VRIJE
~ UNIVERSITEIT
N° AMSTERDAM

Bachelor Thesis

ShareBench: Performance
Characterization of Distributed
Resource-Sharing Mechanisms

Author: Lennart K.M. Schulz (2734873)

1st supervisor: ~ Prof. dr. ir. Alexandru losup
daily supervisor: Sacheendra Talluri, MSc
2nd reader: Dr. Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

November 5, 2024

“You are something the whole universe is doing in the same way that a wave
is something that the whole ocean is doing.”

- ALAN WATTS

Abstract

Global data production is increasing rapidly, and our modern society increas-
ingly relies on the availability and operation of, often warehouse-sized, data
centers to satisfy the various demands to process this data. However, the
energy consumption and carbon footprint of these computing facilities are a
prevalent global issue. To meet the escalating computational demands, in-
creases in efficiency are crucial. One effective strategy is to share resources
among multiple applications, thereby improving resource utilization. There
are numerous such distributed resource-sharing mechanisms and policies, each
with distinct performance characteristics. Understanding how individual mech-
anisms compare is essential for their deliberate and appropriate utilization and

should underpin the development of new mechanisms.

This thesis aims to contribute by proposing a systematic approach to ana-
lyzing the real-world performance of distributed resource-sharing mechanisms
and policies. We design and implement both a workload generator and an
infrastructure framework for automated real-world performance analysis stud-
ies of such mechanisms for Spark SQL on Kubernetes, and subsequently use
both components to characterize the performance of three resource-sharing
mechanisms. Our experiments demonstrate that performance varies signifi-
cantly with workload characteristics, emphasizing the importance of informed

decisions in the choice of mechanisms and development of novel alternatives.

Acknowledgements

I would like to thank Sacheendra Talluri for taking the time to supervise this
work and introducing me to the world of distributed resource-sharing mech-
anisms. My gratitude also goes to Alexandru Iosup for his highly insightful
meetings that always left me with a strong desire to learn more, more often
than not by showing me the extent of what is still unknown to me. I also want
to thank my lovely friends, not only for their academic support in each of our
many collaborative study sessions, but also for giving me a welcome distraction
from sitting at a desk just when I needed it every so often. Lastly, I want to
express my deepest gratitude to my partner and my family, who had to see me
stressed and frustrated more often than I would have liked. You repeatedly
managed to get me back on my feet, gave me new perspectives, and helped me

to keep pushing.

Contents

1 Introduction 1
1.1 Problem Statement 3
1.2 Research Questions L 4
1.3 Research Methodology 5
1.4 Thesis Contributions 6
1.5 Societal Relevance 7
1.6 Plagiarism Declaration oo 7
1.7 Thesis Structure L 7

2 Background and Related Work on Distributed Computing and Resource-
Sharing 9
2.1 Introduction to Data Centers: Relevance and Emerging Issues 9
2.2 Introduction to OLAP and Interactive Workloads 10
2.3 Resource Managers for Spark L. 11
2.4 Resource-Sharing Mechanisms of Spark on Kubernetes 12
2.5 Workloads in Related Work L. 15
2.6 Related Work on Performance Characterization of Distributed Computing

Systemso 16
2.7 Related Work on Automated Experiments 16

3 ShareBench-Gen: Design and Implementation of the Workload Gener-
ator 17
3.1 Requirements Analysis 18
3.2 Conceptual Design Lo 20
3.3 Implementation with TPC-DS Queries 23
3.4 Evaluation oL 25
3.5 Limitations 26

CONTENTS

3.6 Future Work

3.7 Summary ... L

4 ShareBench-Base: Design and Implementation of the Infrastructure

Framework

4.1 Requirements Analysis
4.2 Conceptual Design L
4.3 Implementation for Spark SQL on Kubernetes.
4.4 Evaluationo
4.5 Limitations and Future Work o 0oL
4.6 SUMMATY oo e e e e

5 Performance Characterization of Resource Sharing Mechanisms of Spark

on Kubernetes

5.1 Experiment Setupo
5.2 Workloads L
5.3 Findings oL
5.4 Limitations L
5.5 Summary ... L.

6 Conclusion

6.1 Summary of the Work o oL
6.2 Summary and Future Work L
References

A Spark Configurations

B Self Reflection

ii

57
o7
60

63

(e

81

Introduction

Data is everywhere. It is collected in all thinkable situations from sports [1] to educa-
tion [2], finance [3], medicine [4], transportation [5], and many others; often fully trans-
parent to the producer [6]. With the ever-growing breadth and depth of data collection,
the amount of digital data generated per year has increased steadily [7] and current esti-
mates predict an annual digital data production of approximately 291 zettabytes (ZB) by
2027 [8]. To put this number in perspective: storing 291 ZB of data on commonly used
64 GB microSD cards would require more than 4.5 x 101! cards, enough to physically cover
over 100,000 football fields' when placed next to each other, fill up three-quarters of the
Empire State Building in volume, or reach the moon more than 11 times when stacked.
This explosive growth is not surprising, given the increasingly low cost associated with
and the business value possibly derived from large amounts of data [9, 10]

Although production and storage of data by themselves can already be viable busi-
nesses, more often than not, some processing is necessary for the data to be used to its
full potential [11]. This processing can have many forms, from simple queries for a spe-
cific selection of data to complex multistage pipelines that sanitize, filter, transform, and
combine data, to name just a few. Due to various reasons, including the end of Moore’s
Law [11, 12] and the increasing complexity and scale of such data-processing applications
in both scientific and non-scientific computing, a single machine is often unable to offer
enough performance to make (timely) completion possible. The work is instead divided
into multiple parts that are then executed concurrently by separate machines, a clus-
ter. However, writing such distributed applications is no simple task and requires careful
consideration. Application Frameworks (AFs) simplify the process by offering common

abstractions, hiding the intricacies of (efficiently) distributing the work and subsequently

! Assuming a 100 x 68 m field size as used in, among others, the Wembley stadium and Allianz Arena.

1. INTRODUCTION

Application Application
Application Framework (AF) Application Framework (AF)

'S'F'-"QJ\Z RAY &Flmk SPQJ\Z RAY @Flink

\ﬁﬁ

Resource Manager (RM)

éé MESOS /YARN
J v v

Machine j Machine j Machine Lﬁ

Figure 1.1: Composition of two application frameworks and a resource manager in a three-
node cluster, including examples of common choices for both components.

collecting the results!, which allow programmers to write highly distributed programs
using simple building blocks. Some popular AFs include Spark [13, 14], Hadoop MapRe-
duce [15], Flink [16], and Ray [17].

