
BFQ, Multiqueue-Deadline, or Kyber? Performance
Characterization of Linux Storage Schedulers in the NVMe Era

Zebin Ren
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Krijn Doekemeijer
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Nick Tehrany∗
BlueOne Business Software LLC
Beverly Hills, California, USA

Animesh Trivedi
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

ABSTRACT
Flash SSDs have become the de-facto choice to deliver high I/O
performance to modern data-intensive workloads. These workloads
are often deployed in the cloud, where multiple tenants share ac-
cess to flash-based SSDs. Cloud providers use various techniques,
including I/O schedulers available in the Linux kernel, such as BFQ,
Multiqueue-Deadline (MQ-Deadline), and Kyber, to ensure certain
performance qualities (i.e., service-level agreements, SLAs). Though
designed for fast NVMe SSDs, there has not been a systematic study
of these schedulers for modern, high-performance SSDs with their
unique challenges. In this paper. we systematically characterize the
performance, overheads, and scalability properties of Linux stor-
age schedulers on NVMe SSDs with millions of I/O operations/s.
We report 23 observations and 5 key findings that indicate that (i)
CPU performance is the primary bottleneck with the Linux storage
stack with high-performance NVMe SSDs; (ii) Linux I/O schedulers
can introduce 63.4% performance overheads with NVMe SSDs; (iii)
Kyber and BFQ can deliver 99.3% lower P99 latency than None or
MQ-Deadline schedulers in the presence of multiple interfering
workloads. We open-source the scripts and datasets of this work at:
https://zenodo.org/records/10599514.

CCS CONCEPTS
• General and reference→ Empirical studies; • Software and its
engineering → Secondary storage.

KEYWORDS
Linux storage scheduler, Quality of service, Measurements, NVMe

ACM Reference Format:
Zebin Ren, Krijn Doekemeijer, Nick Tehrany, and Animesh Trivedi. 2024.
BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of
Linux Storage Schedulers in the NVMe Era. In Proceedings of the 15th
ACM/SPEC International Conference on Performance Engineering (ICPE ’24),
May 7–11, 2024, London, United Kingdom.ACM,NewYork, NY, USA, 12 pages.
https://doi.org/10.1145/3629526.3645053

∗Work done while the author was at Vrije Universiteit Amsterdam.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05.
https://doi.org/10.1145/3629526.3645053

1 INTRODUCTION
Modern flash-based NVMe solid-state drives (SSDs) are able to de-
liver millions of I/O operations per second (IOPS) and single-digit
microsecond-level latency [7, 11]. These SSDs are widely used in
multi-tenant cloud environments where their performance, band-
width, and latency are shared among multiple tenants or work-
loads [3, 5, 13, 28, 32, 38, 43, 44]. In multi-tenant cloud environ-
ments, there is commonly a scheduler of I/O requests designed to
deliver fairness with quality-of-service guarantees, also known as
service level agreements (SLA), for the cloud services [38, 44].

Designing a fair, high-performance, low-overhead I/O scheduler
has been a topic of extensive research over the past decade, with
studies focusing on providing proportional performance sharing
with request scheduling [1, 26, 40, 46, 52, 56, 57], low latency guar-
antees [27, 39, 42], and SSD-supported features acceleration [29,
31, 54]. Despite these studies, the emergence of high-performance
NVMe SSDs has created multiple unique challenges for storage
schedulers (or I/O schedulers) that have not been systematically
studied or characterized. These unique challenges come from three
distinct dimensions that we cover in this study: (i) performance
overheads from the complex storage software stack on fast SSDs; (ii)
scalability challenges in the presence of highly concurrent I/O op-
erations on NVMe SSDs; and (iii) interference management among
competing I/O requests at high CPU loads.

Firstly, state-of-the-practice I/O schedulers available in Linux
(BFQ, MQ-Deadline, and Kyber) are not yet studied at the per-
formance scale of millions of IOPS which modern NVMe SSDs
can deliver. At this scale, small overheads from the Linux storage
stack become a performance bottleneck [51, 55]. These overheads
come from operational complexity (dispatching, merging, sorting,
and staging I/O requests) that determine the maximum perfor-
mance a scheduler can deliver. Various enterprise software recom-
mends using no scheduler (also known in Linux as None) on high-
performance SSDs to limit or eliminate these overheads [49, 50].
However, in this work, we demonstrate that this decision can sacri-
fice the quality of service and fairness among workloads. Secondly,
modern server machines are highly parallel with multiple CPU
cores and SSDs with parallel I/O queues. Here, overheads related to
locking, synchronization, and queue management become the key
performance bottlenecks. Thirdly, the widely-adopted flash-based
SSDs have different read and write performance characteristics,
and the reads and writes interfere with each other [20, 25]. This
interference creates challenges for I/O schedulers to fairly schedule
mixed read-write workloads. Furthermore, a shared environment

https://orcid.org/0000-0003-1466-0002
https://orcid.org/0009-0007-7530-4438
https://orcid.org/0000-0002-4907-8859
https://orcid.org/0000-0003-3586-7168
https://zenodo.org/records/10599514
https://doi.org/10.1145/3629526.3645053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629526.3645053

ICPE ’24, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, Nick Tehrany, & Animesh Trivedi

brings new challenges to I/O schedulers [30, 32, 45] since workloads
have diverse I/O requirements. For example, throughput-bound
workloads like batch analytics (e.g., Spark) require high IOPS, and
real-time workloads like interactive queries [16] expect low, pre-
dictable latencies. I/O schedulers need to provide SLA guarantees
to satisfy these requirements across all the tenants, possibly si-
multaneously [37, 41, 47, 48]. There have been attempts to design
SSD-aware schedulers [27, 46, 52, 56] (including Linux Kyber [8]).
However, the performance of these state-of-the-practice schedulers
(available in the Linux kernel) has not been studied or quantified
on high-performance NVMe SSDs with millions of IOPS. To sum-
marize, the high performance, scale, and interference properties
of modern NVMe SSDs motivate us to systematically study and
characterize the performance of Linux I/O schedulers.

In this study, we aim to measure, quantify, and analyze overheads
from three widely available Linux storage I/O schedulers, BFQ [1],
Kyber [8], and MQ-Deadline [9] on flash-based NVMe SSDs (§2).
We start our investigation by studying the performance (expressed
as IOPS or latencies) using fio, a widely used microbenchmark
with the high-performance io_uring storage engine [19] on our
8 NVMe SSDs setup with a peak performance of 5.9 million 4KiB
IOPS (see Table 1). We specifically motivate and investigate the
following research questions (RQ) around the performance and
overheads of Linux I/O schedulers with the key findings (KF):

(RQ1) What is the CPU overhead for modern fast NVMe
SSD devices? Can the Linux storage stack saturate multiple NVMe
SSDs? This research question is important to establish the baseline
performance of the SSDs around which the rest of the scheduler
analysis is done. The key motivation for this question is to estab-
lish under which configurations the CPU cores or SSDs become a
bottleneck, and how they influence the performance of I/O sched-
ulers. KF-1: for high-performance NVMe SSDs, the CPU is the key
bottleneck (even with the None scheduler), thus making the scheduling
“efficiency” of I/O schedulers a key factor in the performance delivered
to the workloads (§3).

(RQ2)What are the scheduler overheads, and how do these
overheads scale with the I/O and device concurrency? NVMe
devices have deep I/O queues with multiple parallel queues. Hence,
typically it takes multiple requests to saturate a single device. Here
we study the overhead of I/O scheduling and how it scales with
concurrent requests when requests come from a single workload
(intra-process) and multiple workloads (inter-process). KF-2: once
the CPU becomes the bottleneck, the Linux I/O schedulers can induce
63.4% overheads in throughout and 50× increase in the P99 latencies
over the None scheduler. We also report that the presence of multiple
SSDs helps to reduce overheads associated with the device-specific
locking and synchronization overheads (§4).

(RQ3) How can I/O schedulers help to control interference
in the presence of competing workloads, specifically latency-
vs-bandwidth and read-vs-write? These kinds of mixed work-
loads are quite common in the cloud/enterprise settings. Hence,
it is important to study what are the scheduler overheads in this
scenario. The extent of the interference typically governs what kind
of SLAs (99 percentile, worst-case performance scenarios) storage
service providers can offer to their tenants. KF-3 and KF-4: Kyber
and BFQ can provide good bounded performance in the presence of

Table 1: Details of the benchmarking environment.

Component Configuration
CPU Single socket Intel(R) Xeon(R) Silver 4210R CPU 10 cores

@ 2.40GHz, Hyper-threading disabled, Turbo disabled.
Memory 256GB, DDR4.
Storage 8× Samsung 980 PRO 1TB, Average latency (r/w):

∼68/15 𝜇s, peak random read IOPS: 1M@4KiB/device
at the queue depth 32.

Software Ubuntu 20.04 with Linux kernel v6.3.8 (released
April’23), fio v3.35, SPDK 22.09.

interference when the CPU is not the bottleneck, however, BFQ suf-
fers from performance scalability overheads. Hence, we conclude that
overall Kyber is the best fit Linux I/O schedulers for SSDs (§5).

(RQ4) How do a scheduler configuration parameters af-
fect the schedulers’ behavior on competing workloads? The
Linux I/O schedulers provide tunable parameters, which affect the
schedulers’ behavior. Based on our empirical findings, we further
present a detailed analysis of the Kyber scheduler which is specifi-
cally designed for modern SSDs. It has two unique configuration
parameters: read and write target latencies. We perform a configu-
ration space exploration for Kyber. KF-5: Kyber can be configured
to prioritize latency or total throughput by tuning its read and write
target latencies, but not both (§6).

Our key contributions in this work include:

• To the best of our knowledge, this is the first-of-its-kind
systematic study about overhead quantification and charac-
terization of state-of-the-practice I/O schedulers with modern
NVMe SSDs, exploring their performance, scalability, and
interference patterns, resulting in 23 observations and 5 key
findings.

• Weexplore the configuration space of Kyber, an SSD-optimized
scheduler. We report that Kyber has the least amount of CPU
overhead, and it can provide bounded performance in the
presence of read/write interference.

• To facilitate reproduction, we open-source the design and im-
plementation of our code and datasets at https://github.com/
stonet-research/icpe24_io_scheduler_study_artifact. Perma-
nent link: https://zenodo.org/records/10599514.

