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Abstract

In modern software architecture, distributed tracing has become essential for

achieving observability in distributed systems. However, distributed tracing

also introduces a trade-off between the depth of visibility and overhead. This

thesis explores the performance impact of distributed tracing on microser-

vices and serverless applications by measuring the throughput and latency of

microservices and sererless applications across different configurations. We

use the TechEmpower Framework Benchmarks and the Serverless Bench-

mark Suite (SeBS) for evaluation. We categorize and quantify overhead

sources into configuration, instrumentation, and exporting to understand

which operations contribute the most to performance degradation. We de-

signed and conducted three experiments with different programming frame-

works and instrumentation tools. The results show that distributed trac-

ing significantly affects the throughput and latency of microservices, with

throughput decreasing in the range of 19-80%. In addition, we observe that

the performance impact on serverless applications is significant, with short-

duration applications exhibiting up to 175% latency increase and longer-

duration applications showing an increase of 6.7%. The median latency in-

creased around 7-42% for microservice applications. The main contributors

to performance degradation were the configuration and export stages, with

configuration significantly impacting serverless cold-start scenarios. The

findings from this research help us understand the performance impact of

distributed tracing on applications and what are the main contributors to

overhead.
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1

Introduction to Distributed
Tracing, Visibility, and Overhead

In recent years, the adoption of serverless computing has changed the way applications

are developed and deployed, offering significant advantages such as reduced operational

complexity, automatic scaling, and cost efficiency (2, 3). Serverless computing allows

developers to execute task-based applications without managing the underlying infras-

tructure, significantly simplifying the development process and reducing the operational

overhead (4, 5). This paradigm shift has led to widespread adoption in various do-

mains, including web development, data processing, and microservice architectures (6).

However, as serverless computing becomes more prevalent, the necessity for reliable

monitoring and debugging tools has grown significantly more important (7).

Distributed tracing has emerged as a necessary tool for monitoring and diagnosing

the performance of distributed systems, including microservices and serverless applica-

tions (8, 9). By tracking requests as they move through various services and compo-

nents, distributed tracing provides insights into the behavior and interactions within

systems (10, 11). This level of observability is necessary for identifying performance

bottlenecks, understanding system dependencies, and ensuring the reliable operation of

distributed applications (9). Despite its benefits, distributed tracing introduces addi-

tional overhead, which can impact the throughput and performance of the applications

being monitored (12, 13, 14, 15, 16).

Understanding the performance implications of distributed tracing is important for

optimizing applications (10). Applications that break work into independently pro-

1



1. INTRODUCTION TO DISTRIBUTED TRACING, VISIBILITY, AND
OVERHEAD

cessed tasks can be particularly sensitive to the overhead introduced by tracing (17, 18).

These applications involve low-latency operations, where even small increases in latency

can significantly impact overall performance. As a result, to understand the impact of

distributed tracing, we need to quantify the performance overhead of distributed tracing

and identify the main contributors to the performance overhead.

1.1 Concept of Visibility, Monitoring, and Overhead

We introduce and define three key concepts addressed throughout this thesis: visibil-

ity, monitoring, and overhead. Visibility refers to understanding a system’s state and

behavior, while monitoring involves collecting the data needed to achieve the under-

standing. Overhead is the cost in terms of the performance impact that comes with

data collection. We explore each concept and the interactions between these concepts.

1.1.1 What is Visibility?

Visibility is the ability to understand the state and behavior of a system. Collecting data

is part of gaining visibility, but gaining useful insights that can be used for diagnosing

issues, optimizing performance, or making informed decisions is a challenge. Effective

visibility means having the right level of detail to understand how a system behaves. It

involves not only the quantity of the data but also the quality of the data and how it is

analyzed and interpreted.

1.1.2 What is Monitoring?

Monitoring is the process of collecting, analyzing, and visualizing data, such as metrics,

logs, and traces, about a system (19, 20). The data can be about various indicators of

a system’s behavior, such as resource usage, error counts, and request durations. Moni-

toring is essential to achieve visibility but does not guarantee it (19). The effectiveness

of monitoring depends on selecting insightful information to monitor.

1.1.3 What is Overhead?

In this thesis, we refer to overhead as the additional resource consumption and per-

formance impact introduced by monitoring tracing activities (15). Collecting detailed

metrics from a system requires additional processing and storage capabilities, which

2



1.1 Concept of Visibility, Monitoring, and Overhead

can impact the system’s performance. Tracing and instrumentation can add latency,

consume more resources, and increase the network traffic by exporting the trace data.

1.1.4 Relations Between Monitoring, Visibility, and Overhead

Overhead

Monitoring

Extensive Monitoring
High Overhead and Low Visibility

Effective Monitoring
High Visibility, Low Overhead

Balanced Monitoring
Acceptable Overhead and

Sufficient Visibility

Targeted Data Collection
High Overhead, High Visibility

Visibility

Figure 1.1: Illustration of the relationship between monitoring, visibility, and overhead.
The intersection of the concepts represents balanced monitoring with sufficient visibility
and acceptable overhead.

The goal is to balance monitoring, visibility, and overhead to achieve as much visibil-

ity as needed to understand the system while keeping the overhead as low as possible.

However, it is also important to understand the relations between these concepts in

3



1. INTRODUCTION TO DISTRIBUTED TRACING, VISIBILITY, AND
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order to achieve the goal. Figure 1.1 displays some of the relations between monitor-

ing, visibility, and overhead. Ideally, we want to have Effective Monitoring with high

visibility and minimal overhead. However, due to the trade-off between visibility and

overhead, extensive monitoring can lead to high overhead but still with limited visi-

bility. Targeted data collection or optimizing the monitoring can reduce the amount

of monitoring and increase visibility. The overhead can remain high if a large amount

of data is collected. We highlight that excessive monitoring does not guarantee better

visibility, and higher visibility can be achieved without increasing monitoring (21).

Some of the relations we observe between monitoring, visibility, and overhead are

the following:

Extensive Monitoring or High Overhead ≠⇒ High Visibility Collecting large

amounts of data through monitoring or having high overhead does not always imply

high visibility. The data collected must be relevant and helpful in diagnosing and

understanding the system. Excessive data can create additional noise, making the

effort counterproductive.

High Visibility Without Extensive Monitoring High visibility does not always

require extensive monitoring. Using efficient sampling techniques or limiting the amount

of data collected can provide sufficient information about the system while minimizing

the amount of data collected. For example, in high-throughput services, the majority

of interesting events are likely to occur often enough to be recorded (15).

Reducing Monitoring While Maintaining Visibility Reducing the scope or in-

tensity of monitoring is possible without reducing visibility by focusing on infrequent

and interesting data instead of noise (21). This allows us to maintain visibility in the

system while decreasing overhead.

Balancing Overhead and Visibility Monitoring aims to achieve sufficient visibility

to support the system’s reliability. Meanwhile, we also want to keep the overhead at

acceptable levels to reduce the performance impact on the service. Additional moni-

toring can increase the overhead, but this data might be needed for higher visibility.

Therefore, a balanced trade-off point should be found between the amount of data and

the performance impact it causes.

4



1.2 Problem Statement

1.2 Problem Statement

In this thesis, we address two main problems: the trade-off between system visibility

and performance and the unclear sources of overhead in the distributed tracing process.

Performance and Visibility Trade-Off The integration of distributed tracing in-

troduces a challenge: a trade-off between visibility into the system and the overhead

caused by tracing. While tracing significantly enhances our understanding of distributed

systems by shedding light on interactions and dependencies, it also introduces additional

overhead, which can negatively impact performance, leading to increased latency and

reduced throughput. Therefore, it’s essential to understand the extent of this overhead

and its effects on the performance of various applications.

Sources of Overhead Another aspect of the problem is that the sources of overhead

within distributed tracing process are not clearly understood. The tracing lifecycle con-

sists of multiple stages, such as initialization, propagation, data collection, and export,

each may contribute differently to performance degradation. Identifying and quan-

tifying the most resource-intensive stages is important for effectively mitigating the

performance penalties associated with distributed tracing.

1.3 Research Questions and Methodology

This study aims to examine the effects of distributed tracing on applications by study-

ing different types of applications—focusing on request-based (microservices) and task-

based (serverless) models—and finally identifying the sources of the overheads associ-

ated with tracing implementation. We establish three research questions and describe

the methodology used to study each question. The research questions (RQ) are the

following:

RQ1. How does the implementation of distributed tracing affect the through-

put and latency of request-based applications? This research question ex-

plores the impact of distributed tracing on the performance and latency of request-

based applications. Request-based applications have a client-server model, where

a client sends a request to the server and the server provides a response. The goal

5



1. INTRODUCTION TO DISTRIBUTED TRACING, VISIBILITY, AND
OVERHEAD

is to measure how tracing affects the throughput and the latency of such applica-

tions. By comparing applications with and without tracing, we aim to quantify

the performance impact and trade-offs for request-based applications (22).

The methodology involves designing and setting up a controlled experiment with

various web application endpoints (23, 24). We also set up the endpoints on four

frameworks (Python Flask, Java Spring Boot, Go http, and JavaScript Node.js).

We configure three sets of applications: non-instrumented, instrumented with

OpenTelemetry, and instrumented with Elastic APM. We analyze throughput and

latency to analyze and understand the tracing overhead (23, 25). The experiment

is discussed in Chapter 3.

RQ2. What are the effects of distributed tracing instrumentation on the per-

formance of task-based applications? This research question aims to assess

the impact of distributed tracing instrumentation on the performance of task-

based applications (22). These applications, which, for example, provide image

processing, data processing, and object management, can break work into inde-

pendently processed tasks. While distributed tracing provides insight into the

operation of such applications, it may also introduce a significant performance

overhead (12, 13).

We study the effect of the performance impact on task-based applications by

designing an experiment that measures the latency of these applications with

and without tracing instrumentation on the OpenWhisk platform (26, 27). The

benchmarks are implemented in Python and Node.js to compare the impact of

tracing with different technology stacks. We quantify the performance impact by

comparing the latency of instrumented and non-instrumented variations of each

benchmark. The experiment is described in Chapter 4.

RQ3. What are the primary sources of overhead introduced by distributed

tracing, and which of them are the main contributors to overhead?

We desire to understand which components of distributed tracing systems most

significantly contribute to the overhead and how these contributions occur. This

research seeks to quantify the overhead of distributed tracing processes, such as

6



1.4 Main Contributions

initialization, instrumentation, and export. After categorizing and quantifying

the overhead sources, we provide the main contributors of overhead in distributed

tracing.

The methodology to investigate this research question consists of two steps: (1)

categorizing distributed tracing processes into distinct groups and (2) measuring

the performance impact caused by each group. We categorize the processes by

analyzing and visualizing the profiling data. Then, we evaluate each group’s

overhead by profiling the applications and calculating the total time spent on

each category. We discuss the experiment design, setup, and results in Chapter 5.

Figure 1.2 displays an overview of the experiments we conduct to answer the research

questions RQ1, RQ2, and RQ3. It displays the technology stack of the applications and

the instrumentation tools used for each experiment.

Python
Flask

Go http
Java

Spring Boot
Elastic
APMOpenTelemetry

OpenTelemetryNode.jsPython

OpenTelemetry
Python
Flask

Request-Based 
Applications

(Microservices)

Task-Based 
Applications
(Serverless)

Sources of
Overhead

01
RQ1

02
RQ2

03
RQ3 Python

Node.js

Figure 1.2: Overview of the three experiments conducted in the thesis. The figure
highlights the technology stacks and tracing tools used in the experiments. Experiment 1
is described in Chapter 3, experiment 2 in Chapter 4, and experiment 3 in Chapter 5.

1.4 Main Contributions

The thesis has the following research contributions (RC):

RC1. Developed a framework to quantify the overhead in microservice appli-

cations: We designed an experimental framework to quantify the performance

7
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overhead introduced by distributed tracing in microservice applications. The

framework measures the overhead for two metrics: throughput and request dura-

tion. The experimental framework assessed multiple programming environments:

Python Flask, Java Spring Boot, Go HTTP, and JavaScript Node.js.

RC2. Extended an existing framework to quantify the overhead in server-

less applications: We adapted and extended an existing evaluation framework

(SeBS (28)) to benchmark the serverless applications, enabling the measurement

of tracing overhead in Node.js and Python-based serverless workloads. As part of

the extension, we developed the missing Node.js implementations in the framework

and the instrumented versions for each application. This work focused on evalu-

ating the performance impact of tracing with the execution time of the serverless

workloads.

RC3. Quantifying the overhead in microservices and serverless applications:

We conducted experiments on request-based (microservices) and task-based (server-

less) applications. This research provides a comparative insight into the effect that

distributed tracing has on different types of applications and frameworks. We also

examine two instrumentation tools (OpenTelemetry and Elastic APM) and how

the instrumentation overhead between these tools varies. The study examines

performance degradation in terms of latency and throughput.

RC4. Categorizing and analyzing the overhead sources in distributed tracing:

We categorized the tracing function calls into three distinct groups: configuration,

instrumentation, and exporting. The configuration includes initializing and con-

figuring the tracing tool, setting up the exporter, sampling, and creating high-level

metadata for the tracer. Instrumentation consists of adding the trace points to

capture and enrich the tracing data. Exporting includes transmitting the trace

data to an external system for storage and analysis. Furthermore, we measured

the overhead of each category and found that exporting and configuration are the

main contributors to the overhead. Instrumentation had a relatively low impact

on the performance of the system.

8



1.5 Thesis Structure

Chapter 1:
Introduction

Chapter 2:
Background

Chapter 3:
Request-Based
Applications'

Tracing
Overhead

Chapter 4:
Task-based

Applications'
Tracing

Overhead

Chapter 5:
Sources of
Distributed

Tracing
Overhead

Chapter 6:
Related Work

Chapter 7:
Conclusion

Figure 1.3: The thesis contents and reading structure.

1.5 Thesis Structure

The thesis is organized into six chapters, and the structure is shown in Figure 1.3.

The Background chapter (Chapter 2) describes the background knowledge required

for the thesis. We cover the following topics: distributed tracing, instrumentation tools

used in the experiments, Function as a service (FaaS) platforms, Kubernetes, and the

software and hardware specifications used.

Chapter 3 details the experimental design, setup, and results for assessing tracing

overhead in request-based applications. The experiment studies the performance impact

of distributed tracing (instrumentation with OpenTelemetry and Elastic APM) on a

selection of programming frameworks (Python Flask, Go http, Java Spring, Node.js).

Chapter 4 extends the evaluation to task-based applications, focusing on indepen-

dently processed serverless tasks. The experiment compares the performance impact of

Python and Node.js on different kinds of workloads.

In Chapter 5, we explore the sources of overhead introduced by distributed tracing.

First, we formulate a list of categories for the tracing processes and then evaluate the

overhead caused by each category’s operations.

Chapter 6 gives an overview of research gaps in the current literature, provides a

list of distributed tracing overheads measured in research, and briefly compares the

instrumentation tools used and analyzed in the literature.

We conclude the thesis with Chapter 7 that summarizes the key insights from the

research, reflects on the contributions, and answers the research questions proposed in

the introduction (RQ1, RQ2, RQ3).
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2

Background on Distributed Tracing,
Automatic Instrumentation, and
Serverless Applications

2.1 Distributed Tracing

Distributed tracing is a technique used to monitor and track requests as they move

through different services in a distributed system. Capturing a request’s lifecycle pro-

vides insights into how services interact, the sequence of operations, and where time is

spent within the system. This visibility offers several key benefits, including:

• End-to-End Visibility: Allows comprehensive monitoring in complex, distributed

architectures.

• Performance Insights: Provides performance data such as the latency of re-

quests and individual operations within the applications.

• Root Cause Analysis: Provides additional context for troubleshooting errors,

making it easier to pinpoint the cause of issues.

• Understanding Service Dependencies: Offers a clear picture of service rela-

tionships and interactions within the architecture (9).

The following key concepts need to be understood about distributed tracing, which

are frequently referenced throughout this thesis: We define the following key concepts

related to distributed tracing used and mentioned in this thesis:

11



2. BACKGROUND ON DISTRIBUTED TRACING, AUTOMATIC
INSTRUMENTATION, AND SERVERLESS APPLICATIONS

Trace A trace represents the journey of a single request as it travels through one or

multiple services within a system. Trace consists of a collection of spans, representing

an operation carried out by one of the services. It provides detailed information such as

the sequence of the operations, time spent on each process, and any errors that occur.

An example of a trace is shown in Figure 2.1.

Span Span represents a single operation in a request’s lifecycle. This operation can

be an operation such as a database query, HTTP request, or an external API call. A

span records information about its start time, duration, and metadata that provides

additional context about the specific request. Spans are organized hierarchically to

show the relationship between different operations and how they are placed inside the

trace. In Figure 2.1, each colored rectangle is a separate span.

Sampling Sampling is a technique used in distributed tracing to reduce the trace vol-

ume generated by the applications (12, 15, 21). Capturing every single trace in systems

with high traffic can quickly cause significant performance overhead and increase storage

costs (13, 15, 29). Sampling strategies, such as probabilistic sampling (randomly cap-

turing a percentage of traces) or rate-limited sampling (limiting the number of traces

collected over a specified time), help mitigate these issues. By selectively capturing

traces, sampling maintains visibility while minimizing the performance impact on the

system.

