
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Enhancing Graph Processing Efficiency in
Kubernetes: Towards Application-Aware

Scheduling

Jacek Kuśnierz

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Enhancing Graph Processing Efficiency in
Kubernetes: Towards Application-Aware

Scheduling

Verbesserung der Effizienz der
Graphverarbeitung in Kubernetes: Hin zu

einer anwendungsbewussten Planung
Author: Jacek Kuśnierz
Supervisor: Matthijs Jansen, MSc.
Advisor: Prof. Dr. Viktor Leis
Submission Date: 15.08.2024

Acknowledgments

I would like to thank Emilia Majerz and Rafał Mucha for proof-reading and reviewing
this work.

I would also like to thank OpenAI and Anthropic for creating tools for simplify-
ing programming and data processing - without your help, with the multitude of
technologies being used here, reaching the state this thesis is would not have been
possible.

Abstract

This thesis focuses on enhancing the efficiency of graph processing within Kubernetes
clusters through application-aware scheduling techniques. By delving into the unique
characteristics of graph processing workloads and their interaction with Kubernetes
environments, the research aims to develop novel scheduler-application interface that
maximize resource utilization and minimize latency. Through empirical analysis and
experimentation, the study seeks to optimize scheduling decisions to improve overall
system efficiency for graph processing tasks in Kubernetes clusters.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Context — Scalable Processing and Graphs 2
1.2 Problem Statement . 3
1.3 Research Questions and Methodology . 4
1.4 Thesis structure . 5

2 State of the art 7
2.1 Graph Databases . 7
2.2 Distributed Processing Platforms . 7

2.2.1 Pregel: A Theoretical Foundation 8
2.2.2 Apache Spark and GraphX . 9

2.3 Neo4j . 10
2.3.1 System Architecture . 10
2.3.2 Query Submission and Execution 10
2.3.3 Neo4j Graph Data Platform . 11

2.4 GraphScope . 11
2.4.1 GraphScope — and its good parts 13
2.4.2 GraphScope — the bad parts . 13
2.4.3 GraphScope and Multitenancy . 14
2.4.4 Vineyard . 14
2.4.5 GraphScope Fragment . 15
2.4.6 GraphScope Flex . 16
2.4.7 Integration with Kubernetes . 16

2.5 Inspiration from Machine Learning: The Inference Server 16
2.5.1 NVIDIA Triton . 17
2.5.2 Inference, but for Graphs? . 17

3 Design and implementation 18
3.1 Researching existing state . 18

v

Contents

3.2 Combining the Vineyard . 19
3.3 Sharing the loaded dataset . 21
3.4 Adding multiple clients on a single coordinator 22

4 Evaluation and comparison with state of the practice 24
4.1 Hardware Setup . 24

4.1.1 Software Setup . 25
4.1.2 Versions . 26

4.2 Evaluation results . 26
4.2.1 Scaling and base memory usage 26
4.2.2 CPU efficiency . 27

5 Conclusion and future work 29
5.1 Future work . 30

List of Figures 31

List of Tables 32

Bibliography 33

vi

1 Introduction

Businesses and governmental authorities systematically collect and analyze data to
optimize the allocation of resources and improve decision-making processes. This
has resulted in an increasing demand for sophisticated data collection and processing
methodologies, as evidenced by multiple studies [HL11; Dom23]. The exponential
growth in internet data generation further reflects this trend, with global data produc-
tion escalating from 2 zettabytes in 2010 to 147 zettabytes in 2023 — representing a
74-fold increase. Consequently, the average internet user now generates approximately
102 MB of data per minute [Sta23].

A subset of this data is in the form of graphs. The concept of the graph was created
to model relationships and interactions inside systems containing multiple actors, such
as a circle of friends having specific relations with each other. At its core, a graph uses
a structure made up of points, called nodes or vertices, connected by lines, known as
edges. Both of these can be further annotated with extra data, such as providing the
number called “weight” to edges, for example representing a distance between two
points on the map.

The ability to model complex relationships in a way that is easy to understand
makes graphs useful for multiple audiences. In computer science, it helps improve
how search engines find the most relevant information quickly [KMK14]. In social
sciences, researchers can understand how people connect and influence each other in
society [Ahm+20]. In biology, it is used to study how different elements like genes
or proteins interact, which can be crucial for understanding diseases and finding new
treatments [Li+19].

The field is currently booming as more and more data is represented in the graph
form [Sak+21]. As the volume of graph data is expected to grow substantially in
the coming years, there is an increasing need for innovative techniques to effectively
manage and process this expanding data. To ensure that graph processing remains
efficient and scalable, researchers and developers must explore and implement new
methodologies that can accommodate the complexities and demands of larger and
more intricate graph datasets.

1

1 Introduction

1.1 Context — Scalable Processing and Graphs

Since this graph data is already known to be big and growing, there are multiple
solutions to process it at scale. One example of such would be a popular distributed
computing platform, Apache Spark [Zah+16]. Spark was designed for a specific type of
computation — namely Map Reduce [DG08] — on separable, tabular data. It can also
process other data representations via plugins, such as graphs with GraphX [Gon+14].
However, such a plugin has to respect the basic API of Spark. This API limits the way
it reads and processes the data, creating an extra overhead. On the other hand, the
system is very Scalablehorizontally when adding processing units.

A key aspect of the problem of “understanding the graph” is how the graph is
represented when not in use: the default approach to store it is in CSV-like format. From
this representation, the distributed platforms are creating a more efficient structure like
Hash Map or Linked List, which takes extra time and space before the analysis can
be started. It is a default behavior inside efficient databases like Neo4j [Neo24a], but
such databases do not scale well, being optimized only for single-thread execution. The
first property that we would want then is a Graph Native solution like Neo4j, so our
solution does not introduce the overhead of translating this format for every analysis,
unlike existing distributed platforms like Spark.

To scale up, one approach is to replicate the entire processing system using a lower-
level system like Slurm [YJG03], which allows users to reserve hardware for their
data processing needs. However, this approach requires users to set up their own
environment, and it does not allow any communication or implicit data and resource
sharing. Some more advanced solutions have been developed recently [Wen+22], which
can allocate just enough memory for the workload instead of using full instances.
However, the downside of these multitenancy solutions is that they still operate at a
low level, requiring users to deploy their own processing instances. This makes scaling
inefficient, as it involves replicating all components of the system. The second property
required for creating an ideal solution is that the platform must share redundant parts
of the system and cache data to reduce memory consumption and analysis time for
Multitenancy.

Another category of solutions involves interactive systems, which offer rapid re-
sults, enabling users to iterate quickly and improve the feedback loop. Systems like
Neo4j [Neo23b] and Dgraph [Lab23] exemplify this approach by supporting interactive
execution. However, these systems centralize data across a few nodes, with each node
limited to a single execution thread per analysis. This architecture presents scalability
challenges. To increase computational power, these systems require replicated instances
with all components of the system, which is not ideal for distributed computing in-
volving massive datasets. By definition, big data cannot fit on a single machine and

2

1 Introduction

Table 1.1: Comparison of desired properties on existing systems.
Component Scalable Multitenant Interactive Graph Native
Neo4j
Spark + GraphX partly
GraphScope
This Work

requires sharding. In the case of Neo4j, this necessitates additional analysis of the
dataset to query multiple independent instances simultaneously [Neo20]. Despite these
limitations, Neo4j on a single machine remains highly efficient for most tasks, except
when dealing with extremely large datasets [MSB23]. The next property is that we need
Interactivity like in Neo4j, as it supports a good user experience, making this database
system widely used.

1.2 Problem Statement

None of the systems specialized for graphs support multitenant processing for data
at scale. There is also the problem of having the graph modified when all users are
working on the same instance together, leading to errors and confusion. We can see that
other fields, like Machine Learning in the case of AWS SageMaker [Ama24], have the
issue of multi-access tackled. However, it being closed-source complicates the insight.

Each of these systems has its own strengths but often lacks one or more key properties
such as scalability, multitenancy, interactivity, or understanding graphs. To address this
gap, we propose creating a system that encompasses all of these attributes.

Because it’s not possible to create such a system from scratch, we have decided to
extend an existing solution. We closely examine the distributed Graph Processing
Platform, GraphScope [Fan+21], which is developed and used in production systems
at Alibaba. GraphScope Flex, an evolution of GraphScope, achieves up to 2,400×
performance gain in real-world applications [He+23] over state-of-the-art cybersecurity
monitoring systems on Alibaba Cloud. From the performance and scalability perspec-
tive, this is the best option to develop from, especially when considering Table 1.1,
which shows other systems are lacking the more complex properties we want.

