deadline. On the other hand, ZINC has higher reset latency.
We evaluated (not visualized) ZINC’s P95 reset latency to
be 20.1 ms at CL=1 and 210.8 ms at CL=7 and mq-deadline’s
to be 19.8 ms at CL=1 and 20.6 ms at CL=7. When there are
no concurrent resets, ZINC also has slightly lower through-
put but no significant latency difference. For example, at
CL=7, throughput is 1.7% lower. Note that we do not plot
reset on read interference as this interference is negligible
for this device (see §2.2).

Last, we evaluate the software overhead of ZINC on the
host by repeating prior interference experiments with ZINC
and mq-deadline and compare their CPU usage. We do not
observe (not visualized) statistically significant differences in
CPU utilization; hence, ZINC does not lead to an increase in
CPU overhead over mq-deadline.

5.2 ConfZNS++
Below, we evaluate ConfZNS++ and showcase the perfor-
mance implications of its various I/O management designs.
We determine the relation between zone occupancy and I/O
management latency, evaluate finish and reset interfer-
ence, and showcase the performance impact of lazy mapping.
Setup: We evaluate ConfZNS++ with a configuration based
on the large zone model of the ZN540 and a latency model
based on a 3D NAND flash SSD [30]. This configuration uses
768 16 KiB page blocks, a zone size of 2 GiB, a zone capacity
of 1056 MiB, and 48 zones (96 GiB SSD). Additionally, we
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Figure 9: ConfZNS++ I/O management latency.

use a parallelism model with an intra-zone scalability of four:
four channels, one way, one die, and one plane. We use this
model to simplify the explanation of our interference results.
We use a latency of 700 𝜇s, 60 𝜇s, and 3.5 ms for flash write,
read, and erasure, respectively. Note that in our experiments,
throughput is lower than in §2.2 as we evaluate without SSD
buffers or caches, which directly exposes flash latency.
Zone occupancy: As discussed in §2.1 and §4, I/O manage-
ment latency depends on zone occupancy. We evaluate this
dependency in ConfZNS++ by repeating the occupancy exper-
iments from §2.1 for both finish and reset under various
configurations. We configure finish with granularities of
16 KiB (page size), 32 KiB, 64 KiB, and 256 KiB to establish
the impact of finish intensity. We configure reset with
synchronous reset (§4) to directly measure erasure latency
and use both full- and partial erasure.

Fig. 9a shows the average finish latency (seconds) as
a function of zone occupancy (percentage of capacity). We
observe a linear relation between occupancy and latency (ex-
pected), from 48.6 s for one-page occupancy to 32.1 𝜇s for
close to full occupancy (6 orders of magnitude). These obser-
vations show similar trends to the physical devices in §2.1.
We also observe higher finish intensity to reduce finish
latency; one-page occupancy with 256 KiB achieves 4.1×
lower latency than 8 KiB.

Fig. 9b shows average reset latency (milliseconds) as a
function of occupancy. Full erasures require, regardless of
occupancy, 77.0 ms, which is equal to the number of blocks a
zone has (88) times the block erasure latency (3.5 ms) divided
by the intra-zone scalability (4). The scalability matters as it
allows multiple erasures to proceed in parallel. Partial era-
sures show an increasing relation between occupancy and la-
tency, confirming prior research [28]. For example, a reset
at 50% occupancy takes 38.5 ms (50% of 77.0 ms).
Finish interference: We evaluate finish interference
using the experiments from §2.2. We change the I/O request
size to 16 KiB (i.e., page size). We configure finish with
the granularities used in our occupancy experiment.

Fig. 10a shows finish on write interference; apart
from “no finish,” all lines are for 50% finish inter-
ference (percentage based on highest throughput, 256 KiB).
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Figure 10: ConfZNS++ finish interference on I/O.