2.2 Instrumentation and Instrumentation Frameworks

Instrumentation is the process of adding code to an application to collect trace data.

In this study, we use two methods to instrument and collect the tracing data in our

experiments: manual instrumentation and zero-code (automatic) instrumentation. Our

experiments use two instrumentation tools: OpenTelemetry and Elastic APM. We se-

lected these tools mainly because of two reasons: (1) both support instrumentation for

a wide range of languages and frameworks (manual and automatic), and (2) both offer

the installation and instrumentation for free (30). In addition, Elastic APM is part

2https://github.com/open-telemetry/opentelemetry-demo
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HTTP 3xx Ingress –  1.8 ms

HTTP 2xx GET –  15 ms

router frontend egress –  1.5 ms

HTTP 3xx GET –  997 µs

HTTP 2xx Ingress –  11 ms

router frontend egress –  11 ms

HTTP 2xx GET –  11 ms

HTTP 2xx GET /api/data –  10 ms

loadgenerator frontend-proxy frontend adserviceServices

OK oteldemo.AdService/GetAds – 5.1 ms

executing api route (pages) /api/data –  9.8 ms

grpc.oteldemo.AdService/GetAds –  9.3 ms

Figure 2.1: Example of a trace displaying a request traveling through four different
services. The request is an example from the OpenTelemetry Demo system2.

of the Elastic stack, which also contains a locally deployable observability backend to

visualize traces.

Manual Instrumentation Manual instrumentation involves explicitly adding code

to an application to capture telemetry data. Developers have fine-grained control over

specifying where spans start and end, what metadata to include, and configuring trace

exporters and sampling rates. While this method offers precise control over the collected

data, it can be time-consuming to implement, especially in complex architectures with

thousands of services.

Zero-Code Instrumentation: Zero-code, or automatic instrumentation, simplifies

the process by automatically adding the necessary hooks to an application without

modifying its code. This is usually achieved by attaching an agent or initializing libraries

at runtime. Although this method reduces the effort needed to set up instrumentation,

it is less flexible than manual instrumentation because developers have limited control

over the details of the collected data.
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2.2.1 OpenTelemetry

OpenTelemetry is an open-source observability framework that provides standardized

methods for collecting, processing, and exporting telemetry data, including traces, met-

rics, and logs (31). As part of the Cloud Native Computing Foundation (CNCF), it

aims to offer consistent observability across various programming languages and envi-

ronments.

OpenTelemetry consists of several core components. The key components used or

mentioned in the thesis are the following:

1. API: The OpenTelemetry API provides interfaces for adding instrumentation to

an application. It defines methods for creating and managing traces, metrics, and

logs, ensuring a consistent approach across different programming languages and

environments.

2. SDK: The OpenTelemetry SDK works alongside the API to collect and process

telemetry data. It offers flexibility through configurable options like samplers and

processors, giving developers control over how the data is gathered, managed, and

sent to different systems.

3. Collector: The OpenTelemetry Collector is a vendor-agnostic component that

can receive the traces generated by the application, process them, and then export

to a backend for storage and visualization (32). It acts as a standalone service,

providing flexibility and scalability in the observability architecture. In our ex-

periments, the Collector forwards data to Elasticsearch for storage, enabling trace

visualization in Kibana.

2.2.2 Elastic APM

Elastic APM is an application performance monitoring system designed to provide de-

tailed performance data and end-to-end distributed tracing for applications (33). It is

part of the Elastic Stack, an observability framework intended for collecting, analyzing

and visualizing logs, metrics, and traces.

In this thesis, we use the following Elastic Stack components to collect and store

the traces for offloading, storage, and visualization:

14
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• Elastic APM Server: The APM Server functions similarly to the OpenTeleme-

try Collector, serving as the primary ingestion point for trace data collected from

Elastic APM agents or manually instrumented applications. It processes and for-

wards the data to Elasticsearch for storage.

• Elasticsearch: Elasticsearch is responsible for storage, searching, and analytics

in the Elastic Stack (34). It indexes and stores the incoming trace data and

provides fast querying and retrieval of traces for analysis.

• Kibana: Kibana provides the visualization interface for the Elastic Stack, en-

abling users to explore and analyze telemetry data. It offers a detailed view

of individual traces and overall application performance. This experiment uses

Kibana to validate the successful collection and visualization of trace data from

both OpenTelemetry and Elastic APM instrumented applications.

2.3 Function as a Service Platform

Function as a Service (FaaS) is a computing model used for deploying individual func-

tions without managing host machines for the workloads (35, 36). The infrastructure

manages the scaling of the functions in response to incoming traffic, which provides

more efficient resource utilization. With the FaaS model, the code is packed into state-

less functions that are triggered by events, such as HTTP requests or changes in a data

store.

Several cloud platforms offer FaaS, such as AWS Lambda3, Google Cloud Functions4,

and Azure Functions5. While these managed services do not require any underlying

infrastructure management, some FaaS platforms can also be deployed in a self-managed

environment using Kubernetes.

For the experiments discussed in Chapter 4, we considered three platforms that

are deployable on Kubernetes: OpenWhisk6, OpenFaas7, and Knative8. We ultimately

chose OpenWhisk due to its compatibility with our selected experimental framework.
3https://aws.amazon.com/lambda/
4https://cloud.google.com/functions?hl=en
5https://azure.microsoft.com/en-us/products/functions
6https://openwhisk.apache.org/
7https://www.openfaas.com/
8https://knative.dev/
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Below, we briefly overview each platform and the considerations that influenced our

choice.

OpenWhisk Apache OpenWhisk is an open-source serverless platform that can be

deployed on Kubernetes or Docker Compose environments (35). It is well-documented,

with comprehensive installation guides and a large contributor community, making it a

widely adopted option for serverless computing. According to GitHub metrics, Open-

Whisk is the second most popular among the platforms considered9.

The primary reason for selecting OpenWhisk was its built-in support within the

Serverless Benchmark Suite (SeBS) framework (28, 37), which we used for our experi-

ments. This compatibility eliminated the need for additional integration work, stream-

lining the setup process and allowing us to focus on the experiment.

OpenFaaS OpenFaaS is another open-source serverless platform designed to be run

on Kubernetes. It supports various programming languages through templates, making

it flexible for different use cases. At the time of this research, OpenFaaS was the most

popular of the three platforms, as measured by GitHub repository activity10. It also

offers a built-in user interface, a command-line tool, and an easy installation process.

While OpenFaaS presented a viable option for our serverless experiments, we chose

not to proceed with it due to its lack of native support in the SeBS framework. Integrat-

ing OpenFaaS into our experimental setup would have required significant additional

development effort.

Knative Knative is a Kubernetes-based serverless platform designed to simplify the

deployment and management of serverless applications (36). It features built-in traffic

splitting, allowing users to direct traffic across multiple versions of a deployed applica-

tion. However, our initial and brief research showed that Knative seemed to be the most

difficult to set up compared to the other platforms considered. Additionally, the SeBS

framework did not natively support Knative, which would have increased the complex-

ity of our experimental setup. As a result, we decided against using Knative for our

experiments.

9https://github.com/apache/openwhisk
10https://github.com/openfaas/faas
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2.4 Experiment Environment

2.3.1 Introduction to Kubernetes

Kubernetes is an open-source container orchestration platform designed to automate

the deployment, scaling, and management of containerized applications (38). Origi-

nally developed by Google, it is now maintained as a project under the Cloud Native

Computing Foundation11 (CNCF). Kubernetes enables applications to run reliably at

scale across both on-premise and cloud environments. It follows a declarative model,

where users specify the desired state of their applications, and Kubernetes continuously

works to achieve and maintain that state (38). The platform simplifies the management

of distributed systems by handling essential tasks such as load balancing, auto-scaling,

and self-healing.

The following key concepts are essential to understanding how Kubernetes operates

and are used throughout this thesis:

Cluster A Kubernetes cluster, consisting of a group of machines (nodes) that run

containerized applications, forms the platform’s foundational structure. A cluster is

divided into two main components: the control plane and one or more worker nodes.

The control plane is responsible for managing the overall state and operation of the

cluster while the worker nodes execute the application workloads.

Node A node is a single machine within a Kubernetes cluster, which can be virtual

or physical. It serves as a worker that runs containerized applications. There are two

types of nodes: control plane nodes, which manage the cluster, and worker nodes, which

handle the execution of application containers.

Pod A pod is the smallest deployable unit in the Kubernetes ecosystem. It consists of

a group of one or more tightly coupled containers. The network and storage are shared

between the containers inside a single pod.

2.4 Experiment Environment

This section outlines the software and hardware configurations used for the experiments

presented in Chapters3, 4, and 5. We also describe the hardware specifications of the
11https://www.cncf.io/
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machines used to host the experiments.

2.4.1 Software Versions

Table 2.1 describes the software components and their respective versions used in all

the experiments designed in this thesis. The General section includes software used in

multiple experiments, while the experiment-specific sections detail software exclusive to

individual experiments.

2.4.2 Hardware Environment

The experiments are conducted on a single node of the AtLarge Research12 group’s

cluster. We use the research group’s node to host the experiment for two reasons: a

consistent and stable experiment environment and cost-efficiency. An alternative would

be to run the experiments in a cloud environment, which provides a more replicable

environment but is less cost-efficient for this thesis.

The hardware specifications are the following:

• CPU: Intel® Xeon® Silver 4416+ Processor13 at 2.00 GHz, providing 20 cores

and 40 threads.

• Memory: 256.0GB of DDR4 RAM, consisting of four RAM units configured to

operate at 1200 MHz (2400 MT/s).

• Storage: 1.5 TB of SSD storage.

• Operating System: Ubuntu 22.04.4 LTS.

12https://atlarge-research.com/
13https://www.intel.com/content/www/us/en/products/sku/232378/

intel-xeon-silver-4416-processor-37-5m-cache-2-00-ghz/specifications.html
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Table 2.1: Software components and their versions used throughout the experiments.

Software Version

General
Python 3.9
Flask 3.0.3
OpenTelemetry Python 1.25.0
Elastic APM Flask Agent 6.22.0
opentelemetry-instrumentation-flask 0.46b0
opentelemetry-instrumentation-sqlalchemy 0.46b0

Node.js 18
@opentelemetry/api 1.9.0
@opentelemetry/auto-instrumentations-node 0.47.0
JavaScript OpenTelemetry 1.25.1

Docker 27.2.1
Docker Compose 2.29.2
OpenTelemetry Collector 0.100.0
Elastic APM Server 7.17.20

Experiment 1 (Request-Based)
Java 17
OpenTelemetry Java Instrumentation 2.3.0
Elastic APM Agent Java 1.49.0
Go 1.21
OpenTelemetry Go 1.25.0
Elastic Go apmhttp package 1.15.0
PostgreSQL 16.2
k6 0.50.0

Experiment 2 (Task-Based)
Kubernetes 1.20
Kind 0.20.0
OpenWhisk ef725a6
MinIO RELEASE.2024-09-13T20-26-02Z

Experiment 3 (Sources of Overhead)
flameprof 0.4
gprof2dot 2024.06.06
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3

Evaluation of Request-Based
Applications’ Tracing Overhead:
Experimental Design and Results

In this chapter, we investigate the impact of distributed tracing on the performance of

request-based (microservice) applications. We aim to answer the research question RQ1

established in Section 1.3: How does distributed tracing affect the performance and la-

tency of request-based applications? Section 3.1 outlines the design of the experiments,

the research questions, and the hypotheses. Section 3.2 defines the metrics utilized in

the experiments and details the data collection methods. Section 3.3 describes the con-

figurations for the web applications, tracing tools, and supporting services. Section 3.4

specifies the parameters used in the experiments. Section 3.5 describes the deployment

strategy. Finally, Section 3.6 presents the results of the experiments analyzing the

throughput and latency impacts of distributed tracing.

3.1 Experiment Design

This section outlines the overall design of the experiment, including research questions,

hypotheses, and mentions the metrics used to assess the impact of distributed tracing

on microservices. We describe our experiments in Sections 3.1.5 and 3.1.6. We give an

overview of the experiments in Table 3.1.
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3. EVALUATION OF REQUEST-BASED APPLICATIONS’ TRACING
OVERHEAD: EXPERIMENTAL DESIGN AND RESULTS

Table 3.1: The evaluation of request-based applications’ tracing overhead experiment
design overview.

Experiment Group Hypotheses Metrics

§3.1.5 Throughput Compari-
son of Instrumented and Non-
instrumented Applications

E3.1 H3.1, H3.3, H3.4 CPU Utilization,
Requests per sec-
ond

§3.1.6 Latency Comparison
of Instrumented and Non-
instrumented Applications

E3.2 H3.2, H3.3, H3.4 Request duration,
latency distribu-
tion, total request
count

3.1.1 Motivation

Distributed tracing is critical for monitoring and debugging microservices. However, it

can introduce latency and reduce throughput (12, 15, 39). Understanding these impacts

is crucial for maintaining high application performance. This research aims to quantify

the overhead across different frameworks (Python Flask, Java Spring, Go http, and

Node.js) and tracing tools (OpenTelemetry and Elastic APM), providing insights into

balancing the benefits of tracing with its performance costs.

3.1.2 Research Questions

To organize the experiments, we categorize them into two groups based on their objec-

tives:

E3.1. What is the impact of distributed tracing on the throughput of request-

based applications? This group investigates how distributed tracing affects

request-based applications’ overall performance and throughput. Metrics such as

CPU utilization and requests per second (RPS) are analyzed to determine how

tracing influences the system’s ability to handle load. We discuss the evaluation

method of this group in Section 3.1.5.

E3.2. What is the impact of integrating distributed tracing on the latency of

request-based applications?

This group assesses how the implementation of distributed tracing affects the
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latency of microservices built with different frameworks. Key metrics include

request duration, latency distribution, and total requests received. We examine

the assessment of this question in Section 3.1.6.

3.1.3 Hypotheses

The following hypotheses guide the experiments:

H3.1. Integrating distributed tracing will introduce measurable performance

overhead, leading to decreased requests per second and increased CPU

utilization.

Distributed tracing involves capturing detailed telemetry data, which adds extra

processing and data handling tasks. As a result, the CPU utilization increases

as more resources are required for the tracing operations (12). We expect the

throughput to decrease significantly after implementing distributed tracing.

H3.2. Integrating distributed tracing will result in noticeable performance

degradation in latency.

The process of capturing and logging trace data introduces additional steps in the

request-handling workflow, leading to increased latency (15). The instrumenta-

tion of code to capture trace data adds extra operations, such as exporting and

processing. This hypothesis aims to investigate how implementing distributed

tracing impacts the performance of applications.

H3.3. The performance overhead introduced by tracing will vary across dif-

ferent frameworks (Python Flask, Go http, Java Spring, Node.js).

Each framework has unique runtime characteristics, memory management strate-

gies, and performance profiles. The frameworks handle concurrency, garbage col-

lection, and system calls differently, which can influence how distributed tracing

impacts their performance. This hypothesis explores if the overhead of distributed

tracing is different for various frameworks.

H3.4. The performance impact of distributed tracing will differ between Open-

Telemetry and Elastic APM, with one being more efficient.

Previous studies show a difference in performance impact between distributed

tracing tools (40, 41). By comparing the performance metrics (request duration
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and RPS) between the two tracing tools, the study explores whether there is

a noticeable difference between the performance of OpenTelemetry and Elastic

APM. There is little research comparing these specific tools, so we do not have

the evidence to predict which tool is more effective.

3.1.4 Implementation of Distributed Tracing Instrumentation With
OpenTelemetry and Elastic APM

The experiment uses OpenTelemetry and Elastic APM for distributed tracing instru-

mentation across all frameworks. Both tools offer automatic instrumentation, simplify-

ing integration and ensuring consistent trace data collection.

For OpenTelemetry, the automatic instrumentation involves adding OpenTelemetry

SDK, agent, or libraries to the application. The trace data is exported to the Open-

Telemetry Collector, which processes and forwards it to the Elastic APM Server to be

further forwarded to Elasticsearch and Kibana for visualization.

For Elastic APM, the Elastic APM Agent or SDK is integrated into the application.

The Agent and SDK automatically capture the trace data and send the trace data to

the Elastic APM Server. We validate the tracing workflow for both instrumentation

methods by visualizing the traces in Kibana (42).

3.1.5 Experiment Design for Throughput Comparison of Instrumented
and Non-instrumented Applications

This experiment evaluates the performance impact of distributed tracing by measuring

Requests Per Second (RPS) under realistic conditions simulating peak traffic. We es-

tablish the impact of instrumentation on the applications by determining the maximum

RPS each application can handle while maintaining an average of 75% CPU utilization.

With a higher target value for CPU utilization, the experiment can yield inconsistent

and unreliable results if the application is overloaded. However, when the applications

are underutilized, the performance data can be unrepresentative. The hypotheses H3.1,

H3.3, and H3.4 are tested in this experiment. We use the RPS values obtained in this

evaluation in experiment E3.2 to evaluate the latency under realistic conditions.