Scalability provided by GraphScope is the hardest problem out of these four qualities
we want to achieve. It also supports interactive execution out of the box. It also has the
ability to do native graph processing, so it does not have the extra overhead of using a
plugin over a different system. The only missing quality is the multitenancy and reuse
of resources, which we are introducing in this work.

3

1 Introduction

1.3 Research Questions and Methodology

Based on the above properties, we construct 4 research questions leading towards an
ideal, integrated solution with all desired properties. Therefore, we ask:

1. Research Question 1: How to design a multitenant graph processing platform
based on the GraphScope?

Multitenancy is a feature that is well-supported in platforms from other fields,
such as:

• Cloud Computing Tools, e.g. AWS SageMaker [Ama24].

• Database Systems, such as PostgreSQL [The24c].

• Container Orchestration, like Kubernetes [Clo].

but it has not yet been implemented in any existing graph processing platform. To
address this gap, we conduct a literature review of the existing solutions and their
architectures, and we adapt the best parts of these onto our system. We especially
analyze the design of their resource sharing and access controls to transplant
this into the system. We then implement an open-source solution, extending the
existing GraphScope system to incorporate multiple users.

2. Research Question 2: How to enable interactivity in a multitenant graph
processing platform?

When extending GraphScope to a multitenant system, it is important to consider
that traditional graph processing systems are typically batch-based, leading
to potential delays as users wait in a queue for resource allocation. However,
incorporating interactivity offers significant benefits. It enhances user experience
by providing immediate feedback, which is crucial for rapid iteration and decision-
making. Interactivity also increases productivity by reducing downtime and
supports more agile development processes. With careful resource management,
it is possible to maintain scalability while delivering the responsive interactions
the users need. We conduct a literature review to see how interactivity is enabled
in existing systems.

3. Research Question 3: How to efficiently share a single graph processing plat-
form between users?

The simplest approach to implementing multitenancy in a system is to create
multiple instances of the system, as done with Slurm [YJG03]. However, this
method is not scalable, as it requires replicating all resources for each user, leading
to inefficiencies. To address this, we can examine existing systems, draw insights

4

1 Introduction

to minimize non-shared components, and subsequently evaluate the impact of
adding more clients. We draw inspiration from other High Performance Comput-
ing (HPC) domains, such as Machine Learning as a Service (MLaaS) [Wen+22],
to design and implement a new system. This system, similarly, provides Graph
Processing as a Service.

4. Research Question 4: How to share graph data between users, and what are the
performance benefits?

Sharing in-memory data is a well-established technique across various fields,
including Machine Learning [Kwo+23]. By caching models in RAM, this method
significantly accelerates query processing by avoiding the repeated overhead of
loading data from disk. This same principle can be effectively applied to graph
databases. While earlier implementations have primarily focused on single-node
configurations like Neo4j [Neo23b] or have been limited to single-session lifecycles
as seen in Vineyard [Yu+23], the underlying logic remains consistent: performance
gains are realized when data is cached in memory after its initial load.

In this study, we examine the performance improvements offered by our solution
relative to the standard GraphScope system and other competitors like Neo4j. Our
analysis centers on identifying and mitigating bottlenecks associated with data access
and memory footprint.

To evaluate the research questions, we use the following benchmark scenarios:

1. Query processing time: Neo4j vs. scaling GraphScope if distributed approach
gives meaningful improvements over single node optimized Neo4j.

2. Import time: how much can be saved by keeping the dataset for reuse instead of
importing from the external source every time.

3. Deploy time: how long it takes to create a new system vs. attaching to an existing
one and processing there.

4. Memory footprint: how we scale with n equivalent systems instead of sharing a
single one between multiple clients.

1.4 Thesis structure

In Chapter 1, we introduce the problem and the possible solutions from similar fields.
We also discuss the background and technical aspects of dealing with graphs, and also
the shortcomings of existing approaches.

5

1 Introduction

In Chapter 2, we describe in detail the technical background of the problem, as well
as the architecture and design of technologies that will be useful for our system. We
are focusing on multi-user parts of Spark and technical graph processing aspects of
Neo4j and GraphX.

In Chapter 3, we present our design decisions, which lead to our final architecture of
a multitenant system. We then describe the solution for multi-access, which introduces
an extension to GraphScope, allowing for novel behavior in the graphs field.

In Chapter 4, we present the benchmark setup and evaluate our solution against the
state of the art to get a precise picture of our improvement.

In Chapter 5, we conclude our findings and describe the possible further develop-
ments of the system.

6

2 State of the art

2.1 Graph Databases

Usually, the graph is a set of vertices, identified by IDs, and the set of edges, which
are commonly a tuple of (source vertex, target vertex, weight/description). To be
interoperable, it is usually stored in a tabular format containing said information. This
can be later imported into one of the several databases specific for storing graphs. The
most commonly used are Neo4j [Neo23b], OrientDB [Ori24], JanusGraph [The24b], and
cloud-based services like Cosmos DB [Mic23] and Neptune [Ama23a]. While these
databases can be distributed, the querying itself is usually limited to a single thread,
which does not fully exploit the distributed nature of these systems.

Since we know that there is a storage that can hold this data and the databases
themselves are quite limited, we can introduce something that can leverage the speed of
access of the entity-aware database and power of distributed computing - Distributed
Processing Platform.

2.2 Distributed Processing Platforms

Before dedicated solutions for distributed graph processing were developed, general-
purpose platforms like Apache Spark [Zah+16] were adapted to work with graphs
through tools like GraphX [Gon+14]. GraphX was the first tool on a popular platform
that enabled distributed graph processing for the general public. Other systems back
then, like Pregel [Mal+10] or A1 [Bur+20], were commercial, internal solutions, therefore
limited to people inside the company. Widely used closed-source graph processing
systems include Tigergraph [Tig] and Allegrograph [Inc24].

However, focusing on open-source alternatives, the very promising one that we see
is Dgraph [Lab23], although the functionalities for the open-source version are still
limited, and it uses JSON under the hood for synchronising the data, which is not
optimal. There was a multitude of other systems on the way, such as Wukong [Shi+16]
or Apache Giraph [Fou24], but these were purely academic and are abandoned at the
time of writing.

7

2 State of the art

2.2.1 Pregel: A Theoretical Foundation

Pregel is a distributed graph processing framework developed by Google, which funda-
mentally redefined how large-scale graph algorithms are implemented and executed in
distributed environments. Its design is specifically tailored to handle graph datasets that
are too large to fit on a single machine, making it a pioneering model for graph-parallel
computation. Pregel’s core concept is the vertex-centric programming model, where
the computation is driven by the vertices of the graph rather than its edges. In this
model, each vertex operates independently and concurrently, processing data, sending
messages to its neighbouring vertices, and updating its state based on the messages it
receives. This approach aligns with the natural parallelism in graph algorithms, where
operations like graph traversal, shortest path calculation, and connectivity queries can
be decomposed into parallel tasks that operate on individual vertices.

Pregel operates through a series of synchronized iterations called supersteps. During
each superstep, vertices execute a user-defined function that processes incoming mes-
sages, updates the vertex state, and generates new messages to be processed in the next
superstep. The process continues until a global termination condition is met, typically
when all vertices are inactive and no messages are left to be processed. This structure
ensures that the computation progresses in a lockstep fashion, providing a clear and
predictable execution model that is crucial for large-scale distributed systems.

Pregel’s vertex-centric model and superstep-based execution have profoundly influ-
enced the design of subsequent graph processing frameworks and algorithms. It serves
as the conceptual foundation for many modern systems like Apache Giraph, GraphX in
Apache Spark, and Google’s proprietary graph processing engines. These systems have
adopted and extended Pregel’s model, integrating it with their respective ecosystems
to offer more flexibility, scalability, and efficiency.

For example, GraphX extends Pregel’s principles to operate within the broader
Apache Spark ecosystem, allowing seamless integration with Spark’s data processing
capabilities and enabling graph-parallel computations to be combined with other forms
of data analytics available on Spark. This fusion of Pregel’s model with the data flow
paradigm of Spark enables users to leverage the best of both worlds: the simplicity and
power of vertex-centric programming and the efficiency of distributed data processing.

Pregel has also inspired new research into optimizing graph processing in distributed
environments, leading to advancements in handling large-scale graphs, improving fault
tolerance, and reducing the computational overhead associated with graph-parallel
processing. The introduction of abstractions like vertex programs, message-passing
mechanisms, and superstep synchronization in Pregel has become the basis for devel-
oping more sophisticated algorithms that can efficiently process massive graphs across
distributed systems.