2 BENCHMARKING ENVIRONMENT
In this section, we present details about the benchmarking environ-
ment, workloads used, and selected Linux storage schedulers.

2.1 Hardware and Software
We use fio [4] as the workload generator with the io_uring I/O
engine [14, 19, 51]. Our setup is able to deliver a peak random
read performance of 3.4 Million IOPS with the Linux storage stack
under Linux v6.3.8 (5.9 Million IOPS with SPDK that by-passes
the kernel), and an average read latency of 68 𝜇s (4KiB, with a
queue depth of 1, QD=1); hence, creating a unique opportunity
to study I/O schedulers in this high-performance I/O setup. We
use three metrics to evaluate the performance of the Linux I/O
schedulers: throughput, latency, and CPU usage. We measure the

https://ark.intel.com/content/www/us/en/ark/products/197098/intel-xeon-silver-4210r-processor-13-75m-cache-2-40-ghz.html
https://semiconductor.samsung.com/consumer-storage/internal-ssd/980pro/
https://github.com/stonet-research/icpe24_io_scheduler_study_artifact
https://github.com/stonet-research/icpe24_io_scheduler_study_artifact
https://zenodo.org/records/10599514

BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage Schedulers in the NVMe Era ICPE ’24, May 7–11, 2024, London, United Kingdom

throughput as I/O operations completed per second (IOPS). La-
tency measurements focus on the tail latency where we report 99
percentile latencies (P99) with a complete CDF distribution. The
average CPU usage is measured using fio, which reports “the CPU
time used by the process/run time”. CPU usage = 1 means that the
process uses a whole CPU core. fio gets the resource usage with
the Linux getrusage system call [6]. We precondition the flash
SSDs according to [18], by sequentially writing the entire device,
then randomly writing 4KiB blocks with a total of 2TiB data. Each
device can deliver 1MIOPS@4KiB random read according to the
specification. However, we only get ∼770 KIOPS with 4KiB random
read workload after the preconditioning.

2.2 Workload Patterns and Methodology
We focus on two kinds of applications in this work, latency-sensitive
and throughput-bound. We use L-app to represent latency-sensitive
applications such as database queries and T-app to represent throughput-
bound applications such as batch processing jobs like Map-Reduce.
We use three kinds of synthesized workloads to simulate these two
kinds of applications:

(1) L-app (latency-sensitive application) generates requests of
4KiB block sizes with an I/O depth of 1 (only one outstanding
request at a time, we also refer to the I/O depth as queue
depth or QD in the following sections).

(2) T-4KiB-app (small I/O, throughput-bound application with
4KiB block size) generates requests of 4KiB block sizes with
an I/O depth of 128. With 4KiB block size, a single core can
not saturate the evaluated Samsung SSD on our setup. We
use T-4KiB-apps to show the effect of I/O schedulers on I/O
performance when the CPU is the bottleneck.

(3) T-64KiB-app (large I/O, throughput-bound application with
64KiB block size) generates requests of 64KiB block sizeswith
an I/O depth of 128. With the 64KiB block size, the evaluated
Samsung SSD can be saturated with a single CPU core in our
setup for all I/O schedulers. We use T-64KiB-apps to show
the effect of I/O schedulers when the SSD is the bottleneck.

Experiments with read-only workloads run for 150 seconds (2 min-
utes + 30 seconds warm-up time) since the read performance of
flash-based SSDs is stable. For applications that issue writes, we run
each experiment for 12 minutes (6 minutes + 6 minutes warm-up
time) with 5 repetitions to get stable results, we report both the
average value and standard deviation.

2.3 I/O Schedulers Under Study
The Linux kernel has four multi-queue enabled I/O schedulers:
None, BFQ [1], Kyber [8], and MQ-Deadline [9]. For this study, we
use the default configuration of each scheduler as they are the most
likely used configurations for real workloads. For Kyber we further
explore the configuration space to synthesize guidelines (§6).

None is the default I/O scheduler for NVMe devices that is recom-
mended often to reduce the scheduling overheads with fast NVMe
storage devices [49, 50]. Technically, None is not an I/O scheduler
since it dispatches I/O requests to the NVMe driver immediately
when it gets a new request without reordering the requests. Due
to its simplicity, None has the lowest overheads among all I/O
schedulers. Hence, we select it as the baseline scheduler.

MQ-Deadline is the multi-queue version of the Deadline sched-
uler [2]. The main goal of MQ-Deadline is to guarantee the start
service time for a request. MQ-Deadline maintains two read-write
queue pairs, a sorted queue pair and a FIFO queue pair.MQ-Deadline
issues I/O requests in increasing sector orders (from the sorted
queue) unless there is a request that violates the service dead-
line (from the FIFO queue). When the service deadline is violated,
MQ-Deadline issues the request from the FIFO queue.

BFQ (Budget Fair Queuing) is a proportional-sharing I/O sched-
uler that is designed to provide fair bandwidth sharing and low
latency for latency-sensitive applications. BFQ associates each pro-
cess with an internal request queue and a budget according to each
process’ weight in the number of sectors. BFQ uses worst-case fair
weighted fair queuing+ (WF2Q+) [15] to select the next queue to
service and exclusive device access is given to the selected queue
until its I/O budget is used up or a timeout happens. To provide low
latency for real-time applications such as video players, BFQ uses
heuristics to detect applications that are sensitive to latency and
gives them higher priority. BFQ is the most complex Linux kernel
I/O scheduler (BFQ is ∼10,000 LOC, against ∼1,000 LOC for Kyber
and MQ-Deadline), and is believed to have the highest overhead
among the Linux I/O schedulers [1, 12].

Kyber is designed for fast multi-queue devices to deliver low
latency for reads. It is based on a heuristic that a process that issues
a read I/O request usually waits for the request to finish and the
data to be available (synchronous completion). In contrast, a pro-
cess that issues a write I/O request usually can continue executing
before the writes are finished (asynchronous completion). Thus,
Kyber prioritizes reads over writes, but not to the extent where
writes are starved. To achieve high responsiveness, Kyber prevents
requests from building up on the device side with tokens. A detailed
description of how Kyber works is presented in §6.

3 BOTTLENECK ANALYSIS: CPU OR NVME

We start our analysis by characterizing the performance of Samsung
NVMe devices with the None scheduler to explore how CPU or
NVMe devices become a bottleneck. Figure 1 shows our results. In
the graphs, each line (same block size, increasing QD) has a hook
shape: as QD increases, the throughput grows fast (x-axis), while
the latency remains stable. At a certain turning point, the latency
starts to grow fast with throughput remaining the same (because of
queuing delays). This turning point is called the saturation point
or knee point. At the saturation point, either the CPU or the SSD
becomes the bottleneck.

3.1 What throughput and latency can a single
SSD and a single CPU core deliver?

To answer this question, we configure a single SSD with a sin-
gle CPU core and issue a random read workload. We measure the
throughput and latency as we increase the number of outstanding
requests (i.e., queue depth). Figure 1a shows the throughput as
IOPS (x-axis) with the average latency (y-axis, the lower the bet-
ter) for multiple queue depths (points on the lines). In this setting,
we report that the performance of request sizes smaller than or
equal to 4KiB are similar in nature, all saturating at a queue depth
of 64 with 370KIOPS as the peak performance. After this point,

ICPE ’24, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, Nick Tehrany, & Animesh Trivedi

100 200 300 400
Throughput (KIOPS)

0

250

500

750

1,000

A
ve

ra
ge

la
te

nc
y

(µ
s)

1 2 4 8 16 32
64

128

256

16 32
64

128

256

12 4 8
16

32

64

16

3216 370 KIOPS

512
1K
2K

4K
8K
16K

32K
64K

(a) Vary request sizes, 1 SSD.

200 400 600 800
Throughput (KIOPS)

0

250

500

750

1,000

A
ve

ra
ge

la
te

nc
y

(µ
s)

12 4 8 16 32
64

128

256

32
64

128

256

774 KIOPS

1p
2p

4p
8p

1p SPDK
2p SPDK

(b) Vary # processes with 1 SSD.

1 2 3 4 5
Throughput (MIOPS)

0

250

500

750

1,000

A
ve

ra
ge

la
te

nc
y

(µ
s) 1p

2p
4p
8p

10p
16p

1p SPDK
6p SPDK

(c) Vary # processes with 8 SSDs.

Figure 1: Throughput and latency of a Samsung 980 PRO 1TB with varying queue depth and number of processes.

increasing the queue depth leads to further queuing delays, hence
an increase in the latency. At this point, the CPU is the primary
bottleneck as it is 100% utilized, yet the SSD device itself is not satu-
rated (Observation-1, O-1). For request sizes greater than 4KiB, the
throughput decreases proportionally, and the CPU gets saturated
at shallow queue depths, hence, the latencies start to increase.

3.2 How does the performance scale as we
increase the number of CPU cores or SSDs?

In the subsequent experiments, we increase the number of CPU
cores with one SSD (Figure 1b) and then the number of SSDs (Fig-
ure 1c). We observe in Figure 1b that with 4 cores (denoted as 4p, or
processes), a single SSD is saturated with the peak performance of
774 KIOPS. In Figure 1c, we continue to scale the number of CPU
cores with all 8 SSDs (the max possible). The figure shows that
the peak performance shifts from 774KIOPS (from Figure 1b) to
3.4MIOPS for 10 CPU cores (and 16 as well). In this configuration, all
10 CPU cores are 100% utilized and this is the peak performance the
Linux kernel can deliver with the io_uring engine (bounded by the
CPU performance). We also plot the SPDK performance, which is a
high-performance, kernel-bypass storage stack [10]. With SPDK, it
takes 6 CPU cores (“6p SPDK” line) to deliver 5.2MIOPS, saturating
the SSDs (within 85% of the peak possible 6.2MIOPS (8×774 KIOPS)
that our hardware should deliver). This demonstrates that SPDK
(1.3MIOPS/core) is still the state-of-the-art storage stack, which is at
least 3.6× more efficient (single core peak IOPS performance with 8
SSDs, “1p” and “1p SPDK” lines in Figure 1c) than the Linux storage
stack (370 KIOPS/core) (O-2). SPDK can deliver higher throughput
than the Linux storage stack when the CPU is the bottleneck be-
cause SPDK is more CPU efficient than the Linux storage stack.
Previous study shows that SPDK needs fewer CPU instructions to
process each I/O request than the Linux storage stack [51].