The workflow of the RPS calibration is shown in Figure 3.1. The load test iterations

are run until an average of 75% CPU utilization is achieved throughout the 60-second

test iteration. We repeat this process until we obtain the target RPS for each application
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and endpoint, a total of 36 times (9 applications × 4 endpoints). To ensure the stability

and reliability of the results, we repeat the experiment five times. This repetition helps

mitigate any variability and provides a more accurate representation of the performance

metrics. In each iteration, we use warm-up and cool-down periods to obtain more

accurate measurements.

Setup and
configuration

Run load
test iteration

>= 75%

 < 75% Check CPU
measurements

Save RPS
information

End

Increase RPS

Start

Figure 3.1: Request-based application requests-per-second throughput calibration work-
flow.

1. Setup and Configuration We evaluate the requests per second (RPS) for each

variant of the applications (non-instrumented, OpenTelemetry-instrumented, and Elas-

tic APM-instrumented) across all programming frameworks. The initial RPS values

are set conservatively to establish a baseline for the calibration process, with identical

starting points for both instrumented and non-instrumented configurations. The initial
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RPS values, shown in Table 3.2, are adjusted for each framework and endpoint based

on workload characteristics. Notably, lower initial values are set for the queries and

updates endpoints due to their higher impact on CPU utilization.

Table 3.2: Initial requests per second configuration for the throughput evaluation for
request-based applications.

Framework/Endpoint json db queries updates

Python Flask 100 100 10 10
Java Spring 100 100 25 25

Go http 100 100 25 25
Go http 100 100 25 25

2. Incremental Load Testing The core of the evaluation process involves incre-

mental load testing of the applications with various RPS configurations. Each load test

runs for 60 seconds, allowing sufficient time to observe the application’s performance

under stress. The increment values for each framework and endpoint are presented in

Table 3.3.

For Python Flask, smaller increments are used across all endpoints because initial

tests indicated that this framework handles significantly lower loads than the other

frameworks. This finer granularity allows for more precise calibration. Similarly, the

queries and updates endpoints have smaller increment values than the json and db

endpoints across all frameworks, reflecting their higher sensitivity to increased load and

corresponding CPU utilization.

Table 3.3: Requests per second incrementation values for the throughput evaluation of
request-based applications.

Framework/Endpoint json db queries updates

Python Flask 50 50 10 10
Java Spring 100 100 25 25

Go http 100 100 25 25
Node.js 100 100 25 25
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3. Monitoring and Adjustment Throughout each calibration iteration, the appli-

cation container’s CPU utilization is monitored, with nine measurements taken during

the 60-second load test. Measurements start at the 10-second mark to allow the CPU

metrics to stabilize. The measurements are collected every five seconds until the 50-

second mark, excluding the last ten seconds, to avoid fluctuations if the load should

decrease at the end of the iteration. The average CPU utilization from these measure-

ments is calculated to determine if it reaches the target of 75%.

• If the average CPU utilization is below 75%, the RPS is incremented according

to the specified step size for that framework and endpoint, and the load test is

repeated.

• If the average CPU utilization meets or exceeds 75%, the RPS value achieved is

recorded, and calibration for that endpoint concludes.

4. Final Results We save the request per second value of each calibration workflow.

The calibration process is repeated five times, and each run includes iterations for each

application (nine) and each endpoint (four). These calibrated RPS values serve not only

as the final output of this experiment but also as a baseline for the latency evaluation

experiment described in Section 3.1.6.

3.1.6 Experiment Design for Latency Comparison of Instrumented
and Non-instrumented Request-Based Applications

The experiment aims to measure the impact of distributed tracing on latency across

different frameworks using OpenTelemetry and Elastic APM to instrument the appli-

cations. Within this experiment, we check the hypotheses H3.2, H3.3 and H3.4.

Figure 3.2 shows the experiment architecture components. All components are de-

ployed as separate containers inside Docker within the same internal Docker network.

We use k61, an open-source load testing tool, to generate the application load.

Setup and Configuration We use the RPS configurations determined from the

Group E3.1 phase to compare instrumented and non-instrumented applications. We

take the minimal RPS value of each framework and endpoint combination and divide
1https://k6.io
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the value by two. We divided the RPS value by two for this experiment to prevent

excessive load on the applications and, therefore, avoid inconsistent latency values. The

experiment includes running k6 load tests on 12 applications: four frameworks (Python

Flask, Go http, Java Spring, Node.js) and three variations for each framework (non-

instrumented, OpenTelemetry instrumented, Elastic APM instrumented). For each

application, we run four tests: one per endpoint. In total, we have 48 test executions.

Test Execution For each combination of application and endpoint, we execute the

load test with the configuration defined in Table 3.5: each test is run for 60 seconds,

and the graceful stop time is 15 seconds. We collect the metrics from the results output,

including various request metrics, such as total amount and duration. We also count

the successful and failed requests to validate that the applications do not drop requests.

Load
Generator

Non-
Instrumented

Elastic APM
Instrumented

OpenTelemetry
Collector

Elastic APM
Server

KibanaPostgres
Database

OpenTelemetry
Instrumented

Figure 3.2: Architecture overview of the request-based (microservices) applications la-
tency and throughput overhead experiment.

3.2 Metrics and Data Collection

This section describes the metrics used to evaluate system performance in the experi-

ments, explaining their significance and describing the data collection methods used.
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3.2.1 Metric Definitions

Table 3.4 lists the metrics used to assess and compare the performance of request-based

applications. The two main metrics we evaluate are throughput and request duration.

Throughput is evaluated in Experiment E3.1, while request duration is studied in Ex-

periment E3.2. These metrics are selected based on methodologies commonly used in

previous studies for measuring system overheads (12, 15, 18, 43, 44, 45, 46, 47).

Table 3.4: The list of metrics used to evaluate the request-based applications’ perfor-
mances in the experiments.

Metric Description Unit
Requests per second Rate at which HTTP requests are made

per second during the test.
Requests/second

CPU utilization Percentage of CPU resources used dur-
ing the test.

Percentage

Request duration Total time for the HTTP request. In-
cludes the sending, waiting, and receiv-
ing time

Milliseconds

Latency distribution Various latency percentiles (e.g., 50th,
75th, 95th, 99th) to understand the
spread and consistency of response
times.

Milliseconds

CPU Utilization CPU utilization is measured during the throughput evaluation

experiment. The target CPU utilization is set at 75%, following industry practices where

systems are stressed without being fully saturated to avoid overwhelming the system

while still revealing potential performance issues and bottlenecks (22, 48, 49). This

target ensures that the applications are sufficiently loaded to highlight the performance

impacts of distributed tracing.

Requests per Second (RPS) RPS measures the number of requests the application

handles per second, serving as an indicator for the throughput. During RPS evaluation

in experiment E3.1, each application’s target RPS value is determined by identifying

the rate at which 75% CPU utilization is achieved. Higher RPS values represent better
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system performance and help identify thresholds at which the system begins to degrade

under load. These RPS values are also used as baselines for comparing request duration

in experiment E3.2.

Request Duration Request duration tracks the time an application takes to pro-

cess and respond to a request, helping assess the overhead introduced by distributed

tracing instrumentation. Shorter request durations indicate more efficient processing.

Analyzing the request duration across different configurations (instrumented and non-

instrumented) allows for quantifying the impact of tracing on latency.

Latency Distribution We analyze the various percentiles (e.g., 50th, 95th, and 99th)

to capture the variability in the request duration. Percentiles offer us information about

the consistency of the response times. For example, analyzing the 99th percentile allows

us to confirm if the majority of requests are processed in an acceptable time.

3.2.2 Data Collection Methods

CPU Utilization Measurement CPU utilization is monitored by a separate thread

integrated into the experimental framework. This monitoring thread uses the Docker

SDK for Python1 to periodically collect CPU metrics from the application container

during the RPS evaluation phases. We use the Docker SDK so we can programmatically

save and store the CPU utilization measurements within the experiment framework.

RPS Value Collection RPS values are determined during the evaluation phase using

an iterative approach (detailed in Figure 3.1). The process involves running k6 load

tests and measuring the CPU utilization at different RPS levels. If the average CPU

utilization in an iteration is below 75%, the RPS is increased according to the step size

specified in Table 3.3, and another iteration is performed. This process continues until

an RPS level achieves at least an average of 75% CPU utilization.

Request Duration and Total Requests Request duration and latency metrics are

extracted from the output of the k6 load testing tool. The data includes measurements

at specific intervals, providing a detailed view of request duration, total requests, and
1https://docker-py.readthedocs.io/en/stable/
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error rates. With this data, we can assess the effects of tracing on request processing

times and identify any trends or anomalies in latency distributions.

3.3 Experiment Setup

This section describes the benchmark framework, the applications used, the instrumen-

tation setup, database configuration, and load generation methods.

3.3.1 Benchmarking Framework

The TechEmpower framework1 is a comprehensive benchmarking suite designed to mea-

sure the performance of web frameworks. It provides a standardized methodology for

a fair comparison between different web technologies. The suite includes seven test

types: JSON serialization, single and multiple database queries, server-side templat-

ing, database updates, plaintext processing, and caching mechanisms. These endpoints

cover various application workflows, enabling a robust evaluation of applications under

different workloads.

We develop the applications in accordance with the TechEmpower test endpoint

requirements and specifications documentation (50). We selected four endpoints for our

experiments, covering multiple use cases to compare the applications thoroughly under

various workloads. The implemented endpoints are the following:

• /json: Serializes a "Hello, World!" message into a JSON object. This lightweight

test measures baseline application performance without interactions with external

services.

• /db: Fetches a single random entry from the database, evaluating the impact of

tracing on database operations.

• /queries: Similar to the /db endpoint, but fetches multiple rows based on a query

parameter to simulate higher load conditions. In this study, ten rows are retrieved

per request.

• /updates: Updates multiple entries in the database. For our tests, five entries

are updated with each request, assessing the impact of write operations.
1https://www.techempower.com/benchmarks
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3.3.2 Request-Based Applications

We evaluate four web applications in four frameworks: Python Flask, Java Spring, Go

http, and JavaScript’s Node.js. The four frameworks allow us to cover a broad spectrum

of use cases in software development due to the popularity of the frameworks (51, 52, 53).

The variety also ensures a comprehensive analysis of how distributed tracing performs

across different programming paradigms and runtime environments.

The reasoning for selecting each framework is described below:

• Python Flask: We selected Flask due to its popularity, simplicity, and ease of

integration with OpenTelemetry. The authors are familiar with this framework,

and its minimalistic design makes it ideal for benchmarking overhead without

excessive framework abstractions. We also considered the Django1 framework,

which also has similar characteristics we mention about the Flask Framework.

• Java Spring: Java Spring is chosen for its popularity in enterprise applications

and the authors’ knowledge of its configuration. Spring’s support for distributed

tracing tools like OpenTelemetry is well-documented, ensuring smooth integration.

Using Spring instead of other Java frameworks minimizes the risk of misconfigura-

tions during experiments, making it a reliable choice for benchmarking distributed

tracing overhead.

• Go http: The Go http framework was selected because it uses Go’s standard http

package, eliminating the impact of third-party abstractions on our overhead mea-

surements. Go is well-known for its high-performance capabilities and minimal

runtime overhead, making it a good fit for evaluating low-latency scenarios in dis-

tributed tracing. Furthermore, not all Go packages and frameworks are supported

by OpenTelemetry and Elastic APM.

• Node.js: Node.js is widely used in modern web development, especially in high-

performance environments (54). Through automatic instrumentation, Node.js in-

tegrates seamlessly with distributed tracing tools like OpenTelemetry and Elastic

APM, requiring minimal code changes.

1https://www.djangoproject.com/
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We implement four endpoints for Python Flask and Go http applications described

in Section 3.3.1. For the Java Spring and Node.js applications, we did not develop

the application ourselves but instead used TechEmpower’s provided implementation of

Spring1 and Node.js2, which includes the implementation of all TechEmpower bench-

mark endpoints. This shows that the experiment can be replicated without requiring

development effort on the application side.

3.3.3 Tracing Tools and Instrumentation

In this experiment, we use OpenTelemetry and Elastic APM to instrument the appli-

cations. We configure a total of three sets of applications: (1) non-instrumented, (2)

OpenTelemetry instrumented, and (3) Elastic APM instrumented.

We add automatic instrumentation for OpenTelemetry and Elastic APM configura-

tions in the following way for the frameworks:

• Python Flask

(1) OpenTelemetry: We use the OpenTelemetry Python agent to add the in-

strumentation. The Python Flask application is started with the opentelemetry-

instrument command3.

(2) Elastic APM: In the Elastic APM configuration, we use the Elastic APM

agent to instrument Flask4. This configuration requires modifying the application

by importing the Elastic APM library and wrapping the Flask application instance

with the agent to enable automatic trace collection.

• Java Spring

(1) OpenTelemetry: In Java Spring, we use the OpenTelemetry Java Agent for

zero-code instrumentation 5. The agent is pre-installed on the application image

and then initialized with the JAVA_TOOL_OPTIONS environment variable.

1https://github.com/TechEmpower/FrameworkBenchmarks/tree/master/frameworks/Java/
spring

2https://github.com/TechEmpower/FrameworkBenchmarks/tree/master/frameworks/
JavaScript/nodejs

3https://opentelemetry.io/docs/zero-code/python/
4https://www.elastic.co/guide/en/apm/agent/python/current/flask-support.html
5https://opentelemetry.io/docs/zero-code/java/agent/
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(2) Elastic APM: The setup for Elastic APM configuration is similar to Open-

Telemetry: we install the agent on the application image and then initialize it via

the JAVA_TOOL_OPTIONS environment variable1.

• Go http

(1) OpenTelemetry: For the Go http framework, we use the OpenTelemetry Go

SDK2 to instrument the application. We have to initialize the library and add an

OpenTelemetry HTTP handler in the code to instrument the HTTP endpoints.

We could not use an agent for Go since it is still a work in progress at the time of

conducting the research. The manual integration in Go could introduce additional

overhead compared to automatic instrumentation methods.

(2) Elastic APM: The setup is similar to the OpenTelemetry instrumentation.

The Elastic APM libraries for the http package are imported in the code similar

to the OpenTelemetry instrumentation method for Go, and then we implement

the APM HTTP handler to instrument the application3.

• Node.js

(1) OpenTelemetry: For Node.js, we use its –require flag to set up the automatic

instrumentation via the auto-instrumentations-node4 package. We set the flag

through an environment variable named NODE_OPTIONS. Therefore, no code

changes are needed, because we add the additional environment variable to the

Docker Compose file.

(2) Elastic APM: The configuration of the instrumentation with Elastic APM

is similar to OpenTelemetry: we use the –require flag to initialize the agent.

3.3.4 Experiment Framework’s Database

In this experiment, we use PostgreSQL5, an open-source object-relational database sys-

tem. The choice is based on the widespread use and support within the TechEmpower

Framework, making it a suitable choice for the experiment’s architecture. Alternative
1https://www.elastic.co/guide/en/apm/agent/java/current/setup-attach-api.html
2https://opentelemetry.io/docs/languages/go/instrumentation/
3https://www.elastic.co/guide/en/apm/agent/go/master/builtin-modules.html#

builtin-modules-apmhttp
4https://www.npmjs.com/package/@opentelemetry/auto-instrumentations-node
5https://www.postgresql.org/
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database systems, such as MongoDB and MySQL, are also viable for the experiment

(these are also supported within the TechEmpower Framework at the time of the re-

search). We use PostgreSQL version 16, matching the version and configuration used

by TechEmpower to maintain comparability. The key settings include:

• max_connections: Configured to accommodate many concurrent connections

from the applications. Set to 2000.

• work_mem: Set to 64MB to handle complex queries more efficiently.

• synchronous_commit: Set to off to improve transaction throughput.

3.3.5 Load Generation

To generate load in the experiments, we use k6, an open-source load testing tool designed

to test web applications’ performance and reliability. k6 offers scripting capabilities

and a variety of executors to simulate real-world traffic patterns and stress test the

applications. We selected k6 because it can generate consistent and customizable load

patterns and supports distributed and large-scale performance testing.

k6 Configuration In our experiment, we configure k6 to use scenarios and the

constant-arrival-rate1 executor to run the load tests. This executor allows us to main-

tain a consistent request rate throughout the duration of the test, ensuring that the

applications are subjected to a steady load for stable results.

Test Scenarios We define a k6 test scenario for each endpoint, instrumentation

method, and framework combination. Each scenario is configured with the duration,

number of virtual users, and the cooldown period. We also add tags to each scenario

to distinguish test results in the k6 test result output file. These tags include informa-

tion such as the application name, endpoint, requests per second, and the programming

framework. This tagging allows us to easily filter and analyze the results to compare

performance across different configurations and scenarios.

1https://grafana.com/docs/k6/latest/using-k6/scenarios/executors/
constant-arrival-rate/
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3.4 Experiment Configuration

This section outlines the parameters used in the experiments, which configure the test

conditions and impact the performance and outcomes. The parameters define how the

applications are evaluated under load, with and without tracing instrumentation, ensur-

ing consistency and reproducibility across tests. Table 3.5 overviews the key parameters

used in the request-based application experiments.