Similar to §2.2, we observe significant finish on write
interference. Further on, we observe interference to increase
with higher finish granularity; this increase is similar
to write granularity in softfinish (see §5.1), con-
firming that ConfZNS++’s finish behaves similarly to
softfinish. At the highest concurrency, write in isola-
tion achieves 5.7 KIOPS and 2.1 ms, whereas write with
concurrent 16 KiB finish reaches 5.0 KIOPS and 2.5 ms
(0.14𝑀 𝐼𝑛𝑡𝑒𝑟 ), and write with concurrent 256 KiB finish
reaches 2.4 KIOPS and 4.3 ms (2.17𝑀 𝐼𝑛𝑡𝑒𝑟 ). 256 KiB leads
to high interference as the flash page size is 16 KiB, and intra-
zone scalability is 4; thus, large (e.g., 256 KiB) requests block
the underlying resources multiple times (i.e., four times). For
similar reasons, we observe no interference at 16 KiB granu-
larity and low CL (<4) because at this granularity, finish
and write combined do not use the full scalability. We
observed similar behavior in §2.2, where a CL below the
saturation point does not lead to interference (see Obs #1–2).

Fig. 10b shows finish on read interference. Observa-
tions are similar to §2.2; finish has significant interference
on read and occurs at all concurrency levels (Obs #3). read
increases significantly with the concurrency level (Obs #4).
Read in isolation achieves 64.8 KIOPS and 2.3 ms, whereas
read with concurrent 16 KiB finish achieves 50.3 KIOPS
and 2.4 ms (1.81𝑀 𝐼𝑛𝑡𝑒𝑟 ), and read with concurrent 256 KiB
finish achieves 26.0 KIOPS and 4.6 ms (5.66𝑀 𝐼𝑛𝑡𝑒𝑟 ).
Reset interference: We evaluate ConfZNS++’s synchro-
nous and asynchronous reset interference by repeating
the reset on write experiments from §2.2. We exclude
reset on read as we are interested in I/O interference in
general. ConfZNS++’s asynchronous reset uses lazy zone
mapping. This mapping is dynamic; therefore, we restart Con-
fZNS++ before each run to ensure reproducibility. In a later
experiment, we evaluate this remapping in more detail.

Fig. 11a shows synchronous reset on write interfer-
ence. We observe significant interference on write. Write
achieves 5.7 KIOPS and 1.8 ms latency in isolation and
2.8 KIOPS and 2.0 ms latency with 50% reset (0.37𝑀 𝐼𝑛𝑡𝑒𝑟 ).
This interference is due to (1) erasures blocking flash re-
sources, and (2) erasures having higher latency than writes
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Figure 11: ConfZNS++ reset interference on write.

(i.e., longer blocking). By directly exposing erasure interfer-
ence in reset, synchronous reset thus enables the host to
optimize by deciding when to issue reset, e.g., with ZINC.

Fig. 11b shows asynchronous reset interference and is,
unlike synchronous reset, insignificant. This lack of inter-
ference is due to asynchronous reset not issuing erasures
(or other flash operations) directly. These erasures are caused
by other operations (e.g., first write to a zone). Thus, asyn-
chronous reset is limited to metadata operations, and there-
fore, it is generally ineffective for the host to schedule reset
to mitigate interference. There is an exception to this rule,
however. We assume the evaluated ZN540 uses asynchro-
nous resets, although it does have observable interference
at high reset intensity because of potential resource con-
tention on non-flash related SSD structures (e.g., metadata).
We do not emulate such behavior in ConfZNS++ as it is un-
related to flash management. Note that regardless of what
causes interference, host-managed solutions such as ZINC are
effective for reducing reset interference (see §5.1).
Erasures in lazy mapping: Zone mapping significantly im-
pacts the performance of both I/O management and I/O opera-
tions. We demonstrate this impact by evaluating the dynamic
lazy zone mapping in ConfZNS++. This mapping issues era-
sures with the first write to a zone (or block), not with reset.
This erasure causes the first zone write to take significantly
longer to complete, which we demonstrate by running two
workloads on both direct (synchronous reset) and lazy map-
ping (asynchronous reset) and measuring the latency of
the first zone write. We reboot ConfZNS++ before each
run. The first workload is sequential fill, which sequentially
fills the device twice with 16 KiB (page size) writes. After
the first fill, all zone mappings in both mapping algorithms
are exhausted (i.e., no unallocated storage), and therefore,
blocks need to be erased before each zone allocation. The
second workload is repeat zone, which repeatedly fills one
zone until all physical blocks are at least mapped twice in
lazy mapping (i.e., we fill the device twice).