Even though such distributed applications use multiple machines to speed up the com-
putation, they often need the (full) processing power of those machines only for brief
periods. Idle machines, however, continue to consume substantial energy [18], leading to
significant operational costs. This cost is further compounded by the fact that unused
resources represent a lost opportunity for value as they could be used by other applica-
tions. To mitigate this, software systems known as Resource Managers (RMs) make it
possible for many applications to share a set of resources by coordinating their allocation
and scheduling.? Popular resource managers include Kubernetes [19], YARN [20], and
Mesos [21] , among many others, with frequent advances originating from both industry

and academia.

Figure 1.1 illustrates the previously introduced composition with the examcple of two
applications running in a cluster of three machines. Each application uses an AF. Both
are deployed through an RM to coordinate allocation and scheduling on a set of machines,

effectively sharing the available resources.

' A rather grand simplification of the sophisticated functions of many AFs.
2A rather minimal summary of the intricate mechanisms of many RM:s.

1.1 Problem Statement

1.1 Problem Statement

The mechanism and policy by which resources are shared between applications' cannot
only differ between various RMs but even for a single composition there are often many
options. Although a thorough understanding is imperative for good utilization of exist-
ing mechanisms and the development of new mechanisms, we identify a critical lack
of knowledge regarding the performance characteristics of these distributed
resource-sharing mechanisms and policies. (P1)

Evaluating the performance characteristics of resource-sharing mechanisms, however, is
not trivial and comes with many challenges. One is the complexity of the required infras-
tructure. While even complex algorithms of theoretical computer science, for instance, can
often be evaluated on a single machine, research into massivizing computer systems com-
monly requires (as the name would suggest) a distributed system composed of numerous
machines. Without an infrastructure that is representative of the systems used in practice
evaluation of distributed resource-sharing mechanisms and policies is either not possible
at all or at least will not produce meaningful results. However, setting up a repre-
sentative infrastructure is technically challenging and may pose an unfeasible
overhead for some research. (P2)

Having a functional infrastructure, while necessary, is not yet sufficient for the eval-
uation. Another critical aspect of any performance evaluation is the workload used to
test the system. Whether using production workload traces or generating synthetic ones,
the choice of workload can greatly influence the outcomes of performance evaluations.
Without carefully considered workloads, evaluations may fail to capture sig-
nificant characteristics of resource-sharing performance. (P3)

Simulation of real-world workload traces by synthetic recreation of the same load char-
acteristics is a common option as the choice of workload in performance analysis stud-
ies [22, 23]. Another alternative is to use generators for fully synthetic workloads, typ-
ically using probabilistic distributions to model workloads [24, 25]. However, both of
these options fail to offer fine-grained control over specific workload characteristics, es-
pecially considering inter-application load, which is needed for performance evaluation of
distributed resource-sharing mechanisms and policies for distinct workload characteristics.

Although some of the above problems are addressed to some degree by existing research,
that research does not investigate the two-level structure of AF and RM [26, 27] or uses

simple ad hoc solutions [23, 28, 29]. Based on these observations, we identify a lack of

!Hereinafter simply referred to as resource-sharing mechanism or simply mechanism.

1. INTRODUCTION

a systematic and generally applicable process for evaluating the performance

characteristics of distributed resource-sharing mechanisms and policies. (P4)

1.2 Research Questions

The goal of this work is to answer the Main Research Question (MRQ): How to sys-
tematically analyze the real-world performance of distributed resource-sharing mechanisms
and policies?

Since the scope of this work is limited by time constraints!, the objective is to propose,
implement, and evaluate a system for a specific composition of AF and RM, namely
Spark SQL on Kubernetes, but design it so that the findings are applicable for similar
compositions with different components, thereby answering the main research question in
its generality and addressing P4. This process is guided by the following subquestions,

each aimed at addressing one of the problems illustrated in Section 1.1.

Research Question 1 (RQ1):
How to design and implement a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies? As discussed in P3, care-
fully considered workloads are essential for performance analysis studies. Especially
for performance characterization of distributed resource-sharing mechanisms, it is
important to have great control over the inter-application load characteristics of the
workload. Existing approaches fail to provide such control and thus, while usable
for “simple” performance evaluations?, are ill-suited for answering the main research
question. This question is therefore aimed at designing and implementing a new
kind of workload generator that is geared toward multi-application workloads and

offers extensive control over the inter-application load characteristics.

Research Question 2 (RQ2):
How to design and implement an infrastructure framework for automated real-world
performance analysis studies of distributed resource-sharing mechanisms and poli-
cies? P2 highlights a significant obstacle on the way to building a better under-

standing of the large variety of distributed resource-sharing mechanisms and policies.

'The Bachelor Thesis at VU Amsterdam is a 15 ECTS (420 hours) project, intended to be completed
within 3 months.

2The word “simple” here refers to the evaluations that try to capture the overall performance but not
necessarily the performance characteristics.

1.3 Research Methodology

To address that problem and facilitate subsequent experiments with different mech-
anisms, AFs, and RMs this research question does not simply tackle the implemen-
tation of a one-off infrastructure, but is more concerned with designing a complete
infrastructure framework that is highly automated and reusable for other research

by various researchers.

Research Question 3 (RQ3):
What are the performance characteristics of the resource-sharing mechanisms of
Spark on Kubernetes? The final research question aims to demonstrate the capabili-
ties of the proposed solutions for RQ2 and RQ1 and take a step toward addressing

P1, by evaluating three resource-sharing mechanisms of Spark SQL on Kubernetes.

1.3 Research Methodology

System Design and Implementation:

For both RQ1 and RQ2, we follow the AtLarge Design Process [30] in conjunc-
tion with recognized and structured software architecture and software engineering
practices as described by Sommerville [31] and Bass et al. [32], respectively. By
that, we repeatedly iterate through: (i) problem analysis, (ii) architecture design,
(iii) prototype implementation, and (iv) testing and validation, until the design gives
a satisfactory answer to the associated research question.

The AtLarge Design Process has repeatedly shown to be successful in over a decade

of use, leading to numerous publications, some of which highly cited [33-37].