Table 3.5: Experiment configuration parameters for the request-based application exper-
iments.

Parameter Value

Requests Issued per Second Configured in experiment E3.1
Throughput Evaluation Duration 60 seconds

Latency Load Test Scenario Duration 60 seconds
Graceful Stop 15 seconds

Endpoint /queries Parameter 10 db entries
Endpoint /updates Parameter 5 db entries

• Requests Issued per Second: This parameter defines the number of requests

sent to the server per second. We obtain the value for this parameter for each

framework and application combination in experiment E3.1. The parameter is

used in experiment E3.2 to evaluate the latency of the applications.

• Throughput Evaluation Duration: This is the duration for each k6 load test

iteration during RPS calibration. A 60-second duration was deemed sufficient

to stabilize the load and collect CPU utilization metrics, avoiding unnecessarily

long iterations. We avoid longer durations due to the large number of iterations

required for calibration, which would increase computational overhead without

significantly benefiting the experiment’s accuracy.

• Latency Load Test Scenario Duration: The load test duration refers to how

long each K6 scenario is run. The duration affects the endurance of the tracing

mechanisms and the overall system performance under prolonged load. After

testing multiple durations (60, 300, and 600 seconds), we chose 60 seconds because

the results were stable throughout the test duration.

36



3.5 Experiment Deployment

• Graceful Stop: The graceful stop duration defines the time for k6 to finish

existing requests before shutting down the system. This parameter ensures that

requests are completed, preventing any abrupt termination that could skew perfor-

mance results, particularly for CPU utilization measurements between load tests.

A 15-second window was selected to ensure clean shutdowns after the load test.

• Application Queries Parameter (/queries and /updates): This parameter

specifies the number of queries or updates executed on the database for each

request, which are defined as queries in the TechEmpower benchmarks. The

value simulates varying workloads on the applications by adjusting the number

of database interactions per request. For this experiment, we used a fixed value

of 10 for the /queries endpoint and 5 for the /updates endpoint to maintain

consistency throughout the tests. These values reflect typical scenarios based on

the TechEmpower benchmark documentation, which tests query counts ranging

from 1 to 20 (50).

3.5 Experiment Deployment

This section outlines the methodology and processes used to deploy the experiment

environment. We utilize a containerized approach to ensure consistent, reproducible

settings across all experiment executions. The setup enhances uniformity and simplifies

orchestration.

3.5.1 Deployment Process

The deployment environment relies on containerization to achieve consistency and re-

peatability across all tests. Docker and Docker Compose are used to containerize the

applications, tracing infrastructure, and database, ensuring the isolation of each com-

ponent and removing the possibility of external environmental interference.

• Containers: Each programming framework used in the experiment has a sepa-

rate Dockerfile for building the necessary Docker images. The application’s in-

strumented and non-instrumented versions use the same base Dockerfile to ensure

uniformity. This guarantees that the only difference between non-instrumented
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and instrumented configurations is the presence or absence of tracing instrumen-

tation. For each application variation (non-instrumented, OpenTelemetry, and

Elastic APM), the appropriate libraries or agents are added to the Docker image.

We build 12 Docker images (three variations for each of the four frameworks).

The database uses the official Postgres image, with an initialization script, to set

up the necessary tables, users, and entries for the experiments. The tracing in-

frastructure is also deployed using official Docker images for the collectors and

backends.

• Service Orchestration: We use Docker Compose to orchestrate the deployment

of the containers, allowing us to manage multiple services efficiently. Each appli-

cation variation has a separate Docker Compose file, which includes the necessary

environment variables to configure the tracing instrumentation and tools. All

applications are limited to a single CPU core, and all containers (including the

database and tracing tools) are deployed on the same Docker network to ensure

consistency. Using an isolated internal network prevents interference from exter-

nal network traffic or processes running on the host machine, ensuring consistent

results across all executions.

• Tracing Tools: The tracing tools—OpenTelemetry and Elastic APM—are con-

figured directly within the Dockerfiles. For OpenTelemetry-instrumented appli-

cations, traces are exported to the OpenTelemetry collector. Applications instru-

mented with Elastic APM send their traces to the Elastic APM server. These

collector services are deployed in separate containers, mimicking real-world envi-

ronments where traces are sent to a centralized backend instead of logged locally.

This allows for a more realistic simulation of distributed tracing workflows.

• Benchmark Services: The load testing and benchmarking services, which ex-

ecute the k6 load tests and measure system performance, are also containerized.

This ensures that the benchmark tools operate under the same controlled envi-

ronment as the applications. The necessary test scripts and configurations are

bundled into the Docker image, and the load tests are triggered automatically

upon container startup.
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Overall, the deployment process is designed to ensure consistency, reproducibility,

and isolation across all experiments. Encapsulating each application, tracing tool, and

benchmarking service within containers ensures that dependencies, configurations, and

external factors remain uniform across different test runs. This approach minimizes

environmental variability, allowing us to focus solely on the performance and overhead

caused by the tracing instrumentation.

3.6 Experiment Results

This section presents the results of experiments E3.1 and E3.2, which evaluate the

performance of request-based applications under different configurations. Section 3.6.1

covers the throughput analysis (E3.1), while Section 3.6.2 discusses the impact of tracing

on latency (E3.2).

3.6.1 Throughput Analysis of Instrumented and Non-Instrumented
Microservices

This experiment assesses the impact of distributed tracing on web application through-

put. By comparing the throughput of non-instrumented applications with those instru-

mented using OpenTelemetry or Elastic APM, we explore how tracing affects perfor-

mance. Additionally, we investigate (1) whether the overhead varies across different

programming frameworks and (2) how the overhead differs between instrumentation

tools.

The main findings in this section are:

MF3.1 Distributed tracing reduces throughput across all frameworks, with declines rang-

ing from 19.55% to 80.18%.

MF3.2 Java Spring exhibits the lowest overhead with microservice applications, while

Node.js shows the most significant impact on throughput.

MF3.3 OpenTelemetry generally delivers higher throughput than Elastic APM across

most frameworks.
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Figure 3.3: Aggregated throughput (requests per second) for request-based applications
with different instrumentation configurations (Standard, OpenTelemetry, Elastic APM)
across the evaluated programming stacks (Python Flask, Java Spring, Go http, Node.js).

3.6.1.1 Throughput Comparison of Non-Instrumented and Instrumented
Configurations

Figure 3.3 shows the aggregated throughput in requests per second across three con-

figurations: non-instrumented, OpenTelemetry instrumented, and Elastic APM instru-

mented.

The non-instrumented configuration has the highest throughput, with a median

of 395 RPS and a mean of 691.88 RPS, reaching a maximum of 2400 RPS. When

tracing is enabled, the throughput declines significantly. With OpenTelemetry, the

median throughput decreases by 38.6% compared to the non-instrumented median.

The mean throughput falls by 36.0%, and the maximum throughput falls to 1580 RPS

(34.20% decrease). The Elastic APM instrumented configuration has an even higher

impact on throughput, with the median falling to 200 RPS–a 49.4% decrease. The mean

throughput drops to 382.5 RPS, marking a 44.7% reduction, while the maximum RPS

value is reduced to 1480 RPS.

These results indicate that distributed tracing significantly impacts the throughput

of microservices, with up to 49.4% reduction in the median requests per second. We
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observe that Elastic APM introduces a more significant performance overhead regarding

throughput than OpenTelemetry.

3.6.1.2 Throughput Comparison of Frameworks

Table 3.6: Throughput (requests per second) comparison of OpenTelemetry, Elastic APM,
and non-instrumented request-based applications across Python Flask, Java Spring, Go
http, and Node.js frameworks.

Framework
Standard

Mean RPS
OpenTel1

Mean RPS
Elastic2

Mean RPS

OpenTel
vs

Standard (%)

Elastic
vs

Standard (%)

OpenTel
vs

Elastic (%)

Python Flask 167.5 109.0 90.0 -34.93% -46.27% 21.11%
Java Spring 952.5 766.25 737.5 -19.55% -22.57% 3.90%
Go http 815.0 498.75 537.5 -38.80% -34.05% -7.21%
Node.js 832.5 396.25 165.0 -52.40% -80.18% 140.15%

Table 3.6 compares requests per second OpenTelemetry, Elastic APM, and non-

instrumented applications across different frameworks.

The table shows a trend of throughput reduction with instrumentation enabled, but

the impact varies between frameworks. Java Spring exhibits the smallest overhead,

with throughput reductions of 19.55% for OpenTelemetry and 22.57% for Elastic APM.

On the other hand, Node.js shows the most significant decrease, with OpenTelemetry

reducing throughput by 52.4% and Elastic APM by 80.18%. Python Flask and Go http

fall in between, with reductions ranging from 34.05% to 46.27%, indicating relatively

moderate overhead levels compared to the other frameworks under evaluation.

OpenTelemetry generally achieves higher throughput than Elastic APM for most

frameworks. The performance advantage is most pronounced in Node.js (140.15% dif-

ference) and Python Flask (21.11%). With Java Spring, the OpenTelemetry’s advantage

is relatively low at only 3.90%. Only with the Go http framework, Elastic APM out-

performs OpenTelemetry by 7.21%.

Overall, we observe that distributed tracing introduces a significant performance

trade-off, with overhead up to 80.18%. Secondly, the impact of distributed tracing is

considerably different depending on the framework. Finally, the instrumentation tools
1OpenTelemetry
2Elastic APM
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impact the performance of frameworks differently as well, with OpenTelemetry being

more efficient with the majority of the chosen frameworks, but Elastic APM being more

efficient with Go http.

3.6.2 Latency Analysis of Instrumented and Non-Instrumented Mi-
croservices

This section analyzes the impact of distributed tracing on the latency of request-

based applications. We compare various configurations, including non-instrumented,

OpenTelemetry-instrumented, and Elastic APM-instrumented setups, across different

programming frameworks and endpoints. The primary objective is to understand how

tracing affects latency and to compare the overhead introduced by different tracing

tools.

The main findings in this section are:

MF3.4 Distributed tracing increases median request latency for all evaluated microser-

vices, with increases ranging from 7% to 42%.

MF3.5 OpenTelemetry and Elastic APM introduce comparable median latency overhead,

but OpenTelemetry generally results in slightly higher median latency across most

microservices.

MF3.6 The performance impact on median latency varies significantly across frameworks,

with increases ranging from around 10% in some cases to as much as 179% in

others.

3.6.2.1 Latency Overhead in Instrumented Microservices

Figure 3.4 illustrates the median latency in milliseconds for different instrumentation

configurations (non-instrumented, OpenTelemetry instrumented, and Elastic APM in-

strumented) for four benchmark endpoints: json, db, updates, and queries. The data is

aggregated over the evaluated frameworks to present a general view of latency overhead

across different requests.

Figure 3.4 shows that enabling distributed tracing consistently increases latency

compared to the non-instrumented configuration. The extent of overhead highly varies

depending on the endpoint. For the json endpoint, latency rises by approximately
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Figure 3.4: The median HTTP request duration in milliseconds for request-based appli-
cations across different instrumentation configurations for four benchmark endpoints. The
request durations are aggregated over the programming frameworks (Python Flask, Java
Spring, and Go http).

19%, from a median of 0.62 ms to 0.74 ms with OpenTelemetry, while Elastic APM

introduces a lower 7% increase. The upper quartile value is also significantly higher for

OpenTelemetry.

The impact is more significant for the updates and queries endpoints. The median

latency for the updates endpoint increases by 16.5% for OpenTelemetry and approx-

imately 42% for Elastic APM. For the queries, the performance overhead for both

instrumentation tools is similar: 39.6% for OpenTelemetry and 42.7% for Elastic APM.

Overall, the less intensive endpoints json and db incurred (1) less overhead overall

and (2) less overhead with Elastic APM compared to OpenTelemetry. However, more

intensive benchmarks updates and queries exhibited less overhead with OpenTelemetry

in comparison to Elastic APM.
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3.6.2.2 Latency Comparison of Frameworks

Table 3.7: Request-based applications latency comparison across different instrumenta-
tion configurations and programming languages. All values are displayed in milliseconds.

Framework Configuration Median Mean P95 P99

Python
Flask

Non-Instrumented 2.10 8.67 86.87 90.77
OpenTelemetry 5.58 11.59 91.37 93.82
Elastic APM 2.94 10.21 100.47 106.48

Java
Spring

Non-Instrumented 0.84 81.13 6.75 3447.38
OpenTelemetry 0.93 112.85 19.06 4069.24
Elastic APM 0.95 121.72 15.00 4799.15

Go http
Non-Instrumented 0.51 2.23 9.64 24.87
OpenTelemetry 0.73 4.74 10.76 77.73
Elastic APM 0.69 2.88 9.92 14.87

Node.js
Non-Instrumented 1.00 22.78 4.93 779.95
OpenTelemetry 2.79 66.73 297.00 1452.00
Elastic APM 2.71 7.23 4.82 89.17

Table 3.7 provides a comparison of request latency across different instrumentation

configurations and programming frameworks.

The results confirm that distributed tracing introduces additional latency across all

frameworks, but the impact varies depending on the framework and the instrumentation

tool. In Python Flask, OpenTelemetry adds more latency to the median (5.58 ms, a

165.7% increase) than Elastic APM (2.94 ms, a 40% increase). However, Elastic APM

shows higher latency for the 95th and 99th percentiles, indicating more variability with

Elastic APM. The overhead for Java Spring is also significant–39% with OpenTelemetry

and 50% with Elastic APM.

For Go http, the latency increase is relatively modest, with Elastic APM showing a

lower median latency (0.69 ms, a 35.3% increase) compared to OpenTelemetry (0.73 ms,

a 43.1% increase), but there is a more notable difference at the higher percentiles. The

Node.js framework exhibits a significant rise in latency, with the median for both instru-

mentation methods (179% for OpenTelemetry and 171% for Elastic APM). However,
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Elastic APM shows lower values for all other metrics compared to non-instrumented

and OpenTelemetry. This could be due to the significantly lower RPS value used to run

the experiment–the mean RPS for non-instrumented configuration is 832.5, and only

165 for Elastic APM.

These results demonstrate that tracing overhead is not uniform across frameworks

and endpoints, with some combinations exhibiting more significant latency increases.

3.6.3 Results Overview

For E3.1 about the performance overhead of tracing in microservices, the results con-

firm the hypothesis H3.1 that integrating tracing leads to measurable performance over-

head, leading to reduced throughput. The main finding MF3.1 shows that throughput

ranges from 19.55% up to 80.18% across different frameworks. Additionally, the main

finding MF3.2 confirms that the impact is not uniform–Java Spring exhibits the low-

est overhead in terms of throughput, while Node.js experiences the most significant

decline. This supports our hypothesis H3.3 that performance impact introduced by

tracing varies between different frameworks. We also observe that OpenTelemetry im-

pacts the throughput less than Elastic APM, upholding the hypothesis H3.4 in regard

to throughput.

Regarding E3.2 on the impact of distributed tracing on the latency of request-based

applications, the results confirm the hypothesis (H3.2), showing noticeable performance

degradation in latency. MF3.4 outlines that the median request latency increased for

all endpoints, ranging from 7% to 42%. Main finding MF3.6 also indicates that some

frameworks experienced up to a 179% increase in median latency. Although, in other

cases, the overhead was relatively low at 10%. We also examine the overhead that

OpenTelemetry and Elastic APM introduced, which varied by metric. Both tools had

similar impacts on median latency, with OpenTelemetry often slightly higher. However,

at the 95th and 99th percentiles, differences were more noticeable.

Overall, the experiments support all hypotheses, showing that tracing introduces

significant overhead for both throughput and request duration (H3.1, H3.2), with vary-

ing effects across frameworks and different tracing tools H3.3, H3.4.
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4

Evaluation of Serverless
Applications’ Tracing Overhead:
Experimental Design and Results

In this chapter, we study the performance overhead of tracing in task-based appli-

cations. Section 4.1 describes the experiment design and details the objectives and

hypotheses. Section 4.2 explains the metrics and data collection methods used in the

experiment. Section 4.3 covers the experiment setup, including the experiment frame-

work, application configuration, and the serverless platform used. Section 4.4 describes

the configurations of the benchmark applications and the instrumentation process. Sec-

tion 4.5 explains the deployment process of the infrastructure, applications, tracing

tools, and the serverless platform. Finally, section 4.6 presents the experiment results,

providing an analysis of the performance metrics, comparisons between configurations,

and insights into the implications of our findings.

4.1 Experiment Design

This experiment evaluates the performance overhead introduced by distributed tracing

in serverless task-based applications. We examine how tracing impacts application

latency and compare these effects across different programming frameworks. The study

aims to provide insights into the trade-offs involved in implementing tracing in serverless

applications.
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Figure 4.1: Task-based application experiment architecture diagram. Kubernetes hosts
the serverless platform OpenWhisk, which deploys the benchmark applications, and the
SeBS invokes the benchmarks. The OpenTelemetry Collector and Kibana are containerized
in Docker.

