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Abstract

Serverless computing has revolutionized application develop-
ment by abstracting infrastructure management from appli-
cation development, enabling developers to focus on applica-
tion logic. Since the inception of serverless computing with
AWS Lambda, serverless technology has seen rapid adoption
across major cloud platforms. Besides application develop-
ment, serverless computing has had a significant impact on
how applications are offloaded between cloud and edge in
the computing continuum. To better understand how and why
serverless computing impacts function offloading, a study
of the driving factors behind serverless offloading and the
impacted application domains is essential. However, exist-
ing surveys on function offloading application domains do
not study the impact of serverless technology. This system-
atic literature survey seeks to bridge this knowledge gap by
investigating and underlining serverless functions’ role in re-
shaping the function offloading paradigm within the modern
computing continuum.

1 Introduction

Serverless is a computing model that decouples infrastruc-
ture management from application code development [35].
It allows developers to focus on delivering the application
logic and not managing servers, networks, and cluster con-
figurations [34]. Function-as-a-service (FaaS) [82] or cloud
functions [78] build upon serverless technology and introduce
further abstraction. In the FaaS model, developers break the
application into individual functions that are later executed
by stateless, ephemeral workers [85]. Introduced in 2014 by
the introduction of Amazon Lambda [1] and followed by
Google and Microsoft in 2016, the serverless adoption rate
is significant. According to Datadog’s analysis [27], more
than 70% of organizations using AWS and over 50% of those
using Azure and Google Cloud have adopted serverless in
June 2022. One year before, this was only above 50%, 35%,
and 20%, respectively [26]. This trend is believed to continue,

and it is predicted that ”Serverless will dominate the future of
cloud computing” [44].

Serverless functions have evolved beyond the cloud and
are often used for function offloading because of their flex-
ibility and scalability [49]. Function offloading is the gen-
eral pattern of transferring resource-heavy tasks from local
resource-constrained devices to distribute workloads [17] [54].
The primary concern of function offloading is shaped by the
need to balance computational, networking, or storage de-
mands with resource constraints. Function offloading allows
for agile advancements in the computing continuum [59]. The
computing continuum integrates cloud, edge computing, and
IoT into a unified system that spans from centralized data
centers to user devices such as mobile phones. The introduc-
tion of a serverless computing model and FaaS platforms is
recognized as a significant milestone in function offloading
development [81]. Serverless is a key technology for offering
function offloading with better scalability, easier deployment,
and lower costs. Thanks to the objectives of serverless func-
tions new application domains arise for function offloading.

To fully understand the importance of serverless for func-
tion offloading, the exploration of application domains, and
the trends and objectives driving the adoption of function
offloading and FaaS is needed. By studying the application
domains, we gain insight into how serverless functions extend
the variety of use cases for function offloading. By exploring
the trends and objectives driving those new use cases, we can
better understand the current computing landscape and try
to predict further development directions. While there are a
significant number of surveys on task offloading [28] [86] or
serverless functions [35] [82], they do not extensively cover
the topic of use cases and drivers behind function offload-
ing adoption. Moreover, none of the found surveys considers
the serverless functions’ impact on function offloading ap-
plication domains. Instead, they often have a more narrowed
focus, like task-scheduling approaches [55] [86] or offloading
decision-making algorithms [86] [2].

We aim to fill this knowledge gap by studying the landscape
of function offloading and how it is influenced by serverless
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[54] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[6] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[76] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[42] ✓ ✓ ✓ ✓ ✓ ✓
[35] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[30] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
[58] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Us ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Overview comparison of function offloading use cases and objectives covered in related works and this survey.

functions. We capture the current state of the art in the field
of application domains and factors driving the adoption of
function offloading and FaaS. To achieve this, we formulate
and answer the following questions: (I) what are the primary
use cases and application domains of function offloading and
serverless functions?; and (II) what are the main objectives
driving the adoption of function offloading and serverless
functions?. We organize the contributions of this survey as
follows:

1. We delve into related surveys, outlining their main con-
tributions and comparing them to this survey in Section
2. We identify gaps in prior work and design a new sys-
tematic literature survey. We present our methodology
in Section 3.

2. We construct an overview of application domains for
function offloading including serverless functions (Sec-
tion 4) and we structure the identified domains and use
cases into a taxonomy to provide a better understanding
of their diversity. This provides an insight into the cur-
rent state of function offloading and serverless function
usage across the computing continuum.

3. We present the main trends in computing that drive the
adoption of function offloading in Section 5. We show-
case what processes influence the rapid growth of func-
tion offloading, including serverless functions as com-
putation models. We also provide an insight into how
the identified trends are behind the rise of particular use
cases.

4. We present and group the main objectives and character-
istics that drive the adoption of function offloading in-
cluding serverless functions into a taxonomy in Section
6. We couple objectives with specific use cases to bet-
ter understand the driving factors of function offloading.

This contribution fulfills the image of function offloading
and serverless functions driving factors, showing how
current application domains benefit from characteristics
and how those characteristics make use cases possible.

2 Related Work

Existing surveys targeting function offloading in the comput-
ing continuum rarely include a broad discussion of use cases
alongside the objectives and the benefits of using function
offloading. Even fewer studies correlate use cases and their
characteristics to understand the objectives driving particular
use cases. Instead, they often focus on more detailed aspects
like task scheduling algorithms, offloading decision-making
processes, or systems’ performance optimization.

We present an overview of how related works cover use
cases that leverage offloading and their objectives and com-
pare it with our survey in Table 1. In the table we show
whether related studies discuss use cases and objectives driv-
ing function offloading; we also indicate what the main focus
of such a study is: serverless functions or function offload-
ing to non-serverless infrastructure. The next two parts of
the table indicate which particular use cases and objectives,
if any, are discussed in each survey. For reference, the last
row of the table refers to our survey. Surveys are ordered by
their number of citations on Google Scholar. For each, we
provide a more detailed summary and a comparison to our
work below.
Lin et al. [54] present an in-depth analysis of the history of
computation offloading and the recent shift of offloading to-
wards edge computing. The paper discusses various aspects,
such as offloading granularity, architecture, challenges, appli-
cation scenarios as shown in Table 1, and future directions. It
also presents serverless as a promising and emerging execu-
tion platform for computation offloading. This survey does
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not discuss any objectives of offloading (Table 1).
Aslanpour et al. [6] contribute to exploring the integration of
serverless computing with edge computing to address modern
application demands. The survey also considers the benefits of
task offloading to the cloud. As presented, the edge provides a
seamless transition layer before cloud resources are available.
However, function offloading is not the main focus of this
survey, and it covers a limited number of drivers for adoption
and use cases, as can be seen in Table 1.
Shafiei et al. [76] contribute to identifying and describing po-
tential opportunities, application domains, and challenges of
serverless functions. It also explores how the FaaS paradigm
shifts the traditional cloud computing model towards a more
granular, event-driven architecture. This survey, however,
does not consider the objectives of cloud functions from the
perspective of end-user devices.
Islam et al. [42] primarily focus on classifying the multi-
access edge computing (MEC) architecture and on strategies
of task offloading within the MEC. The survey delves into
the benefits of offloading to MEC. Another contribution of
this survey is the six groups of use cases that were identified
and presented. This survey takes a more generic approach and
does not focus solely on function offloading.
Hassan et al. [35] systematically review the literature on
serverless computing, addressing its state-of-the-art, concepts,
platforms, usage, and challenges. It identifies the benefits
of serverless computing and discusses future research direc-
tions. The key contribution of this survey is the very precisely
classified characteristics of serverless functions and their ap-
plication areas.
Eismann et al. [30] main contribution is a comprehensive
analysis of serverless computing use cases. It presents and
characterizes 89 different use cases sourced from literature.
Key findings highlight the dominance of AWS as a platform
and its significant adoption in production environments. The
analysis also reveals diverse application characteristics, work-
load patterns, and the motivations behind serverless adoption.
Cassel et al. [13] conduct a broad study of the adoption of
FaaS and serverless computing in IoT devices. The survey
comprehensively studies the related literature and provides
insights into architectures, programming languages, and pro-
tocols used in the serverless IoT world. Cassel et al. contribute
to identifying six groups of use cases, including further of-
floading of serverless functions to other layers in the comput-
ing continuum. This survey does not present the objectives of
function offloading.
Manner [58] presents an analysis to clarify the concepts of
serverless computing and FaaS. The key contributions of this
survey are the identified characteristics and benefits of FaaS;
however, use cases are not considered.