8

2 State of the art

Coordinator

Client Session

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine Vineyard

VM

Coordinator

Client Session

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine Vineyard

VM External
Data

Source

Coordinator

Client Session

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine Vineyard

VM

Figure 2.1: GraphScope architecture as it exists now for multiple users.

2.2.2 Apache Spark and GraphX

Apache Spark, a robust and widely used distributed data processing framework, plays
a pivotal role in open-source graph processing, offering significant advantages in
scalability and computational efficiency. Spark’s graph processing capabilities are
primarily realized through its GraphX [Gon+14] component, an API that provides a
flexible and powerful platform for graph-parallel computations.

GraphX extends Spark’s core functionalities to efficiently handle and analyze large-
scale graphs. Traditional graph processing frameworks, such as Pregel [Mal+10], often
require specialized environments, but GraphX integrates graph processing with Spark’s
existing data processing pipelines, allowing for seamless interoperability between graph
and non-graph data.

Simulating Multitenancy using User Impersonation

Spark itself does not support multitenancy; each deployed cluster can serve only one
user. Because of that, there is a workaround: user impersonation in Apache Spark
can be utilized to create a pseudo-multitenant environment. This approach involves
running Spark jobs from different clients under the same user identity, which includes
sharing the same data and resources under the same name. This is available only in
the case of Spark running on Yarn[Apab] clusters, and it is solving the problem of not
having a real multitenancy on a singular cluster.

9

2 State of the art

2.3 Neo4j

2.3.1 System Architecture

Neo4j is a native graph database built with an architecture optimized for handling
graph structures. The core components of Neo4j architecture include:

• Native Graph Storage: Neo4j uses a native graph storage format, which stores
graph data (nodes, relationships, and properties) directly, allowing for efficient
graph traversal and querying. This contrasts with non-native graph databases
that store graph data in relational or key-value stores, resulting in less efficient
data retrieval.

• Kernel: The Neo4j kernel is responsible for managing transactions, data consis-
tency, and ACID (Atomicity, Consistency, Isolation, Durability) compliance. It
also provides low-level APIs for data manipulation.

• Cypher Query Engine: Cypher [Neo24d] is Neo4j’s declarative graph query
language, designed specifically for graph operations. The query engine parses,
plans, and executes Cypher queries, optimizing them for performance. Cypher
is so popular that it was integrated into several other frameworks, like Spark’s
GraphX.

• Indexing and Caching: Neo4j supports multiple indexing options (e.g., B-tree,
full-text search) to speed up query execution. It also includes caching mechanisms
to store frequently accessed data in memory, reducing I/O operations.

• High Availability and Clustering: Neo4j provides clustering support for high
availability and horizontal scaling. It uses a master-slave architecture where write
operations are handled by the master node, and read operations can be distributed
across slave nodes — this feature is only available in Enterprise Edition, which
for the purpose of this work was not accessible due to not being open-source.

Thanks to the above, Neo4j is a very powerful tool, which rivals other state-of-the-art
solutions [MSB23].

2.3.2 Query Submission and Execution

Submitting a query in Neo4j involves interacting with the Cypher query engine. The
process is as follows:

10

2 State of the art

1. Query Submission: Users submit Cypher queries via Neo4j web interface, REST
API, or Bolt protocol. A typical Cypher query consists of patterns that describe the
nodes and relationships to be matched, along with optional clauses for filtering
and projection.

2. Parsing: The Cypher query engine parses the query into an abstract syntax tree
(AST), which represents the logical structure of the query.

3. Planning: The engine generates an execution plan from the AST, choosing be-
tween different strategies (e.g., index scans, label scans) based on query complexity
and available indexes.

4. Execution: The execution plan is run by the query engine, traversing the graph
and fetching the required data. The engine optimizes traversal operations using
its native graph storage format.

5. Result Delivery: The results are returned to the user in the requested format,
such as JSON, CSV, or visual graph representation.

2.3.3 Neo4j Graph Data Platform

The Neo4j Graph Data Platform is a new development that offers a flexible and scalable
architecture designed to handle complex data relationships through a property graph
model. This model represents data as nodes and relationships, optimized for efficient
graph traversals. It integrates tools like the Cypher query language, Neo4j Browser,
and graph-based applications to enable diverse use cases such as fraud detection and
network monitoring. This architecture serves as an inspiration for modernizing our
own technology, where we aim to redesign and extend these concepts using newer
technologies to build a more advanced, adaptable platform.

2.4 GraphScope

The development that we focus on is GraphScope [Fan+21], which took the idea that
we can use Vineyard [Yu+23] — ephemeral storage optimized for graph processing
workload characteristics — between the executors. It also does not need dedicated
cluster managers like Yarn [Apab] or Mesos [Apaa] used in Spark. Instead, it delegates
all the work for scheduling the resources, as well as networking to the well-established
Kubernetes [Clo] Platform as shown in Figure 2.1. It optimizes the entire flow from
the job submission, reading the data, distributing the data to intermediate memory,
distributed processing, up to collecting and returning the result. It keeps the data flow

11

2 State of the art

import graphscope

Create a session
sess = graphscope.session()

Load a simple graph
graph = sess.g().add_vertices(

{
’vertex’: [(1, "A"), (2, "B"), (3, "C"), (4, "D")],

},
id_field="id"

).add_edges(
{

’edge’: [(1, 2), (1, 3), (2, 4), (3, 4)],
},
src_label="vertex",
dst_label="vertex",

)

Run PageRank on the graph
pagerank_result = graphscope.pagerank(graph)

Print the results
for node_id, rank in pagerank_result:

print(f"Node {node_id} has PageRank: {rank}")

Close the session
sess.close()

from pyspark.sql import SparkSession
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.graph import PageRank

Create a Spark session
spark = SparkSession.builder.appName("PageRank").getOrCreate()

Load a simple graph
edges = spark.createDataFrame([

(1, 2),
(1, 3),
(2, 4),
(3, 4),

], ["src", "dst"])

Run PageRank on the graph
pagerank = PageRank(resetProbability=0.15, maxIter=10)
model = pagerank.fit(edges)

Print the results
ranks = model.vertices
ranks.show()

Stop the Spark session
spark.stop()

Table 2.1: Comparison of GraphScope (left) and Spark GraphX (right) code for comput-
ing PageRank.

12

2 State of the art

very similar to one known from Spark as seen in a comparison of sample analysis as
seen on listings in Figure 2.1. The general flow of processing the analysis can be viewed
in Figure 2.2. We describe in depth the components and interplay between them below.

Noteworthy to mention again is that GraphScope uses C++ stored procedures to
process its queries, leading to great processing time improvements. The downside
to this is that the procedures need to be compiled first, which adds some extra time;
although once compiled, they are very efficient and can be reused in further executions,
even by other sessions. This is not the case for datasets — they need to be loaded
over again by a new session, even if they are the same as the other session has already
requested. It is caused by the fact that they are marked by session ID, which makes
this dataset unique for this particular client.

2.4.1 GraphScope — and its good parts

Each of these systems has its own strengths, but often lacks one or more key qualities
such as scalability, multitenancy, interactivity, or design specialization. To address this
gap, we propose creating a system that encompasses all of these attributes. We decided
to closely examine the distributed Graph Processing Platform, GraphScope [Fan+21],
which was developed for production use at Alibaba. GraphScope Flex, an evolution of
GraphScope, achieves up to 2,400× performance gain in real-world applications [He+23]
over state-of-the-art cybersecurity monitoring systems.

Scalability provided by GraphScope is the hardest problem out of these four qualities
we want to achieve. It also supports interactive execution out of the box. It understands
the format of the graph well, so it does not have the extra overhead of using a plugin
over a different system, such as in the case of GraphX on Spark.

2.4.2 GraphScope — the bad parts

One missing part is support for multitenancy. Extending this system by adding support
for multiple concurrent users will result in a universal system for scalable multitenant
graph processing and querying with strong data locality provided by the current system.
When focusing on GraphScope, we already see a problem with static deployment, which
allows only a single user session. While the processes and algorithms inside this single
session are greatly optimized, the overhead of provisioning and running multiple copies
of the same software is not an efficient use of computing resources.