4.1.1 Motivation

Serverless computing enables the execution of task-based applications without man-

aging the underlying infrastructure, making it an appealing model for scalable and

flexible deployments. However, the performance impact of distributed tracing in such

environments remains a critical concern (13, 15, 26). Understanding how tracing affects

performance is essential to optimize serverless application execution and ensure that

the benefits of tracing do not come at the cost of excessive latency.

4.1.2 Research Questions

This experiment aims to answer the following research questions about task-based ap-

plications:

RQ4.1. What is the performance overhead of tracing in task-based applica-

tions? This question seeks to quantify the latency increase when tracing is en-

abled in task-based applications. We aim to identify the overhead introduced and

better understand the trade-offs involved in adopting tracing.
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RQ4.2. How does the performance overhead of tracing in task-based applica-

tions differ between different programming frameworks? This question

explores whether the impact of tracing on performance varies across different

programming frameworks. Specifically, we compare the overhead in Python and

Node.js applications, helping determine whether tracing affects specific frame-

works more than others.

RQ4.3. How does the performance overhead of distributed tracing vary across

different workloads? This question examines the variability in performance

overhead introduced by tracing when applied to different types of workloads. By

analyzing task-based applications with different performance characteristics, we

aim to identify patterns in tracing overhead and provide guidelines for its use

across various application types.

4.1.3 Hypotheses

We propose the following hypotheses to answer the proposed research questions:

H4.1. Enabling tracing in task-based applications will result in a measurable

increase in latency. This hypothesis suggests that the integration of tracing

into task-based applications will introduce additional latency due to the extra

processing required to capture and export log trace data (12, 14, 15, 16). This

hypothesis addresses the research question RQ4.1.

H4.2. Performance overhead of distributed tracing considerably differs be-

tween Python and Node.js. The hypothesis suggests that the impact of dis-

tributed tracing varies between Python and Node.js due to their differences in

runtime environments and performance (39). This hypothesis aligns with research

question RQ4.2

H4.3. Distributed tracing adds significant overhead for low-latency applica-

tions and insignificant overhead for high-latency applications. For low-

latency applications, minimal tracing overhead can significantly impact perfor-

mance, leading to increased runtime. In contrast, high-latency applications may

see negligible additional overhead because their baseline execution times are al-

ready large (12, 15). This hypothesis addresses research question RQ4.3.
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4.1.4 Latency Comparison of Serverless Task-Based Applications

This experiment compares the latency of serverless task-based applications under dif-

ferent configurations and programming frameworks. We aim to answer research ques-

tions RQ4.1 and RQ4.2.

Test Scenarios We design a series of test scenarios across multiple configurations

and environments to evaluate the performance overhead of tracing in task-based ap-

plications. The experiments are run on two programming frameworks, Python and

Node.js, utilizing five benchmark applications. Each application is executed in two con-

figurations: instrumented (with tracing enabled) and non-instrumented (without trac-

ing). The setup allows us to analyze the impact of tracing across different applications

and frameworks, resulting in 20 individual benchmark executions (10 per framework: 5

instrumented and five non-instrumented).

Workloads The benchmark applications represent a range of task-based workloads,

including low and high-latency tasks. We aim to isolate the overhead introduced by

tracing and assess how it varies across different frameworks and workloads.

Objectives Key aspects analyzed in these test scenarios include:

• Performance Impact: Assessing the overall performance impact of tracing on

task-based applications.

• Framework Comparison: Evaluating differences in tracing overhead between

Python and Node.js.

• Workload Variation: Examining how performance overhead varies across task-

based workloads.

4.1.5 Serverless Benchmark Suite (SeBS)

The Serverless Benchmark Suite (SeBS) is a framework designed to evaluate the perfor-

mance and cost-efficiency of serverless platforms and functions (28, 37). SeBS facilitates

the deployment, execution, and measurement of serverless functions across multiple

cloud platforms, including AWS Lambda, Azure Functions, Google Cloud Functions,
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and Apache OpenWhisk. The framework provides various benchmark applications that

reflect typical serverless workloads, such as web applications, multimedia processing,

data compression, and scientific computations.

Methodology The SeBS framework consists of the following steps for benchmarking

serverless functions:

1. Configuration: The benchmark, deployment, and experiment settings are con-

figured using JSON files. The configuration includes details such as the benchmark

application name, input size, number of repetitions, and memory configurations.

2. Deployment: SeBS automates the deployment of serverless functions to the

selected serverless platform. It handles packaging the function code, deployment

on the platform, and setting up necessary resources such as storage and triggers.

3. Execution: Benchmarks are executed according to the configured parameters,

with support for both cold and warm starts (except for OpenWhisk). Several

invocation patterns—such as burst, sequential, and concurrent—are available to

evaluate performance under various conditions.

4. Data Collection and Analysis: During execution, SeBS collects detailed per-

formance metrics stored in JSON files for further analysis. These metrics provide

insights into client-side and server-side timings and statistical summaries for each

experiment.

By leveraging SeBS, we ensure consistent and repeatable experiments, enabling a

systematic analysis of tracing’s impact on task-based applications.

4.2 Metrics and Data Collection

In this section, we outline the key metrics used to evaluate the performance of the

benchmark applications, as well as the methods employed for data collection. These

metrics are crucial for addressing the research questions and evaluating the hypotheses

formulated in the experiment.
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4.2.1 Metric Description

To assess the performance of the benchmark applications, we rely on the following

metrics provided by the Serverless Benchmark Suite (SeBS) framework:

1. Benchmark Time: Benchmark time refers to the total time taken for the func-

tion execution on the serverless platform. This metric measures the time spent

executing the task and does not include platform overhead or network latency (28).

The metric reflects the raw execution performance of the function itself.

2. Client Time: This metric measures the total time taken from the client initi-

ating the request to receiving the response, encapsulating the end-to-end latency

experienced by the user (28). The Client Time consists of several measurements:

1) Benchmark Time, which is the execution time on the serverless platform; 2)

Provider Time, which consists of serverless platform measurements, including the

platform’s overheads; 3) latency of scheduling, network, and the overhead of the

SeBS wrapper. Client time represents the total experience from the user’s per-

spective.

While we initially considered measuring actual memory consumption and provider

time, these were excluded due to limitations in the OpenWhisk platform, which does

not expose memory usage metrics. Additionally, the SeBS framework does not provide

provider-specific measurements for the OpenWhisk environment.

4.2.2 Data Collection Methods

The SeBS framework records each benchmark execution and stores the results in JSON

files. Each execution record includes various details, such as execution times, configura-

tion settings (e.g., cold vs. warm starts), function outputs, and error statuses. In cases

where the serverless platform supports it, additional data like cost and memory usage

are also collected. Appendix B contains an example of a typical execution record.

The SeBS framework gathers the metrics through a custom wrapper that runs the

experiment and collects benchmark and client time measurements at key points in the

execution process. Additionally, SeBS retrieves data directly from the serverless plat-

form when available, ensuring that platform-specific metrics are captured and integrated

into the analysis.
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4.3 Experiment Setup

This section describes the environment setup used for conducting the task-based appli-

cation tracing overhead experiment. It describes the configuration of the Kubernetes

cluster, object storage, serverless platform, and benchmark applications. The setup

ensures a robust, efficient, reproducible environment for running the benchmarks and

collecting performance data.

4.3.1 Environment

The experiment is conducted within a Kubernetes cluster deployed on a single virtual

machine. The virtual machine hardware specifications are described in Section 2.4.2.

4.3.1.1 Kubernetes

The Kubernetes cluster is configured using Kind1, consisting of three nodes: one control

plane node and two worker nodes. The worker nodes host the OpenWhisk services,

enabling the concurrent execution of serverless functions. Setting up the experiment on

Kubernetes allows us to ensure a consistent, replicable, and reliable environment.

4.3.1.2 OpenWhisk – Serverless Platform

Apache OpenWhisk2 is deployed on the Kubernetes cluster to manage and execute the

serverless benchmark applications. OpenWhisk supports various runtimes, including

Python, JavaScript, and Java, allowing us to deploy all the benchmarks used in this

experiment. The Kubernetes worker nodes host the various OpenWhisk components

and other required services, including:

• Nginx: Acts as an HTTP server and reverse proxy.

• Kafka: Provides a publish-subscribe messaging system.

• CouchDB: Serves as a NoSQL database for metadata storage.

OpenWhisk’s architecture includes two key services:

1https://kind.sigs.k8s.io/
2https://openwhisk.apache.org/
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• Controller: Manages the lifecycle of actions and triggers. It handles incoming

requests and translates these requests into invocations.

• Invoker: Executes the actions by running them in isolated environments. Each

action runs inside a pod within the Kubernetes cluster, allowing for efficient scaling

and resource management (55).

4.3.2 MinIO Object Storage

MinIO1 is used as the object storage system for the benchmark applications in this

experiment. MinIO is an open-source distributed object storage server for data storage

and retrieval. The benchmark applications utilize MinIO to download and upload files.

4.3.3 Benchmark Applications

We use five benchmark applications from the Serverless Benchmark Suite (SeBS), each

selected to represent different workload types to assess the performance impact of tracing

comprehensively. The benchmarks include web application tasks, multimedia process-

ing, and a scientific computation task. This diversity helps to evaluate tracing overhead

across a wide range of scenarios.

All applications are implemented in both Python and Node.js. For benchmarks

without a native Node.js version, we develop the Node.js implementations based on the

Python version and existing code examples. Each application has both instrumented

(tracing enabled) and non-instrumented versions, resulting in 20 different configurations

(10 per programming language).

The selected benchmarks are:

1. Dynamic HTML: Generates dynamic HTML content from a template. This

benchmark, categorized under web applications, helps assess the impact of tracing

on tasks typically found in web development.

2. Uploader: Downloads a file from a provided URL and uploads it to a specified

bucket. This benchmark evaluates the overhead introduced by tracing with data

transfer tasks.
1https://min.io
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3. Thumbnailer: Resizes an image to generate a thumbnail. The application down-

loads the image from an object storage bucket, processes it, and uploads the re-

sized image back to the bucket. This benchmark represents multimedia workloads,

which involve both computation and I/O operations.

4. Video Processing: Adds a watermark to a video and generates a GIF. This

compute-intensive benchmark evaluates the effect of tracing on video processing

tasks that require substantial processing power and involve multiple I/O opera-

tions.

5. Graph PageRank: Executes the PageRank algorithm to rank nodes in a graph

based on their importance (56). The Python implementation uses the igraph

library1, while the Node.js implementation uses the ngraph library2. This bench-

mark measures tracing’s impact on computationally intensive tasks.

By evaluating these benchmarks, we can analyze how tracing affects various types

of serverless tasks, providing insights into its suitability for different applications.

4.4 Experiment Configuration

This section describes the specific configurations and parameters used in the experiment.

These configurations ensure a controlled and consistent environment, enabling accurate

measurement of the performance overhead introduced by tracing. We also describe the

instrumentation process with OpenTelemetry, detailing the levels of tracing applied and

the steps involved in integrating tracing across the benchmark applications.

4.4.1 Tracing Instrumentation Levels

We implement two levels of tracing instrumentation to assess the impact of tracing on

performance. The tracing instrumentaiton levels applied are:

• No Tracing: This level involves running the benchmark applications without

any tracing instrumentation, serving as a baseline for evaluating the performance

impact of adding tracing.
1https://python.igraph.org/
2https://www.npmjs.com/package/ngraph.graph
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• Full Tracing: This level includes comprehensive instrumentation, capturing de-

tailed spans enriched with child spans and attributes throughout the applications.

The sampling rate is set to 100% to capture all the traces. Evaluating these

benchmarks provides insights into the extent of the overhead tracing introduces.

4.4.2 Instrumentation with OpenTelemetry

We integrate OpenTelemetry into Python and Node.js applications to trace the bench-

mark applications. We configure manual instrumentation for all applications with ex-

tensive instrumentation. Overall, the integration consists of three steps: (1) configur-

ing OpenTelemetry, (2) manually instrumenting the application, and (3) exporting the

trace. We explain the details of each step below. An example of a manually instru-

mented Python graph-pagerank benchmark is displayed in Appendix C.

Configuration For both Python and Node.js, we install the necessary OpenTelemetry

SDKs and libraries, including the OpenTelemetry API, SDK, and Exporter packages.

Configuration includes setting up the service name for each application trace, vali-

dating that the traces reach the backend and exporting traces to the OpenTelemetry

Collector via a gRPC endpoint. Figure 4.2 illustrates the configuration process for the

Python-based thumbnailer benchmark, covering attributes setup, span exporting, span

processing, and tracer initialization.

Manual Instrumentation We use manual instrumentation instead of automatic in-

strumentation due to the environment constraints of the OpenWhisk platform that

prevent the use of instrumentation agents. The instrumentation adds spans to various

functions, tracking execution details such as function names, execution times, and key

parameters. Child spans are created for significant events, capturing essential actions

during execution. For example, in the uploader benchmark, separate spans are created

for download and upload events. Manual instrumentation is applied consistently across

Python and Node.js applications, minimizing disparities by maintaining similar logic,

spans, and attribute usage in both implementations (see Figure 4.3).
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Figure 4.2: Configuration example for manually instrumented Python application with
OpenTelemetry.

Exporting Traces Traces are exported to the OpenTelemetry Collector, which is

configured to receive traces from Python and Node.js applications through the gRPC

endpoint. The Collector forwards traces to Elastic APM for visualization and validation

in Kibana. This setup ensures accurate trace collection, and the export process is verified

by confirming the traces’ arrival in Kibana.

4.4.3 Benchmark Applications

The benchmark framework supports various runtime configurations for each application,

including the number of function instances, concurrent invocations, repetitions, action

type (cold or warm start), memory limit, and timeout. Below are the key runtime

parameters used:

• Number of Function Instances: Each benchmark application is run with mul-

tiple replicas. Each replica is a separate pod running on the Kubernetes cluster.

The number of replicas is equal to the Concurrent Invocations value.
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Python graph-pagerank

1 def handler(event):
2 span = tracer.start_span("handler")
3 ctx = trace.set_span_in_context(span)
4

5 size = event.get('size')
6 span.set_attribute("size", size)
7

8 generate_graph_span = tracer.start_span("generate_graph", context=ctx)
9 graph = igraph.Graph.Barabasi(size, 10)

10 generate_graph_span.end()

Node.js graph-pagerank

1 exports.handler = async function(event) {
2 const span = tracer.startSpan('handler');
3 const ctx = opentelemetry.trace.setSpan(opentelemetry.context.active(), span);
4

5 const size = event.size;
6 span.setAttribute('size', size);
7

8 const generateGraphSpan = tracer.startSpan('generate_graph', undefined, ctx);
9 const graph = generateBarabasiAlbertGraph(size, 10);

10 generateGraphSpan.end()

Figure 4.3: Comparison of Python and Node.js code snippets for the graph-pagerank ap-
plication. This figure shows part of the code responsible for manually instrumenting using
OpenTelemetry. The code examples highlight the similarities in how the instrumentation
is implemented in both frameworks. Both examples demonstrate span creation, context
propagation, and attribute setting.

• Concurrent Invocations: Set to 10 for all experiments; this parameter rep-

resents the batch size for executions, allowing us to observe the application’s

performance over a more extended period with consistent load.

• Repetitions: Each benchmark is executed 10 000 times to ensure statistical

significance and minimize the impact of anomalies.

• Action Type: The experiments are conducted in warm start mode, where the

serverless functions utilize already-initialized environments for lower latency. Cold

start measurements are discarded to focus on steady-state performance.
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• Memory Limit: Defines the maximum memory allocated to each application

during execution. Memory limits vary based on the application’s requirements.

• Timeout: Specifies the maximum execution duration for each function before

termination, preventing excessive resource consumption.

Table 4.1 summarizes the memory limits and timeout configurations for each bench-

mark application. These settings are consistent across Python, Node.js, instrumented,

and non-instrumented versions.

Table 4.1: Task-based applications memory limit and timeout configuration.

Benchmark Memory Limit (MB) Timeout (Seconds)

Dynamic HTML 128 10
Uploader 128 30
Thumbnailer 256 60
Video Processing 512 60
Graph PageRank 512 120

4.5 Experiment Deployment

This section outlines the deployment process for the components used in the task-based

application tracing overhead experiment, including Kubernetes cluster, OpenTelemetry

Collector, Elastic APM, Kibana, OpenWhisk, and the benchmark applications.

4.5.1 Kubernetes Cluster Deployment

The Kubernetes cluster is deployed using Kind (Kubernetes IN Docker) on a single

virtual machine. The Kind tool enables the setup of Kubernetes clusters within Docker

containers. We create the cluster with the Kind CLI tool installed on the virtual ma-

chine.

4.5.2 Tracing Tools Deployment

The OpenTelemetry Collector, Elastic APM, Kibana, and Elasticsearch are deployed

using Docker and Docker Compose, following a setup process similar to that outlined in
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Section 3.5.1. By containerizing the tracing tools and hosting them outside the Kuber-

netes cluster, we reduce the potential impact of tracing on the benchmark applications

and simulate real-world conditions where applications export traces to an external trac-

ing backend.