Experimental Research:
For RQ3, we use experimental research methods, following the best practices in
the field for the design, conduction, and analysis of the experiments [38-40]. To
perform the experiments, we: (i) define performance metrics, (ii) use the design of
RQ1 to generate workloads, (iii) use the design of RQ2 to set up the experiment
infrastructure, including the collection of metrics, (iv) perform the experiments, and
finally (v) collect and analyze the resulting data. Steps (ii) and (iii) are where the
research questions interleave as advances in the designs allow more experiments and
subsequent experiences uncover new requirements or missing features of the designs.

Open-Science:

All research of this work follows the principles of open science [41, 42], making the

1. INTRODUCTION

1.4

code and all data publicly available on GitHub!, strengthening reproducibility and

promoting further research.

Thesis Contributions

By answering the research questions, we produce several contributions.

Conceptual

(i)

(i)

(iii)

We propose the design of a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies. The design stands out
through its simplicity and versatility, being applicable to any type of workload that
can be represented as a collection of discrete work units with defined and foreseeable

durations.

We propose the design of an infrastructure framework for automated real-world per-
formance analysis studies of distributed resource-sharing mechanisms and policies.
The conceptual design of the framework proposes a set of (abstract) components

and processes to automate various types of experiments.

We provide a detailed analysis of the performance characteristics exhibited by three
resource-sharing mechanisms of Spark on Kubernetes. Based on our various find-
ings, we propose actionable insights for the use of existing mechanisms and the

development of new alternatives.

Technical

(i)

(i)

We provide an implementation of the workload generator for Online Analytical Pro-
cessing (OLAP) workloads based on the TPC-DS data set and queries. With exten-
sive control over the generation process, the generator can produce various workloads

with specific characteristics and should be usable for various research projects.

We provide an implementation of the infrastructure framework for Spark SQL on
Kubernetes. Through the use of commonly known components and a modular struc-
ture, the proposed implementation is customizable and extensible for future research

projects.

"https://github.com/atlarge-research/ShareBench

https://github.com/atlarge-research/ShareBench
https://github.com/atlarge-research/ShareBench

1.5 Societal Relevance

1.5 Societal Relevance

Tosup et al. highlight the dependence of our modern society and economy on the various
computer systems functioning of which has become a substantial requirement for many
jobs and a large share of the GDP in the Netherlands [43]. In their manifesto, the authors
further state four grand societal challenges.

The research questions of this work are, in their grand scheme, concerned with building
a better understanding of distributed resource-sharing mechanisms and policies, which are
highly relevant in this era of (hyperscale) cloud data centers, subsequently enabling better
use of existing mechanisms and facilitating the development of more advanced alternatives.
With that, the findings of this work can help to address three of the four challenges.

Better understanding of existing mechanisms can help to give more accurate performance
predictions and avoid failures to improve availability. (Challenge 2: Responsibility)
With better new mechanisms and more appropriate use of existing mechanisms, resources
can be shared more efficiently, allowing more work to be performed by the same (existing)
resources. This can not only reduce the energy footprint, as less resources are needed
(Challenge 3: Sustainability), but may also lower the operational cost for the same

reason, improving the general accessibility to computer systems (Challenge 4: Usabil-

ity).

1.6 Plagiarism Declaration

I hereby confirm that the contents of this thesis are a product of my own independent work
and writing. The work does not contain material copied from any other source (person,
internet, or LLM) unless otherwise indicated, and has not been submitted for assessment

elsewhere.

1.7 Thesis Structure

In Chapter 2 we present relevant background information and briefly discuss related work.
To best understand the work and its position in the larger perspective, it is recommended
to start traversing the thesis there. Chapters 3, 4, and 5 address RQ1, RQ2, and RQ3,
respectively. They largely function independently, with previously introduced concepts

briefly reexplained, and can thus be traversed selectively and in any order if preferred.

1. INTRODUCTION

For those with little time to spare, each chapter begins and ends with a summary of the
most important findings, which should be sufficient to get a high-level overview. For those
with even less time to spare, Chapter 6 summarizes the complete work in a few pages. We

do, however, recommend to read the work in its entirety.

Background and Related Work on
Distributed Computing and

Resource-Sharing

The context of this work, positioned in distributed systems, encompasses many concepts
for which a brief introduction may be useful to aid in the understanding of the subsequent
chapters. In this chapter, we aim to provide such introductions for the most important

concepts. We furthermore present an overview of some related work in the field.

2.1 Introduction to Data Centers: Relevance and Emerging

Issues

Processing of data at large scales is commonly done in data centers. Considered the
“central nervous system of the 21st century” [44] they house not only servers but also the
networking and storage equipment needed to support the various types of demands for
computation, transportation, and storage of data. Data centers can range from a single
server rack in an office back room to warehouse-sized facilities housing thousands to tens of
thousands of servers [45]. However, the information and communications technology (ICT)
landscape is seeing a continuous shift away from traditional (on-premise) data centers in
favor of large-scale cloud data centers [46]. Not only are such “hyperscale” data centers
able to improve the overall efficiency of the equipment with better resource utilization [47]
and more advanced cooling techniques [48], but they also allow customers to get compute
resources on demand, at any time, and with pay-per-use pricing models (as opposed to

the upfront investment and continuous operating costs of self-deployed servers).

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

Functioning of our society increasingly depends on data centers. Large parts of the
commercial sector, medical infrastructure, governments, education, and scientific research,
to name just some examples, rely heavily on the availability of servers for their daily
operational processing needs [10, 49-52]. In an effort to satisfy this demand, there are
thousands of data centers worldwide. In the US, data centers consume electricity in the
hundreds of TWh per year, accounting for 4% of the total electricity demand in 2022, with
higher fractions expected in the coming years [53]. The energy consumption of Google
alone was responsible for close to a million metric tons of CO2 in 2023 [54], and Big
Tech companies take significant investments to reduce the carbon footprint of their data
centers [55].

Although advances in data center hardware technology continue to improve their en-
ergy efficiency, improvements in other areas will also be needed to satisfy our growing
demands for computing over the coming years [11]. Better resource utilization through
more advanced resource-sharing techniques could help address this challenge of our modern

society.

2.2 Introduction to OLAP and Interactive Workloads

Big Data computing was classically associated with batch jobs that were characterized
by long execution times and little to no restrictions on maximum latency. For several
decades now, the landscape has gradually shifted towards more interactive and time-
sensitive jobs [23, 56-58]. One type of data processing consisting largely of such jobs is
Online Analytical Processing (OLAP) which describes complex data querying and anal-
ysis frequently used in business intelligence to gain data insights and increase business

value [59].