3.3 Summary
What is the key resource bottleneck for the L-app, T-4KiB-app, and T-
64KiB-app? The key finding (Key Finding, KF1) here is that as the
NVMe device speeds are improving, the CPU becomes the primary
bottleneck. Modern fast NVMe storage devices like Samsung 980
PRO 1TiB, can require more than a single CPU core to saturate
the performance of the SSD. On our setup, L-apps (QD=1), and
T-4KiB-apps (QD=128) are bounded by the CPU performance. We
report that the T-4KiB-app needs at least 4 T-4KiB-apps on 4 CPU
cores to saturate a single SSD. The T-64KiB-app can saturate a
single SSD with only one CPU core (not shown). Hence, the age-old

mantra of “CPU is fast, I/O devices are slow” does not hold anymore
for modern fast NVMe SSDs (O-3). We answer RQ1 by identifying
when the CPU or the SSD becomes a bottleneck (the inflection or
saturation points). With the Linux I/O stack, the CPU can only
deliver 51.6% of the peak hardware throughput (3.2MIOPS out of
a possible 6.2MIOPS) before it becomes the bottleneck. When we
introduce an I/O scheduler to deliver a quality-of-service (QoS) in
this setting, it also competes for the CPU cycles. The operational
complexity of the scheduler determines the raw performance loss
that is traded to deliver a quality-of-service (QoS). In the following
section, we study the impact of I/O schedulers (§4), and quantify
the performance loss and QoS in the presence of competing tenants
with interference (§5).

4 I/O SCHEDULER SCALABILITY
In the previous section, we show the baseline performance and
overhead between a CPU and NVMe devices without I/O sched-
ulers with multiple concurrent requests and processes. We report
that a single process gets 370 KIOPS at the queue depth (QD) of 64,
and the Linux storage stack can not fully saturate 8 SSDs even with
16 T-4KiB-apps (100% CPU utilization). In this section, we introduce
I/O schedulers and answer the RQ2 about how the performance
and overheads scale with increasing amounts of concurrency with
NVMe devices with I/O schedulers. We evaluate the scalability
by analyzing workload throughput (IOPS) and tail latency (P99)
with a varying number of hardware resources. Specifically, we
measure the scalability of both latency-sensitive and throughput-
bound workloads across 2 resource axes: number of SSDs and CPU
cores. We look at both intra- and inter-process scalability. Intra-
process scalability refers to configurations where we increase the
concurrency within a single process by increasing the number of
concurrently issued outstanding I/O requests. With inter-process
scalability, we increase the concurrency by increasing the number
of parallel processes while keeping the concurrency within each
process fixed. The expectation here is that multiple processes exer-
cise the scheduling, locking, and synchronization overheads within
the scheduler.

4.1 Scheduler Overheads on Latency
What are the scheduler overheads, and howdo they scalewith
increasing I/O concurrency? In this section, we study the impact
of I/O concurrency overheads from schedulers on latency-sensitive
applications (L-app). For this, we study the intra- (Figure 2) and
inter-process (Figure 3) concurrency overheads. For intra-process
concurrency, we have a single process (pinned to a core) that

BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage Schedulers in the NVMe Era ICPE ’24, May 7–11, 2024, London, United Kingdom

0 100 200 300 400
Latency (µs)

0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e

pr
ob None: 77.3 µs

BFQ: 79.4 µs
Kyber: 78.3 µs
MQ-DL: 78.3 µs

None
BFQ
Kyber
MQ-DL

(a) QD = 1

0 100 200 300 400
Latency (µs)

None: 136.2 µs
BFQ: 136.2 µs
Kyber: 136.2 µs
MQ-DL: 136.2 µs

(b) QD = 16

0 100 200 300 400
Latency (µs)

None: 183.3 µs
BFQ: 199.7 µs
Kyber: 189.4 µs
MQ-DL: 185.3 µs

(c) QD = 32

0 100 200 300 400
Latency (µs)

None: 276.5 µs
BFQ: 329.7 µs
Kyber: 305.2 µs
MQ-DL: 297.0 µs

(d) QD = 64

0 300 600 900 1,200
Latency (µs)

None: 806.9 µs
BFQ: 1,155.1 µs
Kyber: 1,003.5 µs
MQ-DL: 946.2 µs

(e) QD = 256

Figure 2: Intra-process scalability latency CDFs with increasing queue depth (QD); Note the different x-axis scale for (e).

0 300 600 900 1,200
Latency (µs)

0.00

0.25

0.50

0.75

1.00

C
um

ul
at

iv
e

pr
ob None: 77.3 µs

BFQ: 84.8 µs
Kyber: 78.3 µs
MQ-DL: 78.3 µs

None
BFQ
Kyber
MQ-DL

(a) 1 L-app

0 300 600 900 1,200
Latency (µs)

None: 205.8 µs
BFQ: 236.5 µs
Kyber: 226.3 µs
MQ-DL: 218.1 µs

(b) 16 L-apps

0 300 600 900 1,200
Latency (µs)

None: 419.8 µs
BFQ: 485.4 µs
Kyber: 456.7 µs
MQ-DL: 448.5 µs

(c) 32 L-apps

0 300 600 900 1,200
Latency (µs)

None: 897.0 µs
BFQ: 1,028.1 µs
Kyber: 962.6 µs
MQ-DL: 938.0 µs

(d) 64 L-apps

0 1,000 2,000 3,000 4,000 5,000
Latency (µs)

None: 3,883.0 µs
BFQ: 4,292.6 µs
Kyber: 4,227.1 µs
MQ-DL: 4,112.4 µs

(e) 256 L-apps

Figure 3: Inter-process scalability latency CDFs with increasing number of L-apps; Note the different x-axis scale for (e).

1 2 4 8 16 32 64 128256
QD

0.00

0.25

0.50

0.75

1.00

C
PU

us
ag

e

None
BFQ
Kyber
MQ-DL

(a) Intra-process

1 2 4 8 16 32 64 128256
processes

0.00

0.25

0.50

0.75

1.00

C
PU

us
ag

e

(b) Inter-process

Figure 4: CPU usage for intra/inter-process concurrency.

issues 1, 16, 32, 64, or 256 outstanding requests at a time. For this
process, the latency CDF is shown in Figure 2 (annotations are for
P99 latency). There are two key observations here. Firstly, for the
concurrency of 1 and 16, the latency profile shape of different I/O
schedulers looks quite similar. This is due to the fact that as we
increase concurrency for a single process, the CPU load increases
but still remains under 100%, hence having spare capacity (Fig-
ure 4a). We still report that P99 latencies increase up to 73.9% for
all schedulers (from 78.3 to 136.2 𝜇s). As long as the CPU is not 100%
utilized, all three schedulers have comparable performance (O-4).
Secondly, when the CPU load is 100% (at QD=32), the scheduler per-
formance starts to diverge significantly (Figure 2 (c–e)). Hence, there
is a clear number of outstanding requests where BFQ introduces the
maximum overheads (43.2% over the None scheduler for QD=256) (O-
5). The overall P99 latencies deteriorate from 77.3–79.4 𝜇s (QD=1)
to 806.9–1,155.1 𝜇s (QD=256), due to the CPU overheads (as we
show previously that a single app can not saturate a single SSD).

In the case of inter-process concurrency (multiple concurrent
L-apps pinned on a single CPU core with each having QD=1), the
latencies deteriorate faster than the intra-process configurations
as shown in Figure 3. With the inter-process setup, the Linux ker-
nel has to deal with multiple concurrent processes and associated
abstractions and overheads (scheduling, context switching, virtual

0 1,000 2,000 3,000
Latency (µs)

0.00

0.25

0.50

0.75

1.00
C

um
ul

at
iv

e
pr

ob

None: 1,089.5 µs
BFQ: 1,810.4 µs

Kyber: 1,073.2 µs
MQ-DL: 1,155.1 µs

None
BFQ

Kyber
MQ-DL

(a) Latency CDF for 256 L-apps

1 2 4 8 16 32 64 128256
processes

0

2

4

6

8

10

C
PU

us
ag

e

None
BFQ
Kyber
MQ-DL

(b) CPU usage

Figure 5: L-app inter-process scalability (10 cores, 1 SSD);
Note in (b) the y-axis is the CPU usage, which is from [0–10],
representing 10 CPU cores.

memory). In a single process case, many of these overheads could be
amortized or eliminated. Hence, we also report that the single CPU
core where all of these concurrent processes are pinned is saturated
with QD=16 via 16 processes as shown in Figure 4b. In comparison,
the intra-process saturation point is at QD=32. Overall as the con-
currency increases, the inter-process P99 latencies are approximately
4× higher than their intra-process latencies (O-6). For example, at
QD=256 concurrency, the intra-process and inter-process P99 la-
tencies with Kyber are 1,003.5 𝜇s and 4,227.1 𝜇s, respectively.

