Reviving Storage Systems Education 1n
the 215! Century — An experience report

Animesh Trivedi* (5, Matthijs Jansen™

, Krijn Doekemeijer*

, Sacheendra Talluri®*{>, and Nick TehranyT§

https://atlarge-research.com/courses/storage-systems-vu
* Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
T BlueOne Business Software LLC, USA

Abstract—We live in a data-centric world where many funda-
mental shifts in our daily lives are powered by Big Data. To meet
the performance, cost, and energy demands of modern Big Data
systems, there have been significant technological and engineering
breakthroughs in the field of storage systems with novel hardware
innovations and software architectures. Nevertheless, a typical
computer science student still associates data storage solely with
the technology of hard disk drives (HDD), which was invented
six decades ago. One key reason for this association is the lack of
courses on modern storage systems in computer science education
curricula. In this paper, we make a concerted effort to summarize
the state of storage systems education across universities, popular
textbooks, and policies (ACM/IEEE). We make a case that the
storage systems should have its own home course in educational
curricula. We report on our experience of designing and offering
one such course at the Vrije Universiteit, Amsterdam over the
past four years. We further contribute to the educational material
in this direction by making the course lectures, video recordings,
assignments, and grading framework freely and openly accessible
at https://atlarge-research.com/courses/storage-systems-vu.

Index Terms—Storage systems, Education, Experience report

I. INTRODUCTION

We live in a data-driven society where a multitude of
activities around us generate large quantities of data on a daily
basis, collectively termed Big Data. According to one estimate,
by 2030, we will produce one Yottabyte (1 Billion Petabytes)
of data every year [1]]. Tha availability of Big Data has enabled
breakthroughs in various technological, societal, and economic
domains such as transportation (autonomous vehicles), health-
care (precision medicine, genomics), the exploration of scien-
tific frontiers (CERN LHC and SKA experiments), democratic
processes, climate science, and the AI/ML revolution [2[]-[5].

The hard disk drive (HDD), which IBM invented in the
late 1950s, has been the dominant technology to store data
for many decades [6]. Consequently, advancements in our
data storage and processing methods have been shaped by the
technological trends and limitations of HDDs. For example,
storage design recommendations such as avoiding random
and/or small I/O from HDDs and data caching in DRAM
(Jim Gray’s 5-minute caching rule [[7]) have been developed
to extract the maximum performance from HDD-based storage
systems. The fundamental design of HDDs has not changed
over the past decades, but the capacity, performance, and cost
per GB have improved significantly [8|]. Even today, HDD and

YWork done while the author was at the Vrije Universiteit, Amsterdam.

“Unlike other related communities who have well-
established “home courses” (e.g., operating systems, com-
puter networks, databases), storage systems are mostly
taught under the hood of other courses. [...] Many students
may only associate storage systems with hard disk drives or
a specific file system, which is obviously less attractive com-
pared to, say, self-driving cars.” — Data Storage Research
Vision 2025 (section 6) [24].

HDD-driven software represent one of the success stories in
the field of large-scale data storage and processing, and are
taught in multiple universities (see §IV).

In the mid-2000s, the big data revolution with cloud com-
puting created pressure on the performance of HDD-based
systems, specifically the demand for low latency access to
support emerging web-scale services [9]-[12]. At the same
time, NAND flash-based solid-state storage devices (SSDs)
emerged in mainstream commodity computing as an alter-
native to HDDs [13]], [[14]. The semiconductor-based storage
design of flash cells freed them from the mechanical con-
straints restricting HDD’s performance improvements. NAND
flash is one example of a broad class of storage technologies
called Non-Volatile Memory (NVM) storage [|15[][17]]. Today,
NAND flash is commercially successful in the mass data stor-
age segment, replacing HDDs in many performance-critical
infrastructures. According to market projections, SSDs will
represent 32% of all storage capacity shipped by 2026 [18]],
and its market is expected to grow to $149.06 billion in 2026
at a compound annual growth rate (CAGR) of 31.86% [19].
In the high-performance computing (HPC) sector, 46 of the
50 world’s top storage systems use NVM/SSD-based stor-
age [20], [21]]. In cloud computing, all major vendors offer
SSD-based storage services [22]. The emergence of SSDs has
fundamentally reshaped every aspect of modern data storage
and processing, re-writing many fundamental rules and design
trade-offs [23]] (see §II).

Despite its success and popularity, flash storage, and more
broadly storage, has traditionally not been associated with a
core computer science course (see §III). As a result, many
students still associate the word “storage systems” with HDD-
based systems that they study in their undergraduate educa-
tion [24]]. This HDD-centric view of storage continues even at
the graduate level, as many top universities we surveyed lack

https://orcid.org/0000-0003-3586-7168
https://orcid.org/0000-0003-4609-5511
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0003-3461-4919
https://orcid.org/0000-0002-4907-8859
https://atlarge-research.com/courses/storage-systems-vu
https://atlarge-research.com/courses/storage-systems-vu

TABLE I: High-level comparison of HDD and SSD operational properties.

| HDD | SSD
addressing ‘ sectors, 512B ‘ also block/sector based, but byte-addressability now possible with CXL
read/write ‘ symmetric performance ‘ asymmetric, reads (~10s psecs) are faster than writes (~100s psecs, w/o cache)
random/sequential ‘ sequential I/O preferred smaller gap between sequential and random performance, sequential writes preferred

small/large I/O | large I/O preferred

small difference between large and small I/O

parallelism \ limited, a few I/O requests

very high, 100s of requests in parallel supported

data placement \ inner vs outer tracks [25]

\ different dies, planes, channels, and blocks matter [26]

data overwrite \ supported

\ not supported, flash cells must be erased (as a block, takes 10-100s ms) before writing

maintenance \ limited supported needed

\ active support needed in the FTL for GC, wear-leveling, error corrections

performance \ 0.1-10msec, 10-100s MB/s

\ 10-100usec, 1-10s GB/s, 100-1,000k small I/O ops/sec (2-3 order-of-magnitude better)

a specialized course on modern storage systems{]_-] (see §IV).

Storage systems-related topics are often covered under differ-

ent courses such as databases, advanced operating systems,

research seminars, distributed systems, computer architecture,
etc., thus lacking a coherent narration and vision in educa-
tion. This issue has been explicitly recognized by storage
researchers in their 2018 plenary meeting to discuss “Data

Storage Research Vision 2025” [24] (see the [page-1 box).

This gap in the education pipeline also creates challenges

for the industry. For example, IBM reports that “nearly three-

quarters of businesses have either already switched to NVM

SSD storage or are planning to in the next year” [27]. At

the same time, the lack of awareness and expertise are major

hindrances and threats to adopting SSD/NVM [24]], [28]].

In this paper, we make a case that storage systems are a
core component of computer science and require a dedicated
course in university curricula. To facilitate the establishment
of such a course, we report on our experience teaching a
modern storage systems course at the graduate level at Vrije
Universiteit (VU), Amsterdam since 2020. We provide the
rationale for the course design, the selection of topics, and
the motivation for assignments. We further discuss student
reviews, and share our experiences running this course. Our
key contributions in this article are:

1) We identify the major innovations in storage systems in the
past decade due to the emergence of Non-Volatile Memory
(NVM) Storage (§I) and make a case that modern storage
systems (e.g., hardware, software, services, ecosystems)
should have its own home course in university curricula.

2) We analyze how well the ACM/IEEE undergraduate com-
puting curricula cover these innovations (§III). We then
survey the top 35 universities (based on their ranking
and reputation) and report how they cover modern stor-
age systems topics in their graduate studies with a brief
commentary on the textbook coverage of material (§[V).
Our course survey is available at https://zenodo.org/doi/1
0.5281/zenodo.10328799.

