
BFQ, Multiqueue-Deadline, or Kyber?
Performance Characterization of Linux Storage

Schedulers in the NVMe Era

Zebin Ren1, Krijn Doekemeijer1, Nick Tehrany2, and Animesh Trivedi 1

 1VU Amsterdam
2 BlueOne Business Software LLC

https://atlarge-research.com/

This paper won the best paper award in ICPE’24.

https://atlarge-research.com/

1

Background

Up to millions of IOPS
< 10 μs latency

QoS guarantees

● Latency
● Throughput

2

Background: I/O Schedulers

Block
layer

User space

Kernel space

Devices

Dispatch

Insert

Software
queue

Hardware
queue

I/O schedulers ● Staging
● Reordering
● Merging

I/O schedulers

3

Background: What has Changed?

1. Huge improvement of storage performance.

> 1000 KIOPS

2. Improvement of CPU performance stalls.

～ 10 KIOPS

3

Background: What has Changed?

1. Huge improvement of storage performance.

～ 10 KIOPS > 1000 KIOPS

2. Improvement of CPU performance stalls.

3. Research on I/O schedulers for these SSDs[1-4].

4

The Linux I/O Schedulers

No plug-and-play implementations.

The most available I/O schedulers?

Linux I/O schedulers!

4

The Linux I/O Schedulers

None
● Least overhead.
● No performance guarantees.

BFQ
● Fair-share between apps.
● Complex, high overhead.

Kyber
● Designed for fast SSDs.
● Balancing between read and

write.

MQ-Deadline
● Issues request with increasing

sector order.
● Soft latency deadlines.

No plug-and-play implementations.

The most available I/O schedulers?

Linux I/O schedulers!

5

Setup

Linux I/O schedulers

io_uring interface

fio workloads

8x

Latency-sensitive
application (L-app)

Application

…

Throughput-bound
application (T-app)

128x …

Application

CPU
10 cores

6.2 MIOPS

6

Research Questions

RQ1: Overhead

I/O schedulers

● Latency?
● Throughput?

6

Research Questions

RQ1: Overhead

● Latency?
● Throughput?

RQ2: Scalability

Increasing

Linux Storage Stack

App AppApp …

Increasing

6

Research Questions

● Latency?
● Throughput?

RQ1: Overhead

RQ2: Scalability

● L-apps.
● T-apps.
● SSDs.

RQ3: Interference

L-app
T-appT-appT-appT-app

I/O scheduler

SSDs

Reads,
4KiB

Writes,
64KiB

● Read L-app + increasing write T-apps.

7

RQ1. Overheads

8

Overhead

Slightly higher latency, up to 2.7% higher latency.

Significantly lower throughput, up to 36.7% lower.

I/O schedulers → Significantly higher throughput overhead.

 P
99

 la
te

n
cy

 (
u

s)
Latency of L-apps

Th
ro

u
gh

p
u

t
(K

IO
PS

)

Throughput of T-apps
2.7% higher

36.7% lower

9

RQ2. Scalability

10

Scalability of L-apps
C

u
m

u
la

ti
ve

 p
ro

b

Latency (μs)

QD=1

Higher workload →higher overhead.

QD=16

Why?

Better

QD=2QD=4
QD=8
QD=16

Better
Latency (μs)

QD=32

C
u

m
u

la
ti

ve
 p

ro
b

Comparable
performance

Significantly
higher latency

11

Scalability of L-apps: CPU Usage

When CPU bottlenecked → higher latency overheads.

A single CPU core
is 100% utilized.

C
PU

 u
sa

ge

QD

Comparable
performance

Significantly
higher latency

12

Th
ro

u
gh

p
u

t
(K

IO
PS

)

Number of processes

Scalability of T-apps: 1 SSD vs. 8 SSDs

Big gap of scalability on throughput between different I/O schedulers.

1 SSD

12

More devices → better scalability.

Scalability of T-apps: 1 SSD vs. 8 SSDs

Number of processes

Th
ro

u
gh

p
u

t
(M

IO
PS

)

8 SSDs1 SSD
Th

ro
u

gh
p

u
t

(K
IO

PS
)

Number of processes

Big gap of scalability on throughput between different I/O schedulers.

1 SSD

12

Th
ro

u
gh

p
u

t
(K

IO
PS

)

Number of processes

Scalability of T-apps: 1 SSD vs. 8 SSDs
1 SSD

What cause this scalability issue?

13

Scalability of T-apps: CPU Usage

The scalability issues are caused by high CPU contention.

Number of processes

C
PU

 u
sa

ge

Number of processes

C
PU

 u
sa

ge

14

Lock Overhead of I/O Schedulers
Lo

ck
 o

ve
rh

ea
d

 (
%

)

Number of processes

1 SSD

Number of processes

8 SSDs

January, 2024: Identified by the Linux kernel developers[5][6].

BFQ and MQ-Deadline → high CPU lock overhead.

Adding devices mitigates the lock overhead.

78.0%

25.9%

15

RQ3. Taming I/O Interference

16

1 L-app (R) + Increasing T-apps (W)

Foreground Background

4
KB

Read
L-app

64
KB
64
KB

…
64
KB
64
KB

128x

Write T-app

Increasing

16

1 L-app (R) + Increasing T-apps (W)

BFQ and Kyber → low latency for the foreground L-app.
P9

9
la

te
n

cy
 (

m
s)

Number of T-app (64KiB)

Foreground Background

4
KB

Read
L-app

64
KB
64
KB

…
64
KB
64
KB

128x

Write T-app

Increasing

17

Conclusions

RQ1: What is the overhead of Linux I/O schedulers?