2.2.1 Interactive Workloads

In the case of OLAP applications, a workload can be thought of as a timeline of queries
submitted to the system. When visualizing such a timeline, the expected duration of the
queries is used to plot the outstanding work over time. Figure 2.1 shows an example work-
load graph for a single application where the z-axis denotes time, and the y-axis denotes
the number of active queries (that is, queries that have been submitted for processing
but are not yet finished). The figure is additionally annotated by markers on the z-axis
indicating query submission (green star) and completion (red diamond) events to clarify

the example.

10

2.3 Resource Managers for Spark

—— Active Queries ¥ Query Submission ¢ Query Completion
[[[[[[[[[

Active Queries
b
I
|

0 10 20 30 40 50 60 70 80 90 100
Time |[s]

Figure 2.1: Example of a workload graph for a single application. Indicators for query
submission and query completion events are added for clarification.

2.2.2 OLAP Systems and Spark SQL

Distributed processing systems are needed to handle the scale of modern data analytics and
OLAP applications [56]. Although there are specialized systems like Google BigQuery [60],
Microsoft SQL Server Analysis Services [61], and Oracle OLAP [62], SQL engines built on
top of big data platforms that have emerged recently have gained popularity as alterna-
tives [63]. A common advantage of the latter is the integration with open-source systems
like Hadoop [64], which have become the “de facto processing platform for big data” and
are often significantly cheaper than traditional databases for data storage [10].

Spark SQL [65] is such an SQL engine built on top of the popular Application Framework
(AF) Spark, which we selected for this research due to its performance, wide-range of
applications, open-source nature, and popularity [66-69]. A Spark deployment consists of
a driver and one to many executors. The driver is responsible for dividing and distributing

the work among the executors, collecting the results and handling executor failures.

2.3 Resource Managers for Spark

Spark offers a Standalone mode [70], where executors are manually started and connected
to the driver. More commonly however, Spark is deployed through a Resource Man-
ager (RM), such as YARN, Mesos, or Kubernetes, although support for Mesos has been
deprecated since Spark 3.2.0 [71].

While the Standalone mode has a significant advantage over the others for short-running
jobs due to its comparatively low launch overheads [72, 73], it most notably falls short in

terms of resource utilization due to its static allocation of resources. RMs, on the other

11

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

hand, enable the deployment of multiple heterogeneous applications concurrently on the
same cluster, dynamically allocating resources as needed.

YARN has been the de facto standard as the RM for Spark deployments, due to its
deep integration into the Hadoop stack. However, setup, configuration, and maintenance
of YARN clusters can be difficult, in part due to the need to set up the entire Hadoop
stack [72], and Castro et al. further mention “limited reproducibility and portability across
infrastructures” as a limitation of YARN for scientific computing [52].

Kubernetes has established itself as a popular solution for automated deployment of con-
tainerized applications, with all major cloud providers offering Kubernetes services as part
of their Platform-as-a-Service (Paas) suite [74-76]. The rather novel (Spark 2.4.0 in late
2018 [77]) addition of Kubernetes to the supported RMs of Spark and the wide availabil-
ity of Kubernetes compute services facilitate cloud native Spark deployments without the
need for experience in setting up and managing clusters and thus bring high-performance
big data computing to a wide range of potential users. Due to the popularity of Kuber-
netes and the novelty of the composition with Spark, this work focuses on Kubernetes as
the RM.

A Kubernetes cluster consists of a control plane and one to many worker nodes. Ap-
plications are deployed in the form of pods and each node can accommodate multiple
pods, depending on the available resources and requirements of the pods. When Spark is

deployed on Kubernetes, the Spark driver and the executors are individual pods.

2.4 Resource-Sharing Mechanisms of Spark on Kubernetes

When running multiple Spark applications on Kubernetes, the configurations of both the
AF and the RM can be modified to achieve different resource-sharing mechanisms and
policies. Figure 2.2 illustrates the three distinct mechanisms identified for this work.

While the figure uses the example of two Spark applications being deployed on a Ku-
bernetes cluster with six nodes (not including the control plane), the mechanisms are
analogously applicable to larger clusters and more applications.

It should be noted that this list of mechanisms is not exhaustive. Not only can the
more fine-grained policies of each mechanism be further configured, but combinations of
mechanisms are also possible. Other AFs and RMs may moreover offer different mecha-
nisms and policies [21, 78]. These selected mechanisms, however, should represent a wide
range of characteristics and thereby allow a meaningful performance characterization and

comparison.

12

2.4 Resource-Sharing Mechanisms of Spark on Kubernetes

EI Kubernetes Node EI Spark Driver Spark Executor

App 1

O Node O Node ® Node O Node O Node O Node
D1 E1 E1 E2 E2 D2

(a) Static Partitioning

App 1 (@)

O Node O Node {[®@ Node O Node O Node O Node
D1 E1 E2 E2 E2 D2

(b) Dynamic Partitioning (during unbalanced load)

App 1 App 1 &

® Node O Node ® Node O Node ® Node O Node
D1 E1i E2 E1 i E2 E1 {E2 E1 i E2 D2

(¢) Node-Level Sharing

Figure 2.2: Visualizations of the three resource-sharing mechanisms of Spark on Kubernetes
identified for this work.

Static Partitioning Fach of the Kubernetes nodes is assigned to a specific Spark appli-
cation, effectively separating the cluster into multiple smaller parts. The executors (and
the driver) of each application are then scheduled on the dedicated nodes, with each node
exclusively being used by a single executor (or the driver).

Figure 2.2a shows the aforementioned cluster statically partitioned for two Spark ap-
plications. The nodes marked with @ are exclusively available for the first application,
while the nodes marked with @) are similarly only available for the second.

With complete separation of nodes, highlighted by the boundary (@, this approach min-
imizes interference between applications; however, it is likely to under-utilize the available

resources of the cluster when the load is unbalanced.!

Dynamic Partitioning FEach executor is again using a node exclusively (similar to
Static Partitioning); however, the allocation of nodes to applications is no longer static.

The Spark applications are configured to terminate executors after a certain inactivity

1For example, in the case where some application does not have enough tasks to saturate its allocated
resources while another application has outstanding tasks available but cannot use the idle resources

13

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

threshold [79], thus effectively freeing a node in the cluster which can then be used to
accommodate a new executor of another application.