Based on the related studies presented above, we find that
our work fills the existing knowledge gap of a comprehensive
study of application domains and factors driving the adop-
tion of function offloading and serverless functions as well.

Existing surveys do not combine non-serverless function of-
floading with serverless functions, which we do. There is
also a lack of comprehensive exploration of a landscape of
function-offloading application domains, use cases, and key
drivers of its adoption that we provide with this survey.

3 Survey Methodology

In this section, we present the approach and methodology fol-
lowed to execute this systematic literature survey. Firstly, we
delve into keyword selection and search for literature. Next,
we present an overview of the adopted selection criteria for
evaluating found publications. We conclude this section with
a description of the data extraction, analysis, and taxonomy-
forming process.

3.1 Literature Search
In the process of searching for relevant literature, we started
with defining the initial set of keywords that are later used
to build the search queries. We looked into an initial set of
highly-cited papers [17] [69] and one survey [54] in the field.
Those publications helped us to grasp the current state of the
research as well as the vocabulary used in the area of func-
tion offloading in the computing continuum. Based on this,
we concluded that the fields of computation offloading and
serverless functions are seldom considered together, which
is important for fully understanding ongoing advancements
in function offloading. We defined the following keywords
together with their synonyms: function, offloading, computing,
faas, serverless, cloud, edge, fog, and continuum. Based on
the keywords we also defined phrases that consist of more
than one keyword based on the context of this survey: funtcion
offloading, computing offloading, and funtion as a service.

In this survey, we focus on electronic databases, and for
searching purposes, we use Google Scholar, as it is commonly
used for conducting literature surveys in software engineer-
ing [92] and is believed to be one of the most comprehensive
sources of publications [60]. An initial title search is con-
ducted to include all papers that might be relevant for this
survey. Below, we present the initial search query that was
constructed and executed on the Google Scholar database.

allintitle:
("function offloading" OR "computing offloading" OR
faas OR "function as a service" OR serverless)
(continuum OR cloud OR edge OR fog)

Besides the database search, we also conduct a snowball
search. This method uses the reference list of accepted publi-
cations to identify other relevant works in the field that were
not found using the query search. This flexible approach to
systemic search may increase the research value of this survey
since it might include relevant literature with unusual titles
that would not be included otherwise.
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3.2 Selection Criteria
The initial query retrieved 1670 papers, so further assessment
to decide whether a publication is relevant and should be in
the scope of this survey was required. To realize this goal,
some selection criteria have been established and employed,
as follows below.

Inclusion criteria:

• I1 - Publication date is not earlier than 2019. The ratio-
nale is that we only want to consider the most recent
drivers and application domains.

• I2 - Publication directly addresses function offloading or
serverless functions in the title or abstract.

• I3 - Publication directly considers one or many appli-
cation domains or use cases and one or many function
offloading objectives in its title or abstract. To evaluate
this, we searched for the following key phrases: charac-
teristics, application domains, use cases, benefits.

• I4 - Publication is developed by either academia or prac-
titioners.

Exclusion criteria:

• E1 - Publication full text is not publicly accessible and
cannot be accessed.

• E2 - Publication is marked as retracted.

• E3 - Publication is unfinished.

• E4 - Publication is a master thesis or literature survey.
Related surveys are considered separately in Section 2.

• E5 - Publication is written in a language other than En-
glish.

• E6 - Publication is a duplicate of an already-considered
publication.

3.3 Literature Analysis and Results
After applying the selection criteria presented in subsection
3.2 that can be applied automatically in Google Scholar i.e.
publication year, the number of publications was reduced to
238. After reviewing the abstracts of the remaining papers and
applying the remaining selection criteria by hand, we are left
with 48 papers that are accepted for this survey. This includes
the publications added during the snowball search. Serverless
functions are the main concern of 21 of those publications,
whereas the main area of the remaining 27 publications is
non-serverless function offloading.

All selected publications and their content, including all
figures are systematically analyzed. This is the most chal-
lenging part of a systematic literature review that aims to

extract, gather, and classify information included in the litera-
ture. This allows us to build multiple taxonomies that provide
a structured decomposition of related concepts.

4 Application Domains and Use Cases

This section explores application domains and use cases for
function offloading and serverless functions in the computing
continuum. It provides a comprehensive overview of how
function offloading is applied across various sectors, with
each subsection offering a brief description of notable use
cases, supported by literature references. Figures 1 and 2 pro-
vide a graphical representation of the taxonomy of identified
application domains and corresponding use cases found in
the literature. We present below all use cases covered in the
selected literature.

4.1 IoT World of Smart Devices
We identify the wide variety of IoT devices, including: (I)
smart city devices (Section 4.1.1); (II) smart grid devices
(Section 4.1.2); (III) industrial IoT devices (Section 4.1.3);
(IV) smart healthcare devices (Section 4.1.4); and (V) sen-
sors (Section 4.1.5) as one of the application domains for
function offloading and serverless functions. IoT devices are
usually resource-constrained, offering limited computing, net-
working, and storage capabilities [89] [64]. Some IoT devices
are also battery-powered setting additional power restrictions
for applications. Use cases resulting from applications run-
ning on IoT devices have various characteristics. However,
based on the selected literature, we can identify the main ob-
jectives of applications that can be met using serverless and
non-serverless function offloading. Specifically, low delays,
data privacy, elastic scaling, energy efficiency, and access to
more resources. In the next subsections, we present the use
cases found in the literature in more detail.

4.1.1 Smart City

Smart city applications can vary from infrastructure moni-
toring, water monitoring and management, smart buildings,
smart city services, smart transportation, or public health. The
primary characteristics of smart city use cases are high avail-
ability and low maintenance costs since numerous IoT devices
are spread among urban areas and often process critical data.
Moreover, for use cases that influence public safety, providing
secure computation offloading is essential. For this reason,
Alli et al. [4] propose SecOFF-FCIoT, a secure offloading
to fog and cloud for smart cities. In this solution, resource-
constrained and battery-powered IoT devices can offload in-
tensive tasks to fog nodes. The workload is categorized as
either sensitive or non-sensitive and then transmitted to the
cloud if the fog node is unable to handle it. The SecOFF-
FCIoT evaluation showed that it minimizes latencies and
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Figure 1: Taxonomy of Application Domains and Use Cases.

energy consumption. In [19], Cheng et al. propose something
different. A data-centered programming model and orchestra-
tion mechanism called Fog Function. It aims to allow easier
service logic modeling and provide higher flexibility than
existing FaaS solutions for IoT. It does so thanks to a relaxed
lifetime of functions, relaxed resource constraints on func-
tions, and the support of mobility-aware task migration. In
their paper, Cheng et al. showcase the usability of this solution
by realizing the smart parking system based on the real-life
scenario of Murcia City. The Fog Function system sources
data from multiple parking site data providers and connected
cars in the city. Based on this data, upon user request, it pro-
vides real-time parking recommendations. Since such calcula-
tions are data-centered and data-heavy, they are offloaded to
edge or cloud nodes with more resources. Another use case is
presented by Mete et al. [63]. They propose a serverless cloud
GIS platform for real estate valuation. The novelty of this so-
lution is that it is based on a serverless database management
system. Such offloaded databases proved to respond to big
queries faster and scale up better during high workloads.