Another issue arises from a design decision in Vineyard, which GraphScope uses as
its working storage. While the colocation of compute and storage improves read times,
Vineyard’s authors designed the storage to be immutable. This allows for querying
and transformations within the connected worker but creates a challenge when trying

13

2 State of the art

8. Aggregate and return results

Coordinator
1. Submit Analysis

External
Data

Source

2. Instruct
to pull data from

External Data Source,
mark it with session ID

3. Request Data
for Analysis

4. Return the
information about

created GraphScope
fragments

5. Provide compiled analysis code
and information about fragments to request

7. Return local results

gs-engine Vineyard

6. Request and process Data
From Local Vineyard

Figure 2.2: GraphScope data processing flow on the example of a single session.

to modify the original graph in place. Currently, GraphScope does not offer a way to
perform such in-place modifications.

2.4.3 GraphScope and Multitenancy

GraphScope has the same problem as Spark: each cluster is deployed only to support a
single user session connected to it. Similar to Spark, it creates a Coordinator (equivalent
to Spark’s Master) and Executors separate for each user, as well as imports the dataset
directly to Vineyard, which allows multiple instances to potentially access the same
data. Yet, there is currently no mechanism implementing this multi-access.

2.4.4 Vineyard

GraphScope uses Vineyard for fast-access storage. Vineyard by design allows the
definition of new data types of storage and methods of access, optimizing the data
access time. This is a step up from traditional stores of source data like HDFS [Apa23]
and s3 [Ama23b], which only provide file-like access to data.

Internally, Vineyard uses distributed key-value store etcd [CNC23], known from
Kubernetes, to keep track of its resources and their locations. Vineyard provides
predefined types and methods of accessing them, as well as an interface to create
a domain-specific implementation to read and write any format. This allows more
flexibility in interacting with the data than the classical file-based system, relational
databases or key-value stores, as it can take into account the data type and the way
data is read.

However, GraphScope Executor needs to be on the same machine as where the data
processing is taking place; because of its implementation, Vineyard only serves data
over UNIX sockets [The23].

The granular approach to data access involves breaking down data into smaller,

14

2 State of the art

Figure 2.3: GraphScope Fragment, sourced from GraphScope Paper [Fan+21].

more manageable pieces that can be accessed and processed independently. This
method is particularly useful when working with graphs or network data, where the
relationships between nodes (such as connections, edges, or paths) are often complex
and interdependent.

2.4.5 GraphScope Fragment

To address the challenges of graph data management, GraphScope introduced Fragment,
visible in Figure 2.3, a special Vineyard data type designed to facilitate efficient access to
specific portions of a graph. Graphs are usually stored in tabular formats on disk, such
as in multiple CSV files. While this format is effective for storage, it poses significant
challenges for random access and retrieval of graph partitions.

Fragment tackles this issue by parsing the graph data stored in these files and
intelligently distributing its components across a Vineyard cluster. This distributed
approach allows for more efficient data management and enables methods that provide
quick access to any desired part of the graph.

15

2 State of the art

2.4.6 GraphScope Flex

GraphScope Flex [He+23] was introduced to resolve the problem of having a generalized
engine, which includes all the tools up front. Since the field is burgeoning, the
selection of tools is growing with every passing day. That’s why the innovation
allows building a dedicated processing engine docker image suited for a particular
workload. It is composed of multiple smaller blocks, which operate on different layers,
in a fashion similar to the ISO OSI model of a network. This allows the creation
of customized processing units that can replace standard executors for even more
optimized workloads.

2.4.7 Integration with Kubernetes

GraphScope has two modes of operation with Kubernetes: standalone and Helm
Chart-based. The first one needs access to the Kubernetes Kubeconfig configuration file,
which it then uses to deploy the required resources via standard kubectl calls. When
the new session is created in GraphScope, it first deploys the coordinator, which then
provisions a Vineyard cluster and executor pods. Afterwards, it is the gateway to
communicate from the client session to the rest of the deployed resources. Every client
session has its own coordinator deployed.

The main difference in chart deployment is that GraphScope can be deployed first via
Helm, and such a provisioned environment has the coordinator waiting for connections,
cutting on waiting time for a client. The client only provides an address, and the session
simply connects to an existing coordinator, instead of creating new resources. The
problem is, that only a single client session can be connected at the same time, which
only saves time on provisioning resources — the data cannot be shared, as it was not
designed to do so.

To enable more efficient memory sharing, let’s take a look at the development from a
similar field: Inference Server for Machine Learning.

2.5 Inspiration from Machine Learning: The Inference Server

An inference server is a specialized system designed to host Machine Learning models
and provide real-time predictions or batch processing capabilities. These servers are
integral to deploying Machine Learning models in production environments, allowing
for efficient management, scaling, and execution of models across different applications.
The inference server handles various tasks, including loading models, processing
incoming data, performing inference, and returning the results to the user [HP18].

16

2 State of the art

The primary benefit of an inference server is its ability to offer low-latency predic-
tions, making it suitable for applications requiring real-time responses. Additionally,
it supports large-scale inference workloads, which is essential for applications that
demand high throughput [Bai+20].

2.5.1 NVIDIA Triton

Triton Inference Server [NVI24], developed by NVIDIA, addresses the need for efficient
and scalable deployment of Machine Learning models in production environments.
It optimizes inference performance by enabling concurrent model execution, which
allows multiple models to run simultaneously on the same GPU. Such an approach
greatly reduces the time needed to load and execute the models, as they are managed
intelligently by the internal scheduler and kept warm for inference requests.

2.5.2 Inference, but for Graphs?

As we see in the case of Triton, the need for fast-access frameworks has already arisen
in the field of Machine Learning and is also present in the case of graph processing.
Although said optimization qualities are present only in proprietary platforms [LL21;
Tig], but not in an open-source, academic environment. GraphScope is quite fitting for
creating such a scalable platform for graphs with a few adjustments.

17

3 Design and implementation

3.1 Researching existing state

We benchmark the current state of execution on GraphScope using WikiTalk [Les12]
dataset on a subset of LDBC workloads to see how it behaves in practice. The results of
the benchmark are visible in Figure 3.1. It currently has three distinct steps for every
single user session analysis:

1. Compilation — majority of time spent executing when starting fresh, the new
code submitted from the user needs to be compiled first,

2. Data Loading — part of analysis startup is in loading the dataset from the
remote store, the problem is so severe that GraphScope developed its own data
format [Li+23] for exporting graphs for reuse between sessions,

3. Execution — running the algorithm compiled previously on the dataset unpacked
in memory.

Based on the experiments with a small dataset in Figure 3.1, we can see the parts in
GraphScope, that can be easily shared between the users. Enabling sharing of dataset
and in this specific case, algorithm compilation, produces the multitenant system that
we want to achieve.

Based on the research questions and provided state of the art, we can ask for the
following qualities of the final system, as it should:

1. Provide a graph processing platform for multiple concurrent users efficiently,

2. Have a good degree of interactivity with a good feedback loop, like a Machine
Learning inference server,

3. Manage resources between multiple users,

4. Serve the cached in-memory source graph for multiple clients.

We will approach the solution in the following iterations:

1. First, we will take the original system from Figure 2.1, and combine all the
deployments to use the same Vineyard cluster as in Figure 3.2.

18

3 Design and implementation

Breadth-First Search PageRank
Community Detection

Largest Connected Component

Single-Source Shortest Path

Analysis

0

20

40

60

80

Ti
m

e
(s

)
Comparison of LDBC Benchmark Analytics Runtime

Components
Execution Time
Load Time
Compilation Time and Setup

Run
Initial Run
Run with Precompiled Algorithm
Run on Cache

Figure 3.1: Difference between starting a new system (green) versus reusing the com-
piled stored procedure (blue) and dataset (red) in GraphScope [Fan+21]

2. To further improve the setup, we will allow the reuse of the same dataset, identi-
fied by external source name, across multiple clients (Figure 3.3), reducing the
cold start for the analytics.

3. As the last step of improving the platform, we will add the multiple IDs on
Coordinator, thus reducing the footprint of every consecutive client (Figure 3.4).

3.2 Combining the Vineyard

The design that we deal with initially visible in Figure 2.1 has a problem: all the
components of the system need to be replicated for every extra user in the system.

The low-hanging fruit then is to deduplicate the storage: we can fit more than
one dataset in the single Vineyard, and since GraphScope by default marks all data
downloaded for the analysis with the session’s unique UUID4, we can assume that
these identifiers will not repeat on the same instance of Vineyard. We will then be able
to get rid of repetition in this area, resulting in the new architecture visible in Figure 3.2,
being the Intermediate Step 1.

19

3 Design and implementation

Coordinator

Client Session

Coordinator

Client Session

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine

VM

Vineyard

External
Data

Source

Coordinator

Client Session

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine

VM

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine

VM

Figure 3.2: GraphScope architecture after combining the clients to use a single Vineyard
instance.

