BFQ, Multiqueue-Deadline, or Kyber?
Performance Characterization of Linux Storage
Schedulers in the NVMe Era

Zebin Ren?, Krijn Doekemeijer?, Nick Tehrany?, and Animesh Trivedi’

VU Amsterdam
2BlueOne Business Software LLC

This paper won the best paper award in ICPE’24.

I\/\ASJS_IVIZER V‘ , % VRIJE
o V U UNIVERSITEIT
FUTURE CLOESD m e AMSTERDAM

https://atlarge-research.com/ iimgg ° O STA

https://atlarge-research.com/

Background
R

QoS guarantees

® latency
® Throughput

Up to millions of IOPS
< 10 ps latency

Background: I/O Schedulers

Kernel space

/Block

layer

_

queue /

Dispatch

1/O schedulers

® Staging
e Reordering
e Merging

Devices

Background: What has Changed?

1. Huge improvement of storage performance.

> 1000 KIOPS

7 1 1 1 :'"': 1 “‘:;
T k. *" | Transistors
108 i ',AA;;:; = | (thousands)
r —:“E‘A‘ ‘Emm s .— _— e s -
10° | R WP L v o] Single-Thread
o* Rt ° @® 0
R b
RRPTY Y SR Wy S el Performance
104 b Al ;:“'..‘@’3"’ | (SpecINT x 10%) I
‘AA A . s [
w | g Ry | oo i |
s e : - e s s e s s s e - =)
A e o Typical Powe
10 | o .ty ":.v vw} ;-:;.&;‘xﬁfé.-‘..‘ - (V)\//F;Iﬁs) omer
oA e = " 'v,'vz }': : é'" ".i' - Number of
o' e v T o g0 7 Logical Cores
PP " v v YvY vv Bt e 9
At v : o
10° -; * D T e X S T RO =
1 | 1 1
1970 1980 1990 2000 2010 2020

ackground: What has Changed?

1. Huge improvement of storage performance.

7 L
10 Transistors
(thousands)
106 -
10° | Single-Thread

Performance 8
(SpecINT x 10%)

Frequency (MHz)

10° |
Typical Power
102 | - (Watts)
Number of

Logical Cores

A
"

1970

3. Research on 1/0 schedulers for these SSDs!**

2010 2020

Operating Systems Group

Jachyun Hwang
Cornell Universitv

K2: Work-Constraining Scheduling of
NVMe-Attached Storage

Till Miemietz, Hannes Weisbach

D2FQ: Device-Direct Fair Queueing for NVMe SSDs

Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong
Sungkvunkwan University

Simon Peter
UT Austin

Midhul Vuppalapati
Cornell Universitv

Barkhausen Institut

Multi-Queue Fair Queueing

Mohammad Hedayati
University of Rochester

Kai Shen
Google

Abstract

Modern high-speed devices (e.g., network adapters, storage,
accelerators) use new host interfaces, which expose multiple
software queues directly to the device. These multi-queue in-
terfaces allow mutually distrusting applications to access the
device without any cross-core interaction, enabling through-
put in the order of millions of IOP/s on multicore systems.
Unfortunately, while independent device access is scalable,
italso introduces a new problem: unfairness. Mechanisms
that were used to provide fairness for older devices are no
longer tenable in the wake of multi-queue design, and straight-
forward attempts d i

synchronization that undermines the scalability for which
‘multiple queues were designed.

To address these challenges, we present Multi-Queue Fair
Quecing (MQFQ), the first fair, work-conserving scheduler
suitable for multi-queue systems, Specifically, we (1) reformu-
late a classical fair i
queue designs, and (2) describe a scalable implementation
that bounds potential unfairness while minimizing synchro-
nization overhead. Our implementation of MQFQ in Linux
4.15 demonstrates both fairness and high throughput. Evalua-

Michael L. Scott
University of Rochester

Mike Marty
Google

ric within a few microseconds. GPUs and machine learning
accelerators may offload computations that run just a few mi-
croseconds ata time [30]. At the same time, the proliferation
of multicore processors has necessitated architectures tuned
for independent 10 across multiple hardware threads [4, 36].