4.1.2 Smart Grid

Smart grid applications vary from smart city use cases by cov-
ering wider areas, especially IoT devices in energy grids can
be spread out across the whole country. Thus high elasticity
and auto-scaling play a crucial role for smart grid applications.
Tornado, or Toci, is a computational intelligence system for
energy management presented by Huber et al. [39]. It can
comprise multiple buildings, energy farms, and hundreds of
sensors. Toci’s main objective is to learn about typical en-

ergy use in the environment and alert managers in case of
abnormalities in the operation of the energy grid. The system
is designed to scale well due to the serverless architecture
while preserving a low operational cost. Computations are run
both at the edge and in the cloud, so more complex machine-
learning tasks are offloaded to the cloud. Zhang et al. [94]
also rely on serverless technology. They provide a cloud-
centered architecture to ensure operation continuity regardless
of local infrastructure availability for power grid emergency
generation dispatch. The major advantages of this work are
fault-tolerant infrastructure for grid monitoring and control
abilities, even if on-premises systems lose functionality.

4.1.3 IIoT

Intelligent Industrial Internet of Things and its applications,
together with the number of connected devices, including sen-
sors, are growing extensively. This leads to an increase in the
demands for low latency, resource-sensitive, and computation-
intensive workloads that consume a significant amount of data.
Moreover, event-driven execution and businesses’ pursuit of
cost reduction, e.g. reducing idle times, further distinguish
IIoT use cases from smart city or smart grid use cases. Hazra
et al. in [36] propose a computation offloading mechanism
that utilizes the collaboration of fog and cloud nodes for IIoT
applications. Their framework, called TSCO, aims to opti-
mize energy usage and latencies by transferring offloaded
tasks based on their importance. TSCO is providing good
results thanks to the use of a federated fog network that can
be supported by conventional cloud nodes during high traffic.
CSCO is another solution for IIoT, proposed by Bebortta et
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Figure 2: Taxonomy of Application Domains and Use Cases, continued.

al. [8]. It aims to provide QoS for function offloading to the
edge. CSCO models industrial workloads as stochastic pro-
cesses and observes their processing denial rates caused by
overloaded servers. Using this data, the solution can provide
adaptive performance modeling and can be used for computa-
tion offloading of time-critical tasks. On the other hand, Fan
et al. [33] focus on task offloading for machine learning-based
IIoT applications. The main objective of this work is to mini-
mize the long-term average system cost, which is influenced
by task offloading, resource allocation, and the accuracy of
the ML model deployed on sensors, edge, and cloud nodes.

4.1.4 Smart Healthcare

Healthcare is one of the primary applications for IoT devices
today, which includes various wearable devices. In contrast
to IIoT or smart city devices, wearables are by design tiny,
battery-powered devices, thus focusing on saving the device
battery, and providing more resources for applications is a
characteristic of smart healthcare use cases. Data generated by
those applications needs analysis and further storage, which
is not possible on resource-constrained smart devices. More-
over, these data have a private nature and need to be processed
and stored securely. Meena et al. [62] address those concerns
by introducing TEFLON, a trust-enforced computation of-
floading technique. TEFLON implements two algorithms that
enable optimal offloading and trust assessments for entities
in the fog environment. Another interesting use case in the
domain of healthcare is DNAvisualization.org, presented by
Lee et al. [51]. Their work allows the transformation of DNA
sequences into easier-to-interpret visualizations. The imple-

mented solution utilizes serverless functions to achieve cost
efficiency and high performance.

4.1.5 Sensor Networks

Use cases of function offloading and serverless functions for
networks of sensors have yet different characteristics. Such
use cases, due to the potentially large amount of sensors re-
quire easy auto-scaling and support for parallel computation
to accommodate data from all devices. An exciting use case
for serverless functions is presented by Kang et al. [75]. They
propose a dynamic offloading model for edge computing and
showcase its usability on the network of sensors supporting
forest fire management. Sensors collect data such as tem-
perature, humidity, or wind direction in real-time, but due
to limited resources, they are unable to store historical data
and perform data analysis. Therefore, data is offloaded and
computation is collaboratively done among edge nodes pro-
viding fire predictions, spread rate, flame height information,
etc. Another example of using serverless functions in IoT is
presented in [46], where a management system for a sensing
system is presented. The presented solution helps in modeling
the services and task offloading between IoT devices, fog, and
cloud nodes. Yu et al., in their work [93], take a different look
at IoT devices and the massive amount of data generated by
smart sensors. They present an offloading scheme that aims
to maximize the benefits of data analysis. They pinpoint the
business value that can be collected out of the data processed
in the IoT-Edge-Cloud ecosystem.
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4.2 Mobile Phones

Another application domain we identify is mobile devices
such as smartphones and tablets. Mobile phones still suffer
from limited computational and storage resources like IoT
devices (Section 4.1). Moreover, mobile devices are battery-
powered by nature which further limits their capabilities to
maintain heavy computational load for long periods. However,
use cases for function offloading and serverless functions in
the mobile phone application domain differ from those for
IoT smart devices. The difference is dictated by the distinct
nature of mobile applications compared to applications for
IoT devices. Mobile applications are foremost user-centered
and often focus on delivering high user-perceived QoS while
preserving device battery life [77].

Some of the accepted papers focus on mobile applica-
tions. All of those publications agree that code offloading
is a promising way to accelerate mobile applications and re-
duce the energy consumption of mobile devices by moving
computations to more resourceful nodes. In [53] Lin et al.
argue that existing code offloading systems suffer high delays
between mobile devices and the cloud. To mitigate this is-
sue, they propose Echo, an edge-centric decision engine that
aims to efficiently offload functions among three-layer com-
puting environments, consisting of mobile, edge, and cloud.
LAMCO, the layered mobile offloading system proposed by
Ballan et al. [7], aims to improve code migration from mobile
Android devices. The main advantage of the LAMCO is the
introduction of standardized offloading architecture and QoS
components that ensure enhanced performance of the system.
Other works look at the offloaded tasks in more detail. Mo et
al. [64] investigate the problem of dependency-aware function
offloading and service caching to propose a directed acyclic
graph-based offloading mechanism that minimizes the overall
service delay. Other authors focus on video processing, Ap-
padurai et al. [5] define a weighted function of frame rate and
precision to enhance video analytics. Ren et al. [71] reveal
ACTOR, an adaptive offloading framework for 4K mobile AR.
The ACTOR dynamically downscales the mobile video feed
before sending it to a remote server to minimize user-expected
latency, thus improving the user experience.

4.3 Vehicles & UAVs

Function offloading finds its use in another area of research
that has received widespread attention in recent years, au-
tonomous driving. Due to the limited battery life and com-
puting capabilities of autonomous vehicles, many urgent and
computation-intensive tasks need to be offloaded to maintain
response time requirements and safety standards. A solution
improving the Earliest Deadline First Algorithm for schedul-
ing such tasks for autonomous driving is presented by Dai
et al. [25]. Work in a similar area by Royuela et al. [73] pro-
poses a testbed for evaluating cooperative, connected, and

automated mobility applications. While both works highlight
the benefits of edge computing and the deployment of 5G net-
works, Royuela et al. focus on analyzing images and making
vehicle routing decisions.

For unmanned aerial vehicles (UAVs), those concerns of
limited power and computing resources are valid as well.
UAVs are a promising technology to support human activi-
ties such as surveillance or disaster rescue. However, many
of those tasks require processing that is beyond the capabil-
ities of the UAV computation platform. To tackle this issue,
Chen et al. [16] propose iTAO, an intelligent task offload-
ing algorithm. iTAO aims to lower the latencies and power
consumption for task offloading in UAV networks using the
Monte Carlo Tree Search algorithm. A different approach to
UAVs is presented by Kang et al. [45]. Their work explores
the use of UAVs and high-altitude platforms to collect and
process functions offloaded from ground devices. Another
work by Xiong et al. [90] also utilizes UAVs to support com-
putation offloading from even more resource-constrained IoT
devices on the ground.