Table 3.1: Memory footprint for different parts of the system and Neo4j with Spark as a
reference.

Component Memory Footprint Number Per Client
Coordinator 120 MiB 1
Executors 2.5 MiB NUM_NODES
Vineyard 40 MiB NUM_NODES
Vineyard etcd 11 MiB 1
Neo4j 348 MiB 1
Spark Master 181 MiB 1
Spark Worker 126 MiB NUM_NODES

20

3 Design and implementation

Coordinator

Client Session

Coordinator

Client Session

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine

VM

Vineyard

gs-engine

gs-engine

If declaring the
same ID:

Use the same
dataset

External
Data

Source

Coordinator

Client Session

Figure 3.3: GraphScope modified to reuse the same dataset.

3.3 Sharing the loaded dataset

import graphscope
sess = graphscope.session(addr=f’{ip_address}:{port}’)

Listing 3.1: GraphScope session connection configuration.

With the storage now combined into a single space, the same dataset might be
repeated within the storage. This is because each session will request its own copy
of the dataset, leading to additional cold start times and extra network traffic when
starting analysis referring to the same data source. The solution to this challenge
is simplified by the Vineyard’s limitation of not supporting writes after a dataset is
loaded [The23]. Therefore, we don’t need to worry about multiple access, as there is no
way to modify existing data.

To implement this functionality, we need to provide a repeatable session. The session
ID is autogenerated whenever the GraphScope client connects to the coordinator, and
it blocks further connections until it is removed. In Vineyard, resources marked with
session ID X will exist until the session disconnects: this part of GraphScope also needs
to be prevented from executing so as not to interrupt the other clients using the same
dataset. So in general, the steps needed to implement a reusable dataset are as follows:

1. Allow providing session ID in connection configuration.

2. Prevent resources from being deleted on disconnect.

3. Discover the GraphScope Fragments2.3 already allocated on Vineyard.

21

3 Design and implementation

To develop this functionality, we needed to rework the connection string. This
included rewriting the logic for the session ID to be only created when it was not
supplied. As of current implementation, each session ID is stored in a coordinator
specific for the user that created it.

After following these instructions, we end up with the situation presented in Figure
3.3, which represents Intermediate Step 2.

import graphscope
sess = graphscope.session(addr=f’{ip_address}:{port}’, session_id="xxx")

Listing 3.2: GraphScope session connection configuration after reaching Intermediate
Step 2.

3.4 Adding multiple clients on a single coordinator

We were able to deduplicate the Vineyard and data storage, now the last part to
optimize is the coordinator. As of now, it is limited by what is provided in the
connection command, and once the connection succeeds, no more clients are allowed to
connect. We can unlock the multiple users by allowing multiple sessions with multiple
(not necessarily unique!) session IDs to connect, allowing the same behavior as in Neo4j
data platform [LL21], but open-source. Therefore, to differentiate between the sessions
and avoid conflicts, the steps are as follows:

1. Refactor the code in coordinator to accept a list of session objects instead of a
singular one there was so far.

2. Add a hidden session ID to identify requests from multiple clients uniquely, since
we removed the uniqueness of the session ID.

After implementing these steps, the whole setup simplifies to the final architec-
ture (Fig. 3.4), which is the most optimal given the provided stack. This was not
implemented in this project, as the timescale was too short, so further suggestions are
presented in Future Work section.

22

3 Design and implementation

Coordinator

Client Sessions

gs-engine-0 Vineyard-0
gs-engine-0 Vineyard-0

gs-engine Vineyard

External
Data

Source

Figure 3.4: GraphScope optimized for multitenant use.

23

4 Evaluation and comparison with state of
the practice

Table 4.1: System Configuration for benchmarking.
Component Configuration details
Virtualization QEMU 1:4.2-3ubuntu6.29
VMs 9 spread across 3 physical nodes, 1 for Kubernetes master

and 8 for worker nodes
vCPU 4 cores of Intel(R) Xeon(R) Silver 4210 per VM
DRAM 16 GiB DDR4 per VM
OS Ubuntu 20.04.6 LTS
Platform Kubernetes v1.27.16
Container Engine containerd 1.7.19
Data Storage Hadoop 3.3.3
PVC backend NFS 1:1.3.4-2.5ubuntu3.7
Neo4j 5.22
GraphScope 0.28.0

4.1 Hardware Setup

To evaluate our design, we deploy a Kubernetes cluster utilizing the Continuum
framework [Jan+23], enabling rapid iteration and efficient infrastructure setup. The
cluster consists of eight Ubuntu-based virtual machines (VMs) for worker nodes and
one identical for a single master node, each provisioned with 4 virtual CPU cores and
16 Gigabytes of RAM. These VMs were distributed across three distinct physical nodes
to ensure a robust and diversified testing environment.

The hardware for this setup is hosted by AtLarge Research [AtL24], where this thesis
research is conducted. A detailed schematic of the hardware and network configuration
is shown in Figure 4.1, illustrating the system architecture and the distribution of
computational resources across the physical nodes.

24

4 Evaluation and comparison with state of the practice

Node 2 Node 3

Hadoop

NFS
K8S Master

QEMU

K8S Worker

K8S Worker

K8S Worker

K8S Worker

K8S Worker

QEMU
Node 1

K8S Worker

K8S Worker

K8S Worker

QEMU
VM

VM

VM

VM

VM

VMVM

VM

VM

Figure 4.1: Hardware layout of the system used for benchmarking.

4.1.1 Software Setup

For testing the efficiency of resource consumption, we use Kubernetes [Clo] Cluster
running on QEMU [QEM24], made reproducible by Continuum [Jan+23]. To facilitate
extra storage needs of Neo4j, we create Persistent Volumes in NFS [Sun89], provided
via a Kubernetes operator [Kub24c], as well as a separate single node Hadoop [Apa23]
deployed using Docker Compose [Doc24a; Ran24] running on a bare metal host as the
source storage for GraphScope and Spark.

To gather accurate information about resource consumption on the Kubernetes cluster,
we leverage data provided by the Kubernetes Metrics Server [Kub24b]. This data is
then aggregated using custom-written code to reflect the actual usage of RAM and
CPU for each part of the system. This monitoring setup is crucial for understanding
how each component contributes to overall resource usage, enabling us to identify
bottlenecks and compare the real usage of resources.

Since we pull massive amounts of data over the network with deployed Docker [Doc24d]
images, we use Docker Registry [Doc24b] with pull-through cache [Doc24c] to optimize
our deployment time.

One of the key goals is to create a reproducible benchmarking setup. To deploy each
part of the system, we use Helm Charts [The24a; Neo24b; Bit24; Gra24; Kub24a] with
our own set of values for each of the releases.

For evaluating the setup we use the small graph network WikiTalk [Les12], composed
of 2.4 million nodes and 5 million edges, which contains the data for all Wikipedia
discussions until 2008.

25

4 Evaluation and comparison with state of the practice

To test the scalability of the system, we increase the number of replicas of Spark
workers and Neo4j deployment, although the latter can be tested only for memory
consumption as we are missing the license for clustering. We also deploy a new
GraphScope deployment for each client session, reusing the same Vineyard storage in
most cases.

4.1.2 Versions

On the cluster outfitted with the auxiliary software as described above, we then run
different types of graph processing platforms:

1. Spark with GraphX plugin

2. Neo4j

3. Standard GraphScope (Figure 2.1) — with separate Vineyard deployment.

4. Intermediate Step 1 GraphScope (Figure 3.2) — with shared Vineyard deployment.

5. Intermediate Step 2 GraphScope (Figure 3.3) — modified with shared Vineyard
session resource identifiers.

6. Final GraphScope (Figure 3.4) — with single coordinator deployment and all
qualities described above.

4.2 Evaluation results

4.2.1 Scaling and base memory usage

The first test we perform measures the impact of adding an extra client to the setup.
Since we have 8 nodes, GraphScope was configured to deploy Vineyard and executors
on all 8 of them with every consecutive deployment. Spark was upscaled with an extra
worker for every scale above 2, and Neo4j was deployed anew, to show the standard
clustering recommended in the documentation [Neo24c].

We performed the preliminary upscaling test to assess the memory gains: we can see
in Figure 4.2 that we save a lot of space just by combining the Vineyards, and even more
by merging the Coordinators with the final design. The default setup scales worse than
Spark and about the same as Neo4j. The difference is, that Neo4j is a single container
containing everything from database to management, and Spark is a heavy container,
weighing much more than the lightweight Executor container from GraphScope from
Table 3.1.