4.5.3 OpenWhisk Deployment

Apache OpenWhisk is deployed within the Kubernetes cluster using the official Helm

chart (57). We use the chart version 1.0.1 to install and configure OpenWhisk’s com-

ponents, including the Controller, Invoker, Kafka, CouchDB, Nginx, and Elasticsearch.

We configure the following OpenWhisk action limits and values via the Helm chart:

• Actions Invokes Per Minute: This limit specifies the amount of invocations per

minute. Configured to 1000 invocations per minute to prevent throttling during

the experiment.

• Actions Invokes Concurrent: This limit defines the maximum number of ac-

tions that can run concurrently at any moment. We set the value to 100 to have

sufficient concurrency for our experiments.

• Triggers Fires Per Minute: The trigger fires per minute parameter sets the

maximum number of triggers that can be fired per minute. A trigger in OpenWhisk

is an event that causes one or more actions to be invoked. We set the value to

the same as the Actions Invokes Per Minute value – 1000.

• Actions Memory Max: This limit defines the maximum amount of memory a

single OpenWhisk can consume. Increased to 1024 MB to accommodate the mem-

ory requirements of serverless applications, with benchmark applications using a

maximum of 512 MB.

4.5.4 Benchmark Application Deployment Process with SeBS

The benchmark applications are deployed using the Serverless Benchmarks (SeBS)

framework (37), The deployment process involves several steps to ensure the appli-

cations are correctly packaged and deployed on the OpenWhisk platform:

1. Cache Check: The framework first checks for up-to-date builds of the benchmark

functions, avoiding unnecessary rebuilds.
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2. Code and Data: Benchmark application code and data are copied to the build

location.

3. Dependencies: Additional dependencies, such as files, images, and videos, are

included if required. This step ensures that all external dependencies are available

for the benchmarks.

4. Platform-Specific Wrappers: Shims are added to adapt the benchmark code

to platform-specific requirements, providing compatibility with OpenWhisk’s API.

5. Deployment Packages: Dependencies specific to the platform are installed,

including the MinIO SDK for object storage integration.

6. Code Packaging: The codebase is organized according to the platform’s require-

ments, preparing it for deployment.

7. Docker Image Build: Given OpenWhisk’s 48 MB limit on code package sizes, all

functions are deployed as Docker images. The application code and dependencies

are copied into the Docker image and then pushed to the Docker registry.

8. Creating OpenWhisk Action: The final step involves creating or updating the

OpenWhisk action using the Docker image, allowing the function to be executed

on the platform.

4.6 Experiment Results

This section presents the results of the experiments evaluating the performance impact

of distributed tracing on task-based applications. The following sections discuss the key

findings and analyze the experiment results.

The experiment results are organized into three groups, each addressing one of the re-

search questions and checking the corresponding hypothesis. We first present the overall

performance impact of tracing on task-based applications in Section 4.6.1, answering

the research question RQ4.1 and testing the hypothesis H4.1. We also compare the

overhead introduced by tracing in different programming frameworks in Section 4.6.2,

addressing the research question RQ4.2. Section 4.6.3 discusses the results of the tracing

overhead across various workloads (research question RQ4.3).

We present the following main findings from this experiment:
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MF4.1 Tracing consistently increases latency across all task-based workloads, with low-

latency tasks experiencing higher relative overhead percentages.

MF4.2 Compute-intensive task-based applications, such as graph-pagerank, show lower

percentage overhead (6.69%) despite substantial absolute latency increases.

MF4.3 As baseline non-instrumented request duration increases, the overhead percentage

generally decreases, indicating a relatively reduced impact.

MF4.4 With serverless applications, Node.js framework generally shows a higher percent-

age overhead than Python, especially for low-latency tasks.

MF4.5 Despite higher overhead percentages, the absolute overhead values for serverless

applications in Python and Node.js are comparable.

4.6.1 Performance Impact of Tracing On Serverless Applications

Table 4.2: Performance metrics (mean and p99) for the serverless benchmarks comparing
instrumented (Instr.) and non-instrumented (Non-Instr.) configurations.

Benchmark
Mean

Non-Instr.
(ms)

P99
Non-Instr.

(ms)

Mean
Instr.
(ms)

P99
Instr.
(ms)

Benchmark Time
dynamic-html 2.53 6.58 6.96 17.00
uploader 25.39 40.75 28.80 49.29
thumbnailer 112.61 177.00 121.94 186.00
video-processing 1411.57 2134.00 1797.22 3828.54
graph-pagerank 4579.33 9348.00 4885.69 10950.02

Client Time
dynamic-html 64.20 143.87 66.48 138.38
uploader 106.72 208.39 121.94 224.60
thumbnailer 220.16 370.60 314.87 746.39
video-processing 1463.01 2188.63 1848.05 3877.28
graph-pagerank 5244.06 9396.89 5556.00 10995.80
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Table 4.2 presents the performance metrics for the evaluated serverless benchmarks,

comparing the mean and 99th percentile (P99) latency for instrumented (Instr.) and

non-instrumented (Non-Instr.) configurations. The table is divided into two categories:

(1) Benchmark Time, which measures only the execution time of the function, and

Client Time, which includes end-to-end latency experienced by the client.

For Benchmark Time, all benchmarks show higher mean and P99 latency when in-

strumented. For example, the dynamic-html benchmark shows a mean latency increase

of 175%, rising from 2.53 ms (non-instrumented) to 6.96 ms (instrumented), while the

P99 latency increases by 158% (6.58 ms to 17.00 ms). The thumbnailer benchmark,

with a more moderate latency compared to others, shows an increase of 8.3% (from

112.61 ms to 121.94 ms) for mean latency and the P99 latency rising by 5.1%. More

intensive tasks, such as graph-pagerank, exhibit a latency increase of 6.7% (from 4579.33

ms to 4885.69 ms), and the P99 latency increasing by 17.1%.

For Client Time, latency increases are evident across almost all benchmarks, with

more significant performance degradation observed for longer-running applications. For

dynamic-html benchmark, the mean latency increased by 3.55%, but the P99 value of

the non-instrumented benchmark is higher than the instrumented counterpart. This

suggests that for applications with low request durations, the instrumentation overhead

may be insignificant in some cases because of network delays or the serverless platform

overhead. However, other benchmarks show consistent performance degradation similar

to the Benchmark Time results.

4.6.2 Tracing overhead comparison between Python and Node.js

Table 4.3 presents the overhead of the instrumentation for both Python and Node.js ap-

plications. The overhead represents the percentage increase from the non-instrumented

mean latency to the instrumented mean latency. The table also includes the non-

instrumented mean latency values for each benchmark, providing context for the base-

line performance before tracing was enabled

We observe that the tracing overhead varies significantly between Python and Node.js

across different benchmarks. For dynamic-html, Node.js exhibits a much higher overhead

percentage (574.76%) compared to Python (72.77%). However, the non-instrumented

mean latency for Node.js is much lower (1.03 ms) than Python’s (4.04 ms), indicating
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Table 4.3: Benchmark and Client results for Python and Node.js overhead percentages.
Overhead indicates the latency increase with the instrumented version of the benchmark.

Benchmark
Python

Overhead

Python
Non-Instr.

Mean

Node.js
Overhead

Node.js
Non-Instr.

Mean

dynamic-html 72.77 4.04 574.76 1.03
uploader 10.57 34.35 19.48 16.43
thumbnailer 5.60 79.93 9.75 145.30
video-processing 70.69 1080.26 0.44 1742.89
graph-pagerank 1.28 1008.87 7.36 8149.79

that while the percentage increase is significant, the absolute overhead is more negligible

for Node.js.

The results generally show that the higher the request duration, the lower the over-

head tends to be. However, there are exceptions, such as video-processing for Python,

where the overhead is almost the highest with 70.69% overhead, despite a high mean

latency of 1080.26 ms. In addition, the graph-pagerank benchmark for Node.js shows a

7.36% overhead, which is considerably higher overhead than, for example, the Node.js

video-processing benchmark, which has significantly lower mean latency.

The results indicate a noticeable difference in tracing overhead between the two

languages. While Node.js frequently shows higher overhead percentages, the absolute

mean latency is lower than Python’s in some cases, but the absolute overhead value is

comparable to the absolute overhead for Python.

4.6.3 The variation of performance impact across different workloads.

Figure 4.4 presents box plots for five serverless workloads across non-instrumented and

instrumented configurations. The results of the benchmarks are aggregated over both

Python and Node.js evaluations.

The results indicate that the performance impact of tracing instrumentation varies

widely depending on the workload type. For example, the dynamic-html workload, with

a relatively low baseline latency of 2.53 ms, shows an increase of median latency to 6.96

ms when instrumented, exhibiting an overhead of approximately 175%.
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Figure 4.4: Comparison of performance impacts of distributed tracing for different task-
based benchmarks, showing the mean benchmark time for non-instrumented and instru-
mented configurations across multiple benchmarks. The results are combined from both
Python and Node.js applications.

As the median request duration increases, the overhead generally decreases. For

instance, the uploader and thumbnailer with moderate median request durations, show

a more modest increase–13.43% overhead for uploader and 8.29% for thumbnailer. How-

ever, the video-processing workload with a median latency of approximately 1411 ms

exhibits a substantial increase of 27.32%. This considerable increase is the result of the

70.69% overhead in Python as Table 4.3 shows. The graph-pagerank workload, which

has the highest baseline latency among the workloads with a median of 4579.33 ms,

shows the lowest overhead with 6.69%.

The data highlights that tracing introduces a considerable performance impact
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across the workloads. The functions with lower request duration show the highest

increase but still the lowest increase in absolute values. The more compute-intensive

workloads incur lower overhead in percentage but higher in terms of absolute values.

4.6.4 Results Overview

The results provide insight into the performance impact of distributed tracing in task-

based applications. We address each of the research questions and validate whether the

initial hypotheses set for each question hold.

RQ4.1: What is the performance overhead of tracing in task-based appli-

cations? The findings reveal that enabling tracing leads to a measurable increase in

latency across all the tested applications, validating hypothesis H4.1. Results in Sec-

tion 4.6.1 show that for short-running benchmarks, the median latency can increase

by 175%. With an increased non-instrumented latency, the relative overhead gener-

ally decreases, but the absolute mean latency increases with instrumentation enabled.

These results emphasize the need to weigh the benefits of tracing against the associated

latency overhead, especially in applications where performance is a priority.

RQ4.2: How does the performance overhead of tracing in task-based ap-

plications differ between different programming frameworks? The experi-

ment results reveal some differences in overhead between Python and Node.js While

Node.js often exhibited higher overhead percentages–especially in low-latency tasks like

dynamic-html– the actual absolute latency increase was comparable to Python. The

cause of the high percentage overhead for Node.js tends to originate from lower non-

instrumented latency values. These findings highlight that even though there are some

differences between the frameworks, but there is not enough proof that the difference is

significant between Python and Node.js.

RQ4.3: How does the performance overhead of distributed tracing vary

across different workloads? The results indicate that tracing overhead varies sig-

nificantly across different workload types. We observe that the low-latency benchmarks

experience a high relative performance impact from tracing, with up to a 175% increase
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in latency. Meanwhile, high-latency tasks see a much smaller relative increase (for ex-

ample, 6.69%) despite a substantial absolute latency increase. This suggests that for

high-latency applications, the relative impact of tracing is minimized due to the already

large execution times, whereas low-latency tasks are more sensitive to the additional

overhead tracing introduces.

Overall, the results confirm the hypotheses H4.1 and H4.3, but not hypothesis H4.2.

We observe that tracing introduces measurable increased latency across serverless ap-

plications and that the workload length significantly influences the relative impact of

tracing overhead.
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5

Sources of Overhead in Distributed
Tracing

This chapter examines the detailed performance costs associated with distributed trac-

ing, aiming to identify, categorize, and measure the overhead in various application en-

vironments. The objective is to provide insight into which stages of the tracing lifecycle

impact the performance the most. The following sections discuss the experiment’s de-

sign, metrics, data collection, setup, configuration, and deployment. Finally, we present

and analyze the result to identify the primary sources of overhead in tracing.

5.1 Experiment Design

Within this experiment, we have two objectives: (1) categorize the processes in dis-

tributed tracing into distinct categories: configuration, instrumentation, and export,

and (2) measure each category’s overhead to understand each step’s impact on the

system performance. The experiment involves profiling applications from the previous

experiments described in Chapter 3.3.2 and Chapter 4.

5.1.1 Motivation

The motivation for examining the sources of overhead in distributed tracing is behind the

need to understand the balance trade-off between system observability and performance.

The breakdown of overhead into different categories is not widely explored in the current

research. We aim to fill the gap in the literature by identifying the key contributors to

69



5. SOURCES OF OVERHEAD IN DISTRIBUTED TRACING

the overhead. The goal is to provide insight into which processes in distributed tracing

cause the most overhead to understand where the optimization effort should be focused.

5.1.2 Research Questions

RQ5.1. What are the main contributors to overhead in distributed tracing? This

question seeks to identify which stages in the distributed tracing process—configuration,

instrumentation, or export—contribute the most to performance overhead. We

analyze each stage to pinpoint the area of tracing that contributes the most. We

aim to provide insight into where optimizations can yield the most significant

improvements

RQ5.2. How does the overhead of distributed tracing vary between cold start

and warm start scenarios? This research question examines the difference

in distributed tracing overhead between cold start and warm start scenarios.

The cold start includes the initialization and configuration of the OpenTelemetry

tracer, exporter, and tracer attributes. We aim to quantify how tracing impacts

the performance of both scenarios, which are relevant in environments such as

serverless computing where cold starts are frequent.

RQ5.3. How does the overhead in our specified categories of distributed trac-

ing vary between request-based and task-based applications? This ques-

tion investigates how different applications (microservices and serverless) overhead

varies across the tracing processes–configuration, instrumentation, and exporting.

The research aims to identify whether certain parts of the tracing process are more

costly in one application type than the other.

5.1.3 Hypotheses

H5.1. Exporting data is the main contributor to overhead in distributed trac-

ing. We anticipate that exporting is the largest contributor to the overhead in

distributed tracing. Exporting involves processing and transmitting the trace data

to a backend system. In systems where numerous events are traced, we expect

that the amount of trace data and the trace size can lead to potential performance

degradation in data processing and transmission (10, 47, 58). We expect that the
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instrumentation overhead is relatively low (15). This hypothesis is related to

research question RQ4.1.

H5.2. Cold start scenarios incur significantly higher overhead than warm start

scenarios. Cold start scenarios in serverless computing incur a significant reduc-

tion in performance due to initialization of configuration or dependencies (59, 60).

In contrast, warm start scenarios benefit from pre-initialized resources, which im-

proves performance. The hypothesis suggests that the cold start will have signif-

icantly higher overhead due to additional time spent initializing and configuring

the tracer. This hypothesis refers to research question RQ4.2.

H5.3. Both serverless and microservices architectures face similarly high over-

head in the same categories. Due to the frequent and distributed nature of

function invocations and service interactions in both architectures, we anticipate

that the processes of instrumenting each function or service and exporting trace

data impose similar performance overheads in both environments. This hypothesis

addresses research question RQ4.3.

5.1.4 Sources of Overhead

In distributed tracing, various sources contribute to the overall overhead observed in

the application and its instrumentation. In this experiment, we evaluate the sources

of overhead in the computational part of distributed tracing (47). To understand and

quantify the overhead of distributed tracing, we divide the function calls into four

categories: configuration, instrumentation, export, and workload. The configuration,

instrumentation, and export categories refer to the work executed by distributed tracing,

and the workload refers to executing the application’s primary tasks. The description

and content of each category is below:

• Configuration: Configuration overhead arises from the initial setup required

to enable distributed tracing in an application (61). This includes the time and

resources consumed during the initialization of the tracing framework, establish-

ment of connections to trace exporters, and the configuration of tracing parameters

such as sampling rates and context propagation settings. Although configuration
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overhead is typically a one-time cost at the start of the application, it can af-

fect the startup time and overall responsiveness, especially in environments where

applications are frequently started and stopped, such as serverless applications.

• Instrumentation: Instrumentation refers to the operations that are responsible

for capturing trace data. This includes inserting trace points into the code, where

spans are started and stopped, and what metadata is collected (62).

• Export: Export overhead is incurred when trace data is transmitted from the

application to a trace collector or backend (10, 13, 14). This involves formatting,

batching, and sending of the trace information. The impact of export overhead

depends on factors such as the volume of traces, batching strategy, and network

latency.

• Workload: The workload category in this context refers to the time required to

execute only the application task or request, excluding any tracing operations.

We classify the workload separately to assess the overall impact of tracing on the

system’s performance.

Categorization Process The distribution of the categories (configuration, instru-

mentation, and export) mainly reflect the general documentation structure of the in-

strumentation tools. We noticed that several guides, such as OpenTelemetry and Elastic

APM, are structured by first starting with the setup and the configuration of the in-

strumentation libraries and the configuration. The configuration process is followed by

the instrumentation specifics (adding spans, events, and attributes), and finally, the

documentations conclude with exporting the trace data. Each category can be further

expanded and examined more in-depth (for example, breaking down the instrumenta-

tion processes into context propagation and span creation). However, our goal is first

to establish the general categories to ensure a structured analysis.

