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Background

Up to millions of IOPS
< 10 μs latency

QoS guarantees

● Latency 
● Throughput
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Background: I/O Schedulers

Block
layer

User space
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Dispatch

Insert

Software 
queue
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I/O schedulers ● Staging
● Reordering
● Merging

I/O schedulers
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Background: What has Changed?

1. Huge improvement of storage performance.

> 1000 KIOPS

2. Improvement of CPU performance stalls.

～ 10 KIOPS
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Background: What has Changed?

1. Huge improvement of storage performance.

～ 10 KIOPS > 1000 KIOPS

2. Improvement of CPU performance stalls.

3. Research on I/O schedulers for these SSDs[1-4].
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The Linux I/O Schedulers

No plug-and-play implementations.

The most available I/O schedulers?

Linux I/O schedulers!
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The Linux I/O Schedulers

None
● Least overhead.
● No performance guarantees.

BFQ
● Fair-share between apps.
● Complex, high overhead.

Kyber
● Designed for fast SSDs.
● Balancing between read and 

write.

MQ-Deadline
● Issues request with increasing 

sector order.
● Soft latency deadlines.

No plug-and-play implementations.

The most available I/O schedulers?

Linux I/O schedulers!
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Setup

Linux I/O schedulers

io_uring interface

fio workloads

8x

Latency-sensitive
application (L-app)

Application

…

Throughput-bound
application (T-app)

128x …

Application

CPU
10 cores

6.2 MIOPS
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Research Questions

RQ1: Overhead

I/O schedulers

● Latency?
● Throughput?
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Research Questions

RQ1: Overhead

● Latency?
● Throughput?

RQ2: Scalability

Increasing

Linux Storage Stack

App AppApp …

Increasing
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Research Questions

● Latency?
● Throughput?

RQ1: Overhead

RQ2: Scalability

● L-apps.
● T-apps.
● SSDs.

RQ3: Interference

L-app
T-appT-appT-appT-app

I/O scheduler

SSDs

Reads, 
4KiB

Writes, 
64KiB

● Read L-app + increasing write T-apps.
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RQ1. Overheads
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Overhead

Slightly higher latency, up to 2.7% higher latency.

Significantly lower throughput, up to 36.7% lower.

I/O schedulers → Significantly higher throughput overhead. 
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2.7% higher
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RQ2. Scalability
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Scalability of L-apps
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Comparable 
performance

Significantly 
higher latency
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Scalability of L-apps: CPU Usage

When CPU bottlenecked → higher latency overheads.

A single CPU core 
is 100% utilized.

C
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Comparable 
performance

Significantly 
higher latency
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Number of processes

Scalability of T-apps: 1 SSD vs. 8 SSDs

Big gap of scalability on throughput between different I/O schedulers.

1 SSD
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More devices → better scalability.

Scalability of T-apps: 1 SSD vs. 8 SSDs

Number of processes
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Big gap of scalability on throughput between different I/O schedulers.

1 SSD
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Scalability of T-apps: 1 SSD vs. 8 SSDs
1 SSD

What cause this scalability issue?
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Scalability of T-apps: CPU Usage

The scalability issues are caused by high CPU contention.

Number of processes
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Lock Overhead of I/O Schedulers
Lo
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Number of processes

1 SSD

Number of processes

8 SSDs

January, 2024: Identified by the Linux kernel developers[5][6].

BFQ and MQ-Deadline → high CPU lock overhead.

Adding devices mitigates the lock overhead.

78.0%

25.9%
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RQ3. Taming I/O Interference
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1 L-app (R) + Increasing T-apps (W)

Foreground Background
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1 L-app (R) + Increasing T-apps (W)

BFQ and Kyber → low latency for the foreground L-app.
P9
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Conclusions

RQ1: What is the overhead of Linux I/O schedulers?

● Minor latency overhead.

● Significantly throughput overhead.

RQ2: What is the scalability of Linux I/O schedulers?