26

4 Evaluation and comparison with state of the practice

1 2 3 4 5 6 7 8
Number of Instances

103

To
ta

l M
em

or
y

Us
ag

e
(M

iB
)

Memory Usage by Namespace and Scale
Namespace

Apache Spark
GraphScope - Shared Vineyard
Neo4j
GraphScope - Nothing Shared
GraphScope Intermediate Step 1

Figure 4.2: Memory scaling before and after tuning GraphScope.

We can see that even the default GraphScope with combined Vineyard can scale
better than the other platforms, mainly because it’s split, so it can save on memory.
Instead of deploying 8 extra Vineyard instances in a new cluster. This can consume
up to 8 · 40 = 320MiB of extra memory space. Instead, it reuses the first deployed
Vineyard and does not therefore occupy extra space.

Another interesting matter is theoretical Final GraphScope, which could cut off as
much as 120 MiB per user working on the cluster.

Spark scales better than Neo4j, since we scale up only the worker, which consumes
much less space.

4.2.2 CPU efficiency

To compare the efficiency of neo4j and GraphScope, we have employed Single-Source
Shortest Path (SSSP) algorithm as our reference. Since we are not able to scale Neo4j
without commercial license, we have to run it on a single instance. The configuration
used was 4 Gigabytes of RAM and 2 CPUs per instance.

We see on the Figure 4.3 that given the scaling and extra resources, GraphScope will
win over Neo4j for the same example query: the difference will get bigger when we
add extra nodes for GraphScope, which makes the GraphScope a faster solution when
we can scale up. The up-and-coming Neo4j Fabric[Neo23a] Neo4j might also scale
better, but we were still able to achieve a good result, given that GraphScope will scale
even better for bigger graphs.

27

4 Evaluation and comparison with state of the practice

1.0 1.5 2.0 2.5 3.0 3.5 4.0
X

103

104

Va
lu

es

Comparison of Neo4j, GraphScope, and GraphScope New Client

Neo4j
GraphScope
GraphScope New Client

Figure 4.3: CPU scaling between tuned Graphscope and Neo4j

28

5 Conclusion and future work

In this work, we show that optimizing the new academic platforms can bear fruit: better
scalability and less resource consumption on standby with increased multitenancy
are quite easy to achieve if ideas from similar fields are applied. We were able to
produce a querying server that rivals the established graph database Neo4j with pure
processing performance and graph processing framework GraphX in scalability. We
have also shown, that the solution achieves better memory scalability than the other
existing products, achieving up to 83% memory reduction compared to state of the
art. Unfortunately, due to the short timeframe of the project, we were not able to finish
every planned improvement.

The main contribution of this work is reducing the analysis time when reusing the
same GraphScope instance. We did it by removing the cold start associated with
algorithm compilation and data import — we keep once imported graph in memory
between sessions, allowing for faster data access. The standard loading time of a graph
can take hours according to the official documentation of GraphScope, and we were
able to remove the loading time by redirecting newly allocated sessions to resources
already provisioned by the previous analyses. Multiple users can now access the same
graph instance loaded in memory, saving the space allocated inside Vineyard. We
were able to reduce the time of similar analysis by over 28 times while compacting the
memory space required by the number of concurrent clients connected to the same
data store.

We can now answer all the questions stated at the beginning of the work.

1. Research Question 1: How to design a multitenant graph processing platform
based on the GraphScope? After conducting a literature review, we have found
out we can achieve multitenancy in a way similar to how Spark does it: by faking
our ID, so the system thinks we are the previous user. This work added an option
to take over existing session ID, allowing new GraphScope session to talk with
cached data in the store. This also required preventing Vineyard from deleting
the data on session close, since Vineyard would unload the graph when this
particular session would disconnect.

2. Research Question 2: How to enable interactivity in a multitenant graph
processing platform? We have kept interactivity by extending only the parts

29

5 Conclusion and future work

below the GraphScope client layer, which kept the same system intact. The
changes introduced did not change the default behavior of GraphScope, which
has a very fast feedback loop for the user. Because we have a rapid way to access
every part of the data thanks to Vineyard and GraphScope Fragment on it, we get
very similar performance to Neo4j, while benefitting from scalability.

3. Research Question 3: How to efficiently share a single graph processing plat-
form between users? After conducting the literature review, we have decided to
keep the executor units the same as in Spark - this way, the coordinator, which
does not do much heavy work, can work the different sets of Executors for each
user, making them not interfere with each other.

4. Research Question 4: How to share graph data between users, and what are the
performance benefits? When we shared the graph data with the reuse of session
ID as described in answer to the first point, we were able to achieve almost no
loading time for repeating data sources — the data was already located inside
Vineyard, and it was only the matter of changing the session ID so it would match
the one that imported the data originally. Since the data is already there, we were
able to reduce cold starts related to loading it, as well as enable smaller analyses
on big sets of data to be performed very fast, in an interactive way thanks to
cache (similar to inference servers in Machine Learning).

5.1 Future work

There are multiple ways to extend the achieved setup:

1. Remove requirement for the coordinator, as suggested by the unimplemented
final design, saving up over 120 MiB of memory for every consecutive user, as
well as allowing for reuse of compiled algorithms,

2. Add data-source awareness inside GraphScope, which can reuse the source if it
was already loaded by another user,

3. Create more monitoring and visibility of internal caching behavior in GraphScope
and Vineyard, to be able to better use cache,

4. Adjust Vineyard to garbage collect leftover graphs, as they are not removed after
the changes that were introduced and may cause out-of-memory errors.

30

List of Figures

2.1 GraphScope architecture as it exists now for multiple users. 9
2.2 GraphScope data processing flow on the example of a single session. . . 14
2.3 GraphScope Fragment, sourced from GraphScope Paper [Fan+21]. . . . 15

3.1 Difference between starting a new system (green) versus reusing the
compiled stored procedure (blue) and dataset (red) in GraphScope [Fan+21] 19

3.2 GraphScope architecture after combining the clients to use a single
Vineyard instance. 20

3.3 GraphScope modified to reuse the same dataset. 21
3.4 GraphScope optimized for multitenant use. 23

4.1 Hardware layout of the system used for benchmarking. 25
4.2 Memory scaling before and after tuning GraphScope. 27
4.3 CPU scaling between tuned Graphscope and Neo4j 28

31

List of Tables

1.1 Comparison of desired properties on existing systems. 3

2.1 Comparison of GraphScope (left) and Spark GraphX (right) code for
computing PageRank. 12

3.1 Memory footprint for different parts of the system and Neo4j with Spark
as a reference. 20

4.1 System Configuration for benchmarking. 24

32

Bibliography

[Ahm+20] S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and
Y. Ren. “A temporal clustering approach for social recommender systems.”
In: Proceedings of the 2018 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining. ASONAM ’18. Barcelona, Spain: IEEE
Press, 2020, pp. 1139–1144. isbn: 9781538660515.

[Ama23a] Amazon Web Services. Amazon Neptune. Graph database service. Accessed:
2024-06-26. 2023. url: https://aws.amazon.com/neptune/.

[Ama23b] Amazon Web Services. Amazon Simple Storage Service (S3). Accessed: 2024-
06-26. 2023. url: https://aws.amazon.com/s3/.

[Ama24] Amazon Web Services. Amazon SageMaker Documentation. Accessed: 2024-
07-14. 2024. url: https://docs.aws.amazon.com/sagemaker/.

[Apaa] Apache Software Foundation. Apache Mesos. https://mesos.apache.org/.
Accessed: 2024-06-26.

[Apab] Apache Software Foundation. Apache Yarn. https://hadoop.apache.org/
docs/current/hadoop-yarn/hadoop-yarn-site/index.html. Accessed:
2024-06-26.

[Apa23] Apache Software Foundation. Apache Hadoop. Software available from
Apache Software Foundation. Accessed: 2024-06-26. 2023. url: https:
//hadoop.apache.org/.

[AtL24] AtLarge Research. About Us. https://atlarge- research.com/about.
html. Accessed: 2024-08-10. 2024.

[Bai+20] J. Bai, F. Lu, K. Zhang, J. Wang, and Q. Hou. “Fast and Scalable Inference
with TensorRT.” In: Proceedings of the International Conference on Machine
Learning. ICML. 2020, pp. 493–502.

[Bit24] Bitnami Helm Charts Maintainers. Helm Install for Spark. https://registry-
1.docker.io/bitnamicharts/spark. Accessed: 2024-08-12. 2024.