3) We present the design of the (modern) Storage Systems

'What do we consider modern? We take a broad position (past 15 years)
where topics related to post-HDD technologies specifically around NVM
storage (e.g., NAND flash, Optane, Phase-change memory, Z-NAND flash)
that have a direct impact on cloud/commodity systems are considered modern.

course at VU Amsterdam with its requirements and moti-
vation for selecting topics based on their impact on systems
software. We share our experience, student reviews, and
current challenges facing this course (§V).

4) In order to facilitate the development of such a course at
other institutions, we openly share the teaching material
(slides, videos, assignments, automated grading infrastruc-
ture) under the Creative Commons (CC) BY 4.0 license at
https://atlarge-research.com/courses/storage-systems- vu.

II. FLASH STORAGE — A SELECTIVE PRIMER

Unlike the multicore revolution and emergence of advanced
accelerators like GPUs for AI/ML workloads that were di-
rectly tied to the slowdown of Moore’s Law and Dennard
scaling [29], the NVM storage revolution was a result of
gradual economic and technological advancements [30]-[32].
In this work, due to its wide-scale impact on commodity
cloud computing and HPC, we focus our discussion on non-
volatile flash-based SSDs. However, we acknowledge that
this is a selective view of a broader storage landscape that
expands to tape [33]], glass [34]], DNA [35], and other emerging
technologies [36]], [37]. shows a high-level comparison
between SSDs and HDDs.

Flash storage is a type of non-volatile memory (NVM)
storage technology invented by Toshiba in 1980. A flash cell
uses an electronic charge on a floating gate between a control
gate and the channel of a CMOS transistor to store data.
NAND flash is a technique that packs flash cells together
densely, which is a good fit for commercial mass storage
capacities scaling up to GBs-TBs, but only allows addressing
as a single unit called a page. A page is a unit of I/O, typically
around 512B, 4-8KiB, and is always written or programmed
sequentially at the cell level. After being programmed once, a
flash page cannot be overwritten and must be erased before it
can be programmed again. Erasing a page is an expensive
operation typically done with a group of pages together,
known as a block. Erasing a block may require relocating
data from some pages to a new location. The (new) process
of erasing a block and data management is known as garbage
collection (GC). A GC process during an I/O operation leads
to interference and performance degradation as both GC and
the I/O operation need to access the same flash chips. The

https://zenodo.org/doi/10.5281/zenodo.10328799
https://zenodo.org/doi/10.5281/zenodo.10328799
https://atlarge-research.com/courses/storage-systems-vu

TABLE II: Storage-related keywords (“SSD”, “storage”, “flash”, “memory”, “’I/O”, “NVMe”, “Big Data”) hits and the context
of SSD-related topics coverage in the curriculum. Topics such as memory (in Computer Architecture), network (Computer
Network), and OS (Operating System) typically have their home courses, which storage lacks. NVMe had zero mentions.

[|storage SSD flash disk /O |memory |network |OS | remarks
CE2016 |22 2 5 2 17 |58 |207 |50 | emphasis on low-level flash cell properties
CS2013 |37 0 1 26 43 |293 |401 |165 |mostly covers disk-based storage concerns
CS2023 H48 5 0 12 41 ‘247 ‘216 ‘ 126 explicit mention of SSDs, but inadequate coverage of
modern storage topics
1S2010 |6 0 0 0 2 [1 |48 |6 | data storage concerns are discussed
1T2017 |38 0 0 0 6 |6 |257 |40 | storage consumer point of view discussed
SE2014 |2 0 0 0 0 [1 |15 |8 | very limited introductory discussion in OS
CSEC2017 ||7 0 0 4 0 |4 |87 |5 | very limited introductory discussion in OS
DS202x [|30 0 1 1 3 |14 |16 |17 | (disk-based) big data and cloud systems

excess data movement by the GC in response to a write from
the host is known as write amplification. Flash cell wearing is
also a concern as cells have limited program/erasure lifetime,
after which they become corrupted. SSD vendors have extra
capacity in their SSDs to tackle this challenge, called over-
provisioning. Flash blocks are organized in a plane, die, and
multiple parallel channels, thus supporting high parallelism
for I/O operations. For an in-depth treatment of SSD-related
topics we refer the reader to [14], [38]-[40]. Typically, a
software layer called Flash Translation Layer (FTL) runs
inside the SSD firmware that hides the complexity of flash
media management from the host software and provides an
HDD-alike fast block interface. This hiding leads to a semantic
gap between the SSD and the host, thus creating “Unwritten
SSD Contracts™ [26].

Impact: The emergence of NVM storage and memories
has significantly reshaped our storage architecture in do-
mains such as, and not limited to: storage protocols like
NVM Express (NVMe) [41]], [42]]; host interfaces [43]],
[44]; block layer [45]; I/O schedulers [46[]-[49]]; storage
disaggregation [S0]-[54]; programmable storage [55]; virtu-
alization [56[-[58]; energy consumption [59], [60]; file sys-
tems [[61]], [62]; data structures [63]]; key-value stores [[64]; op-
erating system designs [65]-[68]; I/O APIs [69], [[70]; domain-
specific workloads [71], [[72]; distributed system [73], [74];
databases [73]], [76[]; security [77]; programming [[78]], [[79]];
computing architecture [80|-[83]]; persistent memories [84];
and system failure patterns [85], [86].

III. STATE OF THE COMPUTING CURRICULUM

Over the past decades, ACM and IEEE have jointly pub-
lished computing curricula to shape computing education. The
primary aim of this section is to provide (1) a summary of
storage-related topic coverage within the seven sub-disciplines
of computing curricula (see §2.3 in [87]) in and (2) a
contrasting analysis between the 2013 and 2023 ACM/IEEE
Computer Science curricula to report (any) revisions reflecting
the emergence of NVM storage in computing in
The discussion here pertains to undergraduate (bachelors)
education — we discuss graduate courses in To conduct

this analysis, we searched for storage-specific keywords in
the documents: “SSD”, “storage”, “flash”, “memory”, “I/O”,
“NVMe”, and “Big Data”. Based on the keywords’ presence
and location, we collect insights from the policy document.

A. How are storage-related topics covered in various sub-
disciplines of computing?

Computing curricula recommendations are split into the
following sub-disciplines (as of 2023) for which ACM/IEEE
provides recommendations (available at https://www.acm.org/
education/curricula-recommendations):

o Computer Engineering Curricula 2016 (CE2016): The
primary focus in this curriculum is on electrical prop-
erties, packaging, and signaling of storage technologies
(SRAM, flash). Module CE-CAE-7 covers circuit proper-
ties of memory technologies, including flash. CE-CAO-7
describes characteristics of secondary storage, including
SSDs. CE-CAO-9 includes data access topics from SSDs.
Flash memory is discussed further in the context of em-
bedded systems.

o Computer Science Curricula 2013 (CS2013): Consid-
ering this curriculum came out in 2013, there is only
a single mention of flash memory in the “AR/Memory
System Organization and Architecture” module. Much of
the storage and data management-related discussion is
centered around disk-based technologies (mentioned 26
times) in modules such as (core topics) “OS/Scheduling
and Dispatch”, “SF/Resource Allocation and Scheduling”
and (electives) “OS/Real-time and Embedded Systems”,
“IM/Distributed Databases”, etc.

o Information Systems 2010 (IS2010): There is a limited
and selective discussion of infrastructure and systems for
data in “IS 2010.4 IT Infrastructure”, “IS 2010.2 Data
and Information Management”, and “IS 2010.3 Enterprise
Architecture”, with more recent advancements not covered.
Their new competency model, 1S2020, also shows similar
coverage for storage-related topics.

o Information Technology Curricula 2017 (IT2017): Mod-
ules such as “ITE-PFT Platform Technologies”, “ITS-
VSS-08 Storage”, “ITS-CCO-07 Cloud Infrastructure and

https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations

TABLE III: Storage topics coverage across universities in their graduate-level courses.