‘These technological changes have shifted performance bot-
lenecks from hardware resources to the software stacks that
‘manage them. In response,it s now common to adopta nuti-
queue architecture in which each hardware thread owns a
dedicated IO queue, directly exposed to the device, giving
it an independent path over which to send and receive re-
quests. Examples of this architecture include muli-queue
SSDs [22, 38, 50] and NICs [42], and software like the
Windows and Linux NVMe drivers, the Linux multi-queue
block lager [5], SCST multi-queue support 8], and data-plane
OSes [4, 36]. A recent study [51] demonstrated up to 8x
‘performance improvement for YCSB-on-Cassandra, using
‘multi-queue NVMe instead of single-queue SATA

To support the full banduwidth of modern devices, multi-
quete 1O systems are designed to incur no cache-coherence
traffic in the common case when sending and receiving re-
quests. I easy to see why: a device supporting millions of
10 h raction of a d

tion with an b

ne
time interval that allows for fewer than 10 cross-core cache
. and is comparable to the latency of a single

that MQFQ can reach up to 3.1 Million IOP/s on a single
achi higher than the f-the-art Linux By
‘get Fair Queueing. Compared to a system with no faimess,
MQFQ reduces the slowdown caused by an antagonist from
3.78x to 1.3 for the FlashX workload and from 6.57x to
1.03x for the Aerospike workload (2x is considered “fair”
slowdown).
1 Introduction
Recent years have seen the proliferation of very fast devices
for 10, networking, and computing acceleration. Commod-
ity solid-state disks (e.g., Intel Optane DC P4800X [22] or
Samsung PM1725a [38]) can perform at or near a million
T/O operations per second. System-area networks (c.g.,
finiBand) can sustain several million remote operations per
link [25]. RDM.

inter-processor interrupt (IPY). Serializing requests at such
high speeds is infeasible now, and will only become more
50 as device speeds continue to increase while single-core
o tays relatively flat. As a result, d b
concluded that conventional fairshare /O schedulers, includ-
ing fair queucing approaches [35, 401, which reorder requests
in a single queue, are unsuited for modern fast devices,
Unfortunately, by cutting out the OS resource scheduler,
direct mult-queue device access undermines the OS's tradi-
tional responsibility for faimess and performance isolation.
While 1O devices (c.g., SSD firmware, NICs) may multiplex
hardware queues, their support for faimess is hampered by
their inability to reason in terms of system-level policies for
resource I , virtual machines, or Linux

USENIX Association

2019 USENIX Annual Technical Conference 301

Rearchitecting Linux Storage Stack for us Latency and High Throughput

Rachit Agarwal
Comnell University

Michael Roitzsch, Hermann Hiirtig

torg

1 computer
hed storage.
ges to real-
en existing
out it either
3,17, 19]
ather than
fat state-of-
Jussing on
ort for real-

neasures to

Of real-time
‘he concept
eduler [20]

onstraining
e in order

lached stor-
on 11). One
s no longer

{hor O quaves.

3 Linux’s per-
-queue storage
K conceptually

it has emerged
and hardware.
y applications
Ve show that it
gLinux, even
ns at through-

[thatis needed

ehitecture for
switchis that
‘ombined with
fare [8], makes
vork switches
witch adapts
King lierature
essing of indi-
+ network con-
storage stack.

sntation 113

Ee—

block layer of
tkes three steps
ing (Figure 12).
/O scheduling
1¢ layer. When-
faimess), some
) the storage de-
fons incur high
performance
‘h-performance
CPU, many ap-
data structures
1. With consid-
§, reducing the
eduling is also

a device is an
1ead while pre-
already widely
1217,23,31,32]
eviceside /0
eduling. Fortu-
gadeviceside
+d round-robin
ority classes of
Jle weight, and
tion during 1O
hallenge is that
Iy schedule YO
10 characteris-
ent 1O request

t fair queueing
he three queue
/0 processing
1 D2FQ selects
) request to the
election policy

