BFQ, Multiqueue-Deadline, or Kyber?
Performance Characterization of Linux Storage
Schedulers in the NVMe Era

Zebin Ren?, Krijn Doekemeijer?, Nick Tehrany?, and Animesh Trivedi’

VU Amsterdam
2BlueOne Business Software LLC

This paper won the best paper award in ICPE’24.

I\/\ASJS_IVIZER V‘ , % VRIJE
o V U UNIVERSITEIT
FUTURE CLOESD m e AMSTERDAM

https://atlarge-research.com/ iimgg ° O STA


https://atlarge-research.com/

Background
R

QoS guarantees

® latency
® Throughput

Up to millions of IOPS
< 10 ps latency




Background: I/O Schedulers

Kernel space

/Block

layer

\_

queue /

Dispatch

1/O schedulers

® Staging
e Reordering
e Merging

Devices




Background: What has Changed?

1. Huge improvement of storage performance.

> 1000 KIOPS
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3. Research on 1/0 schedulers for these SSDs!**
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Abstract

Modern high-speed devices (e.g., network adapters, storage,
accelerators) use new host interfaces, which expose multiple
software queues directly to the device. These multi-queue in-
terfaces allow mutually distrusting applications to access the
device without any cross-core interaction, enabling through-
put in the order of millions of IOP/s on multicore systems.
Unfortunately, while independent device access is scalable,
italso introduces a new problem: unfairness. Mechanisms
that were used to provide fairness for older devices are no
longer tenable in the wake of multi-queue design, and straight-
forward attempts d i

synchronization that undermines the scalability for which
‘multiple queues were designed.

To address these challenges, we present Multi-Queue Fair
Quecing (MQFQ), the first fair, work-conserving scheduler
suitable for multi-queue systems, Specifically, we (1) reformu-
late a classical fair i
queue designs, and (2) describe a scalable implementation
that bounds potential unfairness while minimizing synchro-
nization overhead. Our implementation of MQFQ in Linux
4.15 demonstrates both fairness and high throughput. Evalua-
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ric within a few microseconds. GPUs and machine learning
accelerators may offload computations that run just a few mi-
croseconds ata time [30]. At the same time, the proliferation
of multicore processors has necessitated architectures tuned
for independent 10 across multiple hardware threads [4, 36].

‘These technological changes have shifted performance bot-
lenecks from hardware resources to the software stacks that
‘manage them. In response,it s now common to adopta nuti-
queue architecture in which each hardware thread owns a
dedicated IO queue, directly exposed to the device, giving
it an independent path over which to send and receive re-
quests. Examples of this architecture include muli-queue
SSDs [22, 38, 50] and NICs [42], and software like the
Windows and Linux NVMe drivers, the Linux multi-queue
block lager [5], SCST multi-queue support 8], and data-plane
OSes [4, 36]. A recent study [51] demonstrated up to 8x
‘performance improvement for YCSB-on-Cassandra, using
‘multi-queue NVMe instead of single-queue SATA

To support the full banduwidth of modern devices, multi-
quete 1O systems are designed to incur no cache-coherence
traffic in the common case when sending and receiving re-
quests. I easy to see why: a device supporting millions of
10 h raction of a d

tion with an b

ne
time interval that allows for fewer than 10 cross-core cache
. and is comparable to the latency of a single

that MQFQ can reach up to 3.1 Million IOP/s on a single
achi higher than the f-the-art Linux By
‘get Fair Queueing. Compared to a system with no faimess,
MQFQ reduces the slowdown caused by an antagonist from
3.78x to 1.3 for the FlashX workload and from 6.57x to
1.03x for the Aerospike workload (2x is considered “fair”
slowdown).
1 Introduction
Recent years have seen the proliferation of very fast devices
for 10, networking, and computing acceleration. Commod-
ity solid-state disks (e.g., Intel Optane DC P4800X [22] or
Samsung PM1725a [38]) can perform at or near a million
T/O operations per second. System-area networks (c.g.,
finiBand) can sustain several million remote operations per
link [25]. RDM.

inter-processor interrupt (IPY). Serializing requests at such
high speeds is infeasible now, and will only become more
50 as device speeds continue to increase while single-core
o tays relatively flat. As a result, d b
concluded that conventional fairshare /O schedulers, includ-
ing fair queucing approaches [35, 401, which reorder requests
in a single queue, are unsuited for modern fast devices,
Unfortunately, by cutting out the OS resource scheduler,
direct mult-queue device access undermines the OS's tradi-
tional responsibility for faimess and performance isolation.
While 1O devices (c.g., SSD firmware, NICs) may multiplex
hardware queues, their support for faimess is hampered by
their inability to reason in terms of system-level policies for
resource I , virtual machines, or Linux
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Abstract
Modem high-speed devices (c.g., network adapters, storage,
accelerators) use new host interfaces, which expose multiple
software quenes directly to the device. These multi-queue in-
terfaces allow mutually distrusting applications to access the:
device without any cross-core interaction, enabling through-
put in the order of millions of IOP/s on multicore systems,
Unfortunately, while independent device access is scalable,
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No plug-and-play implementations.
The most available 1/0 schedulers?