Fan et al. in [32] focus on yet another class of devices,
which are satellites. Intelligent applications on satellites, i.e.,
ones utilizing deep neural networks, are urgently in need of
help in extracting useful information from massive surveil-
lance data on time. Therefore, due to the limited computing
abilities of satellites, Fan et al. propose to offload part of the
computation to the ground station with the intermediary step
of airships, helping to reduce energy usage and minimize
delays.

We identify this group of devices, namely ground and aerial
vehicles because they and applications for those devices fur-
ther differ from IoT and mobile devices. Vehicles and UAVs
often require time-sensitive computations to maintain the
safety of operations, and not less often those computations
involve resource-demanding image processing. In the case of
vehicles and UAVs, the use of function offloading and server-
less functions enables their autonomous acting, and applica-
tions utilizing offloading are not specifically user-centered as
mobile applications are (Section 4.2).

4.4 Virtual Network Functions

Offloading of Virtual Network Functions (VNFs) is yet an-
other application domain we identify. VNFs in contrast to IoT,
mobile phones, and vehicle application domains do not focus
on supporting tasks and applications on resource-constrained
devices but on providing network services that can be entirely
virtualized in software and can either support networking
hardware or be an alternative to networking hardware [18].
Characteristics of serverless functions such as event-driven
execution and elastic auto-scaling are crucial for the VNF
application domain.

VFN offloading leverages generic servers to implement
various network functions as software components instead of
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purpose-specific hardware. This approach introduces a new
dimension of cost savings and network function deployment
flexibility and scalability by leveraging the computational
power of the cloud or the proximity of edge computing. Ma et
al. [56] propose a high-performance VNF and task offloading
provisioning and assignment algorithm. They aim to balance
the non-trivial tradeoff between the usage of computing and
networking resources on edge servers. The proposed solu-
tion maximizes the number of request admissions by choos-
ing whether to allow more VNF instances or task offloading
requests in the available infrastructure. Another example is
shown by Paolucci et al. [66], who offload user plane functions
to P4 programmable switches in the existing edge network.
They argue that VNF offloading to programmable network
devices is of extreme interest for the deployment of 5G and
beyond networks, where the offered network capacity will
need to sustain low latencies under high traffic loads.

4.5 ML & AI

We identify a wide variety of machine learning and artifi-
cial intelligence applications as another application domain
strongly present in the selected literature. ML & AI work-
loads leverage the high scalability and parallelism properties
of serverless functions. Resource-constrained devices also
benefit from powerful resources that are available in the cloud
or edge and thus can run more demanding applications utiliz-
ing e.g. deep reinforcement learning.

SIREN is an asynchronous distributed machine learning
framework presented by Wang et al. [87] in response to the
need for scaling up machine learning. In the presence of an in-
crease in volume and variety of data, new distributed machine
learning systems based on parameter servers are developed.
SIREN aims to provide a higher level of parallelism and elas-
ticity while reducing system configuration overhead at the
same time, thanks to the use of serverless functions. A similar
interest in optimizing serverless AI workloads is presented
in the work of Christidis et al. [20]. Their contribution fo-
cuses on providing optimization techniques for transforming
generic AI codebases into serverless functions. They evaluate
the proposed solution based on the intelligent transportation
case study of on-demand, real-time predictions of flows of
train movements across the UK rail network.

Other examples found in the literature include using deep
reinforcement learning across serverless functions to reduce
costs of malware detection [10], offloading machine learn-
ing tasks from sensors and IoT devices in an industrial set-
ting [33], offloading ML tasks from satellites [32] or using
deep neural networks deployed in serverless clouds to build
on-demand video surveillance systems [31]. Yet another us-
age is presented by Yao et al. in [91]. They aim to optimize
the performance of function offloading in serverless edge
computing using deep reinforcement learning. This work fo-
cuses on modern ML-based intelligence applications such as

face recognition, which need to be offloaded from resource-
constrained IoT devices.

4.6 Video and Media Processing

We identify video and other media processing as another appli-
cation domain for function offloading and serverless functions.
Video processing is gaining traction due to its significance for
VR/AR applications which offer users unique experiences in
various domains such as entertainment, education, training,
and healthcare [88]. Use cases of video and other media pro-
cessing leverage the additional resources that are available to
end devices by utilizing the function offloading and serverless
functions.

Video processing is an enabling technology for many mod-
ern applications, such as virtual and augmented reality, interac-
tive applications that analyze facial expressions and gestures,
self-driving, accurate tracking, and surveillance or traffic mon-
itoring, among others. However, real-time video processing
is a computationally expensive process that often has to be
offloaded from resource-constrained devices, as presented by
Chemodanov et al. [15]. The authors of this publication pro-
pose a policy-based function offloading scheme that aims to
enable real-time analysis with object and motion detection
for drone video feeds. The solution is based on decomposing
an existing computer vision pipeline for object and motion
detection into micro-service functions that are executed on
geo-distributed servers. Similarly, Salehe et al. [74] decom-
pose video processing into modules that can be executed on
any device. Their solution, called VideoPipe, allows collabo-
rative video processing done on connected edge devices, e.g.,
smart home IoT devices connected through a Wi-Fi network.
Salehe et al. evaluate VideoPipe by implementing a gesture-
based IoT application. Another work by Risco et al. [72]
delves into enabling the usage of GPU-based resources for
function offloading in multimedia processing. The authors
presented a case study of an automated workflow that gen-
erates subtitles based on the audio input and applies object
recognition to the video frames. Those compute-intensive
functions were offloaded to the server and efficiently exe-
cuted using GPU resources. Appadurai et al. [5] introduce
resource-aware video analytics offloading for mobile devices
such as smartphones. They focus on optimizing the resource
allocation when offloading the functions. Immersive 3D me-
dia streaming is discussed, and a serverless framework for
streaming such media is presented by Konstantoudakis et
al. [50]. The authors also showcase 5G networks as an en-
abling technology for 3D media streaming. In [68], Peng et
al. propose a privacy-aware computation offloading method
for virtual reality that enables secure offloading from mobile
VR devices. Ren et al. [71] also focus on mobile VR use
cases, but their work aims to provide 4K resolution with low
latencies thanks to dynamic down-scaling of the mobile video
feed before sending it to a remote server. Ren et al. claim that
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their solution, Actor, outperforms competitive methods and
provides high user-perceived video quality.

4.7 HPC & Scientific Computing
Yet another application domain, with different characteris-
tics and requirements, that we identify is the field of high-
performance and scientific computing. HPC computing usu-
ally processes large amounts of data and relies on compute-
heavy algorithms and high parallelism of computations [12].
Thus, to reduce costs and simplify the HPC and scientific
computations, function offloading and serverless functions
can be leveraged, as they promise such characteristics as high
parallelism, good resource utilization, idle times reduction,
and pay-as-you-go model.