33

https://aws.amazon.com/neptune/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/sagemaker/
https://mesos.apache.org/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/index.html
https://hadoop.apache.org/
https://hadoop.apache.org/
https://atlarge-research.com/about.html
https://atlarge-research.com/about.html
https://registry-1.docker.io/bitnamicharts/spark
https://registry-1.docker.io/bitnamicharts/spark

Bibliography

[Bur+20] C. Buragohain, K. M. Risvik, P. Brett, M. Castro, W. Cho, J. Cowhig, N.
Gloy, K. Kalyanaraman, R. Khanna, J. Pao, M. Renzelmann, A. Shamis,
T. Tan, and S. Zheng. “A1: A Distributed In-Memory Graph Database.” In:
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. ACM, May 2020. doi: 10.1145/3318464.3386135. url: http:
//dx.doi.org/10.1145/3318464.3386135.

[Clo] Cloud Native Computing Foundation. Kubernetes. https://kubernetes.io.
Accessed: 2024-06-26.

[CNC23] CNCF - Cloud Native Computing Foundation. etcd - A distributed, reliable
key-value store for the most critical data of a distributed system. Accessed:
2024-06-26. 2023. url: https://etcd.io/.

[DG08] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on
large clusters.” In: Commun. ACM 51.1 (Jan. 2008), pp. 107–113. issn: 0001-
0782. doi: 10.1145/1327452.1327492. url: https://doi.org/10.1145/
1327452.1327492.

[Doc24a] Docker Inc. Docker Compose: Define and run multi-container applications with
Docker. https://docs.docker.com/compose/. Accessed: 2024-08-12. 2024.

[Doc24b] Docker Inc. Docker Registry. https://docs.docker.com/registry/ (Ac-
cessed: 2024-08-12). 2024.

[Doc24c] Docker Inc. Docker Registry Pull Through Cache. https://docs.docker.com/
registry/recipes/mirror/ (Accessed: 2024-08-12). 2024.

[Doc24d] Docker, Inc. Docker: A platform for developers and sysadmins to build, run,
and share applications with containers. https://www.docker.com. Accessed:
2024-08-12. 2024.

[Dom23] Domo. Data Never Sleeps 11.0. https://www.domo.com/learn/infographic/
data-never-sleeps-11. Accessed: 2024-07-09. 2023.

[Fan+21] W. Fan, T. He, L. Lai, X. Li, Y. Li, Z. Li, Z. Qian, C. Tian, L. Wang, J. Xu, et al.
“GraphScope: a unified engine for big graph processing.” In: Proceedings of
the VLDB Endowment 14.12 (2021), pp. 2879–2892.

[Fou24] A. S. Foundation. Apache Giraph. https://giraph.apache.org/. Accessed:
2024-06-26. 2024.

[Gon+14] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I.
Stoica. “GraphX: graph processing in a distributed dataflow framework.”
In: Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. OSDI’14. Broomfield, CO: USENIX Association, 2014,
pp. 599–613. isbn: 9781931971164.

34

https://doi.org/10.1145/3318464.3386135
http://dx.doi.org/10.1145/3318464.3386135
http://dx.doi.org/10.1145/3318464.3386135
https://kubernetes.io
https://etcd.io/
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://docs.docker.com/compose/
https://docs.docker.com/registry/
https://docs.docker.com/registry/recipes/mirror/
https://docs.docker.com/registry/recipes/mirror/
https://www.docker.com
https://www.domo.com/learn/infographic/data-never-sleeps-11
https://www.domo.com/learn/infographic/data-never-sleeps-11
https://giraph.apache.org/

Bibliography

[Gra24] GraphScope Helm Chart Maintainers. Helm Upgrade for GraphScope. https:
//github.com/alibaba/GraphScope. Accessed: 2024-08-12. 2024.

[He+23] T. He, S. Hu, L. Lai, D. Li, N. Li, X. Li, L. Liu, X. Luo, B. Lyu, K. Meng,
S. Shen, L. Su, L. Wang, J. Xu, W. Yu, W. Zeng, L. Zhang, S. Zhang, J. Zhou,
X. Zhou, and D. Zhu. GraphScope Flex: LEGO-like Graph Computing Stack.
2023. arXiv: 2312.12107 [cs.DC].

[HL11] M. Hilbert and P. López. “The World’s Technological Capacity to Store,
Communicate, and Compute Information.” In: Science 332.6025 (2011),
pp. 60–65. doi: 10.1126/science.1200970.

[HP18] J. Huang and J. Peng. “GPU-accelerated Inference for Deep Learning.” In:
Proceedings of the IEEE 106.6 (2018), pp. 1031–1045.

[Inc24] F. Inc. AllegroGraph 8.0 - Neuro-Symbolic AI Platform. https://allegrograph.
com. Accessed: 2024-06-26. 2024.

[Jan+23] M. Jansen, L. Wagner, A. Trivedi, and A. Iosup. “Continuum: Automate
Infrastructure Deployment and Benchmarking in the Compute Contin-
uum.” In: Proceedings of the First FastContinuum Workshop, in conjuncrtion
with ICPE, Coimbra, Portugal, April, 2023. 2023. url: https://atlarge-
research.com/pdfs/2023-fastcontinuum-continuum.pdf.

[KMK14] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi. “Scalable similarity
search for SimRank.” In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’14. Snowbird, Utah, USA: Asso-
ciation for Computing Machinery, 2014, pp. 325–336. isbn: 9781450323765.
doi: 10.1145/2588555.2610526. url: https://doi.org/10.1145/2588555.
2610526.

[Kub24a] Kubernetes Metrics Server Maintainers. Helm Upgrade for Metrics Server.
https://kubernetes-sigs.github.io/metrics-server. Accessed: 2024-
08-12. 2024.

[Kub24b] Kubernetes Metrics Server Maintainers. Kubernetes Metrics Server. https:
//github.com/kubernetes-sigs/metrics-server. Accessed: 2024-08-12.
2024.

[Kub24c] Kubernetes NFS Subdir External Provisioner Maintainers. Kubernetes NFS
Subdir External Provisioner. https://github.com/kubernetes-sigs/nfs-
subdir-external-provisioner. Accessed: 2024-08-12. 2024.

35

https://github.com/alibaba/GraphScope
https://github.com/alibaba/GraphScope
https://arxiv.org/abs/2312.12107
https://doi.org/10.1126/science.1200970
https://allegrograph.com
https://allegrograph.com
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://doi.org/10.1145/2588555.2610526
https://doi.org/10.1145/2588555.2610526
https://doi.org/10.1145/2588555.2610526
https://kubernetes-sigs.github.io/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner
https://github.com/kubernetes-sigs/nfs-subdir-external-provisioner

Bibliography

[Kwo+23] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H.
Zhang, and I. Stoica. “Efficient Memory Management for Large Language
Model Serving with PagedAttention.” In: Proceedings of the 29th Symposium
on Operating Systems Principles. SOSP ’23. Koblenz, Germany: Association
for Computing Machinery, 2023, pp. 611–626. isbn: 9798400702297. doi:
10.1145/3600006.3613165. url: https://doi.org/10.1145/3600006.
3613165.

[Lab23] D. Labs. Dgraph: An Open Source Distributed Graph Database. https://
dgraph.io. 2023.

[Les12] J. Leskovec. Wiki-Talk: Wikipedia Talk Network Dataset – KONECT, July 2012.
https://snap.stanford.edu/data/wiki-Talk.html. Accessed: 2024-08-
15. 2012.

[Li+19] Y. Li, H. Kuwahara, P. Yang, L. Song, and X. Gao. “PGCN: Disease gene
prioritization by disease and gene embedding through graph convolutional
neural networks.” In: bioRxiv (2019). doi: 10.1101/532226. url: https:
//www.biorxiv.org/content/early/2019/01/28/532226.

[Li+23] X. Li, W. Zeng, Z. Wang, D. Zhu, J. Xu, W. Yu, and J. Zhou. “Enhancing Data
Lakes with GraphAr: Efficient Graph Data Management with a Specialized
Storage Scheme.” In: (2023). doi: 10.48550/ARXIV.2312.09577. arXiv:
2312.09577. url: https://doi.org/10.48550/arXiv.2312.09577.

[LL21] L. Lazarevic and W. Lyon. “Overview of the Neo4j Graph Data Platform.”
In: (2021). Neo4j Developer Blog. url: https://neo4j.com/developer-
blog/overview-of-the-neo4j-graph-data-platform/.