5.2 Metrics and Data Collection

In this section, we describe the metrics and the data collection methods used in this

experiment to evaluate the sources of overhead in distributed tracing. The primary tool
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used for data collection is Python’s built-in library cProfile, which captures function-

level measurements of performance. We focus on two key metrics: Cumulative Time

and Total Time, which we use to evaluate the time spent by tracing operations in each

of the categories defined earlier.

5.2.1 Metrics

Cumulative Time Cumulative time refers to the total time spent in a function and

all the other functions it calls. Using cumulative time allows us to capture the full impact

of tracing operations because the sub-calls might not always have tracing-related names,

making it challenging to capture their impact otherwise.

Total Time Total time measures the direct time spent in a function itself, excluding

the time spent in the functions it calls. This metric helps us distribute the tracing

processes into correct categories more accurately because some of the sub-calls of the

operations might also include operations from other categories. By visualizing and an-

alyzing the profiling data, we can measure the impact of each category more accurately

through the combination of total time and cumulative time. For example, if a tracing

operation A calls tracing operation B, we can not add the cumulative time of both

measurements due to the overlap.

5.2.2 Profiling

To capture the performance data and identify the sources of overhead introduced by

distributed tracing, we use Python’s built-in profiler library called cProfile (63, 64) for

our framework. We also evaluate several alternative profiles such as pprofile (65), py-

spy (66), and Scalene (67, 68). We evaluated the tools based on three requirements:

whether the tool provides us (1) a sufficient amount of information about function calls,

(2) precise, detailed measurements about the application calls and (3) a method to save

the measurements for each test iteration. The measurements are needed to quantify

the amount of overhead caused by distributed tracing, Moreover, information about the

function calls is required to identify and categorize them into specific categories, such as

exporting and configuration. The evaluation consisted of reading the documentation,

studying the examples and performing profiling on a test program. We give a brief

overview of the tools and the reasoning behind using or not using the tool.
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• cProfile: cProfile is a profiling tool capable of monitoring all function calls, re-

turns, and exception events (64). It also provides precise timings (including total

time, per-call time, and cumulative time) and number of calls for each function.

cProfile also offers reasonable overhead (64). We selected this tool since it shows

measurements of each line of code, providing sufficient information about the

overhead sources and allowing us to organize the function calls into different cate-

gories. Furthermore, the cProfile profiling statistics format is supported by many

visualizing tools that help understand the profiling results.

• pprofile: This tool is another deterministic profiler that provides line-granular

measurements for the profiled applications (65). Our tests and evaluation showed

that pprofile satisfied our requirements. However, pprofile’s documentation ex-

plains that the deterministic profiling mode has a large overhead (65), with a

slowdown rate of 36.8 times compared to 1.7 times compared to cProfile (67).

Thus, we decided to opt for cProfile instead since it also fulfilled all the require-

ments but was significantly less intrusive.

• py-spy: The py-spy tool is a sampling profiler, which offers low overhead and does

not run in the same process as the profiled Python application (66). The tool also

has built-in visualizing capabilities to analyze the application calls. The tool also

offers a live view of the functions and their details during the application runtime.

However, at the time of the research, py-spy has issues with the compatibility

with the OSX operating system, which arised difficulties with the evaluation. In

addition, the initial assessment of the tool concluded that it might be challenging

to implement py-spy into our framework since it runs as a different process and

does not have a Python library, making it difficult to record the measurements

during the experiment. Therefore, we decided not to use the py-spy tool for our

use case.

• Scalene: A high-performance profiler capable of measuring CPU, memory, and

GPU usage with low overhead. Our brief evaluation showed that Scalene did not

satisfy the requirements we set for the profiler. First, Scalene shows the profiling

results in several formats but does not provide a programmatic or convenient way

to save the measurements for each iteration. Secondly, the profiling output of our
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test program did not show the measurements for all of our code lines but only for

a few (even when modifying the CPU percent threshold to a very low number).

5.2.3 Visualizing the Profiled Application

Visualizing the profiled application helps us ensure the accuracy of our measurements

and the correct categorization of the sources of overhead. In addition, the profiled data

helps us confirm that we collect the correct measurements and classify the appropriate

function calls into the respective categories of configuration, instrumentation, export,

and task execution. Since cProfile reports the execution time in cumulative time, which

contains the times for each subsequent function call, we must ensure we do not count the

distributed tracing functions several times. We used two types of visualization methods:

flame graphs and DOT graphs.

5.2.3.1 Flame graphs

The flame graphs visually represent the hierarchical structure of function calls within an

application (69). An example of a flame graph is displayed in Figure 5.1, which shows

the profiling information of an OpenTelemetry instrumented dynamic-html application.

The stacked bars represent the function calls, where the width of each bar corresponds

to the time spent in that function. We generate flame graphs from the cProfile generated

profiling data using the flameprof (70) tool. We use flame graphs to visually identify

the most time-consuming processes and validate whether the measurements match the

flame graph. We also use the graphs to understand the call stack and identify the

function calls related to OpenTelemetry.

5.2.3.2 DOT graph

DOT graphs represent the application’s call structure as a directed acyclic graph (DAG) (71).

The nodes in the DOT graph represent a function, and the edges represent the calls

and the relationship between them. This visualization method helps understand the

flow of requests, their relations and the order of the calls. We use the DOT graph to

determine which functions and their corresponding cumulative call times we record for

the measurements. In addition, we analyze if some function calls have sub-calls that

fall under a different category. We use a Python tool named gprof2dot (1) to generate
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Figure 5.1: Flame graph of the dynamic-html task-based application with OpenTelemetry
instrumentation. The CPU threshold for displaying function calls is set to 2.5%.

the DOT graph based on the cProfile data output. Figure 5.2 displays a DOT graph

generated with gprof2dot based on the cProfile generated from a task-based application.

5.3 Experiment Setup

In this chapter, we describe the setup used for the sources of overhead experiment. The

experiment reuses a subset of the applications from Chapter 3 and Chapter 4, focus-

ing on both request-based and task-based applications. This selection of applications

enables us to explore tracing impacts across different workload types, including both

short- and long-duration microservices and serverless workloads.

5.3.1 Experiment Applications

The experiment reuses the applications from Chapter 3 and Chapter 4: request-based

and task-based applications. We use a subset of the applications used in the previous

experiments: /db and /updates from the microservice experiment, and dynamic-html

and graph-pagerank from the serverless experiment. A smaller group of applications

allows us to maintain the research focus on a small but varied group of workloads. The

group contains applications from different architecture types with short-duration and

long-duration workloads.
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Figure 5.2: DOT graph of a task-based application with OpenTelemetry instrumentation.
The graph is generated with gprof2dot (1). The edge and node CPU threshold is set to
9.5%, and the depth of the graph is set to two for readability.

5.3.1.1 Request-Based Applications

The request-based application is a Python Flask-based web service implementing end-

points from the TechEmpower web benchmarks (72). The two selected endpoints rep-

resent typical database-driven microservices involving interaction with a PostgreSQL

database. Our application consists of the following two endpoints:

• /db: This endpoint simulates the database interaction, involving reading a ran-

dom entry from the PostgreSQL database.

• /updates: This endpoint handles a database update request, which updates a

number of database entries based on the provided parameter.

Both endpoints are instrumented automatically with OpenTelemetry to trace the

lifecycle of each request, including database interactions.

5.3.1.2 Task-Based Applications

The task-based applications represent workloads used in serverless environments. We

use two applications in this experiment that originate from the serverless benchmarking
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suite (SeBS) (28, 37) and are also used in Chapter 4:

• dynamic-html: This application generates dynamic HTML content based on

input parameters. It serves as a short-duration workload in the serverless domain

for this experiment.

• graph-pagerank: This application runs the PageRank algorithm, which pro-

cesses a large graph dataset to compute node ranks. This workload serves as a

long-duration, compute-intensive task to evaluate the impact of tracing on pro-

longed operations.

Both applications are manually instrumented using OpenTelemetry to capture trace

data. The instrumentation is identical to the versions used in the serverless experiment

of Chapter 4. The applications and the instrumentation process is described more

in-depth in Chapter 4.

5.3.2 Environment

The experiment environment uses Docker and Docker Compose to manage and execute

the applications in isolated containers. The experiment framework runs within a Docker

container, executing both the request-based and task-based applications. This setup

ensures consistency and reproducibility across runs, as well as isolation between the

application workloads and the underlying host system.

Unlike the previous experiments in Chapters 3 and 4, the frameworks from those

chapters cannot be reused here due to the need to incorporate cProfile into the tracing

instrumentation. As a result, the applications are run in separate processes to facilitate

the integration of profiling tools, allowing for a more detailed examination of tracing

overhead.

5.4 Experiment Configuration

This section describes the configurations and parameters used for the benchmark appli-

cations. Section 5.4.1 gives an overview of the cold start and warm start mode for the

serverless applications. Section 5.4.2 describes the parameters used for all the applica-

tions used in this experiment.
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5.4.1 Cold Start and Warm Start

For the task-based applications, we evaluate two modes of operation: cold start and

warm start.

• Cold start refers to starting the application from a completely fresh state with

no preloaded resources or configurations. Profiling begins from the initialization

phase, which includes setting up the task and configuring tracing (OpenTeleme-

try).

• Warm start simulates a scenario where the application has already been initialized,

with its state or configuration loaded, reducing the overhead typically associated

with setup.

In this experiment, we simulate cold starts by profiling the initialization, configu-

ration, and task execution phases. For warm starts, we first initialize OpenTelemetry

and other configurations and then profile only the task workload, focusing on the in-

strumentation and export phases.

For request-based applications, only the warm start mode is evaluated. These ap-

plications are designed to handle multiple requests, and it is uncommon for them to be

started fresh for a single request.

In summary, we run the experiment with six configurations: (1) dynamic-html-cold,

(2) dynamic-html-warm, (3) graph-pagerank-cold, (4) graph-pagerank-warm, (5) /db, and

(6) /updates.

5.4.2 Application Parameters

Table 5.1 displays the parameters used for the request-based and task-based applications

used in the experiments. We describe the parameters used for each benchmark and

provide the value used.

5.5 Experiment Deployment

This section discusses the deployment process for the experiment, which is conducted

within Docker containers and orchestrated with Docker Compose to ensure consistency,

isolation, and reproducibility. The deployment strategy is designed to run each applica-

tion or endpoint experiment separately to ensure that the experiments do not interfere.
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Table 5.1: Parameters used for the request-based and task-based benchmarks for evalu-
ating the sources of overhead.

Benchmark Parameter Description Value

dynamic-html random_len Number of items in the un-
ordered list inside the HTML
template

10

graph-pagerank size Number of vertices in the graph 10000
/db – – –
/updates queries Number of database entries to

update
10

5.5.1 Docker Containerization

The experiment is executed within Docker containers to ensure consistent and isolated

environments. Figure 5.3 shows the experiment’s deployment architecture. We run each

component in a separate Docker container and orchestrate the components with Docker

Compose (73, 74). The deployment consists of the following key components:

• Application Containers: Both the task-based and request-based applications

are deployed within an individual Docker container. This container includes the

necessary dependencies, application code, and the experiment framework respon-

sible for executing the tasks and collecting profiling data. All applications are

deployed with a limited amount of resources: 1 CPU unit.

• PostgreSQL: The request-based application requires a PostgreSQL database for

both endpoints used in this experiment. The database is deployed with three

replicas to ensure the database is not a bottleneck. The applications connect to

the Docker service endpoint, and the request is forwarded to one of the replicas.

• OpenTelemetry Collector: The OpenTelemetry Collector is deployed in a sep-

arate Docker container in the same Docker network. This service is configured

to accept traces on both HTTP and GRPC endpoints. The collector is set up to

forward the data to an Elastic APM server so we can validate and visualize the

traces in Kibana.
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Figure 5.3: Experiment architecture for evaluating the performance impact of distributed
tracing processes.

• Docker Network: All containers are connected via an internal user-defined

Docker network (75, 76), allowing communication between the application con-

tainers, database, and the OpenTelemetry Collector.

• Experiment and Service Orchestration: The orchestration of the experi-

ments and its services are managed using Docker Compose. We set up the pre-

requisite components (PostgreSQL, OpenTelemetry Collector, and Network) and

then run each application experiment one-by-one. The Docker Compose mani-

fests declare the parameters of the experiments, such as the number of iterations

to run, the application name, and the task-based application start modes (cold or

warm).
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5.6 Experiment Results

In this section, we discuss the results of the distributed tracing overhead experiment,

focusing on the main contributors to the overhead, the comparison between cold and

warm starts, and the differences in overhead between microservices and serverless ap-

plications. The results are based on profiling data collected from request-based and

task-based applications.

The main findings of this experiment are:

MF5.1 Configuration overhead is a major contributor in cold-start scenarios for serverless

applications.

MF5.2 Instrumentation overhead remains minimal for serverless applications but is rela-

tively high in request-based applications.

MF5.3 Exporting the trace data consistently incurs the highest overhead in request-based

applications.

MF5.4 Exporting causes a considerable overhead in short-duration serverless applications.

5.6.1 Main Contributors of Overhead

Table 5.2 shows the overview of distributed tracing overhead in different categories

(Configuration, Instrumentation, Export, Task) for task-based and request-based ap-

plications. We analyze the average and 99th percentile latencies for the total duration

and also observe the percentage of execution time for each of the categories. Task-based

applications are further divided into cold and warm start scenarios.

Configuration We observe that the configuration overhead is very significant in

short-duration task-based applications with cold starts, with dynamic-html-cold having

configuration account for 52.63% of the total execution time. For the graph-pagerank-

cold benchmark with a longer run duration, the configuration only made up for 0.85%

of the total execution time. The configuration is already done in warm start scenarios

and is, therefore, 0% For the request-based applications /db and /updates, the config-

uration contributed only a small percentage of 1.30% and 0.25%, respectively. For the
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Table 5.2: Sources of distributed tracing overhead in request-based and task-based appli-
cations based on profiling data. The percentages for each category represent the average
contribution of the operations.

Application
Avg.
Time
(ms)

P99
(ms)

Config. Instr. Export Task

Task-Based
Applications
dynamic-html-cold 38.83 52.41 52.63% 1.36% 13.96% 31.95%
dynamic-html-warm 17.27 36.96 0.0% 2.93% 28.32% 68.60%
graph-pagerank-cold 2731.21 3484.64 0.85% 0.03% 1.79% 97.33%
graph-pagerank-warm 2658.97 4866.62 0.0% 0.04% 1.64% 98.32%

Request-Based
Applications
/db 9.66 12.39 1.30% 8.02% 52.43% 38.25%
/updates 51.83 58.89 0.25% 11.97% 39.57% 48.21%

request-based applications, a small contribution came from fetching the tracer to start

the spans.

Instrumentation The results show that the instrumentation part of tracing gener-

ally has the lowest impact. Instrumentation overhead is relatively minor in task-based

applications across cold and warm scenarios. This indicates that the tracing operations

have a minimal effect on the overall performance of task-based applications. However,

with the request-based applications, the contribution of the instrumentation was signifi-

cantly higher, with 8.02% for /db benchmark and 11.97% for /updates benchmark. The

considerably higher contribution compared to task-based applications is likely because

of additional instrumentation operations done by the SQL and Flask instrumentor.

Export The export is consistently the most substantial contributor to the perfor-

mance impact caused by tracing. In request-based applications, export accounts for

52.43% for /db and 39.57% for /updates; this makes export the most significant con-

tributor to the microservice scenarios. Similarly, in the task-based applications bench-
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marks, the export overhead is significant in the dynamic-html benchmark, with 13.96%

contribution for the cold scenario and 28.32% for the warm scenario. For the graph-

pagerank, the relative impact of export is significantly lower at around 1% for both

warm and cold starts.

5.6.2 Comparing Cold Start and Warm Start

Figure 5.4 presents the distribution of tracing overhead across different categories–

configuration, instrumentation, export, and task execution–over multiple runs in cold

and warm start scenarios. The top row box plots show the dynamic-html benchmark

and the bottom row shows the distribution for the graph-pagerank cold and warm start

scenarios.

dynamic-html For the dynamic-html-cold, configuration occupies a significant por-

tion of the execution time, covering approximately 40-60% each run. The main con-

tributor is exporting the trace data in the warm start scenario for dynamic-html-warm

benchmark. The export also causes a significant impact on the performance of the cold

scenario. Instrumentation takes up only a small but consistent portion of the whole

execution time in both warm and cold scenarios for the dynamic-html benchmark. Ta-

ble 5.2 also shows that the cold-start scenario’s average and 99th percentile latency are

considerably higher than the warm-start scenario.

graph-pagerank In graph-pagerank, the configuration’s impact on the performance

is considerably lower than in dynamic-html-cold benchmark. The tracing impact on

performance is slightly higher with the cold start than with the warm start, but the

difference is barely visible. The exporting cost is also similar in both scenarios, as shown

in Table 5.2. The impact of instrumentation is insignificant for both warm and cold

starts.