We further experiment with the inter-process setup with all
10 cores, thus no pinning and restricting the performance to a sin-
gle core. We show the results in Figure 5. An interesting observation
is that with more CPU cycles being available (single core to 10 cores),
all the schedulers improve their P99 latencies and bring it closer to
their single CPU core, intra-processes performances (Figure 2e), due
to the reduction of process scheduling and context switches (O-7).
Kyber and None improve much better than BFQ and MQ-Deadline.
Their performances are closer to each other with overlapping lines
in Figure 5a. BFQ has 1.57×worse P99 latency than its intra-process
counterpart. Both BFQ andMQ-Deadline have more slanted shapes,
thus having higher P50 and P75 latencies than None and Kyber.
This behavior can be explained by their CPU utilization as shown

ICPE ’24, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, Nick Tehrany, & Animesh Trivedi

Non
e

BFQ
Kyb

er

M
Q-D

L

256

128

64

32

16

8

4

2

1

10.4 14.9 13.0 12.2

5.9 7.8 6.8 6.6

3.6 4.3 3.9 3.8

2.4 2.6 2.5 2.4

1.8 1.8 1.8 1.8

1.5 1.5 1.5 1.5

1.4 1.4 1.4 1.4

1.2 1.3 1.2 1.2

1.0 1.0 1.0 1.0

0

10

20

30

40

50

60

(a) 1 core, 1 process
y-axis: QD

Non
e

BFQ
Kyb

er

M
Q-D

L

256

128

64

32

16

8

4

2

1

50.2 55.5 54.7 53.2

23.6 27.3 25.7 25.1

11.6 13.3 12.5 12.1

5.4 6.3 5.9 5.8

2.7 3.1 2.9 2.8

1.6 1.6 1.6 1.6

1.4 1.4 1.4 1.4

1.2 1.3 1.2 1.2

1.0 1.1 1.0 1.0

(b) 1 core, QD 1
y-axis: # processes

Non
e

BFQ
Kyb

er

M
Q-D

L

256

128

64

32

16

8

4

2

1

13.9 23.1 13.7 14.7

7.0 10.5 7.0 7.0

3.6 4.9 3.5 3.5

2.3 2.4 2.3 2.3

1.7 1.7 1.7 1.7

1.5 1.5 1.5 1.5

1.3 1.3 1.3 1.3

1.1 1.2 1.1 1.1

1.0 1.1 1.0 1.0

(c) 10 cores, QD 1
y-axis: # processes

Figure 6: Normalized heatmap for P99 tail latency differences
(scale from 0–60×) for various concurrency levels (y-axis,
1–256) achieved with (a) QD increase with a single process
(intra-process) with 1 CPU core; (b) increasing the number
of processes with 1 QD on 1 CPU core (inter-process); and
(c) increasing the number of processes with 1 QD on 10 CPU
cores (inter-process). The baseline is the None scheduler with
1 concurrency (bottom left box with 1.0 value).

in Figure 5b where BFQ andMQ-Deadline have significantly higher
CPU utilization than Kyber and None. With 64 processes, both BFQ
and MQ-Deadline are CPU-bounded and thus experience quick
degradation of latencies. For 256 processes (for which Figure 5a
shows the latencies), None and Kyber use 7 out of 10 CPU cores
whereas BFQ and MQ-Deadline use all 10. These observations sum-
marize that among the three schedulers under study, Kyber is the most
light-weight, while BFQ is the most CPU intensive and complex (O-8).

In order to visualize the difference between intra- and inter-
process latencies overheads we also plot a normalized heatmap in
Figure 6. Here we illustrate P99 latencies degradation (normalized
to the 1 concurrency with None scheduler) as we increase the level
of concurrency in the system (the y-axis, from 1–256) in three
configurations: intra-process (1 CPU core), inter-process (1 CPU
core), inter-process (10 CPU cores). The heatmap shows that up to
a concurrency of 8, the P99 latencies increase slowly over the None
scheduler, and intra-process counterparts (the baseline, showing
the normalized value of 1.0). Between 8–16 concurrency, the CPU
becomes the bottleneck, and at this point, the deterioration starts very
quickly reaching higher than 50× for inter-process overheads on a
single CPU for all schedulers (O-9).

4.2 Scheduler Overheads on Throughput
We now bring our attention to the throughput-bounded T-apps
where we measure peak throughput (IOPS) and show what scal-
ability and overheads are observed by such workloads with I/O
schedulers. In this section, we study four specific questions regard-
ing the scalability properties of the CPU cores and SSDs:

Firstly, what are the scheduler overheads for the throughput-
bounded applications, andhowdo they scalewith the number
of CPU cores?We start with reporting the scheduler performance

0 1 3 5 7 9 11 13 15
processes

0

250

500

750

T
hr

ou
gh

pu
t(

K
IO

PS
)

785.7–790.6 KIOPS

569.2 KIOPS

315.3 KIOPS

None
BFQ

Kyber
MQ-DL

SPDK

(a) Total throughput

0 1 3 5 7 9 11 13 15
processes

0

2

4

6

8

10

C
PU

us
ag

e

(b) Total CPU usage

Figure 7: T-app inter-process scalability (10 cores, 1 SSD) with
an increasing number of T-4KiB-apps.

1 2 3 4 5 10 15
processes

0

25

50

75

100

L
oc

k
ov

er
he

ad
(%

)

2.7 3.2 3.86.0

78.0 78.0

4.8
14.7 14.7

5.0

75.9 75.2

None
BFQ
Kyber
MQ-DL

(a) 1 SSD

1 2 3 4 5 10 15
processes

4.9

25.9

6.2
27.1

(b) 8 SSDs

Figure 8: Combined lock overhead of T-4KiB-apps with an
increasing number of concurrent processes.

(in IOPS) as we increase the number of T-4KiB apps. Recall from §3
that a single T-4KiB-app can not saturate a single SSD, and at least
3–4 T-4KiB-apps are needed to saturate a single SSD with the None
scheduler. Figure 7 shows scalability results in throughput (IOPS,
y-axis, higher is better) for multiple T-4KiB-apps (x-axis) on a single
SSD. There are two key observations here. Firstly, the Kyber sched-
uler performs very closely to None, where both reach the peak sin-
gle SSD performance of 785.7 KIOPS with 3 processes. For reference,
we also have a line for SPDK that can deliver 790.6 KIOPS with a sin-
gle CPU core, thus demonstrating a wide gap between the in-kernel
and kernel-bypass (SPDK) storage stacks. Secondly, both BFQ and
MQ-Deadline can not reach the peak device throughput with any
number of concurrent T-4KiB-apps. BFQ and MQ-Deadline deliver
a peak performance of 315.3 KIOPS (0.40× of the peak 785.7 KIOPS)
and 569.2 KIOPS (0.72× of the peak 785.7 KIOPS), respectively. This
loss represents a significant performance degradation, and we conclude
that BFQ and MQ-Deadline are unsuitable to be used with modern
NVMe SSDs (O-10). The reason for this performance degradation is
related to each scheduler’s complexity, CPU utilization, and scala-
bility bottlenecks, specifically lock contention.

Figure 7b shows the CPU utilization where we report that de-
spite having CPU available (not all 10 CPU cores are 100% utilized
until 10 processes), both BFQ and MQ-Deadline suffer from sig-
nificant lock contention, thus limiting their performance scalabil-
ity. To further analyze their CPU utilization behavior, we break
down the CPU utilization of these I/O schedulers. We count the
total number of CPU cycles (cpu-cycles counter with the Linux
perf framework) and classify lock-related CPU cycles by attribut-
ing them to specific lock-related functions: native_queued_spin-
_lock_slowpath, _raw_spin_lock, _raw_spin_lock_irq, _raw-
_spin_lock_irqsave, and mutex_lock. We then plot the fractions
of CPU cycles spent in such lock-related functions in Figure 8.

BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage Schedulers in the NVMe Era ICPE ’24, May 7–11, 2024, London, United Kingdom

0 1 2 3 4 5 6 7 8
Number of SSDs

0

1

2

3

T
hr

ou
gh

pu
t(

M
IO

PS
)

776 KIOPS

286 KIOPS

489 KIOPS

3.42 MIOPS

1.25 MIOPS

2.63 MIOPS
1.90 MIOPS

None
BFQ
Kyber
MQ-DL

(a) Total throughput

1 2 3 4 5 6 7 8
Number of SSDs

0

2

4

6

8

10

C
PU

us
ag

e

(b) Total CPU usage

Figure 9: T-app inter-process scalability (10 cores, 10 concur-
rent T-4KiB-apps) with an increasing number of SSDs.

From these graphs, we observe that even for one SSD, BFQ and
MQ-Deadline spend a significant fraction of their CPU cycles on
locking/synchronization functions (as high as 78.0% for 10–15 pro-
cesses). Increasing the number of available SSDs from 1 to 8 (Fig-
ure 8b) reduces the overall CPU cycles spent in lock-related func-
tions for BFQ and MQ-Deadline significantly, by up to 67.1%, sug-
gesting device-specific nature of these locking overheads. Yet even
in this case, almost a quarter of CPU cycles (up to 27.1%) are spent
on the locking-related functions. In comparison, Kyber only spends
14.7% (single SSD) to 6.2% (8 SSDs) of CPU cycles on lock-related
functions. Based on this analysis, we conclude that locking is the
cause of bottleneck for scalability of BFQ and MQ-Deadline and must
be urgently tackled (O-11). As of January 2024, Linux kernel devel-
opers have also identified this locking issue and are improving the
scalability of the BFQ and MQ-Deadline schedulers [35, 36].

Secondly, how does the performance scale in the presence
of lock-related overheads with the number of NVMe SSDs?
Figure 9 shows our results as we study the performance scalabil-
ity properties of the schedulers (as IOPS, on the y-axis, higher is
better) with 10 T-4KiB-apps (fixed) when we increase the number
of SSDs from 1 to 8 (x-axis). In this experiment, the relative over-
heads and ranking of I/O schedulers remain the same, where Kyber
performs the best, followed by MQ-Deadline and lastly BFQ. The
performance of BFQ and MQ-Deadline improves sub-linearly from
286KIOPS and 489KIOPS with a single SSD to 1.25MIOPS and
1.90MIOPS for 8 SSDs, respectively. An interesting observation
here is that even with a single SSD, the CPU load for BFQ and
MQ-Deadline is 100% for all 10 CPU cores, yet the performance im-
proves as the number of SSDs increases. We speculate (not verified)
that this is due to the presence of device-specific locking that exists
for a single device, but the presence of multiple devices offers more
opportunities for parallelism without being restricted by a single
device lock. In the case of Kyber and None, they reach the CPU
saturation points with 4 and 5 SSDs, respectively, thus showing
IOPS scaling up to those points, delivering a peak performance of
2.63MIOPS (Kyber) and 3.42MIOPS (None).