Linux 1/O schedulers!
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No plug-and-play implementations.

The most available 1/0 schedulers?

Linux 1/O schedulers!

None
® Least overhead.

e No performance guarantees.

BFQ
® Fair-share between apps.
e Complex, high overhead.

Kyber

® Designed for fast SSDs.

® Balancing between read and
write.

MQ-Deadline

® Issues request with increasing
sector order.

e Soft latency deadlines.
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Research Questions

RQ1: Overhead
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Research Questions

RQ1: Overhead

e Latency?
e Throughput?

RQ2: Scalability

® L-apps.
® T-apps.
® SSDs.

RQ3: Interference

e Read L-app + increasing write T-apps.

|/O scheduler

v

SSDs




RQ1. Overheads



Overhead

Latency of L-apps Throughput of T-apps
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Slightly higher latency, up to 2.7% higher latency.
Significantly lower throughput, up to 36.7% lower.

I/O schedulers — Significantly higher throughput overhead.



RQ2. Scalability



Scalability of L-apps
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Scalability of L-apps: CPU Usage

Comparable
performance

Significantly
higher latency

/1.0()
A single CPU core

is 100% utilized.
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QD
When CPU bottlenecked — higher latency overheads.

32 64 128256
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Scalability of T-apps: 1 SSD vs. 8 SSDs

1SSD
750 —
n
a
o
5
Q
<
2250 » T
g N ONE Kyber
— 0 mtmmBFQ === MQ-DL

o1 3 5 7 9 11 13 15
Number of processes

Big gap of scalability on throughput between different 1/O schedulers.
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Scalability of T-apps: 1 SSD vs. 8 SSDs
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Big gap of scalability on throughput between different 1/O schedulers.

More devices — better scalability.
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Scalability of T-apps: 1 SSD vs. 8 SSDs
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Scalability of T-apps: CPU Usage
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The scalability issues are caused by high CPU contention.
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Lock Overhead of I/O Schedulers
155D 8 SSDs
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BFQ and MQ-Deadline — high CPU lock overhead.

Adding devices mitigates the lock overhead.

January, 2024: Identified by the Linux kernel developers®™,
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RQ3. Taming I/0 Interference
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Conclusions

RQ1: What is the overhead of Linux I/O schedulers?

e Minor latency overhead.
e Significantly throughput overhead.

Throughput (KIOPS)

Throughput of T-apps

36.7% lower

None BFQ MQ-DL Kyber

RQ2: What is the scalability of Linux I/O schedulers?

® Latency — depends on CPU.

e Throughput, BFQ and MQ-DL — high lock contention.
® Throughput, Kyber — good, similar to None.

RQ3: Can the Linux I/O schedulers tame 1/O inference?

e Only BFQ and Kyber can 7o M.
provide bounded performance. /
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Take-Home Messages

1. 1/O Schedulers can influence the performance significantly.
None has the lowest overhead and highest scalability.
BFQ has the highest overhead and lowest scalability.

2. Different schedulers have different locking and scaling overheads.
BFQ = MQ-Deadline > Kyber > None.

3. Use Kyber to prioritize foreground reads with background writes.
HotCloudPerf’24 A Systematic Configuration Space Exploration of the
Linux Kyber 1/0O Scheduler
==

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24 io_scheduler study_artifact
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Thank you!
Questions?