Message-passing Interface (MPI) is a very popular dis-
tributed programming paradigm that dominates the current
landscape of high-performance computing (HPC) and is the
leading use case for supercomputers. Despite the elasticity of
the cloud, supercomputers still suffer from low resource uti-
lization rates. To address this issue, Copik et al. [23] present
a remote direct memory access (RDMA) capable function-
as-a-service platform for HPC. rFaaS, as it is called, brings
the benefits of serverless computing and offers low-latency
remote function invocations in multi-tenant environments.
Cepik et al. evaluate rFaaS and claim remote function execu-
tion with negligible performance overheads. Another solution
for a flexible and efficient serverless supercomputing platform
is presented by Chard et al. [14]. They present funcX, a plat-
form dedicated to scientific high-performance computation
tasks. They provide case studies of metadata extraction, ma-
chine learning interfaces, synchrotron serial crystallography,
quantitative neurocartography, and X-ray photon correlation
spectroscopy. Cordasco et al., in their work [24], also focus on
scientific workloads in serverless infrastructure models. They
present FLY, a domain-specific language that aims to stream-
line designing, deploying, and executing scientific applica-
tions, specifically exploiting FaaS characteristics. Similarly
to previous authors, Cordasco et al. also notice the promise
of serverless functions in HPC to allow extreme-scale appli-
cations through fine-grain decomposition of the application
and more efficient scheduling on cloud infrastructure.

4.8 Security
We also identify the application domain of security use cases,
since cybersecurity is a well-established domain of research,
and security applications can be implemented among various
devices, systems, and networks. Security use cases can lever-
age e.g. the cost-efficiency, event-driven execution, or ease of
deployment that are promised by serverless functions.

Birman et al. [10] investigate cost-effective malware de-
tection as a service over serverless functions. This propo-
sition follows the trend of transitioning parts of operations

Figure 3: Taxonomy of Trends Driving the Adoption of Func-
tion Offloading.

off-premise to reduce costs and improve scalability. Such
migration of security functions to the cloud also proves to
provide easier management and excellent disaster recovery
capabilities. Parres-Peredo et al. [67], on the other hand, look
into evaluating and identifying unexpected behavior of net-
work users. The proposed solution leverages the potential of
serverless computing to integrate with other services, such
as distributed caches or data stores, and execute functions in
an event-driven manner. The implementation uses a TopK
ranking-based method to classify captured network traffic,
and all analytic functions are offloaded from on-premise hard-
ware.

5 Trends Driving Adoption of Function Of-
floading

In this section, based on the use cases and application do-
mains presented in Section 4, we identify and present the
main trends in computing and new enabling technologies that
drive the adoption of function offloading in the computing
continuum. We find that the reasons behind the adoption of
function offloading are correlated; however, we managed to
identify six main driving trends. These are (I) an increase in
the number of connected IoT and mobile devices (Section
5.1); (II) the introduction and deployment of 5G networks
(Section 5.2); (III) a still increasing amount of generated data
needing processing (Section 5.3); (IV) a shift towards edge
and fog computing (Section 5.4); (V) the rising popularity
of serverless models (Section 5.5); and (VI) new, emerging
computation-heavy types of workloads (Section 5.6). We de-
pict the taxonomy of identified trends in Figure 3, and below
we present each trend or technology in more detail.
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5.1 IoT and Mobile Devices

The rapid and steady increase in the number of IoT and mobile
devices connected to the Internet is one of the main identified
factors driving and influencing the adoption of function of-
floading in the modern computing continuum [48]. Many of
those IoT and mobile devices (Section 4.1 and Section 4.2),
i.e., smartwatches, smart glasses, and environment sensors,
are resource-constrained, offering limited computing and stor-
age capabilities [89] [64]. Another group of low-cost devices,
including those of industrial grade or do-it-yourself (DIY)
devices, run on low-end hardware that, in many cases, cannot
do more than just handle the network connection and offload
the computation to external computing nodes [16] [74]. Some
other devices, like VR/AR headsets, drones (Section 4.3),
or wearable health sensors, are battery-powered and do not
have enough energy to compute heavy tasks on their hard-
ware [56] [4]. The solution to the above issues is the introduc-
tion of function offloading, which aims to move compute- and
data-heavy tasks to other network devices. Offloading enables
more applications to run on IoT and mobile hardware (Section
4.5 and Section 4.6), i.e., virtual reality [15], machine learn-
ing [33], or blockchain [52]. Thanks to offloading, IoT and
mobile devices find their use cases in more areas of our lives,
including healthcare [62] and industrial manufacturing [36],
to name a few.

The IoT market is believed to continue its rapid growth as it
is dictated by the new needs that arise from further increasing
global population and urbanization levels [41]. It is estimated
that there will be about 75.4 billion interconnected devices by
2025 [79]. According to a Cisco report from 2020, [21], smart
home applications should have the largest share of connected
devices by the end of 2023. Still, connected cars should be
the fastest-growing application type in the IoT world, with
30% growth yearly. Industrial interconnected machines are
not far behind, almost matching the growth of connected cars
and reaching 14.7 billion connections by 2023. The number
of smartphones is still believed to grow by 7% yearly. The
same report states that over 70% of the population will have
mobile Internet connectivity by the end of 2023 and that the
total number of Internet users is continuing to grow. Having
the above numbers in mind, we can assume that IoT and
mobile devices will continue to push the adoption of function
offloading forward in the upcoming years.

5.2 5G Networking

We find that the emergence of 5G networking is another main
driving factor behind the adoption of function offloading. The
emerging 5G networks bring a lot of promises, such as high
speeds, ultra-low latencies, increased network connectivity
and capacity, greater bandwidth, and improved energy effi-
ciency [47]. With such targeted key performance indicators,
5G is becoming an attractive option for enabling new devices

and applications in the computing continuum [38]. As es-
tablished in the previous Section 5.1, the increasing rate of
overall global connectivity and the advent of IoT and mobile
devices require enormous networking capabilities to accom-
modate the number of connections and bandwidth demands.
In that regard, 5G networking also seems to secure further
development of IoT, mobile devices, and new applications.

Thanks to high-performance networking, more remote de-
vices can quickly access network resources such as powerful
computing nodes, storage, caches, or data providers [17]. That
characteristic makes function offloading not only possible but
also compelling and beneficial from the quality of service and
user experience points of view [50]. For instance, drones and
other UAVs (Section 4.3) can offload their trajectory com-
putation to edge network nodes with minimal delays [16].
Available greater bandwidth enables mobile battery-powered
devices to offload ML-based computations in real-time for
virtual reality applications [50] (Section 4.5). 5G enables
and drives other use cases as well, such as video analytics for
resource-constrained devices [5] (Section 4.6), connected self-
driving cars [25] [73], and efficient streaming of immersive
3D and 4K media [50]. Another application domain comes
from 5G technology itself. Modern networks such as 5G need
to be flexible, scalable, and efficient to sustain high data rates
and extremely low latencies under heavy loads [47]. This can
be achieved by virtualizing network functions (VNFs) and
services traditionally run on proprietary hardware (Section
4.4). Offloading strategies for VNFs are currently of extreme
interest for the deployment of 5G networks, as they reduce
the need for physical infrastructure and allow more agile net-
work service development [66]. Since 5G networking is still
in its early years of adoption, with 5G devices accounting for
only over 10% of global mobile device connections [21], we
predict the further emergence of new types of applications
and use cases driven by 5G deployment.

5.3 Flood of Data

The ongoing increase in the already massive amount of data
generated every day influences the adoption of computation
offloading. The collected data needs processing; however, the
required processing power and storage are often beyond the
capabilities of the collecting device. As we call it, a flood of
data that takes place in computing is strongly correlated with
the advent of IoT and mobile devices discussed in Section 5.1
and new networking possibilities delivered by 5G networks
discussed in Section 5.2, as the 5G networks can transfer
more data from a greater number of devices than ever before.
A forecast by the International Data Corporation indicates
that only IoT devices will generate 79.4 zettabytes (ZBs) of
data in 2025 [29]. By the same date, the total amount of data
created and consumed globally is projected to grow to more
than 180 ZBs [80].