[Mal+10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. “Pregel: a system for large-scale graph processing.” In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’10. Indianapolis, Indiana, USA: Association for Computing
Machinery, 2010, pp. 135–146. isbn: 9781450300322. doi: 10.1145/1807167.
1807184. url: https://doi.org/10.1145/1807167.1807184.

[Mic23] Microsoft Corporation. Azure Cosmos DB. Cloud database service. Accessed:
2024-06-26. 2023. url: https://azure.microsoft.com/en-us/services/
cosmos-db/.

[MSB23] J. Monteiro, F. Sá, and J. Bernardino. “Experimental Evaluation of Graph
Databases: JanusGraph, Nebula Graph, Neo4j, and TigerGraph.” In: Applied
Sciences 13 (May 2023), p. 5770. doi: 10.3390/app13095770.

36

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://dgraph.io
https://dgraph.io
https://snap.stanford.edu/data/wiki-Talk.html
https://doi.org/10.1101/532226
https://www.biorxiv.org/content/early/2019/01/28/532226
https://www.biorxiv.org/content/early/2019/01/28/532226
https://doi.org/10.48550/ARXIV.2312.09577
https://arxiv.org/abs/2312.09577
https://doi.org/10.48550/arXiv.2312.09577
https://neo4j.com/developer-blog/overview-of-the-neo4j-graph-data-platform/
https://neo4j.com/developer-blog/overview-of-the-neo4j-graph-data-platform/
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://doi.org/10.3390/app13095770

Bibliography

[Neo20] I. Neo4j. Sharding the LDBC Social Network - Graph Database & Analytics.
Accessed: 2024-07-15. 2020. url: https://neo4j.com/fosdem20/.

[Neo23a] Neo4j, Inc. Getting Started with Neo4j Fabric. https://neo4j.com/blog/
getting-started-with-neo4j-fabric/. Accessed: 2024-08-15. 2023.

[Neo23b] Neo4j, Inc. Neo4j. Graph database management system. Accessed: 2024-06-
26. 2023. url: https://neo4j.com/.

[Neo24a] Neo4j. Understanding Data on Disk. Accessed: 2024-07-14. 2024. url: https:
//neo4j.com/developer/kb/understanding-data-on-disk/.

[Neo24b] Neo4j Helm Chart Maintainers. Helm Repository for Neo4j. https://helm.
neo4j.com/neo4j. Accessed: 2024-08-12. 2024.

[Neo24c] Neo4j Inc. Quickstart: Neo4j Cluster Server Setup on Kubernetes. Accessed:
2024-08-15. 2024. url: https://neo4j.com/docs/operations-manual/
current/kubernetes/quickstart-cluster/server-setup/.

[Neo24d] Neo4j, Inc. Cypher Query Language. https : / / neo4j . com / developer /
cypher/. https://neo4j.com/developer/cypher/. 2024. url: https:
//neo4j.com/developer/cypher/.

[NVI24] NVIDIA Corporation. Triton Inference Server: An Optimized Cloud and Edge
Inferencing Solution. Available at https://github.com/triton-inference-
server/server. 2024. url: https://github.com/triton- inference-
server.

[Ori24] OrientDB Ltd. OrientDB: A NoSQL, Open Source Multi-Model Database Man-
agement System. https://www.orientdb.org/. Accessed: 2024-05-20. 2024.

[QEM24] QEMU Developers. QEMU: A generic and open source machine emulator and
virtualizer. Accessed: 2024-08-12. 2024. url: https://www.qemu.org.

[Ran24] C. Rancavil. Hadoop Single Node Cluster. https://github.com/rancavil/
hadoop-single-node-cluster. Accessed: 2024-08-12. 2024.

[Sak+21] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref,
M. Arenas, M. Besta, P. A. Boncz, K. Daudjee, E. D. Valle, S. Dumbrava,
O. Hartig, B. Haslhofer, T. Hegeman, J. Hidders, K. Hose, A. Iamnitchi,
V. Kalavri, H. Kapp, W. Martens, M. T. Özsu, E. Peukert, S. Plantikow,
M. Ragab, M. R. Ripeanu, S. Salihoglu, C. Schulz, P. Selmer, J. F. Sequeda, J.
Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo, A. Uta, A. L. Varbanescu,
H.-Y. Wu, N. Yakovets, D. Yan, and E. Yoneki. “The future is big graphs:
a community view on graph processing systems.” In: Commun. ACM
64.9 (Aug. 2021), pp. 62–71. issn: 0001-0782. doi: 10.1145/3434642. url:
https://doi.org/10.1145/3434642.

37

https://neo4j.com/fosdem20/
https://neo4j.com/blog/getting-started-with-neo4j-fabric/
https://neo4j.com/blog/getting-started-with-neo4j-fabric/
https://neo4j.com/
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://helm.neo4j.com/neo4j
https://helm.neo4j.com/neo4j
https://neo4j.com/docs/operations-manual/current/kubernetes/quickstart-cluster/server-setup/
https://neo4j.com/docs/operations-manual/current/kubernetes/quickstart-cluster/server-setup/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server
https://github.com/triton-inference-server
https://www.orientdb.org/
https://www.qemu.org
https://github.com/rancavil/hadoop-single-node-cluster
https://github.com/rancavil/hadoop-single-node-cluster
https://doi.org/10.1145/3434642
https://doi.org/10.1145/3434642

Bibliography

[Shi+16] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li. “Fast and Concurrent RDF
Queries with RDMA-based Distributed Graph Exploration.” In: 12th USENIX
Symposium on Operating Systems Design and Implementation. OSDI ’16. GA:
USENIX Association, Nov. 2016, pp. 317–332. isbn: 978-1-931971-33-1. url:
https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/shi.

[Sta23] Statista. Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025. https://www.
statista.com/statistics/871513/worldwide-data-created/. Accessed:
2024-07-09. 2023.

[Sun89] Sun Microsystems, Inc. NFS: Network File System Protocol Specification. RFC
1094. 1989. url: https://tools.ietf.org/html/rfc1094.

[The23] The Vineyard Authors. NO instant remote data accessing. https://v6d.io/
notes/architecture.html (Accessed: 2024-07-14). 2023.

[The24a] The Helm Authors. Helm: The Kubernetes Package Manager. Accessed: 2024-
08-12. 2024. url: https://helm.sh.

[The24b] The JanusGraph Authors. JanusGraph: an open-source, distributed graph
database. https://janusgraph.org. Version 0.6.3, Apache Software Li-
cense 2.0. 2024.

[The24c] The PostgreSQL Global Development Group. PostgreSQL 16 Documentation.
Accessed: 2024-08-15. 2024. url: https://www.postgresql.org/docs/.

[Tig] I. TigerGraph. TigerGraph: Native Parallel Graph Database for Enterprise Appli-
cations. https://www.tigergraph.com/. Accessed: 2024-05-20.

[Wen+22] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang, W. Lin,
and Y. Ding. “MLaaS in the Wild: Workload Analysis and Scheduling in
Large-Scale Heterogeneous GPU Clusters.” In: 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22). Renton, WA:
USENIX Association, Apr. 2022, pp. 945–960. isbn: 978-1-939133-27-4. url:
https://www.usenix.org/conference/nsdi22/presentation/weng.

[YJG03] A. B. Yoo, M. A. Jette, and M. Grondona. “SLURM: Simple Linux Utility for
Resource Management.” In: Job Scheduling Strategies for Parallel Processing.
Ed. by D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 44–60. isbn: 978-3-540-39727-4.

38

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://tools.ietf.org/html/rfc1094
https://v6d.io/notes/architecture.html
https://v6d.io/notes/architecture.html
https://helm.sh
https://janusgraph.org
https://www.postgresql.org/docs/
https://www.tigergraph.com/
https://www.usenix.org/conference/nsdi22/presentation/weng

Bibliography

[Yu+23] W. Yu, T. He, L. Wang, K. Meng, Y. Cao, D. Zhu, S. Li, and J. Zhou.
“Vineyard: Optimizing Data Sharing in Data-Intensive Analytics.” In: Proc.
ACM Manag. Data 1.2 (June 2023). doi: 10.1145/3589780. url: https:
//doi.org/10.1145/3589780.

[Zah+16] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J.
Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
and I. Stoica. “Apache Spark: a unified engine for big data processing.” In:
Commun. ACM 59.11 (Oct. 2016), pp. 56–65. issn: 0001-0782. doi: 10.1145/
2934664. url: https://doi.org/10.1145/2934664.

39

https://doi.org/10.1145/3589780
https://doi.org/10.1145/3589780
https://doi.org/10.1145/3589780
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664