Thirdly, what is the peak performance that various I/O
schedulers can provide in Linux? We run the full hardware
configuration with 10 CPU cores, 8 SSDs, and vary the number of
processes from 1 to 15, and measure the peak IOPS performance
of different I/O schedulers. Figure 10 shows our results. There are
three specific observations from this experiment. Firstly, there is
a clear order in terms of performance among the schedulers (in
ascending order): BFQ (1.26MIOPS), MQ-Deadline (1.90MIOPS),
Kyber (2.67MIOPS) and None (3.42MIOPS). Secondly, all of these

0 1 3 5 7 9 11 13 15
processes

0

2

4

6

T
hr

ou
gh

pu
t(

M
IO

PS
)

3.42 MIOPS

1.26 MIOPS

2.67 MIOPS
1.90 MIOPS

5.45 MIOPS

None
BFQ
Kyber
MQ-DL
SPDK

Figure 10: T-app inter-process scalability (10 cores, 8 SSDs)
with an increasing number of T-4KiB-apps (x-axis).

schedulers reach their peak throughput with 10 processes where
all CPU cores become 100% utilized. Lastly, for comparison, we also
show the performance of SPDK that can deliver 5.45 MIOPS with 9
CPU cores, demonstrating an almost 2× performance gap to the next
best I/O scheduler, Kyber. From this experiment, we conclude that the
CPU and associated heavy Linux software stack and I/O schedulers
have become the performance and scalability bottleneck with modern
NVMe devices (O-12). Though this final takeaway message is not a
surprising find, our key contribution is quantifying the gap between
schedulers via controlled experiments where we characterize the
performance of the I/O schedulers under various conditions (CPU
or SSD becoming the bottleneck). For example, between BFQ and
Kyber, there is a performance difference of 2.1×.

Lastly,Howdo I/O schedulers scalewith throughput-bound
applications on a single SSD with large request sizes (64KiB)?
Unlike the prior evaluation, where the CPU becomes the bottle-
neck with the T-4KiB-apps, we repeat the same experiments for
T-64KiB-apps and report that in this scenario all configurations are
SSDs bounded. In these experiments, the performance of all I/O
schedulers is almost identical (not shown in any graph). All the
I/O schedulers are able to saturate the SSD with only 2 processes for
bandwidth-driven workloads (O-13). The None scheduler reaches
a peak throughput of 232KIOPS with only a single T-64KiB-app
process. As the SSD is the bottleneck for the T-64KiB-apps, the
CPU utilization for all I/O schedulers remains low, (less than 2 CPU
cores). BFQ has a slightly higher CPU utilization of 1.3 CPU cores,
8.3% higher than None (1.2 CPU cores).

Answering RQ1 and RQ2 with KF-2: Based on the analysis in
this section, we summarize when the CPU is not the bottleneck, all
schedulers perform similarly. As the CPU progressively becomes a
bottleneck (i.e., 100% utilization), the Linux I/O schedulers can in-
troduce up to 63.4% performance overheads for the throughput, and
more than 50× degradation for P99 latencies over the None sched-
uler. We also report that the presence of multiple SSDs improves
the performance scalability of I/O schedulers due to eschewing the
device-specific locking overheads. Based on these findings we rec-
ommend using Kyber scheduler (lowest CPU overheads) for NVMe
SSDs with modern multicore CPU machines.

5 I/O INTERFERENCEWITH CONCURRENT
WORKLOADS

In this section we investigate RQ3: “how can I/O schedulers help to
control interference in the presence of competing workloads, specifi-
cally latency-vs-bandwidth, and read-vs-write”. Quality-of-service
(QoS) is an essential component of I/O schedulers in multi-tenant

ICPE ’24, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, Nick Tehrany, & Animesh Trivedi

0 1 2 4 8 16 32
Concurrent workloads

0.00

0.05

0.10

0.15

0.20

P9
9

la
te

nc
y

(m
s)

None
BFQ

Kyber
MQ-DL

(a) T-4KiB-app (reads)

0 1 2 4 8 16 32
Concurrent workloads

0

100

200

300

400

P9
9

la
te

nc
y

(m
s)

(b) T-64KiB-app (reads)

0 1 2 4 8 16 32
Concurrent workloads

0

10

20

30

P9
9

la
te

nc
y

(m
s)

(c) T-4KiB-app (writes)

0 1 2 4 8 16 32
Concurrent workloads

0

100

200

300

400
P9

9
la

te
nc

y
(m

s)

(d) T-64KiB-app (writes)

Figure 11: L-app tail latency with an increasing number of
interfering background applications; Note: scales differ on
the y-axis and they are in Milliseconds!

environments (e.g., defined as SLAs), especially for latency-critical
workloads. However, there is limited literature available on the
QoS of state-of-the-practice I/O schedulers available in Linux with
modern high-speed NVMe SSDs. In this section, we evaluate the
QoS of applications in multi-tenant environments. We define the
QoS as the P99 tail latency for latency-sensitive applications and
the IOPS for throughput-bound applications. The unique aspect of
our study is that we study the mixed settings (mixing latency with
throughput) as well as read-write interference, the latter of which
is unique to flash-based SSDs [20, 26, 33, 40, 46, 52, 56, 57].

5.1 Latency Interference from Concurrent
Read-Write T-4KiB-apps

For latency-sensitive applications (L-apps), it is essential that tail
P99 latency is low and bounded even in the presence of concur-
rent workloads. Below, we determine if Linux I/O schedulers are
able to meet such demands by controlling the interference among
workloads. We devise an experiment in which one foreground
L-app issues I/O requests concurrently with multiple interfering
throughput-heavy T-4KiB-apps and T-64KiB-apps workloads in the
background. Considering that SSD writes and reads typically have
a different performance within flash that can lead to read-write
interference, our background workloads issue both (random) read
and write I/O requests to the SSD.

What kind of bounded P99 latencies do the I/O schedulers
offer when a foreground L-app runs with background read
andwrite T-apps? For this experiment, wemeasure the P99 latency
of a single L-app while we increase the number of background read
and write applications. Figure 11 shows our results of P99 latencies
(y-axis, lower is better) with four different configurations with an
increasing number of background workloads (on the x-axis): (a)
multiple random read T-4KiB-apps (CPU bounded); (b) multiple
random read T-64KiB-apps (SSD bounded); (c) multiple random
write T-4KiB-apps (CPU bounded); and (d) multiple random write

T-64KiB-apps (SSD bounded). From Figure 11 we observe that BFQ
has the lowest P99 read latencies under themajority of the evaluated
scenarios (except for random read T-64KiB-apps), with up to 34.8%
lower latency than None (212.0 𝜇s vs. 138.2 𝜇s). The lower latency
for BFQ holds for small (4KiB) reads and small (4KiB) and large
(64KiB) write requests (O-14). We have two assumptions about why
BFQ achieves low latency for the L-app: (1) the BFQ-specific option
low_latency [1] automatically detects and provides low latency for
latency-sensitive applications, which is enabled by default; and (2)
BFQ gives exclusive access of the SSD to a workload (no concurrent
request dispatching from multiple workloads), which reduces the
interference from other workloads. From Figure 11 (c) and (d) we
also report that Kyber has low latencies with concurrent small
(4KiB) and large (64KiB) write requests (similar performance to
BFQ for writes). However, the latencies are only slightly better than
using the None scheduler for concurrent reads (Figure 11b). The
reason for Kyber’s low P99 latency in the presence of concurrent
writes (Figure 11 (c-d)) is that Kyber prioritizes read requests over
writes [8] under all circumstances. Considering that the L-app solely
issues reads, this means that the foreground L-app is prioritized
among the concurrently writing background workloads. Hence the
L-app with reads is prioritized among the concurrent writers, but is
treated similarly and reaps no benefit with concurrent readers (O-15).

We further identify that the None scheduler is not capable of
bounding or guaranteeing any latency performance, and performs
the worst in multiple scenarios. Specifically with read-write inter-
ferences, as shown in Figure 11 (c-d), the P99 latency deteriorates
very quickly. With 1 background workload, the performance of the
None scheduler is the same as other schedulers. However, as the
number of background workloads increases the gap widens to as
large as 139× (404.8ms for None vs. 2.9ms for BFQ in Figure 11d).

In Figure 11c and Figure 11d, the read latency of MQ-Deadline
increases significantly (up to 32.4× with T-4KiB-apps and 4,142.2×
with T-64KiB-apps) as the number of concurrent write applications
increases. The performance trend is very similar to the performance
trendwhenNone scheduler is used. The reason is thatMQ-Deadline
does not have different priorities between reads and writes, and
does not prioritize one application over the other. Therefore, the
effects of read/write interference are not controlled, as requests are
dispatched summarily to the SSD for both operations as they arrive
in the scheduler. As the SSD becomes the bottleneck with 3-4 con-
current workloads, the I/O latencies reflect the read-write latencies
of the SSD performance with interference. To summarize (KF-3), (i)
BFQ offers better control over interference (lower P99 latencies) for
latency-sensitive workloads (while trading performance, §4) than
other schedulers; (ii) Kyber and BFQ excel in managing read-write
interferences among concurrent workloads. However, Kyber has
poor performance with read-read interference.

5.2 Throughput Interference from Read-Write
Workloads

For throughput-bound applications (T-apps), throughput should be
as high as possible and shared evenly among concurrent applica-
tions. Therefore, we evaluate if a foreground T-app can maintain
a high throughput in the presence of concurrently running back-
ground workloads. We run a single foreground T-4KiB-app with an

BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage Schedulers in the NVMe Era ICPE ’24, May 7–11, 2024, London, United Kingdom

0 1 2 4 8 16 32
Concurrent workloads

10−1

100

101

102

103

T
hr

ou
gh

pu
t(

K
IO

PS
)

None
BFQ

Kyber
MQ-DL

(a) T-64KiB-apps (reads)

0 1 2 4 8 16 32
Concurrent workloads

10−1

100

101

102

103

T
hr

ou
gh

pu
t(

K
IO

PS
)

(b) T-64KiB-apps (writes)

Figure 12: Read throughput (IOPS) of a T-4KiB-app work-
load with an increasing number of interfering background
T-64KiB-app workload. Note: The y-axis is log-scale.

increasing number of concurrent T-64KiB-apps in the background;
hence, introducing workload competition for throughput resources.
Similar to §5.1, we evaluate the interference from both read and
write background workloads. We plot the throughput of the fore-
ground T-4KiB-app in IOPS (y-axis, higher is better) in Figure 12,
with the number of concurrent background T-64KiB-apps increases.