“?” means that the course syllabus was

unavailable, but a storage-specific course was present in the curricula.

< en
= 8 o B z 5 o -
S 5 2 % o 5 5 £ 2 & 2 S - = S < o 8
£ S84 22288280 fvw 2B E 023 s ufriotio
S Eg g2 23552 2¢5 EEKE 22 385 2222 k2232 54 582
535&6‘"05“5 s m U E Z A 8 E'E'GZQSSDSQQB‘”[“EZ
z S %} =) % 5 5 U 2] S v TR E £ & = O j=} g
- 55U T g o 5 F g
=] A ﬁ
FS VvV V7V v Varans v v 2 ? v
Flash |V v 7 v v Varans v v 2 ?
FTL v v v 7 ? ?
NVMe v v v v 7 v 2 ?
KV v 7 v v v v 2 ?
PMem v ? ?
Disagg. v ? ?
API v 7 v v 2 ?
Dist. |v v Vv v v v vV v v ¥ v v 7V v v v 7 v v v 2 ? v
Data”, “ITE-SWF Software Fundamentals”, and “ITS-
ANE-06 Storage area networks” discuss storage concerns. Opef"“"““i
. . ste!
However, the scope is from the technology-consumer point 5y
of view, hence, no recent advancements are mentioned. Storage
o Software Engineering Curricula 2014 (SE2014) and
Cybersecurity Curricula 2017 (CSEC2017): They have
a limited discussion around storage-related topics.
Other

o Data Science Curricula (under development) 202x
(DS202x): This curriculum contains two explicit knowl-
edge areas that cover data storage: “Big Data Systems
(BDS)” and “Computing and Computer Fundamentals
(CCF)”. In BDS, “BDS-Distributed Data Storage” men-
tions storage hierarchies without explicit recommendations
or topics. CCF discusses architecture and operating sys-
tems fundamentals, covering topics similar to CS2013,
from which it is derived.

Summary: Our key finding from the analysis of these cur-
riculum documents is that the topic of storage has a scattered
focus across many knowledge areas and domains, thus con-
firming the observation from [24]]. In contrast, networking and
operating systems-related concepts are treated extensively in
a single knowledge area within their home course.

B. How have computer science curricula recommendations
changed between 2013 (the last release) and 2023 (the Gamma
release, Aug 2023) from the storage perspective?

For this comparison we analyzed the CS2023: ACM/IEEE-
CS/AAAI Computer Science Curricula Gamma revisiorﬂ re-
port, released in August 2023 [88]]. One of the most prominent
changes in this curriculum is the inclusion of the Association
for Advancement of Artificial Intelligence (AAAI) to cover
AI/ML education (powered on Big Data). In the Architecture
and Organization (AR) Knowledge Area, the 2023 document
mentions three key updates from 2013 (page 55): (1) re-
cent advances in memory caching and energy consumption;
(2) emergence of Heterogeneous Architectures with domain-
specific accelerators; and (3) Quantum computing. Updates on
storage fall in the first class of changes. SSDs are mentioned in
“AR-D/AR-Memory: Memory Hierarchy” and “OS-Devices:

2The final version of the curriculum is published on January 18th, 2024.

Distributed
Systems

Database

Fig. 1: Graduate-level systems courses that cover any storage
topics. When multiple courses cover storage topics at a uni-
versity, all of them are counted.

Device management”. “AR-E/AR-10: Interfacing and Commu-
nication” has one core learning outcome: “List the advantages
of magnetic disks and contrast them with the advantages of
solid-state disks”. However, the 2023 curriculum also falls
short of recognizing and addressing the emergence of NVM
storage as one of the most fundamental changes in the past
15 years. In contrast, in other knowledge areas, such as Data
Management (DM), major advancements since 2013, such as
NoSQL and MapReduce, are included.

IV. STATE OF THE GRADUATE-LEVEL EDUCATION

We investigate the state of storage system education (grad-
uate level) in the top 25 universities in the computer science
category of the Times Higher Education rankings (2023).
We include 10 additional highly ranked universities from
the computer systems research category of csrankings.org
for a total of 35 universities. We analyze the graduate-level
course guides and syllabuses for the content of the selected
systems courses, such as operating systems, distributed sys-
tems, databases, computer architecture, and storage-specific
courses (if offered). We infer course content from the course
description and the paper reading list when the syllabus is
unavailable. The results of our survey are publicly available
at https://zenodo.org/doi/10.5281/zenodo.10328799.

We report that 25 of the 35 surveyed universities have stor-
age topics in their curricula. Storage is most often covered in

csrankings.org
https://zenodo.org/doi/10.5281/zenodo.10328799

distributed systems or operating systems courses, as depicted
in Storage-specific courses are offered by 7 out of
the 35 universities. We further investigate the modern storage-
specific topics covered by the different systems courses. The
results are depicted in Distributed (Dist.) storage
is the most popular topic, which aligns with the fact that the
distributed systems course is the most common systems course
referring to storage. File systems are the second most popular
topic and are covered in most operating systems courses. SSD-
and flash-aware file systems are covered primarily by storage-
specific courses but also by a few other operating systems
and general systems courses. The impact of the API and
programming model features, such as immutability on storage
systems, is covered by 4 courses. Only four courses cover
the Flash Translation Layer (FTL). Persistent memory and
disaggregation were only covered by one course each. NVMe
and key-value stores are covered by storage courses, but also
a few database courses. In most cases, the coverage of modern
NVM-related storage topics is restricted to a few lectures.

A. Brief Commentary on the Text Books

Unlike Computer Networks, Operating Systems, and Com-
puter Architecture, which have popular and established text-
books, storage-related topics are covered across various books,
thus leading to a fragmentation of knowledge. This fragmen-
tation mirrors how these topics are currently perceived in
education and policy documents. We briefly comment on the
coverage of modern storage topics in the following popular OS
and architecture textbooks that are used in various curricula:

o Computer Architecture: A Quantitative Approach
(John L. Hennessy and David A. Patterson) — In the
4th edition (2007) of the book, chapter 6 covers Storage
Systems and topics such as disk internals, performance
models, I/O scheduling, and queuing theory. However, in
the 5% (2012) and 6" (2019) editions of the book, the
chapter is removed and put as an appendix. The 5" edition
introduces the advancements in flash memory in Chapter
2, Memory Hierarchy (chapter 2.3). The section introduces
system-visible properties such as read, write, and erase
operations and their performance properties, limited flash
cell endurance, and packaging concerns. The 6! edition
includes a brief discussion about Trends in Technology
(chapter 1.4), PCM and Intel 3DXP (Optane) (chapter
2.2), and implications for networked-flash for Warehouse-
Scale Computers (chapter 6.3). However, there are no
subsequent discussions regarding the system software-level
implications of NVM storage.

o Modern Operating Systems (Andrew S. Tanenbaum,
Herbert Bos) — The foreword of the 5" edition (2022)
explicitly mentions that the authors have given attention
to flash-based SSDs. The book introduces SSD internals
and persistent memory (chapter 1.3.3), flash-based file
systems with the flash-translation layer (FTL) design and
responsibilities (chapter 4.3.7), and the NVMe controller
and PCle-attached storage (chapter 5.4.2). Hence, the book

offers a good but introductory text about the pertinent
concepts up to the file system level.

o Operating Systems: Three Easy Pieces (Remzi H.
Arpaci-Dusseau and Andrea C. Arpaci-Dusseau) — The
OSTEP book (v1.0, Dec 2023) has “Persistence” as the
theme where multiple classical storage-related topics are
covered extensively. The book has a dedicated chapter
on flash-based SSDs (chapter 44) that comprehensively
introduces multiple flash-SSD-based concepts such as flash
cells, I/O operations, performance, erase, FTL designs, and
garbage collection. The book also covers log-structured file
systems (chapter 43) that play an important role in the
design of flash-based file systems, thus offering the best
coverage of introductory SSD-related topics.