As more and more devices and applications produce and
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Computing
Power Latency Scalability Mobility Architecture

Cloud
Computing High High High Low Centralized

Fog
Computing High Medium Medium Medium Distributed

Edge
Computing Medium Low Low High Distributed

Table 2: Cloud, Edge, and Fog Computing characteristics
comparison.

require real-time processing of vast volumes of data, tradi-
tional computing models struggle with bandwidth, latency,
and processing power limitations [9]. Computation offloading
addresses these challenges by moving data processing tasks
from resource-constrained devices to more powerful cloud or
fog computing resources [93]. This shift enables more effi-
cient data handling, quicker processing times, and improved
battery life for devices [19]. It supports the development of
advanced technologies and applications that demand high
computational power and real-time data analysis. Examples
include networks of sensors in industrial [36] or urban [4]
environments (Section 4.1), machine learning tasks involving
training models on big data sets [87] (Section 4.5), real-time
video analysis [15] (Section 4.6), and distributed cache ser-
vices [85], among others. With the amount of generated data
believed to be still growing in the upcoming years, we think it
will continue to push the adoption and applications of function
offloading forward.

5.4 Shift in Computing Paradigms
Due to the tremendous amount of data generated by the con-
tinuously growing number of connected devices as described
in Section 5.3 and the new networking possibilities presented
in Section 5.2, the landscape of the computing continuum
has changed. This change makes function offloading more
suitable and efficient for modern applications and their re-
quirements. Currently, next to cloud computing, there are a
few emerging paradigms in the computing continuum that are
of significant importance to the adoption of function offload-
ing, namely edge computing, fog computing, mobile cloud
computing, and mobile edge computing. Table 2 presents an
overview and comparison of cloud, edge, and fog computing
characteristics.
Edge computing refers to a distributed computing paradigm
that brings computation and data storage closer to where they
are needed to improve response times and save bandwidth.
The main idea is to process data near the network’s edge,
where the data is being generated, instead of in a centralized
data-processing cloud. This approach reduces latency and can
also enhance privacy and security by keeping sensitive data
within the local device or local network. Edge computing is
widely used in IoT applications [89] [91] [46] (Section 4.1),
autonomous vehicles [25] [73] (Section 4.3), multimedia pro-

cessing [74] (Section 4.6), and other scenarios where quick,
local decision-making is critical [53] [64].
Fog computing extends the concept of edge computing by
creating a distributed network that includes the edge devices
and the intermediate nodes between these devices and the
cloud. This ”fog” layer can process, analyze, and store data,
offering additional flexibility and resources compared to edge
computing alone. Fog computing supports a broader range
of applications by enabling more processing resources over
often larger geographic areas. Example use cases include
healthcare applications [62], data-intensive computation [19]
(Section 4.7), industrial IoT [36], smart cities [4], and sensing
network applications [75].
Mobile cloud computing specifically refers to the delivery
of cloud computing services to mobile devices. While cloud
computing serves a broad range of devices and needs, mobile
cloud computing (MCC) is specifically tailored to improve
the mobile user experience by offloading processing and stor-
age to cloud resources, thereby overcoming the limitations
of mobile devices, such as limited battery life, storage, and
processing power.
Mobile edge computing, or multi-access edge computing
(MEC), is a subset of edge computing that specifically targets
mobile networks. It involves deploying computing resources
at the edge of mobile networks, such as in cell towers or
base stations, to serve mobile devices directly. It has been
extensively researched, and applications in many fields have
emerged, such as mobile blockchain [52], video processing
for VR/AR [68] [5], virtualization of network functions [56]
[66] (Section 4.4), or general function offloading for IoT use
cases [17] [8].

This shift in the computing continuum helps in distribut-
ing the computation among the network, lowering the delays,
and minimizing core network congestion. Those performance
characteristics are desired when considering function offload-
ing; thus, we consider this shift in computing as a driving
factor in the current adoption of function offloading. While
cloud computing and MCC provided enormous resources for
mobile devices, offloading from such devices often suffered
from high latency, which made it unusable for the real-time
video processing required by autonomous driving, drones,
or mobile VR/AR platforms [4] [19] [52]. The introduction
of edge computing, fog computing, and MEC, coupled with
new high-capacity networking, mitigated those concerns and
bootstrapped the adoption of function offloading in the afore-
mentioned use cases [25] [16] [90].

5.5 Popularity of Serverless

The rising popularity of serverless computing and the
function-as-a-service (FaaS) model, in particular, were identi-
fied as another main factor driving the adoption of function
offloading. Serverless, despite being a relatively new technol-
ogy, was already adopted by more than 70% of organizations
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using the Amazon AWS platform in 2022 [27], and the high
adoption rate is expected to continue. FaaS platforms are
built on top of serverless ideology and are the result of the
evolution of service-oriented architecture [83]. Firstly, ser-
vices were decomposed into microservices, later into smaller,
single-responsibility code units - functions, whose execution
is event-driven. Serverless functions are one of the ways to
execute offloaded tasks from client devices or other nodes
in the network. For that reason, the growing popularity of
serverless and FaaS is driving and shaping the direction of
function offloading adoption in the current landscape of the
computing continuum.

Serverless characteristics and benefits are the source of
this trend of the industry going serverless. That includes cost
efficiency as the result of the pay-as-you-go model, where
customers pay only for actually used resources [76]. Another
advantage is high scalability and elasticity, which result from
the on-demand provisioning of independent functions that
can run in parallel [84]. High availability and reliability are
also considered as other benefits of FaaS platforms. Since the
execution of the offloaded workload is not dependent on any
application server state, the overall availability of the service
is usually higher and depends only on the availability of the
provider’s serverless platform, which is often geographically
distributed [58]. Employing a fine-grained payment scheme
and functionality-focused approach makes the use of the FaaS
platform more business-oriented, which is an advantage for
many business owners as well [3]. Last but not least, thanks
to the dynamic allocation of resources and de-provisioning
of idle functions, providers of serverless platforms can re-
duce their operational costs due to better resource utiliza-
tion. Presented characteristics drive the adoption of serverless
functions in many modern use cases, such as networks of sen-
sors [75] (Section 4.1), scientific high-performance comput-
ing [24] [14] (Section 4.7), multipurpose function-granularity
offloading to cloud [37] [17] [91], data-intensive applications
for IoT [19] and cybersecurity [10] (Section 4.8) among oth-
ers. At the same time, they contribute to the adoption of
function offloading in the computing continuum.

5.6 New workloads

We identify new, emerging workloads as another main factor
driving the adoption of function offloading in the comput-
ing continuum. Figure 4 depicts their overview. These new
workloads and applications often demand more resources that
are available on the device or require specific resources that
cannot be accommodated in the device form factor. In order
to enable such applications, e.g., on mobile or IoT devices,
developers need to offload some or all computations to ex-
ternal computing nodes [5]. This applies to real-time video
processing for mobile augmented reality applications, where
a battery-powered device such as a smartphone or VR/AR
goggles does not offer enough computing power to process

Figure 4: Taxonomy of New Emerging Workloads Influencing
the Adoption of Function Offloading.

the 4K feed in real-time [71] [74] (Section 4.6). Drones and
other UAVs (Section 4.3), to maintain the required quality of
the user experience, also lean towards offloading the video
processing [15]. Another application allows clients without
powerful GPU resources to offload multimedia processing
to GPU-enabled serverless functions [72]. Some more ex-
amples include autonomous driving [25], mobile blockchain
applications [52], and serverless frameworks for quantum
computing [65]. In the case of quantum computing, offload-
ing quantum computations as FaaS enables more clients and
applications to benefit from this novel technology on mobile
platforms, which would not be currently possible otherwise.