Can I/O schedulers evenly share the IOPS performance
among concurrent throughput bounded (4KiB and 64KiB)
workloads?With the even sharing the expectation is that an IOPS-
driven workload (T-4KiB-app) should observe linearly bandwidth
deterioration as throughput-bounded workloads are run in the
background. Figure 12a demonstrates that none of the schedulers
are capable of offering a bounded and linear IOPS performance
sharing with read-read interference, and the performance of the
foreground workload drops very quickly (the y-axis is logarithmic).
An investigation of the total throughput (sum of the T-app and back-
ground operations) shows that the IOPS is divided equally among the
applications (O-16). However, a point to be noted here is that even
though 4KiB and 64KiB applications both receive equal IOPS, the
64KiB applications get 16× more bandwidth than the 4KiB appli-
cation due to their larger request size. Hence, all schedulers fail
to provide equal bandwidth sharing to ensure a proportional IOPS
sharing among the workloads.

IOPS sharing in the presence of read-write interference is man-
aged better. In Figure 12b we report that Kyber and BFQ offer the high-
est throughput for read operations for the foreground workload (O-17).
We have two key findings. Firstly, None andMQ-Deadline both lead
to read IOPS degradation for the foreground workload in the pres-
ence of read-write interference from the background writer work-
loads. A reason for this is that background writes are faster than the
reads (lower latencies), hence, they can occupy the device’s internal
bandwidth the majority of the time. None and MQ-Deadline do not
have any mechanisms to throttle writes to help reads. In contrast,
Kyber differentiates the two, and prioritizes the reads, hence, main-
taining a flat-line performance for the foreground T-4KiB-app. The
reasons that BFQ leads to a higher throughput are twofold: (1) the
fair sharing where BFQ equally divides the available bandwidth
between applications; (2) BFQ prioritizes interactive applications
(i.e. the foreground app could have been identified as interactive).
Beyond 16 concurrent applications in Figure 12b, a bottleneck can
be identified for BFQ (O-18). The throughput of BFQ decreases by
99.2% between 16 and 32 concurrent applications and averages at
1.2 KIOPS, down from 147.7 KIOPS with 16 background apps. This

leads to a significantly lower throughput than the throughput of
the other schedulers (from 73.9% up to 95.8%). This is a consequence
of its locking overheads as lock contention increases significantly
after 16 processes.

Hence, our findings recommend to (KF-4) (i) use Kyber or BFQ
to control read/write interference; (ii) be aware of concurrency
limits to the schedulers as the CPU becomes 100% occupied, a
configuration that can lead to significant performance losses.

6 KYBER CONFIGURATION EXPLORATION
In the previous sections, we observed that both BFQ andMQ-Deadline
are unable to saturate a single fast SSD because of high CPU
overhead and scalability issues, which makes them unsuitable for
such SSDs. Kyber, on the other hand, is specifically designed for
fast multi-queue devices and has better scalability than BFQ and
MQ-Deadline. Henceforth, we focus the rest of our studies on Kyber.
In particular, we look at configuring Kyber since Linux provides
various configuration parameters for this scheduler. We evaluate
how Kyber’s parameter configuration affects its performance char-
acteristics, and we give guidelines on configuring Kyber in practice,
thus answering how do a scheduler configuration parameters affect
the schedulers’ behavior on competing workloads? (RQ4).

Kyber has two configurable parameters [8], read_lat_nsec (de-
fault = 2ms) and write_lat_nsec (default = 10ms) — we will refer
to them as R lat andW lat. These parameters control the desired or
target request latencies. In order to prioritize a read or a write type
of I/O request, Kyber uses tokens for read and write requests. The
number of tokens helps Kyber to control the maximum number of
I/O requests of a particular type in flight, bounding the size of the
request queue to SSDs, and as a result, the maximum latency for
the I/O request. The number of tokens can not be configured with
Kyber’s parameters directly. Kyber controls the number of tokens
by closely monitoring the current read and write completion laten-
cies and comparing them against the target latencies, i.e., R lat and
W lat. The number of tokens remains the same if both achieved
read and write latencies are lower than the target latencies. If the
completion latency exceeds the target latency, Kyber increases the
number of tokens. Hence, setting a lower target latency for reads
or writes implicitly prioritizes it (by not letting the requests build
up in the queue, thus dispatching it immediately).

The number of tokens for a particular type of request (read or
write) is reduced when (1) the achieved P90 latency for that request
type is lower than the target latency (i.e., this type of request is well
served); and (2) the achieved P99 latency for the other type is higher
than the target latency (i.e., the other request type is badly served).
In this case, Kyber can re-prioritize the badly served request by
reducing the number of tokens for the other type. The minimum
number of tokens for both read and write is 1, and the maximum
number of tokens is 256 for read and 128 for write. We define the
number of read tokens as R Tokens and write tokens asW Tokens.
Below, we investigate how setting Kyber’s target latencies affects
Kyber’s throughput and tail latency.

ICPE ’24, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, Nick Tehrany, & Animesh Trivedi

Table 2: Kyber configuration impact on the throughput of
a concurrent read and write application (R and W KIOPS).
Highlighted entries are discussed in §6.1.

ID R lat W lat R, in KIOPS W, in KIOPS R Tokens W Tokens

0 2ms 10ms 156.7±5.3 103.4±5.1 256±0 93±7
1 0 s 10ms 189.4±11.5 79.4±2.2 256±0 54±15
2 2ms 0 s 137.8±0.6 114.8±4.2 253±2 128±0
3 0 s 0 s 136.1±1.0 118.5±5.0 256±0 128±0
4 1 s 1 s 137.2±1.8 113.6±5.7 256±0 128±0
5 0 s 1 s 219.9±11.0 70.0±0.3 256±0 1±0
6 1 s 0 s 2.1±0.0 118.8±5.4 1±0 128±0

6.1 Mixing throughput-bound mixed read-write
workloads

Kyber limits the maximum number of concurrent requests on the
device side through the number of tokens. Limiting the number
of requests decreases the throughput, which prevents throughput
saturation and leads to SSD idling. Thus, the hypothesis is that
changing the target latency directly affects the throughput. To test
this hypothesis, we run a foreground T-4KiB-appwith random reads
and a background T-4KiB-app with random writes concurrently.
We issue I/O requests to one SSD and pin each process to a different
CPU core to avoid interference with the process scheduler. Table 2
shows the read andwrite throughput (and accompanying number of
tokens) under various Kyber configurations (identified with unique
IDs). The default configuration is ID 0 (R lat: 2ms,W lat: 10ms).

If we change the default R lat to the minimal value (0), the
read throughput increases significantly (20.9%) at the cost of write
throughput (a 23.2% decrease), a change that is reflected as a signif-
icant decrease in the number of write tokens (93 to 54). Similarly,
when W lat is changed to the minimal value (0), the write through-
put increases significantly (11.0%) at the cost of read throughput (a
12.1% decrease), a change that is reflected as a slight decrease in
the number of read tokens (256 to 253). In short, setting the target
latency to the minimum for a particular type of request (read or write)
leads to a significant increase in the throughput (up to 20.9%) at the
cost of the other type’s throughput degradation (up to 23.2%) (O-19).

In ID 3–4, we set R lat andW lat both to the same unrealistic ex-
treme values, the minimum (0 s, highest priority) and an arbitrarily
high value (1 s, least priority). This leads to the maximum number
of tokens for both reads and writes (256 for read and 128 for write).
Lastly, we set R lat or W lat to 0 s while the other is set to 1 s (ID 5,
6). With this configuration, we try to get the lowest latency possible
for either reads or writes. This configuration leads to a significant
throughput increase for the prioritized target request type (40.3% for
reads, 14.9% for writes), but leads to a significant throughput decrease
for the other type also (98.7% for reads, 32.3% for writes) (O-20).

6.2 Latency-sensitive Read Workload with a
Write-driven Throughput Workload

To investigate how configuring Kyber affects the latency of L-apps
with background write T-4KiB-apps, we run an L-app (read) with a
background T-4KiB-app (write) on a single SSD, with each appli-
cation pinned to a separate CPU core. In Table 3 we show the P99
tail latency in milliseconds of L-apps with the number of W Tokens

Table 3: Kyber configuration impact on read P99 latency in
milliseconds and W tokens (presented in “()”) of an L-app
running with an interfering T-4KiB-app (random write). The
highlighted entries are discussed in §6.2.

W lat

R
la
t

0 s 100 𝜇s 10ms 20ms 100ms
0 s 2.8 (128) 2.7 (119) 1.4 (10) 1.4 (1) 1.6 (1)

50 𝜇s 2.8 (128) 2.7 (119) 1.5 (17) 1.7 (1) 1.6 (1)
100 𝜇s 2.8 (128) 2.8 (116) 1.7 (39) 1.6 (1) 1.5 (1)
500 𝜇s 2.8 (128) 2.7 (118) 1.9 (50) 1.5 (1) 1.5 (1)
10ms 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128)
100ms 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128)

shown in parentheses. The chosen W lat is represented with the
columns and the R lat with the rows.

We first find a general trend between the achieved read latency
and the number of W Tokens: the higher the number of W Tokens,
the worse the achieved read latency (O-21). When the R lat is set
to an extremely high value that is unlikely to be reached by the
hardware (in our case higher than 10ms) or the W lat is set to the
minimum value (0), the number of W Tokens is set to the largest
value, i.e., 128, meaning that reads are not prioritized, leading to
high read latency (2.8ms). These entries are shown with gray back-
grounds. When R lat is set to a low value (less than or equal to
500 𝜇s), and the gap between R lat andW lat increases, the number
ofW Tokens decreases (from 128 to 1), meaning that reads are more
prioritized, leading to decreasing read latency (2.8ms to 1.4ms, 50%
lower). These entries are shown with green backgrounds. The larger
the gap between R lat and W lat (R lat is lower than W lat), the more
reads are prioritized, thus improving the achieved read latency (up to
50% lower) (O-22).