nologies 403

E—

The Linux I/O Schedulers

D2FQ: Device-Direct Fair Queueing for NVMe SSDs

Jaehyun Hwang
Cornell Universitv

Till Miemiet7, Hannes Weisbach

Operating Systems Group

Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong
Sunglyunkwan University

Rearchitecting Linux Storage Stack for us Latency and High Throughput

Multi-Queue Fair Queueing

Kai Shen
Google

Mohammad Hedayati
University of Rochester

Abstract
Modem high-speed devices (c.g., network adapters, storage,
accelerators) use new host interfaces, which expose multiple
software quenes directly to the device. These multi-queue in-
terfaces allow mutually distrusting applications to access the:
device without any cross-core interaction, enabling through-
put in the order of millions of IOP/s on multicore systems,
Unfortunately, while independent device access is scalable,
italso introduces a new problem: unfaimess. Mechanisms
that e used to provide firmess for older devices are no

g

d d straight-

o re-ntroduce it would
synchronization that undermines e scalability for which
‘multiple quenes were designed.

To address these challenges, we present Multi-Queue Fair
Queueing (MQFQ), the frst far, work-conserving scheduler
suitable for multi-queue systems. Specifically, we (1) reformu-
late classical fa queueing algorithm to accommodate multi-
queue designs, and (2) describe a scalable lmpl:mznmmn

that P unfairness -
ication vethead. Our mplementation of MQFQ in Linux
.15 demonsstes both firessand bigh throughput. Evalua-

tion with an NVMe over RDMA
that MQFQ can reach up to 3.1 Million I0P/s on & :mgle

er than the state-of-the-art Linux Bud-
get Fair Queueing. Compared to a system with no faimness,
MQFQ reduces the slowdown caused by an antagonist from
378 t0 1.3 for the FlashX workload and from 6.57x to
1.03 for the Aerospike workload (2x
slowdown).
1 Introduction

ntyears e e the rofferaton of vy st devices
for 1O, networking, n. Commod-

considered “fair”

ity solid-state disks (c.g, el Optane D PitonR 2o

Midhul Vuppalapati ~ Simon Peter Rachit Agarwal
Cornell Universitv UT Austin Comnell University
K2: Work-Constraining Scheduling of
NVMe-Attached Storage
Michael Roitzsch, Hermann Hirtig
Barkhausen Institut | =
- e o kema.
-
Michael L. Scott Mike Marty
University of Rochester Google L;n::?::: . iml,& -
foom, [esores
g
Jut it either
ic within a few microseconds. GPUs and machine learning. :mgd}:’! |}
accelerators may offfoad computations that run just a fewmi- o 10 ithas emerged
croseconds ata time [30]. At the same time, the proliferaion. o Gy ad hardware
of multicore processors has necessitated architectures tuned. . applications
for independent /O across multiple hardware threads [4, 36]. Me device Ve show that it
‘These technological changes have shifted performance bot- ~rastructure g Linux, even
tlenecks from hardware resources to the software stacks that differences ins at through-
‘manage them. In response, it s now common to adopt a mulfi- chnologies. w latency and
queue architecture in which each hardware thread owns a 1o control fied even when
dedicated /O queue, directly exposed to the device, giving E: ources at each
it an independent path over which to send and receive re- Je kernel stack.
quests. Examples of this architecture include multi-queue putany modifi-
SSDs [22, 38, 50] and NICs [42], and software like the rdware, kernel
‘Windows and Linux NVMe drivers, the Linux multi-queve. | that is needed
block layer [5], SCSI multi-queue support [8], and data-plane.
OSes [4, 36]. A recent study [51] demonstrated up to 8x fchitecture for
‘performance improvement for YCSB-on-Cassandra, using Bt s tht
‘multi-queue NVMe instead of single-queue SATA.
feasures to ©ombined with
To support the full bandw(dlh of modern devices, multi- 8], makes
quece 1O syst designed to incur no cach f real-time vork switches
traffic in the common case when sending and receiving re- he concept i tch adapts
quests. It's easy to see why: a device supporting millions of eduler [20] king literature
10m fction of 4 nd load is essing of indi-
time interval that allows for fewer than 10 cross-core cache Butinstead | pegwork con-
- latency of a single: lements gorage stack.
inter-processor interrupt (IPI). Serializing requests at such Dnstraining -
high speeds is infeasible now, and will only become more in ord
s0 as device speeds continue to increase while single-core. shead of a
‘performance stays relatively flt. As a result, designers have entation 113
concluded that conventional fair-share /O schedulers, includ-
ing fair queucing approaches [35, 401, which reorder requests. fiched sior- [
in a single queue, are unsuited for moden fast devices. n T1). One
 Unfortunaely, by euting ou the OS resoure schedoler, 20 longer
undermines the OS's tradi-
tional responsibility for faimess nnd performance isolation.
| -