For direct mapping, we observe (not visualized) that all a
zone’s writes (also the first) have a P95 latency of 733.2 𝜇s.
For lazy mapping, on the other hand, there is a significant
difference between a zone’s first and subsequent writes.

Similar to direct mapping, the P95 latency for writes is
733.2 𝜇s, but the first write has a higher latency. If there are
flash resources to allocate, i.e., the first fill in sequential fill or
the first number of zone repeats in repeat zone, latency is iden-
tical to subsequent writes. However, if there are no more
resources to allocate, the first write’s latency is 77.7 ms on
average. This latency is equal to the combination of a write
full erasure (77 ms, see Fig. 9b). With lazy mapping, the host
can optimize interference based on a zone’s first write, i.e.,
the host needs to decide when to open a zone for writing.

6 DISCUSSION
In this paper, we demonstrated I/O management interference
on ZNS with micro-benchmarks. Below, we discuss the gen-
eralizability of our experiments in relation to applications.
Finish: In our experiments, we issue finish at a zone
occupancy of a few pages (see §2.2 and §5.1). However,
it is generally more beneficial to finish zones that are
close to full as it reduces space amplification and increases
drive endurance (less writes). Further on, instead of fill-
ing the unoccupied pages with dummy data, operations such
as softfinish can also be designed to fill with applica-
tion data, e.g., read caches [69]. Therefore, ZNS-friendly file
systems/applications such as ZenFS [65] prefer to finish
zones closer to full (not always possible). Regardless of this
preference, the writes issued by finish lead to interfer-
ence. Instead, finish interference concerns a shorter period.
In §2.2, we demonstrate a direct correlation between unit
occupancy and finish latency; thus, finish on “fuller”
zones has reduced latency and fewer writes. Applications
that fill such zones are thus given control over a shorter se-
quence of writes to fill a zone but do have to make the same
design choices (e.g., softfinish intensity).
Reset: In our motivational reset benchmark (see §2.2),
we issue reset at a high number of requests per second.
For example, with the ZN540 SSD, 50% resets amounts to
roughly 62 IOPS (62 GiB/s). This bandwidth is higher than
that zones can be erased; thus, we hypothesize it uses asyn-
chronous reset. Zones can not be filled at that speed; hence,
such reset behavior is reserved for bulk resets, i.e., if
there are large deletes. Therefore, on SSDs with asynchronous
reset, we recommend addressing reset interference for
applications that issue reset in bulk. However, if an SSD
issues a synchronous reset, reset throughput will be sig-
nificantly lower, and these resets lead to interference also
for sporadic usage (see §4). For example, applications such as
the file systems ZenFS [65] and F2FS [36] send small bursts
of reset. For synchronous reset, we thus recommend
addressing reset interference independent of the workload,
for example, with ZINC. Such differences in recommendations
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exemplify that ZNS software should be tested on multiple
designs (e.g., with ConfZNS++).

7 THREAT TO VALIDITY
The results in this work largely confirm ZNS management be-
havior, which is hypothesized in its development. Our experi-
ments and benchmarks are empirically driven, user-observed
behavior for multiple ZNS- and one FDP device. We are
aware that such benchmarking has risks. Therefore, we have
consulted and verified our observations with a global SSD
manufacturer for the SSDs used in §2.2 and §5.1. However,
we are aware that (ZNS) implementations differ between
devices and SSD internals are typically hidden, making it
challenging to generalize our findings. Nonetheless, we be-
lieve this paper makes strong contributions by performing a
first-of-its-kind characterization of I/O management interfer-
ence, exposing this behavior in an emulator, and providing
workable solutions to address such interference on the appli-
cation level for ZNS. We have open-sourced all of our code
and data sets to ensure that other research can use our code
and our research can be reproduced.