6.3 Write-driven Throughput Workload with a
Read Workload

To determine the effect of Kyber’s parameters on throughput-bound
applications in mixed workloads, we use the same experiment as
used for evaluating the effect on latency-sensitive applications, but
this time reporting the write latency for the T-4KiB-app. In Table 4,
we show the result with throughput in KIOPS (higher is better) of
the foreground T-4KiB-app writing workload. The number of write
tokens is already shown in Table 3. Since reads only have QD=1
(L-app), the number of read tokens has no influence on the read
performance, and we do not show the number of R Tokens. The
configured W lat is represented by the columns and the configured
R lat is depicted in the table rows. We observe that the lower the
number of W Tokens, the lower the write throughput. Configuring
W lat to a high value (higher than 10ms for our SSD), while setting
R lat to a low value (less than 500 𝜇s) has a negative impact on the
write throughput (up to 43.5% lower write throughput) (O-23). These
entries are shown with gray backgrounds. If we combine the result
with the previous table, we observe that if Kyber provides lower
read latency, it comes at the cost of write throughput. Thus, when
configuring Kyber for a workload, either read latency or write
throughput can be prioritized, but not both (KF-5).

BFQ, Multiqueue-Deadline, or Kyber? Performance Characterization of Linux Storage Schedulers in the NVMe Era ICPE ’24, May 7–11, 2024, London, United Kingdom

Table 4: Kyber configuration impact on write throughput
in KIOPS of a T-4KiB-app running with an interfering L-
app (random read). The highlighted entries are discussed
in §6.3.

W lat

R
la
t

0 s 100 𝜇s 10ms 20ms 100ms
0 s 129.4 103.4 77.3 73.6 73.1

50 𝜇s 116.5 111.6 80.3 71.2 73.3
100 𝜇s 128.8 128.0 82.4 73.2 73.3
500 𝜇s 122.2 115.6 96.0 73.8 73.5
10ms 119.6 130.9 127.5 125.4 131.8
100ms 135.0 123.7 119.7 129.7 118.0

7 RELATEDWORK
On State-of-the-Art I/O Schedulers. In this work, we investi-
gate Linux’s state-of-the-practice I/O schedulers. However, there
is also a vast literature on state-of-the-art schedulers, which are
not included with the default Linux kernel and require domain
expertise. Therefore, we consider such work orthogonal. Modern
SSDs use multiple channels internally to deliver high throughput
and have complex internal mechanisms such as FTL, buffers, and
garbage collection (GC). These idiosyncrasies require more novel
designs than the state-of-the-practice Linux I/O schedulers. Here,
we discuss state-of-the-art schedulers for fair-sharing, low-latency
applications, and schedulers that use flash-specific functionalities.

There are many fair-sharing I/O schedulers [17, 21, 26, 46, 52,
53, 56, 57] that can be used as alternatives for the fair-sharing BFQ
scheduler. Modern SSDs support multiple hardware dispatch queues
and it is necessary to use multiple queues to fully saturate the SSD’s
performance and to provide fair sharing [56]. Additionally, NVMe
features like weight round robin (WRR) allow assigning weights to
applications, which can also be used to guarantee fairness across
applications. This leads to designs that use multiple queues such
as MQFQ [26] and multiple queues with WRR such as D2FQ [56].
We do not measure fair-sharing in this work since most Linux
schedulers do not support it.

There are also a number of state-of-the-art schedulers optimized
for latency-sensitive applications like the L-app used in this pa-
per [27, 39, 42]. Such schedulers can be used instead of the Linux’
Kyber and BFQ schedulers, which both have options to priori-
tize low-latency applications. This includes solutions such as blk-
switch [27], which provide low latency while preserving high total
throughput, and FastResponse [39] that co-designs the I/O stack
and scheduler to reduce cross-layer I/O interference.

Flash-based SSDs have many idiosyncrasies that can be exploited
by schedulers [22, 23, 29, 31, 52, 54]. For example, increasing SSD
longevity by reducing wear-levelling [54] or reducing GC over-
head [22, 23, 29]. Generally, flash-aware schedulers also treat writes
and reads differently because of read/write interference [31, 46].

On Performance Characterizations. Parallel to this work, the
performance of the Linux storage stack is characterized in many pa-
pers. Whitaker et al. [55] characterize the performance of Linux’ I/O
schedulers for ULL non-flash-based SSDs. Their findings confirm
that schedulers inevitably lead to higher latency and lower through-
put. Additionally, this work looks at energy efficiency, where they
find that schedulers have high energy overhead, especially for BFQ.

We extend this work by looking at QoS and looking at the more
common flash storage (ULL SSDs are not widely deployed yet). The
Linux user community has investigated I/O schedulers for SSDs
as well [34], and their work showcases that using no scheduler,
followed by Kyber, leads to the highest throughput and low latency
for applications like MySQL and RocksDB. There are also various
works that do performance characterization of emerging storage
APIs such as io_uring [19, 24, 51]. Our work differentiates itself
in terms of scale, comprehensiveness, and its sole focus on the
performance characterization of Linux storage I/O schedulers.

8 CONCLUSION
In this paper, we investigate if the Linux I/O schedulers fit modern
NVMe SSDs. Our results show that BFQ and MQ-Deadline have
significantly high CPU overhead and scalability issues caused by
locking. Thus, we suggest that BFQ and MQ-Deadline should not
be used with these SSDs. Kyber has lower CPU overhead than BFQ
andMQ-Deadline with near-linear scalability and thus is the best fit
of these SSDs. However, the parameters of Kyber need to be tuned
carefully or Kyber harms the performance. Our analysis focuses
on the Linux I/O schedulers. This work can be expanded in (1)
evaluating how the start-of-the-art I/O schedulers perform on the
flash-basedNVMe SSDs, (2) comparing how different I/O scheduling
algorithms and techniques work on these SSDs and (3) optimizing
the current Linux I/O schedulers to make them SSD-friendly.
AcknowledgmentsWe thank the ICPE’24 reviewers for their in-
valuable and constructive feedback. This work is funded by The
Dutch Research Council (NWO) grant numbers OCENW.KLEIN.561
and OCENW.KLEIN.209. The authors would like to thank Jesse
Donkervliet, Sacheendra Talluri, Matthijs Jansen, and the AtLarge
group at VU Amsterdam for their help with the paper. Krijn Doeke-
meijer is funded by the VU PhD innovation program.

REFERENCES
[1] Accessed: 2024-01-29. BFQ Budget Fair Queueing Document. https://www.

kernel.org/doc/html/latest/block/bfq-iosched.html
[2] Accessed: 2024-01-29. Deadline I/O Scheduler Tunables. https:

//docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%
20the%20deadline,value%20in%20units%20of%20milliseconds.

[3] Accessed: 2024-01-29. Disaggregated or Hyperconverged, What Storage will
Win the Enterprise? https://www.nextplatform.com/2017/12/04/disaggregated-
hyperconverged-storage-will-win-enterprise/

[4] Accessed: 2024-01-29. fio. https://github.com/axboe/fio
[5] Accessed: 2024-01-29. Free Your Flash and Disaggregate. https://www.lightbitslabs.

com/blog/free-your-flash-and-disaggregate/
[6] Accessed: 2024-01-29. getrusage(2) — Linux Manual Page. https://man7.org/

linux/man-pages/man2/getrusage.2.html
[7] Accessed: 2024-01-29. Intel® Optane™ SSD DC P5800X Series.

https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-
ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html

[8] Accessed: 2024-01-29. Kyber Multiqueue I/O Scheduler. https://lwn.net/Articles/
720071/

[9] Accessed: 2024-01-29. MQ-Deadline Implementation. https://elixir.bootlin.com/
linux/latest/source/block/mq-deadline.c

[10] Accessed: 2024-01-29. SPDK. https://spdk.io/
[11] Accessed: 2024-01-29. Toshiba Memory Introduces XL-FLASH Storage Class Mem-

ory Solution. https://americas.kioxia.com/en-us/business/news/2019/memory-
20190805-1.html

[12] Accessed: 2024-01-29. Two New Block I/O Schedulers for 4.12. https://lwn.net/
Articles/720675/

[13] Accessed: 2024-01-29. What is Composable Disaggregated Infrastructure. https:
//blog.westerndigital.com/what-is-composable-disaggregated-infrastructure/

[14] Jens Axboe. Accessed: 2023-01-26. Efficient I/O with io_uring. https://kernel.
dk/io_uring.pdf

https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds.
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds.
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds.
https://www.nextplatform.com/2017/12/04/disaggregated-hyperconverged-storage-will-win-enterprise/
https://www.nextplatform.com/2017/12/04/disaggregated-hyperconverged-storage-will-win-enterprise/
https://github.com/axboe/fio
https://www.lightbitslabs.com/blog/free-your-flash-and-disaggregate/
https://www.lightbitslabs.com/blog/free-your-flash-and-disaggregate/
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://man7.org/linux/man-pages/man2/getrusage.2.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://lwn.net/Articles/720071/
https://lwn.net/Articles/720071/
https://elixir.bootlin.com/linux/latest/source/block/mq-deadline.c
https://elixir.bootlin.com/linux/latest/source/block/mq-deadline.c
https://spdk.io/
https://americas.kioxia.com/en-us/business/news/2019/memory-20190805-1.html
https://americas.kioxia.com/en-us/business/news/2019/memory-20190805-1.html
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://blog.westerndigital.com/what-is-composable-disaggregated-infrastructure/
https://blog.westerndigital.com/what-is-composable-disaggregated-infrastructure/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf

ICPE ’24, May 7–11, 2024, London, United Kingdom Zebin Ren, Krijn Doekemeijer, Nick Tehrany, & Animesh Trivedi

[15] Jon C. R. Bennett and Hui Zhang. 1997. Hierarchical Packet Fair Queueing
Algorithms. IEEE/ACM Trans. Netw. 5, 5 (1997), 675–689.

[16] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (2013), 74–80.

[17] Alan J. Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Proceedings of the ACM Symposium on
Communications Architectures & Protocols, SIGCOMM 1989. ACM, 1–12.

[18] Diego Didona, Nikolas Ioannou, Radu Stoica, and Kornilios Kourtis. 2020. Toward
a Better Understanding and Evaluation of Tree Structures on Flash SSDs. Proc.
VLDB Endow. 14, 3 (2020), 364–377.

[19] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh
Trivedi. 2022. Understanding Modern Storage APIs: A Systematic Study of libaio,
SPDK, and io_uring. In SYSTOR ’22: The 15th ACM International Systems and
Storage Conference, 2022. ACM, 120–127.