‘Samsung PM1725 [38]) can perform at or near a
1/O operations per second. System-area networks (¢..
finiBand) can sustain several million remote operations per

i DMA delivers d fab

In-

‘While 10 devices (e.g., SSD firmware, NICs) may multiplex
hardware queues, their support for fairness is hampered by
their inability to reason in terms of system-level policies for
resource. s (applications, virtual machines, or Linux.

USENIX Association

2019 USENIX Annual Technical Conference 301

block layer of
akes three steps
ing (Figure 12).
/0 scheduling
he layer. When-
faimess), some.
) the storage de-
fons incur high

3 performance
-performance
CPU, many ap-

data structures
1. With consid-
5, reducing the.
eduling is also

2 device is an
head while pre-
already widely
18[7,2331,32)
evice-side 10

uling. Fortu-
ga deviceside
+d round-robin
ority classes of
Jle weight, and
tion during /0
hallenge is that
ly schedule /O
10 characteris-
ent O request

fair queucing

1 D2FQ selects
) request to the
election policy

nologies 403
B—

No plug-and-play implementations.
The most available 1/0 schedulers?

Linux 1/O schedulers!

The Linux I/O Schedulers

D2FQ: Device-Direct Fair Queueing for NVMe SSDs

Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong
Sungkvunkwan University

Rearchitecting Linux Storage Stack for ys Latency and High Throughput

Jachyun Hwang Midhul Vuppalapati ~ Simon Peter Rachit Agarwal
Comnell University Cornell Universitv UT Austin Comnell University

K2: Work-Constraining Scheduling of s
NVMe-Attached Storage N

Till Miemietz, Hannes Weisbach Michael Roitzsch, Hermann Hiirtig
Operating Systems Growp ~~~~~~ Barkhausen Insttut

P
Multi-Queue Fair Queueing

Mohammad Hedayati ~ Kai Shen Michael L. Scott Mike Marty
University of Rochester Google University of Rochester Google

No plug-and-play implementations.

The most available 1/0 schedulers?

Linux 1/O schedulers!

None
® Least overhead.

e No performance guarantees.

BFQ
® Fair-share between apps.
e Complex, high overhead.

Kyber

® Designed for fast SSDs.

® Balancing between read and
write.

MQ-Deadline

® Issues request with increasing
sector order.

e Soft latency deadlines.

Setup

[fio workloads

g

io_uring interface

—

Linux I/O schedulers

1

6.2 MIOPS

Latency-sensitive
application (L-app)

10 cores

[Application]

A

Throughput-bound
application (T-app)

[Application J

nl

AbA

Research Questions

RQ1: Overhead

[Application |7
, @ ®
 bread(aio_read() Interface submit complete
8 pwrite()Y ' aio_write(v
S POSIX POSIX io uring enter() User[Space
G read/write asynchronous S ernel[Space
2 /0
vV &

generic file read iter()
VES

t bio)

%*submlt bio(struc
lo—gy—> reques

e

ﬂl/lulti-queue
Block Laye

V' 7Y
\ mq-deadline

Sk

d

ts bio_endio()

e queue

SPDK

Iiardmale dispatgh queue

@* nvme_queue_rq(regest)

requst—)nvme command

NVMe dnver .10 .m SQ-C

Q
nvme_proce

ss_cq()

@f interrupt

pair
(

Device

1/0 schedulers
v /

e Latency?
e Throughput?

e

Research Questions

RQ1: Overhead

e Latency?
e Throughput?

RQ2: Scalability

Increasing
[

_App | App || App |

~

{ Linux Storage Stack J

Research Questions

RQ1: Overhead

e Latency?
e Throughput?