o Operating Systems: Principles and Practice (Thomas
Anderson and Michael Dahlin) — Volume IV of the
27 edition (2014) dedicates chapter 12 to Persistent
Storage. Flash storage is discussed in 12.2, where basic
concepts such as flash cell design, FTL, NOR and NAND
flash, erase, wear-leveling, and bad block management
via over-provisioning are introduced. The chapter also
briefly compares the performance of Intel 710 Series
SSD (2011) with HDDs, although the performance and
endurance numbers are over a decade old. In the chapter
12.3 on future directions, performance, capacity, and cost
trends are identified for flash with a brief introduction to
other emerging NVM technologies. No further software
implications are discussed (except TRIM for file systems).

o Operating System Concepts (Avi Silberschatz, Peter
Baer Galvin, Greg Gagne) — The 9*" edition (2012) of
the book briefly introduced SSDs (chapter 10.1.2), exclu-
sively focusing on their performance properties without
any internal details. Chapter 10.4.6 discusses how the high-
performance and non-moving parts of SSDs need a NOOP
I/0 scheduler when considering I/0 scheduling in the
context of HDDs and SSDs. The 10" edition (2018) of the
book recognizes “Nonvolatile memory secondary storage”
as one of the four important trends shaping the design of
operating systems. Chapters 11.1 and 14.5 cover further
concepts in the design of an SSD, such as cell design,
FTL, garbage collection, wear-leveling, over-provisioning,
NVMe, and TRIM.

B. Summary

Unlike the undergraduate curriculum, the graduate courses
we analyzed do cover selected recent advancements in storage
systems. However, the details are spread over multiple courses
due to the absence of a home course. Hence, it becomes
challenging for an instructor to build an end-to-end narration
where innovations from multiple domains can come together
to “interpret storage systems in a broad way” [24]. As we
approach the end of Moore’s Law, a cross-domain, across-
the-courses understanding is important in delivering vertical
hardware and software specialization. Various non-functional
properties, such as performance, energy, or reliability gains,
are delivered in an end-to-end manner where each system

component must be optimized and re-designed for a workload-
specific specialization (vertical integration). One analogy here
is to imagine how networking education would look if con-
cepts from the layered reference architecture (L1/L2: media
access, Ethernet; L3: IP; L4: TCP/IP) were taught in different
courses. Storage Systems education needs its own reference
architecture and home course.

V. DESIGN OF A MODERN STORAGE SYSTEMS COURSE

We now present the design of a modern storage systems
course at VU Amsterdam. It is a 6 ECTS (1 ECTS = 28 hours
of study in the Netherlands) course offered in the Computer
Systems and Infrastructure (CSI) track to Computer Science
masters students. The course was established in 2020 and was
offered for the 4t" time in the 2023-2024 academic year. The
course covers a 7-weeks of teaching block, with 2 lectures
(1h:45mins each) and 1 lab session (1h:45mins) per week.

A. Inclusion and Exclusion Criteria in the Course

One of the first challenges in designing a modern storage
systems course is selecting topics we wish to cover. As we
discussed in §II} the emergence of fast NVM storage has an
impact on multiple aspects of systems building. We selected
11 lectures with a design of assignments where one or more
topics could be implemented in practice. The remaining 3
lecture slots (7 weeks x 2 lectures/week) are used for project
evaluation (2) and one guest lecture. We applied the following
inclusion (IN) criteria when selecting topics to cover:

(IN-1) The topic is about NVM internals/SSD architecture;

(IN-2) The topic is about a system design and/or systems
software (e.g., complexity, programming, debugging)
whose advancements can be directly linked to unique
properties of NVM storage;

(IN-3) The topic is an emerging hardware/software trend that
influences how storage is treated inside a computer;

(IN-4) The topic pertains to one of the following non-
functional topics: performance, efficiency, complexity,
heterogeneity, or reliability linked directly to unique
properties of NVM storage;

(IN-5) The topic should be recent and relevant (2008—now,
past 15 years);

We applied the following exclusion (EX) criteria:

(EX-1) The topic pertains to the physics of NVM storage
(partially due to the instructor’s lack of expertise);
(EX-2) The topic is in domains other than cloud/data-center
computing, such as embedded/sensor systems and cyber-
physical systems; these domains have unique design
considerations, such as a strong emphasis on reliability

and data corruption;

(EX-3) Having a unique focus on big data systems, we
exclude other commonly used technologies such as
high-density tapes or cost-economical disks from our
discussion;

(EX-4) System designs that only consume NVM storage be-
cause it is the most common storage technology around
without any consideration for NVM unique properties;

77 -

__¢ _ D)
< [EENRNY Distributed Systems)
<l DX

/ ‘ Data-intensive Workloads ‘ H

[} Key-Value Stores ‘ Networked Flash,
g Disaggregated Storage
& ‘ Flash File Systems ‘

Q

"E < ‘ Rearchitecting Block Layer CXL and io_uring

£

g ‘ NVMe Interface ‘

o

a NAND Flash Storage Optane,

FTL and GC Persistent Memory

Fig. 2: Storage Systems lecture themes at VU Amsterdam.

B. Course Structure at VU Amsterdam

The primary theme that governed our design process is
to design a layered approach to study and understand the
impact of NVM storage on software systems. To achieve this
goal, we took inspiration from the network layered model and
stacked the topics covered so they built on top of each other.
shows the overall layout. In this section, we provide
the content covered in the lectures (L) and our motivations for
choosing the topic. A secondary goal is to connect students to
the cutting-edge research in storage systems.

[L-1] Introduction to NVM Storage: We introduce
NAND/NOR/XOR flash cells and chips, media-level dif-
ferences between SSDs and HDDs, SSD packaging (dies,
blocks, pages), and performance and endurance properties.
We highlight that the storage design guidelines and trade-
offs have changed with SSDs (Table).

[L-2] NVM Impact on Host-Interfacing: We discuss how 2-
3 orders-of-magnitude performance improvements of SSDs
with high parallelism necessitated the development of a
new host controller (NVM Express, NVMe) and the re-
design of the Linux block layer [45]], [89].

[L-3] SSD Internals (FTL and GC): We introduce the
concept of the FTL and its responsibilities for active flash
chips management (L-1). We then discuss why the host
software (file systems, data stores) need to be aware of
the FTL design, GC operations, and trade-offs captured as
the Unwritten Contracts [26]].

[L-4] NVM Impact on File Systems: We discuss how SSD
internal properties and FTL designs (L-2/L3) prefer se-
quential writes, which can be generated by log-structured
file systems (LFS). We analyze LFS designs, GC, their
optimizations for flash SSDs (F2FS, SES), and novel FS
designs with software-defined flash [44], [90]], [91].

[L-5] NVM Impact on Key-Value Stores: We introduce
important lookup structures (B+ tree, hash table, LSM tree)
and how unique properties of flash storage (asymmetrical
read/write, and high parallelism) require these structures
to consider their application-level read/write amplifications
and space requirements (the RUM Conjecture [92]).

[L-6] Emergence of Byte-Addressable Persistent Memories
(PMEM): The availability of PMEM like Optane [93]]
enable us to build novel abstractions like persistent data

Cost: $/GB

(G 010 Access latencies
register
-10ns
D
- Block granularity .
- non-volatile Hard disk drive (HDD) 10-100ms
- /0 commands,

(a) (1970s-2010s) HDD-based hierarchy.

- cache line granularity
- volatile
- load/store instructions

(b) (2010s-now) SSD and PMEM based hierarchy.