[20] Krijn Doekemeijer, Nick Tehrany, Balakrishnan Chandrasekaran, Matias Bjørling,
and Animesh Trivedi. 2023. Performance Characterization of NVMe Flash Devices
with Zoned Namespaces (ZNS). In 2023 IEEE International Conference on Cluster
Computing (CLUSTER). 118–131.

[21] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. 1996. Start-Time Fair Queue-
ing: A Scheduling Algorithm for Integrated Services Packet Switching Networks.
In Proceedings of the ACM SIGCOMM1996 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, 1996. ACM, 157–168.

[22] Jiayang Guo, Yimin Hu, and Bo Mao. 2015. Enhancing I/O Scheduler Performance
by Exploiting Internal Parallelism of SSDs. In Algorithms and Architectures for
Parallel Processing - 15th International Conference, ICA3PP 2015. Proceedings, Part
IV (Lecture Notes in Computer Science, Vol. 9531). Springer, 118–130.

[23] Jiayang Guo, Yiming Hu, Bo Mao, and SuzhenWu. 2017. Parallelism and Garbage
Collection Aware I/O Scheduler with Improved SSD Performance. In 2017 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2017. IEEE
Computer Society, 1184–1193.

[24] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and
How to Exploit it: High-Performance I/O for High-Performance Storage Engines.
Proceedings of the VLDB Endowment 16, 9 (2023), 2090–2102.

[25] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2017. The Unwritten Contract of Solid State Drives. In Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys 2017. ACM,
127–144.

[26] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. 2019. Multi-
Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX ATC
2019. USENIX Association, 301–314.

[27] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021.
Rearchitecting Linux Storage Stack for 𝜇s Latency and High Throughput. In 15th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2021.
USENIX Association, 113–128.

[28] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj Syamala,
Vivek R. Narasayya, Herodotos Herodotou, Paulo Tomita, Alex Chen, Jack Zhang,
and Junhua Wang. 2018. PerfIso: Performance Isolation for Commercial Latency-
Sensitive Services. In 2018 USENIX Annual Technical Conference, USENIX ATC
2018. USENIX Association, 519–532.

[29] Myoungsoo Jung,Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, andMahmut T.
Kandemir. 2014. HIOS: A Host Interface I/O Scheduler for Solid State Disks. In
ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014.
IEEE Computer Society, 289–300.

[30] Jungkil Kim, Sungyong Ahn, Kwanghyun La, and Wooseok Chang. 2016. Improv-
ing I/O Performance of NVMe SSD on Virtual Machines. In Proceedings of the
31st Annual ACM Symposium on Applied Computing, 2016. ACM, 1852–1857.

[31] Jieun Kim, Dohyun Kim, and Youjip Won. 2022. Fair I/O Scheduler for Alleviating
Read/Write Interference by Forced Unit Access in Flash Memory. In HotStorage
’22: 14th ACM Workshop on Hot Topics in Storage and File Systems, 2022. ACM,
86–92.

[32] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash Storage Disaggregation. In Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys 2016. ACM, 29:1–29:15.

[33] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
= Local Flash. In Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS
’17). ACM, 345–359.

[34] Michael Larabel. Accessed: 2023-11-16. Linux 5.6 I/O Scheduler Benchmarks:
None, Kyber, BFQ, MQ-Deadline. https://www.phoronix.com/review/linux-56-
nvme

[35] Michael Larabel. Accessed: 2024-02-28. BFQ I/O Scheduler For Linux Sees Big
Scalability Improvement, published: 21 January 2024. https://www.phoronix.
com/news/BFQ-IO-Better-Scalability

[36] Michael Larabel. Accessed: 2024-02-28. MQ-Deadline Scheduler Optimized For
Much Better Scalability, published: 19 January 2024. https://www.phoronix.
com/news/MQ-Deadline-Scalability

[37] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram Govindan,
Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S. Gunawi, and Anirudh

Badam. 2020. LeapIO: Efficient and Portable Virtual NVMe Storage on ARM SoCs.
In ASPLOS ’20: Architectural Support for Programming Languages and Operating
Systems, 2020. ACM, 591–605.

[38] Shaohong Li, Xi Wang, Xiao Zhang, Vasileios Kontorinis, Sreekumar Kodakara,
David Lo, and Parthasarathy Ranganathan. 2020. Thunderbolt: Throughput-
Optimized, Quality-of-Service-Aware Power Capping at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2020. USENIX
Association, 1241–1255.

[39] Mingzhe Liu, Haikun Liu, Chencheng Ye, Xiaofei Liao, Hai Jin, Yu Zhang, Ran
Zheng, and Liting Hu. 2022. Towards Low-Latency I/O Services for Mixed Work-
loads Using Ultra-Low Latency SSDs. In ICS ’22: 2022 International Conference on
Supercomputing, 2022. ACM, 13:1–13:12.

[40] Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. 2015.
vFair: Latency-Aware Fair Storage Scheduling via per-IO Cost-Based Differentia-
tion. In Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC 2015.
ACM, 125–138.

[41] Liuying Ma, Zhenqing Liu, Jin Xiong, and Dejun Jiang. 2022. QWin: Core Alloca-
tion for Enforcing Differentiated Tail Latency SLOs at Shared Storage Backend.
In 42nd IEEE International Conference on Distributed Computing Systems, ICDCS
2022. IEEE, 1098–1109.

[42] Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Härtig. 2019.
K2: Work-Constraining Scheduling of NVMe-Attached Storage. In IEEE Real-Time
Systems Symposium, RTSS 2019. IEEE, 56–68.

[43] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei, In Hwan
Doh, and Arvind Krishnamurthy. 2021. Gimbal: Enabling Multi-Tenant Storage
Disaggregation on SmartNIC JBOFs. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (Virtual Event, USA) (SIGCOMM ’21). Association for Computing
Machinery, 106–122.

[44] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-Sensitive
Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019. USENIX Association, 361–378.

[45] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng
Wang. 2014. SDF: Software-Defined Flash for Web-Scale Internet Storage Sys-
tems. In Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2014. ACM, 471–484.

[46] Stan Park and Kai Shen. 2012. FIOS: A Fair, Efficient Flash I/O Scheduler. In
Proceedings of the 10th USENIX conference on File and Storage Technologies, FAST
2012. USENIX Association, 13.

[47] Bo Peng, Cheng Guo, Jianguo Yao, and Haibing Guan. 2023. LPNS: Scalable
and Latency-Predictable Local Storage Virtualization for Unpredictable NVMe
SSDs in Clouds. In 2023 USENIX Annual Technical Conference, USENIX ATC 2023.
USENIX Association, 785–800.

[48] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haibing Guan.
2018. MDev-NVMe: A NVMe Storage Virtualization Solution with Mediated
Pass-Through. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018.
USENIX Association, 665–676.

[49] Purestorage. Accessed: 2024-01-29. Linux Recommended Settings.
https://support.purestorage.com/Solutions/Linux/Linux_Reference/Linux_
Recommended_Settings

[50] RedHat. Accessed: 2024-01-29. Chapter 20. Setting the Disk Scheduler.
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/
8/html/managing_storage_devices/setting-the-disk-scheduler_managing-
storage-devices

[51] Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern
Storage Stacks: POSIX I/O, libaio, SPDK, and io_uring. In Proceedings of the 3rd
Workshop on Challenges and Opportunities of Efficient and Performant Storage
Systems, CHEOPS 2023. ACM, 35–45.

[52] Kai Shen and Stan Park. 2013. FlashFQ: A Fair Queueing I/O Scheduler for
Flash-Based SSDs. In 2013 USENIX Annual Technical Conference, 2013. USENIX
Association, 67–78.

[53] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger.
2007. Argon: Performance Insulation for Shared Storage Servers. In 5th USENIX
Conference on File and Storage Technologies, FAST 2007. USENIX, 61–76.

[54] Mingyang Wang and Yiming Hu. 2014. An I/O Scheduler Based on Fine-Grained
Access Patterns to Improve SSD Performance and Lifespan. In Symposium on
Applied Computing, SAC 2014. ACM, 1511–1516.

[55] Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. 2023.
Do We Still Need I/O Schedulers for Low-Latency Disks?. In Proceedings of the
15th ACM Workshop on Hot Topics in Storage and File Systems. 44–50.

[56] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. 2021. D2FQ: Device-
Direct Fair Queueing for NVMe SSDs. In 19th USENIX Conference on File and
Storage Technologies, FAST 2021. USENIX Association, 403–415.

[57] Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for
Providing Fairness and High Performance in SSD Devices. In Proceedings of
the 11th International Conference on Ubiquitous Information Management and
Communication, IMCOM 2017. ACM, 87.

https://www.phoronix.com/review/linux-56-nvme
https://www.phoronix.com/review/linux-56-nvme
https://www.phoronix.com/news/BFQ-IO-Better-Scalability
https://www.phoronix.com/news/BFQ-IO-Better-Scalability
https://www.phoronix.com/news/MQ-Deadline-Scalability
https://www.phoronix.com/news/MQ-Deadline-Scalability
https://support.purestorage.com/Solutions/Linux/Linux_Reference/Linux_Recommended_Settings
https://support.purestorage.com/Solutions/Linux/Linux_Reference/Linux_Recommended_Settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-the-disk-scheduler_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-the-disk-scheduler_managing-storage-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/setting-the-disk-scheduler_managing-storage-devices

	Abstract
	1 Introduction
	2 Benchmarking Environment
	2.1 Hardware and Software
	2.2 Workload Patterns and Methodology
	2.3 I/O Schedulers Under Study

	3 Bottleneck Analysis: CPU or NVMe
	3.1 What throughput and latency can a single SSD and a single CPU core deliver?
	3.2 How does the performance scale as we increase the number of CPU cores or SSDs?
	3.3 Summary

	4 I/O Scheduler Scalability
	4.1 Scheduler Overheads on Latency
	4.2 Scheduler Overheads on Throughput

	5 I/O interference with concurrent workloads
	5.1 Latency Interference from Concurrent Read-Write T-4KiB-apps
	5.2 Throughput Interference from Read-Write Workloads

	6 Kyber Configuration Exploration
	6.1 Mixing throughput-bound mixed read-write workloads
	6.2 Latency-sensitive Read Workload with a Write-driven Throughput Workload
	6.3 Write-driven Throughput Workload with a Read Workload

	7 Related Work
	8 Conclusion
	References