5.6.3 Comparison of Microservices and Serverless Applications Over-
head

Figure 5.5 illustrates the distribution of time (milliseconds) spent in each of the over-

head categories (configuration, instrumentation, and export) for serverless applications
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Figure 5.4: Distribution of tracing overhead categories (Configuration, Instrumentation,
Export, Task) across 100 runs for task-based applications under cold start and warm start
scenarios.

and microservices. The results for each group are combined from all the evaluated

benchmarks.

The results show that the overhead across the categories varies significantly between
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Figure 5.5: Comparison of distributed tracing overhead across configuration, instrumen-
tation, and export phases for serverless applications and microservices.

the serverless applications and microservices. Configuration is the main contributor to

serverless applications’ overhead due to the cold starts. Configuration also has signifi-

cant variability compared to other categories. Export is the second largest contributor

to the overhead for serverless applications but has significantly less variability than

configuration. Instrumentation has the least impact on the performance of serverless

applications.

For microservices, the export overhead dominates with the highest median and vari-

ability. Instrumentation has moderate overhead and lower variability, likely due to the

additional instrumentation operations from SQL and Flask instrumentors. Configura-

tion overhead is minimal in terms of both time and variability because the configuration

part was minimal for microservices.

Overall, this comparison highlights that serverless applications face considerable

configuration overhead due to cold starts. The main contributor for microservices is

exporting, with the instrumentation operations also causing considerable impact.

5.6.4 Results Overview

RQ4.1: What are the main contributors to overhead in distributed tracing?

The results confirm that in most cases, exporting the trace data is indeed the primary

contributor to the overhead; this aligns with the hypothesis H4.3. The only exception
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is the cold-start scenario for short-duration benchmark dynamic-html-cold, where the

main contributor is configuration. Overall, export operations consistently show the

most significant impact on performance, especially in request-based applications, where

export times can reach up to 52.43% of the total execution time. Configuration and in-

strumentation contribute much smaller proportions, with instrumentation significantly

impacting request-based applications.

RQ4.2: How does the overhead of distributed tracing vary between cold start

and warm start scenarios? We observe that hypothesis H4.1 holds, meaning that

cold start scenarios incur significantly higher overhead than warm start scenarios. In

the dynamic-html-cold benchmark, the configuration contributes over 50% of the total

execution time in cold starts, and the latency impact is also significant. The average

latency is considerably higher for graph-pagerank benchmarks, causing the configuration

overhead to have a relatively low impact. This pattern highlights the performance

impact of cold starts in short-duration serverless applications.

RQ4.3: How does the overhead in our specified categories of distributed

tracing vary between request-based and task-based applications? The results

show that our hypothesis H4.3 does not hold. While both serverless applications and

microservices face significant export overhead, the impact of serverless applications’

configuration is significantly higher than that of other categories due to cold starts.

Exports are the main contributor to microservice applications. Furthermore, instru-

mentation overhead is insignificant in both dynamic-html and graph-pagerank serverless

applications but is significant with the microservices by contributing 8.02% and 11.97%

of overhead. Overall, we observe that the sources of overhead are different for microser-

vices and serverless applications.

The experiment results confirm hypotheses H4.1 and H4.2, with exporting being

the main contributor to tracing overhead and cold starts incurring significantly higher

overhead than warm starts. Meanwhile, hypothesis H4.3 does not hold as serverless and

microservice applications experience different overhead distributions.
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Related Work

This chapter examines the current state of research on distributed tracing, focusing on

performance overhead and the comparative evaluation of tracing tools. After outlining

the key research gaps identified in the literature, the chapter reviews studies that address

tracing overhead or research instrumentation tools.

6.1 Research Gaps

Despite the amount of research on distributed tracing, several key gaps exist in the

current research. These gaps include a limited understanding of tracing overhead across

its distinct phases, the absence of detailed and comprehensive performance analyses,

and the lack of studies spanning multiple architectural paradigms. We identified the

following gaps in existing research during the literature review:

1. Limited Analysis of Tracing Phases: Existing research generally measures

the overall performance impact of tracing but does not break down the overhead

into specific categories. Some studies address computational and storage over-

heads (47), but none looked into the export, configuration, or instrumentation

part of distributed tracing. Such a breakdown would provide valuable insights

into where the most significant sources of overhead lie, allowing for more targeted

optimizations.

2. Limited Comprehensive Analysis of Performance Overhead: Another gap

lies in the limited scope of distributed tracing’s performance analysis in existing

research. Many studies fail to describe the system under test, often not reporting
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details such as application architecture, instrumentation method, absolute values

of metrics, or even not reporting the observed overhead metric at all (13, 15, 47).

Therefore, comparing the distributed tracing tools, methods, and overhead across

research is difficult since there is a lack of a unified benchmarking method and

structure.

3. Lack of Analysis Across Multiple Architectures and Runtime Lengths:

Tracing has been studied in isolated architectural settings, but there is a gap in

research comparing tracing overhead across diverse application architecture types,

such as microservices and serverless. Most studies focus on one type of application

or barely describe the benchmarks (13, 15, 45). Furthermore, most research fo-

cuses only on a single application time, overlooking how tracing affects workloads

with varying execution times, such as those with 10 milliseconds compared to 10

seconds.

6.2 Performance Overhead of Tracing

Distributed tracing offers visibility into complex systems but can impose a significant

performance cost. This overhead is a critical concern for systems where performance

is paramount. Studies show that the overhead caused by tracing can vary widely,

depending on factors such as application type, workload, and the tracing tools used.

Table 6.1 summarizes the overhead reported in the literature, typically measured either

throughput or latency. However, many studies do not report the absolute performance

values, making it difficult to perform direct comparisons between tools. We also add

the results from the experiments conducted in this thesis for comparison.

Google Dapper, designed for large-scale infrastructures, minimizes overhead through

sampling, often tracing only 1 in every 1,000 requests (15). This strategy allows Dap-

per to maintain low performance impact while providing valuable insights into system

behavior. Dapper’s reported latency overhead ranges from 0% to 16.3%, depending on

the sampling rate, while its impact on throughput remains minimal, with a maximum

reduction of 1.5%.

At Facebook, the Canopy tracing system traces billions of requests while maintaining

low overhead through sampling techniques (12). Canopy’s evaluation of two services

(ServiceA and ServiceB) shows that instrumentation can result in an overhead of 8.15%
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for ServiceA (which has shorter requests and more detailed instrumentation), while

ServiceB, with longer request durations and default instrumentation, experiences only

0.76% overhead.

NanoLog, a high-performance logging system optimized for low-latency environ-

ments, achieves log invocation latencies of 8 to 18 nanoseconds (43). However, en-

abling instrumentation introduces a 3-4% increase in latency and a 19% reduction in

throughput, highlighting the trade-off between performance and detailed observability

in time-sensitive systems.

6.3 Comparative Analysis of Tracing Tools

Numerous distributed tracing tools exist, each with different capabilities, integration

options, and performance characteristics. Popular tools such as OpenTelemetry, Jaeger,

Zipkin, and Elastic APM vary significantly in the overhead they introduce and in the

integration complexity with different systems (9, 30, 80).

Bento et al. (2021) compared Jaeger and Zipkin and found that while both are

effective for visualizing traces and diagnosing issues, they require significant manual

effort to detect performance bottlenecks (80). The study highlighted key differences

between the tools, such as Zipkin’s broader support for span transport technologies

and Jaeger’s dynamic sampling capabilities, which allows for more flexible performance

tuning. The authors proposed using machine learning to automate anomaly detection,

improving the usability of these tracing systems.

Janes et al. (2023) conducted a comprehensive analysis of 30 tracing tools, including

Jaeger, Zipkin, Elastic APM, and OpenTelemetry (30). The study evaluated these tools

based on features, language support, and popularity, emphasizing that each tool offers a

unique combination of characteristics. The study concludes that the choice of a tracing

tool depends heavily on the specific architecture and needs of the system, with no single

tool being universally optimal.

Hindsight, introduced by Zhang et al. (2023) addresses limitations in traditional

tracing approaches, such as head and tail sampling, which often misses critical edge cases

or incur significant overhead (44). Hindsight’s retroactive sampling records all trace data

locally but only processes it when an issue is detected. This method significantly reduces

the overhead of constant tracing while ensuring that rare and complex system failures
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are captured efficiently. The paper compares Hindsight with OpenTelemetry and Jaeger,

which both introduced significantly higher overhead in terms of throughput.

92



6.3 Comparative Analysis of Tracing Tools

Table 6.1: Performance overhead comparison of various tracing tools across frameworks
and metrics.

Tracing
Tool

Framework Metric Overhead

OpenTelemetry Experiment 1 (Chap-
ter 3)

Latency 33-192%

Elastic APM Experiment 1 (Chap-
ter 3)

Latency 17-50%

OpenTelemetry Experiment 2 (Chap-
ter 4)

Latency 6-175%

Dapper (15) Web search cluster Latency 16.30%
Canopy (12) Unspecified ServiceA

and ServiceB
Wallclock time 0.76%, 8.15%

Kernel tracing (18) Python Django Latency 5.10%
NanoLog (43) C++ Latency 3-4%

OpenTelemetry Experiment 1 (Chap-
ter 3)

Throughput 19-52%

Elastic APM Experiment 1 (Chap-
ter 3)

Throughput 22-80%

OpenTelemetry (44) Benchmark A1 Throughput 42%
Jaeger (44) Benchmark A1 Throughput 41.70%
Hindsight (44) Benchmark A1 Throughput 3.50%
NanoLog (43) C++ Throughput 19%
X-Trace (46) Apache website Throughput 15%
1 Benchmark A includes DeathStar Microservices Benchmark (77), Hadoop Distributed File
System (78), and Alibaba benchmark (79).
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Conclusion

In this thesis, we conducted three experiments: (1) evaluation of tracing’s performance

impact on request-based applications (microservices), (2) evaluation of tracing’s perfor-

mance impact on task-based applications (serverless) and (3) categorizing and quanti-

fying the sources of overhead in distributed tracing. We designed and implemented the

frameworks for each experiment, conducted the evaluations, and analyzed the results.

We present the following main findings from the three experiments:

MF3.1 Distributed tracing reduces throughput across all frameworks, with declines

ranging from 19.55% to 80.18%.

MF3.2 Java Spring exhibits the lowest overhead with microservice applications, while

Node.js shows the most significant impact on throughput.

MF3.3 OpenTelemetry generally delivers higher throughput than Elastic APM across

most frameworks.

MF3.4 Distributed tracing increases median request latency for all evaluated microser-

vices, with increases ranging from 7% to 42%.

MF3.5 OpenTelemetry and Elastic APM introduce comparable median latency over-

head, but OpenTelemetry generally results in slightly higher median latency across

most microservices.

MF3.6 The performance impact on median latency varies significantly across frame-

works, with increases ranging from around 10% in some cases to as much as 179% in

others.
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MF4.1 Tracing consistently increases latency across all task-based workloads, with

low-latency tasks experiencing higher relative overhead percentages.

MF4.2 Compute-intensive task-based applications, such as graph-pagerank, show lower

percentage overhead (6.69%) despite substantial absolute latency increases.

MF4.3 As baseline non-instrumented request duration increases, the overhead per-

centage generally decreases, indicating a relatively reduced impact.

MF4.4 With serverless applications, Node.js framework generally shows a higher per-

centage overhead than Python, especially for low-latency tasks.

MF4.5 Despite higher overhead percentages, the absolute overhead values for server-

less applications in Python and Node.js are comparable.

MF5.1 Configuration overhead is a major contributor in cold-start scenarios for server-

less applications.

MF5.2 Instrumentation overhead remains minimal for serverless applications but is

relatively high in request-based applications.

MF5.3 Exporting the trace data consistently incurs the highest overhead in request-

based applications.

MF5.4 Exporting causes a considerable overhead in short-duration serverless applica-

tions.

7.1 Research Questions

RQ1: How does the implementation of distributed tracing affect the through-

put and latency of request-based applications? Our experiment shows that dis-

tributed tracing significantly impacts throughput and latency in request-based applica-

tions. We observe that the throughput can decrease from 19.55% to 80.18%. Regarding

latency, tracing consistently adds considerable delays by increasing the median request

duration by 7% to 42%. These findings highlight the trade-off between observability

and the performance cost of distributed tracing.

96



7.1 Research Questions

RQ2: What are the effects of distributed tracing instrumentation on the

performance of task-based applications? The serverless evaluation experiment

reveals that enabling tracing adds measurable latency across all workloads. With short-

duration benchmarks (2.53 ms), we observe latency increases up to 175%. For the

benchmarks with a moderate duration ( 25 ms and 112 ms), distributed tracing added

approximately 8-13% of additional latency. Longer-running benchmarks ( 4500 ms)

exhibit a lower relative increase in latency of around 6.7%, but the absolute latency

increase is significantly higher. These results confirm that distributed tracing introduces

a considerable overhead, with more pronounced effects on short-duration tasks than

benchmarks with higher baseline latency.

RQ3: What are the primary sources of overhead introduced by distributed

tracing, and which of them are the main contributors to overhead? We first

identified three main categories in distributed tracing: configuration, instrumentation,

and export. Configuration includes the initial setup of the tracing system. The ex-

periment reveals that configuration overhead significantly contributes to short-duration

cold-start serverless applications, which consume a significant proportion of the exe-

cution time. The instrumentation category consists of operations, which insert trace

points and enrich the data. We observe that instrumentation provides minimal impact

on serverless applications but a considerable amount ( 8-12%) on request-based appli-

cations. Exporting involves transmitting the data to external storage or backend. We

found that exporting is consistently one of the largest sources of overhead, especially in

request-based applications.
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Appendix

A Results Data

The datasets used in this thesis, including performance metrics, profiling data, and

experiment configurations, are available for access and download. The data is organized

and described in a GitHub repository, which contains links to the files hosted on Google

Drive. The download links are described in the GitHub page:

https://github.com/andersnou/msc-thesis/blob/master/ResultsData.md.

B Task-based application experiment benchmark execu-
tion record

1 {

2 "billing": {

3 "_billed_time": null,

4 "_gb_seconds": 0,

5 "_memory": null

6 },

7 "output": {

8 "begin": "1720219857.361634",

9 "end": "1720219857.367960",

10 "is_cold": false,

11 "request_id": "00142209237343789422092373037861",

12 "result": {

13 "measurement": {

14 "compute_time": 57,

15 "graph_generating_time": 469
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16 },

17 "result": 0.1

18 },

19 "results_time": 6326

20 },

21 "provider_times": {

22 "execution": 0,

23 "initialization": 0

24 },

25 "request_id": "00142209237343789422092373037861",

26 "stats": {

27 "cold_start": false,

28 "failure": false,

29 "memory_used": null

30 },

31 "times": {

32 "benchmark": 6326,

33 "client": 69912,

34 "client_begin": "2024-07-06 00:50:57.309980",

35 "client_end": "2024-07-06 00:50:57.379892",

36 "http_first_byte_return": 0.069829,

37 "http_startup": 0.031384,

38 "initialization": 0

39 }

40 }

C Task-based application graph-pagerank manual instru-
mentation code example

import i graph
import os

from opente lemetry import t r a c e
from opente lemetry . expor t e r . o t l p . proto . grpc . t race_exporter import OTLPSpanExporter
from opente lemetry . sdk . t r a c e import TracerProvider
from opente lemetry . sdk . t r a c e . export import SimpleSpanProcessor
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C Task-based application graph-pagerank manual instrumentation code
example

from opente lemetry . sdk . r e s ou r c e s import Resource

ot lp_exporter = OTLPSpanExporter (
endpoint=os . getenv ( "OTLP_EXPORT_ENDPOINT" , "http :// l o c a l h o s t :4317 " ) ,
i n s e cu r e=True

)

span_processor = SimpleSpanProcessor ( ot lp_exporter )

r e s ou r c e = Resource ( a t t r i b u t e s={
" s e r v i c e . name" : " 660 . graph−pagerank−opente lemetry "

})
t r a c e . se t_tracer_prov ider ( TracerProvider ( r e s ou r c e=re sou r c e ) )
t r a c e . get_tracer_provider ( ) . add_span_processor ( span_processor )

t r a c e r = t ra c e . get_tracer ( " handler " )

def handler ( event ) :
span = t r a c e r . start_span ( " handler " )
ctx = t ra c e . set_span_in_context ( span )

s i z e = event . get ( ' s i z e ' )
span . s e t_at t r i bu t e ( " s i z e " , s i z e )

generate_graph_span = t r a c e r . start_span ( "generate_graph" , context=ctx )
graph = igraph . Graph . Barabasi ( s i z e , 10)
generate_graph_span . end ( )

pagerank_span = t r a c e r . start_span ( "pagerank" , context=ctx )
r e s u l t = graph . pagerank ( )
pagerank_span . end ( )

f irst_node_rank = r e s u l t [ 0 ]
span . s e t_at t r i bu t e ( " f irst_node_rank" , f irst_node_rank )

span . end ( )
return {

' r e s u l t ' : r e s u l t [ 0 ]
}
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