● Minor latency overhead.

● Significantly throughput overhead.

RQ2: What is the scalability of Linux I/O schedulers?

● Latency → depends on CPU.

● Throughput, BFQ and MQ-DL → high lock contention.

● Throughput, Kyber → good, similar to None.

RQ3: Can the Linux I/O schedulers tame I/O inference?

● Only BFQ and Kyber can

provide bounded performance.

18

Take-Home Messages

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

1. I/O Schedulers can influence the performance significantly.

None has the lowest overhead and highest scalability.

BFQ has the highest overhead and lowest scalability.

2. Different schedulers have different locking and scaling overheads.

BFQ = MQ-Deadline > Kyber > None.

3. Use Kyber to prioritize foreground reads with background writes.

HotCloudPerf’24 A Systematic Configuration Space Exploration of the

Linux Kyber I/O Scheduler

https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

19

Thank you!
Questions?

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

20

Resources

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1t0bw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.storagereview.com/review/intel-x25-v-ssd-review-40gb

Images used:

References
[1] Till Miemietz, Hannes Weisbach, Michael Roitzsch, Hermann Härtig: K2: Work-Constraining Scheduling of
NVMe-Attached Storage. RTSS 2019: 56-68
[2] Mohammad Hedayati, Kai Shen, Michael L. Scott, Mike Marty: Multi-Queue Fair Queuing. USENIX Annual Technical
Conference 2019: 301-314 2018
[3] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, Rachit Agarwal: Rearchitecting Linux Storage Stack for µs
Latency and High Throughput. OSDI 2021: 113-128
[4] Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong: D2FQ: Device-Direct Fair Queueing for NVMe SSDs. FAST
2021: 403-415
[5] https://www.phoronix.com/news/BFQ-IO-Better-Scalability
[6] https://www.phoronix.com/news/MQ-Deadline-Scalability

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1t0bw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.storagereview.com/review/intel-x25-v-ssd-review-40gb
https://www.phoronix.com/news/BFQ-IO-Better-Scalability
https://www.phoronix.com/news/MQ-Deadline-Scalability

29

Resources
Linux I/O schedulers

1. BFQ (Budget Fair Queueing) https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
2. Two new block I/O schedulers for 4.12 https://lwn.net/Articles/720675/
3. Deadline IO scheduler tunables
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds.
4. BFQ I/O Scheduler For Linux Sees Big Scalability Improvement https://www.phoronix.com/news/BFQ-IO-Better-Scalability
5. MQ-Deadline Scheduler Optimized For Much Better Scalability

New I/O schedulers
1. Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A Host Interface I/O Scheduler for Solid State Disks.
ISCA 2014.
2. Mingyang Wang and Yiming Hu. An I/O Scheduler Based on Fine-Grained Access Patterns to Improve SSD Performance and Lifespan. In Symposium on
Applied Computing, SAC 2014.
3. Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. vFair: Latency-Aware Fair Storage Scheduling via per-IO Cost-Based
Differentiation. SoCC 2015.
4. Jiayang Guo, Yiming Hu, Bo Mao, and Suzhen Wu. Parallelism and Garbage Collection Aware I/O Scheduler with Improved SSD Performance. IPDPS
2017.
5. Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for Providing Fairness and High Performance in SSD Devices. IMCOM 2017.
6. Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. Multi- Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX
ATC 2019.
7. Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Härtig. K2: Work-Constraining Scheduling of NVMe-Attached Storage. RTSS 2019.
8. Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. Rearchitecting Linux Storage Stack for 𝜇s Latency and High Throughput. OSDI
2021.
9. Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. D2FQ: Device- Direct Fair Queueing for NVMe SSDs. FAST 2021.
10. Jieun Kim, Dohyun Kim, and Youjip Won Fair I/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory.
HotStorage 2022.
11. Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. Do We Still Need I/O Schedulers for Low-Latency Disks?. HotStorage 2023.

https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://lwn.net/Articles/720675/
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds
https://www.phoronix.com/news/BFQ-IO-Better-Scalability

30

Backup Slides

A
ve

ra
ge

 la
te

n
cy

 (
µ

s)

Throughput (KIOPS)

4

CPU or NVMe SSD, What is the Bottleneck?

To saturate a SSD:

Multiple I/O requests

Throughput (KIOPS)

A
ve

ra
ge

 la
te

n
cy

 (
µ

s)

Enough CPU resources → 4 processes

Peak
Throughput

32

SSD Performance

33

L-app Scalability

34

L-app CPU cost

35

L-app Scalability Heatmap

36

SSD Scalability

37

L-app
Interference

38

T-app Interference

16

1 T-app (R) + Increasing T-apps (W)

BFQ and Kyber → higher bandwidth for the foreground T-app.

Number of T-app (64KiB)

Th
ro

u
gh

p
u

t
(K

IO
PS

)

Foreground: Read T-app

Foreground Background

64
KB
64
KB

…
64
KB
64
KB

128x

Write T-app

Increasing

64
KB

…
64
KB
4

KB
128x

Read T-app

Foreground: Read T-app

40

Lock in the I/O Schedulers In block/mq-deadline.c

41

Lock in the I/O Schedulers Reduced lock contention

Dispatch

https://lore.kernel.org/linux-block/20240118180541.930783-2-axboe@kernel.dk/

https://lore.kernel.org/linux-block/20240118180541.930783-2-axboe@kernel.dk/

42

Lock in the I/O Schedulers Reduced lock contention

Insertion

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fda41df81@kernel.dk/

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fda41df81@kernel.dk/

43

Lock in the I/O Schedulers Reduced lock contention

Results

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09

44

Who Are We/Am I?