There is also a rapidly growing group of intelligent applica-
tions that make use of machine learning and deep neural net-
works. That includes generative AI, whose market is believed
to maintain very rapid growth in the upcoming years [70]
(Section 4.5). Such ML/AI applications require significant
computing resources to perform the deep learning process and
massive storage resources to store the network models with all
parameters. To tackle this issue and allow such applications
to run on mobile platforms, a federated learning approach
was proposed [40]. Federated learning aims to train the cen-
tral model across decentralized devices or servers, making
the training process collaborative. Some works focus on of-
floading such federated training computations among edge
devices [43]. Other works investigate optimizations of offload-
ing deep neural network (DNN) applications deployed in the
computing continuum [31] [32].

6 Objectives Driving Adoption of Function Of-
floading

In this section, we present the main characteristics of function
offloading found in the literature that drive its adoption in
the computing continuum. We also group them into more
general objectives. Those objectives are identified based on
application domains and use cases discussed in Section 4, as
well as trends identified and discussed in Section 5. This pro-
vides a good understanding of the function offloading domain,
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Figure 5: Taxonomy of Objectives and Characteristics Driving Adoption of Function Offloading.

including good insight into what objectives shape the current
adoption of function offloading and serverless functions and
what the importance of those objectives is for a particular
use case. Figure 5 presents the graphical representation of
the taxonomy of objectives and characteristics driving the
adoption of function offloading.

6.1 Ease of Use

Ease of use is one of the objectives driving the adoption of
function offloading that we identified based on the selected
literature. We find that it is mostly related to the use of server-
less architecture and FaaS platforms as it is showcased in
numerous publications. For that reason, the characteristics we
present here result from serverless model usage and are the
main driving factors behind the rising popularity of server-
less functions presented in Section 5.5. Many application
domains and use cases discussed in Section 4 point out those
characteristics and the general ease of function offloading as
an important factor behind their adoption. The relationship
between this objective and the use of serverless functions is
bidirectional since the pursuit of easy application develop-
ment, deployment, and management boosts further adoption
of serverless solutions, resulting in ease. Below, we present
the main characteristics contributing to this objective that we
found in the literature.
No-infrastructure refers to the abstraction of servers and
infrastructure management away from the developer, which
is a fundamental aspect of the serverless computing model.
This doesn’t mean that there are no servers involved; rather,
the responsibility for managing these servers and the under-
lying infrastructure lies with the cloud service provider [35].

Developers traditionally had to manage hardware, runtime
environments, network configurations, handle load balancing,
and security updates, which are time-consuming and com-
plex tasks. Serverless functions eliminate this overhead, mak-
ing the development and deployment of applications easier.
Examples of application domains include meteorology [37],
quantum computing [65], machine learning and AI [87] [20]
(Section 4.5), web applications [51] [63], HPC [14] (Section
4.7) and smart grid applications [94] (Section 4.1).

Auto-scaling allows applications to dynamically adapt to
varying workloads without any manual intervention. This
functionality ensures that applications can efficiently handle
any number of requests at any time by scaling compute re-
sources up or down based on incoming request volume [34].
Developers and operations teams are freed from the complexi-
ties of planning for and managing scalability and can focus on
developing features and improving application quality. In the
case of serverless architecture, this also includes on-demand
resource provisioning, which allows for the automatic allo-
cation and provision of computational resources as soon as
they are required without any human intervention. Publica-
tions that showcase auto-scaling benefits include works on
scalable malware detection [10] (Section 4.8), implement-
ing customized FaaS services [19] [65] or on-demand video
surveillance [31] (Section 4.6). Auto-scaling characteristic is
important in the era of data flood presented in Section 5.3.

We believe that the ease of use of serverless technologies
will remain a key driving objective for the adoption of server-
less functions as the rise in popularity of serverless and FaaS
platforms does not seem to slow down (Section 5.5).
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6.2 Energy Efficiency

We identify energy efficiency as another key objective driving
the adoption of function offloading. It is particularly signifi-
cant in contexts involving mobile devices, Internet of Things
(IoT) devices, and other edge devices. In the case of this ob-
jective, there is no clear distinction between serverless and
non-serverless models. Instead, there are two main separate
aims: one focuses on saving the end device energy to prolong
its battery life, and another tries to lower overall system en-
ergy usage, including end devices and computing nodes that
execute offloaded functions.

Saving the energy of battery-powered mobile and IoT de-
vices has the clear aim of prolonging the time that the device
can remain operational and keep providing services to a cus-
tomer. Such a scenario is widely discussed in the literature,
and numerous application domains and use cases are pro-
vided. To name a few: smart city applications [4], drones and
other UAVs [16] [90] (Section 4.3), mobile gaming [53], edge
computing for multipurpose IoT devices [89] [64], VR/AR ap-
plications [68] [53], video processing and analysis for mobile
applications [5] [15] (Section 4.6) and deep natural network-
driven applications for mobile devices [32] (Section 4.2).
All of the above examples use function offloading to move
computation-heavy tasks from battery-powered devices to
other computing nodes, reducing the device’s workload and
energy usage at the same time. The objective of energy effi-
ciency plays a crucial role in driving the adoption of function
offloading and serverless functions in the light of still in-
creasing number of connected devices (Section 5.1) and new
resource-demanding workloads such as machine learning or
AR/VR video processing (Section 5.6).

The focus on overall energy usage and energy efficiency
optimization in systems utilizing function offloading is also
present in the literature [64] [36]. Found publications ex-
plore how to enhance the energy efficiency of the function
offloading to the fog and edge layers while maintaining high
performance and low delays. We believe that that kind of fo-
cus on energy efficiency will become more prominent in the
computing continuum due to the rising concerns and efforts
to reduce energy usage and, in consequence, the emission of
greenhouse gases [57].

6.3 Business Logic Orientation

Another objective that we identify as the main driver behind
the adoption of function offloading in the computing contin-
uum is its business-oriented design. This objective applies
mostly only to the serverless functions, as their invocation
is event-driven and does not require any application server
to be running all the time. Such event-driven execution of
functions, typically in response to, e.g., HTTP requests, file
uploads, and database changes, simplifies application archi-
tecture by decoupling components and services. This means

that businesses can focus on innovation and core product de-
velopment without worrying about hardware, infrastructure
management, or network configuration. Serverless platforms,
including FaaS, are the next step, after microservices, in the
evolution of service-oriented architecture [83]. The trend of
serverless popularity was already discussed in Section 5.5.
Serverless evolution aims to make software execution resem-
ble the business process as much as possible. Event-driven
single-responsibility functions are a functionality-focused
approach to computing and seem to fit in perfectly in that
scenario. Moreover, this model of deployment introduces a
fine-grained payment scheme, simplifies the deployment pro-
cess, accelerates time to market, enhances scalability, as dis-
cussed in the previous Section 6.1, and boosts agility [22].
All of those characteristics are business-oriented. The appli-
cation domains in the literature acknowledge this objective,
to name some: serverless security services [10] [67] (Section
4.8), energy grid systems [94] [39] (Section 4.1), distributed
cache [85], healthcare applications [51], and multimedia pro-
cessing [72] (Section 4.6), among others.