● Latency → depends on CPU.

● Throughput, BFQ and MQ-DL → high lock contention.

● Throughput, Kyber → good, similar to None.

RQ3: Can the Linux I/O schedulers tame I/O inference?

● Only BFQ and Kyber can

provide bounded performance.
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Take-Home Messages

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

1. I/O Schedulers can influence the performance significantly.

None has the lowest overhead and highest scalability.

BFQ has the highest overhead and lowest scalability.

2. Different schedulers have different locking and scaling overheads.

BFQ = MQ-Deadline > Kyber > None.

3. Use Kyber to prioritize foreground reads with background writes.

HotCloudPerf’24 A Systematic Configuration Space Exploration of the 

Linux Kyber I/O Scheduler

https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact
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Thank you!
Questions?

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact
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Resources

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1t0bw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.storagereview.com/review/intel-x25-v-ssd-review-40gb
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Resources
Linux I/O schedulers

1. BFQ (Budget Fair Queueing) https://www.kernel.org/doc/html/latest/block/bfq-iosched.html 
2. Two new block I/O schedulers for 4.12 https://lwn.net/Articles/720675/
3. Deadline IO scheduler tunables 
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds. 
4. BFQ I/O Scheduler For Linux Sees Big Scalability Improvement https://www.phoronix.com/news/BFQ-IO-Better-Scalability 
5. MQ-Deadline Scheduler Optimized For Much Better Scalability 

New I/O schedulers
1. Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A Host Interface I/O Scheduler for Solid State Disks. 
ISCA 2014.
2. Mingyang Wang and Yiming Hu. An I/O Scheduler Based on Fine-Grained Access Patterns to Improve SSD Performance and Lifespan. In Symposium on 
Applied Computing, SAC 2014.
3. Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. vFair: Latency-Aware Fair Storage Scheduling via per-IO Cost-Based 
Differentiation. SoCC 2015.
4. Jiayang Guo, Yiming Hu, Bo Mao, and Suzhen Wu. Parallelism and Garbage Collection Aware I/O Scheduler with Improved SSD Performance. IPDPS 
2017.
5. Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for Providing Fairness and High Performance in SSD Devices. IMCOM 2017.
6. Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. Multi- Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX 
ATC 2019.
7. Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Härtig. K2: Work-Constraining Scheduling of NVMe-Attached Storage. RTSS 2019.
8. Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. Rearchitecting Linux Storage Stack for 𝜇s Latency and High Throughput. OSDI 
2021.
9. Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. D2FQ: Device- Direct Fair Queueing for NVMe SSDs. FAST 2021. 
10. Jieun Kim, Dohyun Kim, and Youjip Won Fair I/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory. 
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11. Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. Do We Still Need I/O Schedulers for Low-Latency Disks?. HotStorage 2023.
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Backup Slides
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CPU or NVMe SSD, What is the Bottleneck?

To saturate a SSD:

Multiple I/O requests

Throughput (KIOPS)

A
ve

ra
ge

 la
te

n
cy

 (
µ

s)

Enough CPU resources → 4 processes

Peak
Throughput
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SSD Performance
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L-app Scalability
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L-app CPU cost
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L-app Scalability Heatmap



36

SSD Scalability
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L-app 
Interference
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T-app Interference
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1 T-app (R) + Increasing T-apps (W)

BFQ and Kyber → higher bandwidth for the foreground T-app.
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Lock in the I/O Schedulers In block/mq-deadline.c
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Lock in the I/O Schedulers Reduced lock contention

Dispatch

https://lore.kernel.org/linux-block/20240118180541.930783-2-axboe@kernel.dk/

https://lore.kernel.org/linux-block/20240118180541.930783-2-axboe@kernel.dk/
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Lock in the I/O Schedulers Reduced lock contention

Insertion

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fda41df81@kernel.dk/

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fda41df81@kernel.dk/
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Lock in the I/O Schedulers Reduced lock contention

Results

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09
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Who Are We/Am I?