CPU
register

Local CXL Mem Local CXL SSDs

150-300 nsecs 1-10 ysec

Persistent Memory. L ﬂ
]
NAND Flash/Optane SSDs T T
lemote CXL Mem Remote CXL SSD
- 10-100 psec

~100ms-10s

Tape

(c) (today-) CXL-based Continuum.

Fig. 3: Evolution of the Storage-Memory hierarchy from HDD-driven hierarchy to modern Storage-Memory Continuum.

structures [94], and even novel OS designs [63], thus
blurring the difference between a file and memory [96].

[L-7] NVM Impact on Networked Storage: We draw an
analogy with L-1/2 and establish that fast storage requires
fast networks and co-designed network-storage protocols
as such NVMe-over-Fabrics (NVMoF). We discuss the
concept of storage/flash disaggregation and vari-
ous block-level, file system-level, and application-level
(RDMA) access to remote storage .

[L-8] NVM Impact on Computational Storage: We intro-
duce the problem of the data movement wall and the
opportunity with SSDs that have an active programmable
element, the FTL. Hence, a user can run its data processing
program close to storage, inside an SSD with the FTL,
thus enabling Computational or Programmable storage. We
discuss its origins [98]], [99]], modern interpretations [55]],
and various hardware/software design options that offer
performance and efficiency via specialization [[100].

[L-9] Impact on Data Processing: We identify the opportu-
nity with fast storage and networks (L-7) that help dis-
tributed data processing frameworks to efficiently manage
their runtime state and data exchange operations [10T].
We then discuss how data storage formats become a
bottleneck due to their HDD-era design assumptions, such
as “the CPU is fast and 1/O is slow” [23].

[L-10] NVM Impact on Distributed Transactions: We link
the write-once property of flash chips with the design of a
transaction system and discuss networked flash-based (L-
7) Corfu and Tango transaction systems. Such
transactional systems were considered in the past as well,
however, the limited random performance of HDD-based
systems prohibit such a design with parallel clients.

[L-11] NVM Impact on Future Hardware (CXL) and Soft-
ware (io_uring): In this lecture (new in the 2023
edition), we consider how NVM storage connects to wider
hardware trends (CXL) and necessitates development of
a new software I/O API (io_uring). CXL connects
all storage and memory elements in a byte-addressable,
coherent manner [82], thus giving rise to a new “Storage-
Memory Continuum” with a highly granular perfor-
mance spectrum instead of the classical triangle of cache-
memory-storage hierarchy (Figure 3). Later, we discuss
the emergence of io_uring, a new asynchronous high-
performance I/0 API in Linux and its design [69]], [70].
These developments led to a re-division of labor among

hardware-software-OS in a storage system.

C. Project Work

To facilitate “learning-by-doing”, in the assignment (A)
work the students design and implement an FTL for an NVMe
SSD with Zone Namespaces (ZNS) in QEMU and build a
workload-specific file system with RocksDB.

(A1) The students become familiar with the Linux develop-
ment environment, framework (QEMU, NVMe, ZNS), and
tools using state-of-the-practice Linux nvme-cli tools.
An advantage of this setup is that these are commonly used
systems research tools and frameworks that the students
also later use in their thesis or research projects.

(A2) The second assignment is developing a hybrid log-based
FTL in the userspace (using libnvme) for a ZNS SSD
that has a flash chips-like read, sequential-write, and reset
interface [43]]. The FTL converts the ZNS SSD into a
conventional SSD (read/write anywhere, no reset), thus
hiding its unique interface from the software.

(A3) In the third assignment, the students develop a garbage
collection algorithm where the FTL log needs cleaning as
it gets full, and make decisions for the live pages stored in
the log. Since the assignments are graded based on their
code execution performance, many students often start
with big, complex designs, which eventually get simplified
as they have to debug and optimize the code (the KISS
philosophy). At this stage, if a student fails to complete
this assignment, they can continue the project using a file-
backed A3 implementation, instead of ZNS-based.

(A4) In this assignment, the students familiarize themselves
with RocksDB, and design and implement a RocksDB-
specific file system on top of their FTL-ZNS device (A3).
We offer a free design space where the students can
develop their own file system design. In the past, students
have implemented ext2, LFS, and FAT32-style file systems.

(AS) The last assignment is to make the whole project durable
and consistent with an orderly shutdown and restart. Here,
a student needs to reserve ZNS capacity to store FTL and
file system metadata, and detect and recover the previously
stored state from the ZNS SSD. The students can take
additional bonuses to demonstrate the completeness of
their code by running it on real NVMe ZNS SSDs donated
by Western Digital.

The project is graded on functional completeness and exe-
cution speed using an automated grading framework that links
to a student’s GitHub assignment source code repo (§VI).

advancements in the storage technologies” — from 2020.
— from 2021.
from the history/development of the field.” — from 2022.

the content at 9:00 AM :)” — from 2023.

“Storage system is a topic that’s not often discussed during computer science. This course is excellent in presenting the latest
“The course introduced me to the state of the art of storage systems. Something I would’ve never thought was an interesting field.”
“Very interesting material. Great that it’s up to date. Great lectures. I especially liked that in the lectures you mentioned papers

“The content was very interesting and gave a good introduction/picture to this domain, even if I sometimes was overwhelmed by

Fig. 4: Statements from student reviews in response to the question “What do you think was good about this course?”.

TABLE 1IV: Statistics on and student reviews, on a scale of
1 (strongly disagree) to 5 (strongly agree), of the Storage
Systems course given at VU Amsterdam.

Statistic or question Academic Year

2020 2021 2022 2023
Students started 28 29 42 50
Students passed 18 21 30 34
Passing rate (%) 64 72 71 68
Student reviews 6 9 10 14
Overall rating of the course 4.5 4.6 4.5 3.5
I learned a lot from this course 4.7 4.9 49 43
The material was clear and informative - 4.4 4.6 4.1
The material was engaging - 44 4.5 3.9
The course was well organized 4.5 4.2 4.2 4.1
The feedback on my work helped me - 3.4 39 33

VI. EXPERIENCE

In this section, we discuss our experience teaching the
Storage Systems course four times between 2020-2023. Each
year, we ask the students questions on how they perceived the
course, which they could score between 1 (strongly disagree)
and 5 (strongly agree), followed by open-ended questions on
how the course could be improved. We present an overview
of the student reviews and course statistics in Table [Vl The
student feedback is generally positive, with an overall rating of
about 4.5 for the course between 2020-2022. The latest edition
(2023) observes a lower rating (3.5), with the students pursuing
highly specialized graduate programs in security remarking on
the course’s lack of security-related content. Furthermore, the
pool of students who typically respond is usually small, with
at most 43% of passed students reviewing the course, resulting
in possibly skewed reviews. Nonetheless, we are working to
improve the course based on the current student feedback.

We highlight three recurring themes in student reviews here.
First, the students appreciate that the project is deeply embed-
ded in the state-of-the-practice software ecosystem, and they
become familiar with multiple technologies at the end of the
course: QEMU, kernel development, NVMe SSDs, RocksDB,
nvme—-cli and libnvme. Since the course covers many
recently published papers, many students attempt advanced
bonuses in the class or later pick up on research projects
that build on top of their class project assignments. We have
successfully published peer-reviewed conference papers and
talks with students from this class [53[], [103[], [[104]].

Second, the students appreciate the project’s vertical inte-
gration approach (instead of independent assignments), where

they experience and implement a complete storage stack to
support a workload. With such a vertically integrated project,
the students often realize complex multi-layer dependencies
of NVMe-related challenges, thus enabling us to achieve
our key goal of an end-to-end understanding of the storage
stack for vertical integration and optimizations. For example,
students implementing a log-structured file system realized
they are dealing with a log-on-log problem when their FTL
also implements a log [105]]. Others notice the restricted nature
of the block interface that creates the semantic gap between
an SSD and the host software.