We predict that software infrastructure and processes will
continue to transform towards being more business logic-
oriented [61]. As software continues to advance, there is an
increasing emphasis on integrating business logic rules at
the application level to enhance efficiency and accuracy in
decision-making processes

6.4 Cost Reduction

We identify the cost reduction objective as another main fac-
tor driving the adoption of function offloading in the com-
puting continuum. Cost reduction is a key objective of both
non-serverless function offloading and serverless functions.
Function offloading in a modern computing continuum, con-
sisting of fog and edge layers as discussed in Section 5.4,
introduces new opportunities for lowering deployment costs
for providers. Serverless functions further this by eliminating
the need for upfront, always-on server provisioning, which at
the same time enables more attractive pricing for customers.
Serverless model significantly lowers the financial barrier to
deploying applications, making technology more accessible
and budget-friendly for many businesses. For cost reduction
objective, we distinguish two separate perspectives that are
present in the literature, namely the provider’s perspective
and the customer’s perspective.
Provider’s perspective is focused on one characteristic: good
resource utilization, which can be achieved in the multi-layer
computing continuum thanks to adaptive resource allocation,
dynamic utilization optimization, and reducing idle times. In
non-serverless function offloading, providers can introduce
dynamic and adaptive task allocation, scheduling, and migra-
tion among layers and nodes in the computing continuum.
Such techniques aim to lower overall system utilization and
optimize bandwidth usage. Lower system utilization means
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decreased energy consumption and energy costs, while lower
bandwidth usage means lower networking costs. In the case
of serverless functions, next to the above-presented means,
providers can also reduce idle times. Since the serverless
functions are ephemeral and event-driven, the resources do
not have to be provisioned upfront and kept idle for a cus-
tomer [84]. This naturally allows providers to lower the over-
all system utilization and thus further lower energy costs. Pub-
lications that include this perspective on cost-efficiency notice
the benefits for many application domains, including quantum
cloud providers [65] and networking service providers [66]
(Section 4.4), among others [4] [39] [93] [50].
Customer’s perspective presented in the literature focuses
on two main characteristics: the pay-as-you-go model and
reduced maintenance costs. Both characteristics are also driv-
ing factors for the rising popularity of serverless, as discussed
in Section 5.5. The pay-as-you-go model, which is integral to
serverless functions, serves as a key strategy for cost reduction
for customers. This model allows businesses to pay only for
the computing resources they actually use, rather than paying
for always-on resources provisioned by cloud providers [76].
Mitigating this overhead in payment for idle resources offers a
direct pathway to operational efficiency and financial savings
by aligning costs directly with usage. This characteristic is
widely present in accepted publications; some of the use cases
benefiting from it include cybersecurity services [67] [10],
energy grid applications [39] [94] (Section 4.1), multimedia
processing [72] (Section 4.6), healthcare applications [51],
among others [85]. The characteristic of reduced mainte-
nance costs refers to reducing costs associated with running
applications on in-house or cloud servers. In a serverless set-
ting, businesses are no longer required to keep the server’s sys-
tems and runtimes up-to-date, so software maintenance costs
are minimal. An approach like that also eliminates the cost
of investment and further hardware maintenance. Examples
of publications mentioning this characteristic are numerous
and include serverless scientific and high-performance com-
puting [23] [24] [14] (Section 4.7), serverless quantum com-
puting [65], meteorology functions [37], on-demand video
surveillance [31], and others [20] [63].

Cost reduction objectives will continue to drive and shape
the adoption of function offloading and serverless functions
as service providers and application maintainers will continue
to try to keep the operational costs low despite the increasing
number of interconnected devices (Section 5.1), the rising
volume of data needing processing (Section 5.3) and new
emerging resource-hungry workloads such as ML or VR/AR
video processing (Section 5.6).

6.5 Improved Performance

Last but not least, we identify improved performance as one
of the main drivers behind function offloading adoption. Func-
tion offloading enables devices to transfer heavy computa-

tional tasks to more powerful cloud or edge resources, en-
hancing application responsiveness and efficiency. Serverless
functions contribute by allowing automatic scaling and elimi-
nating the need for manual infrastructure management, ensur-
ing applications can handle varying loads swiftly. This com-
bination improves overall application performance, enabling
a highly reliable user experience. Based on the examples in
the literature, we identify and present below the five main
characteristics contributing to this objective.
More resources than on local devices is an enabling charac-
teristic for many modern applications and small form factor
devices such as mobile (Section 4.2) or IoT devices (Sec-
tion 4.1). Such devices have limited computing or storage
capabilities; thus, they must rely on external computing re-
sources to support many modern workloads, such as machine
learning (Section 4.5) or real-time video processing (Sec-
tion 4.6). Moreover, function offloading can give them ac-
cess to more specific resources, such as quantum computers,
that cannot be accommodated on their internal hardware. Ex-
amples showcasing the importance of this characteristic in
the literature span across all application domains presented
in Section 4. Some of the use cases are mobile applica-
tions [7] [64] including blockchain [52], function offloading
from UAVs [45] [16] [32] [15] (Section 4.3), video process-
ing [5] [15] [74] including VR/AR devices [68], healthcare
IoT devices [62], and others [91] [53] [25].
Elastic auto-scaling was already presented in Section 6.1
in the context of ease that serverless functions bring to the
developers. However, the disjointed group of publications
considers the scaling characteristics of serverless functions as
a performance gain. The scalability properties of serverless
allow for handling spikes in traffic effortlessly, maintaining
performance levels without the need for pre-provisioning re-
sources. It translates to consistent, reliable user experiences
even under variable workloads, enhancing overall application
performance and responsiveness. Publications from this group
present such use cases as serverless supercomputing [14], dis-
tributed machine learning and AI workloads [87] [20], energy
grid intelligence [94] [39], and others [85] [72].
Parallel computing is crucial in several application domains
where large-scale computations and data processing are re-
quired. These domains include scientific computing, big data
analysis, machine learning and AI, multimedia processing,
and high-performance computing [11]. In those areas, use
cases like simulations based on complex models, training
complex ML models, or processing large multimedia files can
leverage and benefit from splitting a large task into smaller
chunks that can be processed simultaneously across multiple
serverless function instances. This approach allows for high
levels of concurrency, and the practicality of serverless in
such scenarios is noticed in the literature [24] [23] [51] [87].
High availability is another characteristic boosted by the use
of serverless functions. It ensures that applications are re-
silient and continue to operate without significant downtime.
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This is achieved through automatic replication and distribu-
tion of functions across multiple servers and data centers [58].
Serverless platforms manage these aspects, providing built-in
fault tolerance and offering businesses the desired confidence
that their applications are always accessible to users. Found
publications showcase high availability benefits, for example,
in energy grid monitoring [94] or high-performance comput-
ing for science [14] (Section 4.7).
Low delays is another key characteristic that drives the adop-
tion of function offloading, especially when offloading takes
place to the edge or fog layer, as discussed in Section 5.4.
Thanks to modern low-latency networking technology, such
as 5G, discussed in Section 5.2, function offloading can en-
hance application responsiveness and lower the computation
delay seen by the user. This characteristic is mentioned in the
publications, considering mobile VR/AR applications [71],
serverless streaming of 3D media [50], and IoT use cases such
as sensing networks [75] and industrial devices [8].

7 Conclusions

This study has thoroughly explored the evolving landscape of
function offloading in the computing continuum, primarily fo-
cusing on serverless functions. Through our examination, we
have identified key advantages such as cost reduction, perfor-
mance gains, enhanced scalability, and high availability that
these technologies offer. Our findings help in further under-
standing how function offloading, influenced by many trends
like IoT proliferation and 5G networking, addresses modern
computational needs across various sectors, including IoT, big
data analytics, and AI. The pay-as-you-go model, intrinsic
to serverless computing, exemplifies the shift towards more
economically sustainable computing, allowing organizations
to align their expenditures with actual usage. Moreover, the in-
herent scalability and high availability of serverless functions
ensure that applications remain responsive and reliable under
varying loads, contributing to a seamless user experience.

Function offloading has emerged as a strategic approach
to enable new workloads and applications on resource-
constrained devices, significantly enhancing energy efficiency
and operational agility. Serverless computing, on the other
hand, has redefined application development and deployment,
enabling businesses to achieve unprecedented scalability and
flexibility without the burdens of traditional infrastructure
management. As we look to the future, the integration of
function offloading and serverless computing will continue
to play a pivotal role in shaping the next generation of digital
solutions. Their ability to meet the demands of increasingly
complex and data-intensive applications will be crucial in
driving forward technological innovation and digital transfor-
mation.

In conclusion, serverless computing stands at the forefront
of modern function offloading strategies, offering pathways to
more sustainable, efficient, and scalable digital infrastructures.
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