Figure 2.2b shows the same cluster as before, this time with Dynamic Partitioning. The
first application currently uses only one executor (@), while the second has taken advan-
tage of the available resources by deploying a total of three executors (@)). Conceptually,
the applications are still fully separated; however, this time the separation boundary (@
can dynamically adjust in both directions as the load between the applications changes.
The drivers of each application (@) and @) behave the same as before, as they can never
be terminated as long as the application is still running.

As shown by Kaufmann et al., Dynamic Partitioning, while improving executor uti-
lization, is detrimental to the overall runtime for a workload predominantly composed of
short-running tasks due to the overhead of starting new executors [28]. However, when the
timescales are larger, Dynamic Partitioning could improve the overall performance due to
better resource utilization.

In the context of schedulers and, or more specifically, autoscalers, Dynamic Partitioning
is similar to horizontal autoscaling which describes increasing or decreasing the number of

allocated resources according to demand [80, 81].

Node-Level Sharing Nodes are no longer exclusively occupied by a single executor,
eliminating partitioning altogether. By oversubscribing the available CPU resources of a
node, multiple executors (from various applications) are co-scheduled on the same node
instead.

Figure 2.2c again shows the same cluster as before, but this time with Node-Level Shar-
ing. While the deployment of the drivers (€9 and @)) remains unchanged, the remaining
nodes (@) are no longer exclusive to one application but rather accommodate multiple
executors at the same time. If one executor does not need its full share of the available
resources, the other one will be able to use the additional resources for itself. Nodes @
show a balanced load, while nodes @ and @) show unbalanced distributions with execu-
tors of App 1 and App 2 respectively not using the full share of their allocated resources,
allowing the other executor to use more than their fair share.

Although full parallelism has the potential to increase the overall performance by better
utilizing the available resources if the CPU is not the bottleneck resource [68], interference
between executors may impact performance predictability, and contention for the available

CPU cycles may also negatively affect the overall performance if the load is high.

14

2.5 Workloads in Related Work

This mechanism of oversubscription is commonly used by cloud providers to utilize

unused (but allocated) resources [81, 82].

2.5 Workloads in Related Work

To understand the options of workloads for performance analysis studies of distributed
computing frameworks such as Spark, we surveyed existing work in the domain by ex-
ploring related papers and identified four common types of workload used that can be

categorized into two categories.

Single job & sets of jobs The first category is that of workloads that consist of a
single job or sets of jobs, but do not include any timely structuring, but are rather based
on running individual jobs one after another.

The first and arguably simplest type of workload is to use a single application such
as Word Count, Grep, or Page Rank. Although simple to apply, such a workload may
suffer from bias, as only a specific part of the system is evaluated. A common option
is to evaluate the system at the hand of multiple such applications to counteract this
bias [83, 84].

A more extensive evaluation with varying performance demands is given by benchmark
suites that offer workloads composed of many parts, each of varying characteristics, which
altogether should represent the full, or at least a wide range of possible performance
profiles. These benchmark suites can be further categorized into platform-independent and
platform-specific, with the latter referring to benchmarks suited only for a single platform
or system (e.g., Spark). Platform-independent benchmarks used in related work include
TPC-DS [85], BigDataBench [86], and BigBench [87], while platform-specific benchmarks
include SparkBench [68], SparkBench® [88], and HiBench [89)].

Structured workloads The second category are structured workloads that not only
include the work to be performed but also specify when each job should be submitted.
The first option here is to use (simulations of) real-world workload traces, collected from
the live operation of some production system [22, 23]. The other option is to generate
synthetic workloads, often based on probabilistic distributions and assumptions about the
characteristics of the workload [24, 25, 90, 91].
All of these options found in related work are either only applicable to a single application

or offer no direct control over the inter-application load characteristics and thus are, as

!This is indeed not a typo, but rather two individual benchmarks by different authors but with the
same name.

15

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

mentioned in Chapter 1, not usable for the experiments considered in this work. However,
a study of these existing approaches, especially workload generators, is important for

addressing RQ1 (Chapter 3).

2.6 Related Work on Performance Characterization of Dis-

tributed Computing Systems

There are various studies of the performance characteristics in distributed computing
frameworks, some of which are similar to those considered in this work. Li et al. char-
acterize various Spark workloads based on their performance profiles and resource de-
mands [68]. Marcu et al. and Ahmed et al. compare the performance characteristics of
Spark to those of Flink and Hadoop, respectively [83, 84]. Lastly, Lattuada et al. build a
system for characterizing Spark applications to predict execution times and estimate the

minimal required resources [92].

2.7 Related Work on Automated Experiments

Faciliatation of experiments through automation frameworks is not a novel area of research.
In his 2003 paper, Pawlikowski describes a tool for automated control of simulation exper-
iments in the context of improving the credibility of simulation results [93]. Perrone et al.
follow similar motives and propose an automation framework for experiments in network
simulation studies [94]. Closest to the framework proposed in this work, however, is the
work of Silva et al. on CloudBench [95], a tool for automated experiments to compare the

performance of various cloud providers for a given application.

16

3

ShareBench-Gen: Design and
Implementation of the Workload

(Generator

Main Contribution 3.1 (MC3.1):
Analysis and elicitation of requirements for a workload generator.

Main Contribution 3.2 (MC3.2):
A simple, yet highly versatile conceptual design for a workload generator, appli-
cable for any type of workload represented as discrete work units of predictable
duration.

Main Contribution 3.3 (MC3.3):
An implementation of the workload generator design for OLAP workloads based
on the TPC-DS data set and queries.

There are a multitude of benchmarks for Online Analytical Processing (OLAP) systems,
such as those considered in this work, already available [68, 85-88], so the simplest choice
for a workload would be to run such a benchmark. However, these benchmarks lack two
critical features that are needed.

Firstly, the benchmarks are testing a single application, so do not include the idea of
multiple such systems running concurrently on the same resources. Secondly, even if two
instances of a benchmark were combined, one per application, this workload would still
fail to capture the range of possible inter-application load characteristics, such as, for
example, imbalanced or alternating loads between the applications.

To mitigate this and enable a wide range of experiments that can capture the perfor-

17

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

Table 3.1: Summary of requirements for the workload generator including priority, validation
method, and status in the final design and implementation.