Third, the students appreciate the automatic benchmarking

and framework introduced in 2021. We introduced this frame-
work for two reasons: First, it serves as a uniform platform
for comparing the performance of student projects, measured
as execution time over multiple iterations. We give students
access to this platform to test and benchmark their code
against other students in a public competition. Second, the
framework helps to automate grading, keeping the grading
overhead for the teaching staff manageable under increasing
student numbers.
Challenges: Looking forward, we see three challenges with
the course. First, how do we scale to support 100+ students
while keeping the course interesting? System and storage
programming is complex with a large design space, hence
there is a risk that a few safe FTL and file system designs will
always be popular with students. As a result, as the number
of students taking this course increases (~2x, Table ,
the number of interesting project designs will not increase.
Second, how do we identify plagiarism with the rise of Al-
assisted coding frameworks (GitHub co-pilot) and systems
(ChatGPT)? Though not specific to this course, these tools
make it increasingly challenging to detect plagiarism. As the
course matures, the number of complete project solutions in
the open also increases. Lastly, how do we cover the complete
from-silicon-chips-to-cloud-services stack of storage systems
instead of only the SSD FTL and file system layers we currently
cover? To cover the complete stack, we need to include many
lower-level (flash cell behavior, wear-leveling) and high-level
(data distribution, scalability, networking, failure management)
considerations. While this approach gives students a sense of
ownership of the whole storage stack, it is not feasible to cover
such a gamut of topics in a single project.

We believe that to keep the project interesting and diverse,
approaches such as Gamification [[106] could play an important

role. With Gamification, we can offer multiple ways for
students to finish and build each assignment. This approach
results in unique projects, which reduce the chance of cheating
and allow us to cover more topics between silicon chips and
cloud services than a single student would have to implement
for the project. Furthermore, we can steer the design from
a pure performance-based design to other design goals, such
as energy efficiency or reducing the DRAM needed to run
data-heavy workloads. To combat cheating, we also have an
interview-based assessment of the project where students have
to explain their design choices and code implementation.

On gender diversity in our class over the last four years,
the number of female students who have participated in the
course remains under half a dozen per year. We aim to include
this matter with other initiatives in the department to improve
gender representation in systems research specifically and
broadly in computer science [[107].

VII. CONCLUSION

The emergence of NVM storage in commodity computing
has fundamentally impacted every aspect of modern systems
building. Nevertheless, this impact is not reflected in edu-
cational curricula, textbooks, and policy documents. In this
paper, we make a case that there is a need for a concerted
effort to establish storage systems as one of the foundational
pillars of computing in education. In this direction, we present
the design of a modern storage systems course to fill this gap in
the curriculum. We discuss our motivations, experience from
offering the course over the past 4 years, its current status, and
our future plans. In order to facilitate wider dissemination, we
make the course material (slides, recordings, assignments, and
grading framework) freely and openly accessible.

Acknowledgements: This work is supported by gener-
ous hardware donations from Western Digital arranged by
Matias Bjgrling, and the Dutch Research Council (NWO)
grant OCENW.KLEIN.561. Many members of the AtLarge
research team at the VU contributed to this work, specifically
Giulia Frascaria who helped to set up the first iteration of the
course. The authors thank Alexandru Iosup for his encouraging
support in the preparation of this manuscript.

REFERENCES

[1] Huawei, “Computing 2030,” https://www-file.huawei.com/-/media/
corp2020/pdf/giv/industry-reports/computing_2030_en.pdf, 2020,
accessed: 2023-Dec-02.

[2] Harrison and Pardo, “Data, Politics and Public Health: COVID-19
Data-Driven Decision Making in Public Discourse,” Digit. Gov.: Res.
Pract., vol. 2, no. 1, 2020.

[3] Demigha, “The Impact of Big Data on AL” in IEEE CSCI, 2020.

[4] Akhtar et al., “The Impact of Big Data In Healthcare Analytics,” in
IEEE ICOIN, 2020.

[5] Shrivastava and Umar, “The Impact of Big Data on Climate Change,”
in IEEE ICIDCA, 2023.

[6] Computer History Museum, “1956: First Commerical Hard Disk Drive
Shipped,” https://www.computerhistory.org/storageengine/first-comme
rcial-hard-disk-drive-shipped/, 2023, accessed: 2023-Dec-02.

[71 Appuswamy et al., “The Five-Minute Rule 30 Years Later and Its
Impact on the Storage Hierarchy,” Commun. ACM, vol. 62, 2019.

[8] Chatzieleftheriou et al., “Could Cloud Storage be Disrupted in the Next
Decade?” in USENIX HotStorage, 2020.

[91

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

[37]

Ousterhout et al., “The Case for RAMClouds: Scalable High-
Performance Storage Entirely in DRAM,” ACM SIGOPS Oper. Syst.
Rev., vol. 43, no. 4, 2010.

He et al.,, “DASH: a Recipe for a Flash-based Data Intensive Super-
computer,” in ACM/IEEE SC, 2010.

Caulfield et al., “Understanding the Impact of Emerging Non-
Volatile Memories on High-Performance, I0-Intensive Computing,” in
ACMIIEEE SC, 2010.

Park and Shen, “A Performance Evaluation of Scientific I/O Workloads
on Flash-based SSDs,” in IEEE CLUSTER, 2009.

Chen et al., “Understanding Intrinsic Characteristics and System
Implications of Flash Memory Based Solid State Drives,” in ACM
SIGMETRICS, 2009.

Agrawal et al., “Design Tradeoffs for SSD Performance,” in USENIX
ATC, 2008.

Aswathy and Sivamangai, “Future Nonvolatile Memory Technologies:
Challenges and Applications,” in IEEE ACCESS, 2021.

Seltzer et al., “An NVM Carol: Visions of NVM Past, Present, and
Future,” in IEEE ICDE, 2018.

Liu et al., “A Survey of Non-Volatile Main Memory Technolo-
gies: State-of-the-Arts, Practices, and Future Directions,” CoRR, vol.
abs/2010.04406, 2020.

C. Mellor, “Gartner: Enterprise SSDs will hit 35% of HDD/SSD
exabytes shipped by 2026,” https://blocksandfiles.com/2022/05/16/
monday- gartner-hdd-ssd-numberfest/, 2022, accessed: 2023-Dec-02.
“Global Non-Volatile Memory Express (NVMe) Market Analysis and
Forecasts,” https://www.businesswire.com/news/home/2022101700564
5/en/Global-Non- Volatile-Memory- Express-NVMe- Market- Analysi
s-Forecasts-2016-2021-2021-2026F-2031F-Solid-state- Drives-SSD
s- Adapters- All-flash- Arrays-Servers- Ethernet- Fibre-Channel-InfiniB
and---ResearchAndMarkets.com, 2022, accessed: 2023-Dec-02.
“IOS500 Lists,” https://10500.org/list/sc23/full, 2023, accessed: 2023-
Dec-02.

M. Feldman, “Tracking the Worlds Top Storage Systems,” https://io50
0.org/list/sc23/full, 2017, accessed: 2023-Dec-02.

“Cloud Flash Storage: SSD Options from AWS, Azure, and GCP.”
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-o
ptions- from- AWS- Azure-and-GCP, 2020, accessed: 2023-Dec-01.
Nanavati et al., “Non-Volatile Storage: Implications of the Datacenter’s
Shifting Center,” ACM Queue, vol. 13, no. 9, 2015.

Amvrosiadis et al., “Data Storage Research Vision 2025: Report on
NSF Visioning Workshop Held May 30-June 1, 2018,” National
Science Foundation, Tech. Rep., 2018.

Rasmussen et al., “TritonSort: A balanced Large-Scale sorting system,”
in USENIX NSDI, 2011.