8 RELATED WORK
I/O interference on flash-based SSDs is a well-studied but
complex phenomenon [24, 49] and becomes ever more impor-
tant as storage is shared by multiple tenants [67]. In this paper,
we investigate I/O management interference with an in-depth
characterization of ZNS SSDs. Our characterization extends
on top of prior ZNS characterizations [3, 14, 45, 58, 63] and
SSD performance (interference) characterizations [17, 24, 32,
34, 41, 42, 64]. Bae et al. [3] and Min et al. [45] study inter-
zone I/O interference and observe that reset interferes with
concurrent I/O. Doekemeijer et al. [14] establish the relation
between zone occupancy and management I/O latency and
identify I/O on reset interference. We establish why, when,
and how I/O management operations interfere with I/O.

ConfZNS++ extends on prior emulator research. FEMU is
a state-of-the-practice SSD emulator with native support for
ZNS [40]. ConfZNS continues on FEMU and allows explor-
ing the trade-offs between ZNS parallelism and isolation for
I/O operations [59]. NVMeVirt is a state-of-the-art emulator
with function-realistic ZNS support for I/O operations [35].
Various SSD simulators similarly allow exploring SSD design
choices. MQSim [60] allows for studying multi-queue SSDs,
and Amber [16] models the CPU, DRAM, and flash of SSDs.

Various researches discuss zone mapping and I/O manage-
ment operation design [18, 28, 44, 45, 69]. Long et al. discuss
reducing wear leveling with state-of-the-art zone mapping
designs [44]. ZNS+ extends ZNS with additional semantics,
e.g., copy operations, to provide more host-side control [18].
Jung et al. introduce preemptive reset [28], and multiple

works discuss partial erasures [28, 44]. Zhu et al. propose
finishing a zone by using unoccupied pages as a read cache
to reduce inter-zone I/O interference [69].

Similar to ZINC, there are plenty of I/O schedulers that
address latency-asymmetric operations by prioritizing one
operation over another (e.g., read over write) [32, 49,
56]. No I/O management-aware scheduler currently exists
for ZNS, but ZNS does provide orthogonal schedulers. eZNS
and the scheduler by Bae et al. [3, 45] reduce inter-zone
I/O interference. Fair-ZNS [43] addresses I/O fairness with
a scheduler on the device-level instead of the host. Note that
our proposed solutions do not apply for traditional SSDs as
these do not have an API for I/O management.

Various works reduce ZNS I/O interference on the
application-level [46, 47, 50, 54], albeit none on the manage-
ment level. ZenFS+ extends the ZenFS file-system to sched-
ule its I/O based on inter-zone I/O interference patterns [47].
Other works generally address interference by reducing the
overhead of application issued GC (i.e., data migration be-
tween zones) [39, 46, 50, 54].

9 CONCLUSION
Data placement interfaces, such as ZNS and FDP, promise
better interference management with increased host control.
However, they simultaneously expose several new I/O and
I/O management operations to the host. Using commercially
available ZNS and FDP SSDs, we demonstrate that these new
I/O management operations lead to significant interference
on concurrent I/O and provide a first-of-its-kind interference
model to quantify this interference.

To give the host the ability to address these challenges ef-
fectively, support from emulators and actionable solutions
need to be provided. To this end, we introduce and validate
ConfZNS++, a function-realistic emulator for ZNS with I/O
management support. We also give concrete solutions to re-
duce management interference with ZINC for reset and
softfinish for reset, observing interference reductions
of 56.9% for reset and 50.7% for finish, respectively.
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