1D Name Priority Method Status

RE3.1 Core Functionality * < [
RE3.2 Visualization * <» [
RE3.3 Variability * < [
RE3.4 Reproducibility * < o
RE3.5 Documentation * S o
RE3.6 Data Independence w S o
RE3.7 Scalability DA SN ®

s *

R
0’0

RE3.8 Query Diversity

Priority: * mandatory | desirable
Method: ® by design | % by design, implementation, and real-world evaluation
Status: @ fully | @ partially | O not met | % depends on data

mance of resource-sharing mechanisms in various load characteristics, we formulated RQ1,
asking how to design and implement a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies. In this chapter, we address this
question by following the AtLarge Design Process [30] to propose and evaluate the design
and implementation of ShareBench-Gen, a workload generator based on the TPC-DS data
set and queries.

The design and implementation are guided by a set of requirements, elicited in Sec-
tion 3.1 and summarized in Table 3.1. The table shows the priority, the validation method,

and whether a requirement is met in the final design and implementation.

3.1 Requirements Analysis

We started to elicit the core requirements for the workload generator by using the util-
ity tree technique [32]. Subsequently, we built a simple prototype on the basis of these
requirements and used it extensively. From this use, we collected shortcomings of the
prototype and used those findings to formulate further requirements. The resulting list of
requirements is given below. Mandatory requirements are specified using “shall”, desirable

requirements using “should” [31].

RE3.1 Core Functionality The generator shall generate workloads with various charac-
teristics, controllable through the given parameters.
For performance characterization studies aimed at investigating the effect of various

workload characteristics on the object of study, it clearly is crucial that different

18

3.1 Requirements Analysis

workloads with varying characteristics can be generated. To enable controlled re-
search with specific workload characteristics, it is furthermore essential that the

characteristics in generated workloads can be controlled.

RE3.2 Visualization The generator shall be able to visualize the workload to better un-
derstand the result.
It requires significant effort to understand the characteristics of a workload from a
technical description, like a list of query submissions. A graphical representation is
much more suitable to a human reader [96] and therefore a necessary component of

the generator.

RE3.3 Variability The generator shall be able to generate various workloads with the
same characteristics, varying only in minor details (e.g., choice of queries).
This functionality is needed to support studies in which workloads with certain char-
acteristics are to be evaluated repeatedly but including slight variations to produce

more generally applicable results.

RE3.4 Reproducibility The generator shall always give the same result when given iden-
tical parameters and query data.
Calibration and fine-tuning of the workload to fit the system at hand are essential
processes for many experiments. A generator that produces varying results even for
the same parameters would greatly increase the difficulty of this process or make it

fully impossible.

RE3.5 Documentation The generator shall be documented properly.
Even though the design should be intuitively usable, documentation can help better
utilize the full functionality and avoid issues from a lack of understanding about its

function.

RE3.6 Data Independence The generator should function independent of the type of
underlying query data.
The design is supposed to address the issue of how to generate workloads not only
for this work but further research to come. For that, it is important to keep the
design detached from the underlying data, such that the same design is usable for

experiments with different data.

RE3.7 Scalability The generator should be scalable to any (reasonable) number of appli-
cations, intensity, and total duration.

As mentioned in RE3.6, the design should not only apply for this work. Therefore,

19

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

to enable experiments on various scales, it is important that there are no arbitrary

limitations on the scalability of the workloads.

RE3.8 Query Diversity The generator should compose workloads of as many different
queries as possible.
Composing workloads of only a small number of distinct queries would likely lead to
a bias, as the specific characteristics and performance requirements of those queries
dominate the workload. To get more general representation of the performance of a

system, workloads should include a diverse set of queries.

The following requirements were elicited but are not considered for this work due to the
limited time available. They are instead intended to guide future work of extending the

workload generator design.

RE3.9 Consideration of Query Characteristics The generator should consider perfor-
mance characteristics of queries in its process.
Queries can have highly varying performance profiles [56, 97]. Some queries may, for
instance, read large amounts of data but only do light processing, while others may
read less data but perform much more complex computations. By considering those
characteristics, the generator could (i) provide more detailed information about the

generated workload, and (ii) allow for more control over workload characteristics.

RE3.10 Modeling of Workload Traces The generator should be able to generate workloads
that re-create or model existing traces.
Researchers may want to use real-world workloads for their experiments. There are
numerous workload traces available freely; however, re-running them is often not
easily possible, as the traces are typically limited to information about the start and

end times of queries (e.g., in the Snowflake Dataset [40]).

3.2 Conceptual Design

Figure 3.1 illustrates an example of use of the workload generator, including testing and
fine-tuning of the generated workload in the form of a flowchart.

The example starts with some desired workload, which is expressed as parameters (@)
and passed to the generator (@). The generator uses the parameters to generate a work-
load, as a workload description in the form of a table (@). To understand the generated

workload, it is subsequently visualized (@). The user can then compare this visualization

20

3.2 Conceptual Design

Desired Workload 0> Generator Parameters 0> Generaton

; mode = bursty
burst_count = 2 ?
scaling_factor = 1 Workload Description

query, start, ...
q2, 0, 28

No g3, 1, 31

?
9 5

Workload Visualization

Workload Trace

(7]
System
Under Test

Figure 3.1: Example of use of the workload generator, including stages of testing and fine-
tuning.

to their (mental) image of the desired workload (@), and adapt the parameters to repeat
the process and fine-tune the workload if needed (@).

If the workload matches the expectation, it can be submitted to the system under test
(@), producing a trace of the actual workload run (@). The performance of the system
under test may vary, so the expected query durations used to generate the workload might
not match reality, and thus need to be calibrated based on a scaling factor. For this, the
trace is again compared to the desired and generated workload (@) and the parameters
(typically just the scaling factor) adapted accordingly (@), repeating the subsequent steps

until the actual workload exhibits the desired characteristics.

3.2.1 Generation Process

The design of the generation process itself follows a simple pattern, outlined based on an
example in Figure 3.2.

The example here shows the generation of a workload consisting of two bursts (€)); other
types of workload are generated with the same steps, but possibly in different patterns of
repetition. The set of all available queries @) is filtered for queries for which the execution
duration is in the required range. This subset of all queries @ is then sampled. Depending
on the number of queries needed and the number of available queries, this sampling step
may produce a smaller or larger set (by sampling with replacement) of queries @). These

queries are then “placed” in the timeline! ().

IThis formulation is to better visualize the process. What technically happens is that queries are
assigned a start time and added to a table of all query submissions that constitute the workload.