He et al., “The Unwritten Contract of Solid State Drives,” in ACM
EuroSys, 2017.

Mesh Flinders, IBM, “SSD vs. NVMe: What’s the Difference?” https:
/Iwww.ibm.com/blog/ssd-vs-nvme/, 2023, accessed: 2023-Dec-02.
“Non-Volatile Memory Express Market Analysis,” https://markwide
research.com/non-volatile-memory-express-nvme-market/, 2023,
accessed: 2023-Dec-02.

Hennessy and Patterson, “A New Golden Age for Computer Architec-
ture,” Commun. ACM, vol. 62, no. 2, 2019.

“A History of Flash Memory and Its Rise in the Enterprise,” https:
/Iwww.techtarget.com/searchstorage/feature/A-history-of-flash-memor
y-and-its-rise-in-the-enterprise, 2020, accessed: 2023-Dec-02.

D. Richter, Flash Memories: Economic Principles of Performance, Cost
and Reliability Optimization. Springer Dordrecht, 2014.

Leventhal, “Flash Storage Today: Can Flash Memory Become the
Foundation for a New Tier in the Storage Hierarchy?” ACM Queue,
no. 4, 2008.

Lockwood et al., “Storage 2020: A Vision for the Future of HPC
Storage,” https://www.osti.gov/biblio/1632124, 2017.

Anderson et al., “Project Silica: Towards Sustainable Cloud Archival
Storage in Glass,” in ACM SOSP, 2023.

Ceze and Strauss, “DNA Data Storage and Near-Molecule Processing
for the Yottabyte Era,” (Keynote) USENIX FAST, 2021.

Boukhobza et al., “Emerging NVM: A Survey on Architectural In-
tegration and Research Challenges,” ACM TODAES, vol. 23, no. 2,
2017.

Yu and Chen, “Emerging Memory Technologies: Recent Trends and
Prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, 2016.

https://www-file.huawei.com/-/media/corp2020/pdf/giv/industry-reports/computing_2030_en.pdf
https://www-file.huawei.com/-/media/corp2020/pdf/giv/industry-reports/computing_2030_en.pdf
https://www.computerhistory.org/storageengine/first-commercial-hard-disk-drive-shipped/
https://www.computerhistory.org/storageengine/first-commercial-hard-disk-drive-shipped/
https://blocksandfiles.com/2022/05/16/monday-gartner-hdd-ssd-numberfest/
https://blocksandfiles.com/2022/05/16/monday-gartner-hdd-ssd-numberfest/
https://www.businesswire.com/news/home/20221017005645/en/Global-Non-Volatile-Memory-Express-NVMe-Market-Analysis-Forecasts-2016-2021-2021-2026F-2031F-Solid-state-Drives-SSDs-Adapters-All-flash-Arrays-Servers-Ethernet-Fibre-Channel-InfiniBand---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20221017005645/en/Global-Non-Volatile-Memory-Express-NVMe-Market-Analysis-Forecasts-2016-2021-2021-2026F-2031F-Solid-state-Drives-SSDs-Adapters-All-flash-Arrays-Servers-Ethernet-Fibre-Channel-InfiniBand---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20221017005645/en/Global-Non-Volatile-Memory-Express-NVMe-Market-Analysis-Forecasts-2016-2021-2021-2026F-2031F-Solid-state-Drives-SSDs-Adapters-All-flash-Arrays-Servers-Ethernet-Fibre-Channel-InfiniBand---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20221017005645/en/Global-Non-Volatile-Memory-Express-NVMe-Market-Analysis-Forecasts-2016-2021-2021-2026F-2031F-Solid-state-Drives-SSDs-Adapters-All-flash-Arrays-Servers-Ethernet-Fibre-Channel-InfiniBand---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20221017005645/en/Global-Non-Volatile-Memory-Express-NVMe-Market-Analysis-Forecasts-2016-2021-2021-2026F-2031F-Solid-state-Drives-SSDs-Adapters-All-flash-Arrays-Servers-Ethernet-Fibre-Channel-InfiniBand---ResearchAndMarkets.com
https://io500.org/list/sc23/full
https://io500.org/list/sc23/full
https://io500.org/list/sc23/full
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from-AWS-Azure-and-GCP
https://www.computerweekly.com/feature/Cloud-flash-storage-SSD-options-from-AWS-Azure-and-GCP
https://www.ibm.com/blog/ssd-vs-nvme/
https://www.ibm.com/blog/ssd-vs-nvme/
https://markwideresearch.com/non-volatile-memory-express-nvme-market/
https://markwideresearch.com/non-volatile-memory-express-nvme-market/
https://www.techtarget.com/searchstorage/feature/A-history-of-flash-memory-and-its-rise-in-the-enterprise
https://www.techtarget.com/searchstorage/feature/A-history-of-flash-memory-and-its-rise-in-the-enterprise
https://www.techtarget.com/searchstorage/feature/A-history-of-flash-memory-and-its-rise-in-the-enterprise
https://www.osti.gov/biblio/1632124

[38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]
(48]

[49]

[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]

[63]

[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

Li et al., “Fantastic SSD Internals and How to Learn and Use Them,”
in ACM SYSTOR, 2022.

Micheloni et al., “Inside solid state drives (ssds),” 2018.
Arpaci-Dusseau and others, Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 2018.

D. H. Walker, “A Comparison of NVMe and AHCL” https://sata-i0.or
g/sites/default/files/documents/NVMe%20and %20AHCI_%20_long_.
pdf, Accessed: 2023-Dec-02.

“NVMe Specifications Overview,” https://nvmexpress.org/specificatio
ns/, Accessed: 2023-12-02.

Bjerling et al., “ZNS: Avoiding the Block Interface Tax for Flash-based
SSDs,” in USENIX ATC, 2021.

Ouyang et al., “SDF: Software-Defined Flash for Web-Scale Internet
Storage Systems,” ACM ASPLOS, 2014.

Bjgrling et al., “Linux Block I0: Introducing Multi-Queue SSD Access
on Multi-Core Systems,” in ACM Systor, 2013.

Shen and Park, “FlashFQ: A Fair Queueing I/O Scheduler for Flash-
Based SSDs,” in USENIX ATC, 2013.

Woo et al., “D2FQ: Device-Direct Fair Queueing for NVMe SSDs,” in
USENIX FAST, 2021.

Tavakkol et al., “FLIN: Enabling Fairness and Enhancing Performance
in Modern NVMe Solid State Drives,” in IEEE ISCA, 2018.

Ren et al., “BFQ, Multiqueue-Deadline, or Kyber? Performance Char-
acterization of Linux Storage Schedulers in the NVMe Era,” in
ACM/SPEC ICPE, 2024.

Klimovic et al.,, “ReFlex: Remote Flash = Local Flash,” in ACM
ASPLOS, 2017.
Trivedi et al., “Flashnet: Flash/network stack co-design,” in ACM

SYSTOR, 2017.

Hwang et al., “TCP == RDMA: CPU-efficient Remote Storage Access
with i10,” in USENIX NSDI, 2020.

Gootzen et al., “DPFS: DPU-Powered File System Virtualization,” in
ACM SYSTOR, 2023.

Min et al., “Gimbal: Enabling multi-tenant storage disaggregation on
smartnic jbofs,” in ACM SIGCOMM, 2021.

Do et al., “Programmable Solid-State Storage in Future Cloud Data-
centers,” Commun. ACM, vol. 62, no. 6, 2019.

Peng et al., “MDev-NVMe: A NVMe Storage Virtualization Solution
with Mediated Pass-Through,” in USENIX ATC, 2018.

Li et al., “LeaplO: Efficient and Portable Virtual NVMe Storage on
ARM SoCs,” in ACM ASPLOS, 2020.

Xue et al., “Spool: Reliable Virtualized NVMe Storage Pool in Public
Cloud Infrastructure,” in USENIX ATC, 2020.