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24 io_scheduler study_artifact
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CPU or NVMe SSD, What is the Bottleneck?
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SSD Performance
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L-app Scalability
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Figure 2: Intra-process scalability latency CDFs with increasing queue depth (QD); Note the different x-axis scale for (e).
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Figure 3: Inter-process scalability latency CDFs with increasing number of L-apps; Note the different x-axis scale for (e).
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L-app CPU cost

1.00 1.00
() ()
800.75 800.75
5] 5]
= =
=) 0.50 —— None =) 0.50
: — 5o 5
0.25 Kyber 0.25
—— MQ-DL
000795 4 g 16 32 64128256 200 1 2 4 § 16 32 64128256
QD # processes
(a) Intra-process (b) Inter-process
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L-app Scalability Heatmap
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SSD Scalability
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T-app Interference

10°

N %’/\'\%@s 3 <
210 NE
& !
3 10 None Kyber 3
i= —«— BFQ —— MQ-DL E
=101 101
0 1 2 4 8 16 32 0 1 2 4 8 16 32
Concurrent workloads Concurrent workloads
(a) T-64KiB-apps (reads) (b) T-64KiB-apps (writes)
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Lock in the I/O Schedulers in block/mg-deadline.c

84
85
86
87
88
89
90
91
92
93
94
95
96
97
08
99
100
101
102
103
104
105
106
107

108
100

struct deadline_data {

33

/%
% run time data
*/

struct dd_per_prio per_prio[DD_

/* Data direction of latest dis
enum dd_data_dir last_dir;
unsigned int batching;

unsigned int starved;

/%

*x settings that change how the
*/

int fifo_expire[DD_DIR_COUNT];
int fifo_batch;

int writes_starved;

int front_merges;

u32 async_depth;

int prio_aging_expire;

| spinlock_t lock; I

829
830
831
832
833
834

835
Q2R

572
573
574
915
576
577
578
579
580
581
582

*/

i static void dd_insert_requests(struct blk_mg_hw_ctx xhctx,
828

struct list_head x1list, bool at_head)
{
struct request_queue *xq = hctx—>queue;
struct deadline_data *dd = g->elevator->elevator_data;

spin_lock(&dd->1ock) ;
——re——crrcenpoy e

struct request *rq;

static struct request xdd_dispatch_request(struct blk_mq_hw_ctx xhctx)
{
struct deadline_data *dd = hctx->queue->elevator->elevator_data;
const unsigned long now = jiffies;
struct request xrq;
enum dd_prio prio;

spin_lock(&dd->1lock) ;
= j j requests(dd, now);

if (rq)
goto unlock;
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Lock in the 1/O Schedulers Reduced lock contention
Dispatch

/* Maps an I/0 priority class to a deadline scheduler priority. */
@@ -600,6 +607,15 @@ static struct request xdd_dispatch_request(struct blk_mg_hw_ctx xhctx)
struct request *rq;
enum dd_prio prio;

/*
* If someone else is already dispatching, skip this one. This will
* defer the next dispatch event to when something completes, and could
* potentially lower the queue depth for contended cases.
*/
if (test_bit(DD_DISPATCHING, &dd->run_state) ||
test_and_set_bit(DD_DISPATCHING, &dd->run_state))
return NULL;

-+
+
+
-+
+
+
+
+
-+

spin_lock(&dd->1lock);
rq = dd_dispatch_prio_aged_requests(dd, now);
if (rq)
@@ -616,6 +632,7 @@ static struct request xdd_dispatch_request(struct blk_mg_hw_ctx xhctx)
}

linux-block/20240118180541.930783-2-axboe@kernel.dk



https://lore.kernel.org/linux-block/20240118180541.930783-2-axboe@kernel.dk/

Lock in the 1/O Schedulers Reduced lock contention

Insertion

+/%
+ x If we can grab the dd—->1lock, then just return and do the insertion as per
+ % usual. If not, add to one of our internal buckets, and afterwards recheck
+ x if if we should retry.
+ x/
+static bool dd_insert_to_bucket(struct deadline_data *dd,
struct list_head *list, int *seq)
__acquires(&dd—>1lock)

struct dd_bucket_list xbucket;
int next_seq;

*seq = atomic_read(&dd->insert_seq);

if (spin_trylock(&dd->1lock))
return false;

if (!test_bit(DD_INSERTING, &dd->run_state)) {
spin_lock(&dd->1ock);
return false;

B

xseq = atomic_inc_return(&dd->insert_seq);

bucket = &dd->bucket_lists[get_cpu() & DD_CPU_BUCKETS_MASK];
spin_lock(&bucket->1lock) ;

list_splice_init(list, &bucket->list);
spin_unlock(&bucket->1ock);

put_cpu();

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fdad1df81@kernel.dk/
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https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fda41df81@kernel.dk/

Lock in the 1/O Schedulers Reduced lock contention

Results

Jobs I0PS Lock contention

null_blk 1090K
nvmeOnl 1070K

With that in place, the same test case now does:

Device Jobs I0PS Contention

null_blk 2250K
nvmednl 2560K

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09



https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09
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