21

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

(5]

I SR Y i
CJ

Queries

(D}

Queries

-
®
I
]
-

o
N
N
!

Figure 3.2: Conceptual design of the generation process.

3.2.2 Generator Functions

The described generator pattern is realized in various generator functions for workloads

with different characteristics. The proposed design includes three main types of workloads

and corresponding generator functions which are described below.

Random consists of queries that get submitted at fully random times within a given
range. Intensity (i.e., average number of query submissions per time minute), range

of query durations, and overall workload duration can all be configured.

Constant consists of queries arriving in constant intervals. Intensity, query duration,

query duration variability, and query interval variability can all be configured.

Bursty consists of a series of bursts, where a number of queries are submitted concurrently
(i.e., a burst) with no activity in between. The burst intensity, burst count, burst
interval, query duration, inter-burst query start offset, offset per application, and
random variation of many parameters can all be configured. Bursty characteristics
are commonly found cloud computing [24].

It is to note here that not only can a single function be used to create a range of
different workloads based on the parameter values but also composite types are possible
through combining individually generated workloads. We selected this set of workload
types because it can be used to represent many core characteristics found in production
workload traces as found in the Snowflake Dataset [98].

It is vital that all parts of the generator that use randomness allow for explicitly setting

a seed for the random numbers such that the exact same workload can be generated re-

22

3.3 Implementation with TPC-DS Queries

peatedly (e.g., in the case of trying to fine-tune the scaling factor). With these generators,
their versatile configurations, and many possible combinations, a wide range of workloads

with numerous characteristics can be created and tuned at ease.

3.3 Implementation with TPC-DS Queries

We implement the proposed design as a generator for OLAP workloads, based on the
TPC-DS data set and queries. The implementation can be categorized into three parts,

each of which is explained below.

3.3.1 Data and Queries

TPC-DS is an industry standard benchmark for OLAP applications, offering both a data
set generator and a set of queries with various characteristics. The benchmark models a
data warehouse, a common type of OLAP system which can be described as “a copy of
transaction data specifically structured for query and analysis.” [99] As stated at the start
of the chapter, the benchmark alone is not sufficient as a workload as it simply involves
running the set of queries in succession and recording the completion time for each. Yet,
the data set and queries are usable components for the workload generator.

The data set models the sales process of a multi-channel sales organization, structuring
the data with multiple snowflake schemas which are widely used in practice [100], and
can, as a whole, be scaled to various sizes to accommodate the evaluation of a range of
differently scaled systems [56]. The queries of the benchmark focus on representing the
diversity of operations and system requirements apparent in information analysis applica-
tions [85, 101, 102].

3.3.2 Modification of Queries

The number of queries that are included in the benchmark, however, is rather limited,
having 99 queries in total [102]. Their distribution in terms of execution time is furthermore
uneven. Many queries have similar execution times, resulting in certain runtime ranges
being densely populated, while others are scarcely covered or not covered at all [97, 103].
Especially when trying to create workloads consisting of queries with a specific duration,
this set would quickly lead to a low variety of queries.

Some simple studies of query behavior revealed that modifying the range of data included
in the query positively correlates with the execution duration for many queries. Figure 3.3

shows the process that we use on some of the existing queries to mitigate the above-stated

23

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

1 SELECT sr_customer_sk 1 SELECT sr_customer_sk
2 FROM store_returns, date_dim 2 FROM store_returns, date_dim
3 WHERE d_year = 2000 AND ... 3 WHERE ($DATERANGE$) AND

(a) Original query (b) Query with placeholder

3 WHERE (d_date = cast(’2000-04-30’ as date)) AND

3 WHERE (d_year

2000 and d_moy = 1) AND

3 WHERE (d_year = 2000 or d_year = 2001) AND

(c¢) Query with changed date ranges

Figure 3.3: Process of modifying a single query into various new queries of different scales.

[T T
—eo-ql —+-q7 —=ql0 ——ql2 e ql3

60 |-

40

20

Average Execution Time 3]

il | I
1 92 183 274 365
Included Range [days]

Figure 3.4: Average query execution times over 10 iterations for various ranges of included
data.

issue and extend the set of queries to include more queries with various execution times.
Figure 3.3a represents (part of) the original query, where a filter based on the date of entries
can be seen in line 3. We replace this filter for a specific date range by a placeholder, as
shown in Figure 3.3b. This placeholder can then, in an automated process, be replaced
with any range (within the available data) to create a new query with a different scale.
Example results of this replacement process are shown in Figure 3.3c.

To create a sufficiently sized set of available queries, ten queries were modified with the
aforementioned procedure. Of these queries, 50% showed to be scalable in runtime by
adjusting the range of included data. Figure 3.4 shows the average execution times of
these queries plotted against the number of days included in the filtering step. As can be
seen in the figure, the execution times increase with larger ranges of included data. The

subsequent steps use these five queries with date ranges from one day up to two years,

24

3.4 Evaluation

mostly in intervals of one month.

3.3.3 Query Analysis

Before these queries can be used by the generator, information about their expected execu-
tion times must be collected. For this, every query is run 10 times, and the execution time
for each run is recorded. The results are then examined for consistency to check whether
query execution times are largely consistent over multiple runs. Finally, the average times

of the queries are saved to a file for further use in the workload generator.

3.3.4 Generator Functions

The three generator functions, as described in Section 3.2 are implemented as Python
functions, using pandas [104] for the table data structures and sampling of queries.

For all operations that involve randomness (e.g., sampling of queries from the available
options or random variation in start times), the seed for the random generator is set based
on the provided seed parameter (RE3.4). If no seed is given, the current UNIX timestamp
is used instead. This timestamp is also shown to the user to allow re-creating the same
workload.

Many of the available parameters have default values and can thereby be omitted in an
effort to keep the number of required parameters low and increase the ease of use. The
return value is a pandas data frame with columns for the app index, start time, query
name, date range, and expected duration.

The generator suite additionally includes a function to visualize the workload based
on the resulting data frame (RE3.2), and all functions are complemented by docstrings

explaining the available parameters and the proper use of the function (RE3.5).

3.4 Evaluation

We have taken multiple steps to evaluate the functionality of ShareBench-Gen and to
determine whether it meets the requirements stated in Section 3.1. Each of the generator
functions is tested individually at the hand of various parameter configurations. For each
configuration:
* The workload is visualized (RE3.2) and examined to confirm whether it exhibits the
expected characteristics for the given parameters (RE3.1). This process is further

aided by creating a boxplot of query durations.