Harris and Altiparmak, “When Poll is More Energy Efficient than
Interrupt,” in ACM HotStorage, 2022.

——, “Ultra-Low Latency SSDs’ Impact on Overall Energy Effi-
ciency,” in USENIX HotStorage, 2020.

Lee et al., “F2FS: A New File System for Flash Storage,” in USENIX
FAST, 2015.

Tehrany et al., “A Survey on the Integration of NAND Flash Storage
in the Design of File Systems and the Host Storage Software Stack,”
CoRR, vol. abs/2307.11866, 2023.

Fevgas et al., “Indexing in Flash Storage Devices: A Survey on
Challenges, Current Approaches, and Future Trends,” The VLDB
Journal, vol. 29, 2019.

Doekemeijer and Trivedi, “Key-Value Stores on Flash Storage Devices:
A Survey,” CoRR, vol. abs/2205.07975, 2022.

Bittman et al., “Twizzler: a Data-Centric OS for Non-Volatile memory,”
in USENIX ATC, 2020.

Alverti et al., “DaxVM: Stressing the Limits of Memory as a File
Interface,” in IEEE/ACM MICRO, 2022.

Bergman et al., “ZNSwap: un-Block your Swap,” in USENIX ATC,
2022.

Tsalapatis et al., “The Aurora Single Level Store Operating System,”
in ACM SOSP, 2021.

Didona et al., “Understanding Modern Storage APIs: A Systematic
Study of Libaio, SPDK, and io_uring,” in ACM SYSTOR, 2022.

Ren and Trivedi, “Performance Characterization of Modern Storage
Stacks: POSIX I/O, Libaio, SPDK, and Io_uring,” in CHEOPS, 2023.
Subramanya et al., “BLAS-on-flash: An Efficient Alternative for Large
Scale ML Training and Inference?” in USENIX NSDI, 2019.

Bae et al., “FlashNeuron: SSD-Enabled Large-Batch Training of Very
Deep Neural Networks,” in USENIX FAST, 2021.

[73]
[74]
[75]

[76]

[77]
[78]

[79]
[80]

[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]

[94]

[95]

[96]

[97]
[98]
[99]
[100]
[101]
[102]
[103]

[104]

[105]
[106]

[107]

Balakrishnan et al., “CORFU: A Shared Log Design for Flash Clus-
ters,” in USENIX NSDI, 2012.

, “Tango: Distributed Data Structures over a Shared Log,” in ACM
SOSP, 2013.

Lee et al., “A Case for Flash Memory SSD in Enterprise Database
Applications,” in ACM SIGMOD, 2008.

Haas and Leis, “What Modern NVMe Storage Can Do, and How
to Exploit It: High-Performance I/O for High-Performance Storage
Engines,” Proc. VLDB Endow., vol. 16, no. 9, 2023.

Zhang et al., “Rowhammering Storage Devices,” in ACM HotStorage,
2021.

Di et al., “Fast, Flexible, and Comprehensive Bug Detection for
Persistent Memory Programs,” in ACM ASPLOS, 2021.

Renen et al., “Persistent Memory I/O Primitives,” in DaMoN, 2019.
Condit et al., “Better I/O through Byte-Addressable, Persistent Mem-
ory,” in ACM SOSP, 2009.

Li et al,, “Pond: CXL-Based Memory Pooling Systems for Cloud
Platforms,” in ACM ASPLOS, 2023.

Jung, “Hello Bytes, Bye Blocks: PCIe Storage Meets Compute Express
Link for Memory Expansion (CXL-SSD),” in ACM HotStorage, 2022.
Yang et al., “Overcoming the Memory Wall with CXL-Enabled SSDs,”
in USENIX ATC, 2023.

Breukelen and Trivedi, “Persistent Memory File Systems: A Survey,”
CoRR, vol. abs/2310.02880, 2023.

Maneas et al., “A Study of SSD Reliability in Large Scale Enterprise
Storage Deployments,” in USENIX FAST, 2020.

Lu et al., “NVMe SSD Failures in the Field: the Fail-Stop and the
Fail-Slow,” in USENIX ATC, 2022.

CC2020 Task Force, “Computing Curricula 2020: Paradigms for Global
Computing Education,” 2020.

Kumar and Raj, “A First Look at the ACM/IEEE-CS/AAAI Computer
Science Curricula (CS202X),” in SIGCSE, 2022.

Yang et al., “When Poll Is Better than Interrupt,” in USENIX FAST,
2012.

Josephson et al., “DFS: A File System for Virtualized Flash Storage,”
ACM Trans. Storage, vol. 6, no. 3, 2010.

Zhang et al., “De-Indirection for Flash-Based SSDs with Nameless
Writes,” in USENIX FAST, 2012.

Athanassoulis et al., “Designing Access Methods: The RUM Conjec-
ture,” in EDBT, 2016.

Yang et al., “An Empirical Guide to the Behavior and Use of Scalable
Persistent Memory,” in USENIX FAST, 2020.

Coburn et al., “NV-Heaps: Making Persistent Objects Fast and Safe
with Next-Generation, Non-Volatile Memories,” in ACM ASPLOS,
2011.

Hoseinzadeh and Swanson, “Corundum: Statically-Enforced Persistent
Memory Safety,” in ACM ASPLOS, 2021.

Li et al., “ctFS: Replacing File Indexing with Hardware Memory
Translation through Contiguous File Allocation for Persistent Memory,”
in USENIX FAST, 2022.

Klimovic et al., “Flash Storage Disaggregation,” in ACM EuroSys,
2016.

Keeton et al., “A Case for Intelligent Disks (IDISKs),” SIGMOD Rec.,
vol. 27, no. 3, 1998.

Riedel et al., “Active Storage for Large-Scale Data Mining and Multi-
media,” in VLDB, 1998.

Ruan et al., “INSIDER: Designing In-Storage Computing System for
Emerging High-Performance Drive,” in USENIX ATC, 2019.

Stuedi et al., “Unification of Temporary Storage in the Nodekernel
Architecture,” in USENIX ATC, 2019.

Trivedi et al., “Albis: High-Performance File Format for Big Data
Systems,” in ATC, 2018.

Doekemeijer et al., “Performance characterization of nvme flash de-
vices with zoned namespaces (zns),” in [EEE CLUSTER, 2023.

C. Lukken, “OpenCSD, simple and intuitive computational storage
emulation with QEMU and eBPF,” https://archive.fosdem.org/202
3/schedule/event/csd/, Accessed: 2023-Dec-02.

Yang et al., “Don’t Stack Your Log On My Log,” in 2nd INFLOW,
2014.

Tosup and Epema, “An Experience Report on Using Gamification in
Technical Higher Education,” in ACM SIGCSE, 2014.

Frachtenberg, “Underrepresentation of Women in Computer Systems
Research,” PLOS ONE, vol. 17, no. 4, 2022.

https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://sata-io.org/sites/default/files/documents/NVMe%20and%20AHCI_%20_long_.pdf
https://nvmexpress.org/specifications/
https://nvmexpress.org/specifications/
https://archive.fosdem.org/2023/schedule/event/csd/
https://archive.fosdem.org/2023/schedule/event/csd/

	Introduction
	Flash Storage – A Selective Primer
	State of the Computing Curriculum
	How are storage-related topics covered in various sub-disciplines of computing?
	How have computer science curricula recommendations changed between 2013 (the last release) and 2023 (the Gamma release, Aug 2023) from the storage perspective?

	State of the Graduate-Level Education
	Brief Commentary on the Text Books
	Summary

	Design of a Modern Storage Systems Course
	Inclusion and Exclusion Criteria in the Course
	Course Structure at VU Amsterdam
	Project Work

	Experience
	Conclusion
	References