25

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

* The set of queries used in the workload is analyzed for the number of unique queries

used (RE3.8).

* The same configuration is used twice with the same seed, the results are compared

for equality (RE3.4).

* The same configuration is used twice with different seeds, the results are compared
for deviations (RE3.3).
Lastly, the set of all generated workloads is analyzed for diversity of characteristics (RE3.1).
While initial designs of the workload generator were insufficient for some of the require-
ments, the implementation of the final design fully meets all mandatory requirements and
at least partially meets all desirable requirements. For some requirements, the underlying
query data can influence whether they are met or not, but the generator design itself is
not limiting. Table 3.1 lists this information for all requirements along with the type of

evaluation used for each requirement.

3.5 Limitations

We have identified three issues with the proposed design and implementation of ShareBench-

Gen, which could possibly limit its functionality and usability.

Small set of queries Due to the limited time available for this work, only ten queries
have been adapted to include a modifiable date range, and of those ten only five proved
to be useful for the workload generator. With that, the generated workloads only have
a small variety of query types, possibly limiting their scope in testing all aspects of an

OLAP system.

No consideration of performance interference The number of concurrent queries
for a single application likely affects the performance of all those queries and increases
their execution times. The current model does not include such a consideration, possibly

affecting workload characteristics and the accuracy of the visualization.

Inefficient implementation The implementation of the generator functions was not
aimed at efficiency. Likely, much more efficient solutions are available. However, the
current implementation is reasonably fast, even for larger workloads, on most common

systems.

26

3.6 Future Work

3.6 Future Work

While considering the current design and implementation, we have identified multiple

possible extensions to ShareBench-Gen that could be addressed in future work.

Consideration of query characteristics In the current form, all queries are consid-
ered equal, only differing in their execution duration. However, as stated in RE3.9, queries
can have highly varying performance profiles. To provide more detailed information on
the generated workloads and extend the level of control over the generation process, the
generator should be extended to support the consideration of query characteristics. For

this extension, a deeper, nontrivial analysis of query performance would be necessary.

Interpolation of queries Figure 3.4 suggests a functional correlation between the num-
ber of days included in a query and its execution time. While currently only ranges for
which the query has explicitly been tested for are used in the workload generator, an ex-
tension of the work could try to model this relation to give more fine-grained control over
the desired query duration without requiring more query runtime evaluations by interpo-
lating queries between the tested ranges. This extension is not elicited as a requirement
as it is specific to the set of queries used in this implementation of the generator and not

generally applicable to the design.

Modeling of workload traces Additionally to the current design, where a workload is
described by a range of parameters and then generated from scratch, the generator could
be extended to also include the option to re-create a workload from a trace (RE3.10).
Extending the functionality of the workload generator to enable re-creating a workload of
similar shape from a trace would greatly extend its use cases and provide a middle ground
between synthetic and real-life workloads. As some workload traces further include meta
information, like data read and data written by the query, this extension could additionally

be combined with the consideration of query characteristics (RE3.9).

3.7 Summary

In this chapter, we addressed RQ1 through the design (MC3.2) and implementation
(MC3.3) of ShareBench-Gen, a workload generator for performance analysis studies of
distributed resource-sharing mechanisms and policies. We guided the process by a list
of requirements that we identified as necessary for a workload generator. (MC3.1) The

implementation uses the TPC-DS data set and queries to generate OLAP workloads, but

27

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

the conceptual design of the generator is applicable to any type of workload that can be
represented as work units with limited and predictable durations.

ShareBench-Gen is designed with performance characterization experiments in mind.
It is centered around three generator functions that together enable generation of work-
loads with a wide range of characteristics. Its features should support various experiment
workflows, with the options to visualize the generated workloads and directly control the
randomization of the process for reproducibility and fine-tuning of workloads.

We successfully used ShareBench-Gen to generate numerous workloads that support the
experiments discussed in Chapter 5 and used the gained experience to iteratively improve

the design and implementation of the generator.

28

4

ShareBench-Base: Design and
Implementation of the

Infrastructure Framework

Main Contribution 4.1 (MC4.1):
Analysis and elicitation of requirements for an infrastructure framework for
automated real-world performance analysis studies.

Main Contribution 4.2 (MC4.2):
A generalized, process-based conceptual design for an infrastructure framework
for automated real-world performance analysis studies.

Main Contribution 4.3 (MC4.3):
A structural topology of required components for performance analysis studies
of Spark SQL on Kubernetes.

Main Contribution 4.4 (MC4.4):
An implementation of the infrastructure framework design for Spark SQL on
Kubernetes.

Initially, this work was purely concerned with evaluating distributed resource-sharing
mechanisms and policies. However, it quickly became apparent that the infrastructure
needed for such experiments is complex, requires numerous heterogeneous parts to work
together, and involves many steps even for simple experiments.

The idea of automating frameworks that streamline experimentation processes has been
considered by other research in similar areas [93-95]. It soon became clear that an au-
tomated infrastructure framework could also here greatly facilitate the process and help

future research (and researchers) to focus on the experiments themselves by reducing the

29

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

Table 4.1: Summary of requirements for the infrastructure framework including priority,
validation method, and status in the final design and implementation.

1D Name Priority Method Status
RE4.1 Core Functionality * < [
RE4.2 Configuration * 3 d
RE4.3 Documentation * < [
RE4.4 Portability * < o
RE4.5 Automation A <> ®
RE4.6 Extensibility A SN d
REA4.7 Use of Common Components PAS SN o

Priority: % mandatory | ¥ desirable
Method: % by design | % by design, implementation, and real-world evaluation
Status: @ fully | @ partially | O not met

time and effort needed to install, set up, and coordinate the infrastructure, initiate the
experiments, and analyze the results. We therefore formulated RQ2, asking How to design
and implement an infrastructure framework for automated real-world performance analysis
studies of distributed resource-sharing mechanisms and policies.

In this chapter, we address RQ2 by following the AtLarge Design Process [30] to propose
the design and implementation of an automated infrastructure framework, ShareBench-
Base. Although ShareBench-Base is geared towards Spark SQL on Kubernetes, it’s core
architectural design should be equally applicable to various other compositions. The
requirements addressed by the design and implementation are summarized in Table 4.1,
which includes information about the priority, the validation method, and whether a
requirement is met in the final design and implementation.

The framework assumes access to a Kubernetes cluster