RQ2: Scalability

® L-apps.
® T-apps.
® SSDs.

RQ3: Interference

e Read L-app + increasing write T-apps.

|/O scheduler

v

SSDs

RQ1. Overheads

Overhead

Latency of L-apps Throughput of T-apps
2.7% higher

— 400
. 4 36.7% lower
3 O 300
~ h 4
3 N
c 5 200
9 Z
0 B0 100
D o
o) o

l_

None BFQ MQ-DL Kyber None BFQ MQ-DL Kyber

Slightly higher latency, up to 2.7% higher latency.
Significantly lower throughput, up to 36.7% lower.

I/O schedulers — Significantly higher throughput overhead.

RQ2. Scalability

Scalability of L-apps
QD=16

<
)
N

1.00-
o)
(@]
o 0.75
g —— None
g 0.50 —— BFQ
= Kyber
c — MQ-DL
S
@)

0 100 200 300 400

o
(-}

2
(

Latency (us)
Better

Higher workload —higher overhead.

QD=32
1.00
o)
o
a 0.75
Q
>
S 0.50
=
g 0.25
(@)
0.005 100 200 300
Latency (us)
Better
Why?

400

10

Scalability of L-apps: CPU Usage

Comparable
performance

Significantly
higher latency

/1.0()
A single CPU core

is 100% utilized.

CPU usage
o =)
n
S W

0.25 —— None
— BFQ

Kyber

0.00 Q-DL

1 2 4 8 16

QD
When CPU bottlenecked — higher latency overheads.

32 64 128256

11

Scalability of T-apps: 1 SSD vs. 8 SSDs

1SSD
750 —
n
a
o
5
Q
<
2250 » T
g N ONE Kyber
— 0 mtmmBFQ === MQ-DL

o1 3 5 7 9 11 13 15
Number of processes

Big gap of scalability on throughput between different 1/O schedulers.

12

Scalability of T-apps: 1 SSD vs. 8 SSDs

1SSD 8 SSDs

— 4
750 = = ———
n o
S 2
£ 500 2
s 52
Q Q
o /M—H—o—« <=
%‘3 250 %D 1
= N ONE Kyber = i\ ONIE Kyber
— 0 mtemBF(Q === MQ-DL | = mttmmmBF(Q === MQ-DL

b1 3 5 7 9 11 1315 01 3 5 7 9 11 13 15
Number of processes Number of processes

Big gap of scalability on throughput between different 1/O schedulers.

More devices — better scalability.

12

Scalability of T-apps: 1 SSD vs. 8 SSDs

1SSD
N
o
< 500 } What cause this scalability issue?
=
Q.
i
80250
g N ONE Kyber
= . e BF(Q === MQ-DL

o1 3 5 7 9 11 13 15
Number of processes

12

Scalability of T-apps: CPU Usage

10
8
)
% 6
5
= 4 —~=
) : . ; —
2 s\ O1NE Kyber
=B F(Q === MQ-DL
0

o1 3 5 7 9 11 13 15
Number of processes

The scalability issues are caused by high CPU contention.

13

Lock Overhead of I/O Schedulers
155D 8 SSDs

p—
-
-

—fy 78.0%

Kyber
s MQ-DL I

~]
()

[\
W

Lock overhead (%)
)
S

S

Number of processes Number of processes
BFQ and MQ-Deadline — high CPU lock overhead.

Adding devices mitigates the lock overhead.

January, 2024: Identified by the Linux kernel developers®™,

I 2 3 4 5 10 15 1 2 3 4 5 10 15

25

%

RQ3. Taming I/0 Interference

15

1 L-app (R) + Increasing T-apps (W)

Foreground

(Read)

L-app
4
KB

—

+

Background

P
A
pa

erte T-a pp

64
KB

128x

I
Increasing

16

1 L-app (R) + Increasing T-apps (W)

Foreground

(Read)

L-app
4

KB
—

+

Background

P

erte T-a pp

64
KB

128x

I
Increasing

P99 latency (ms)

400

o
-
-

200

100

0

s\ O1NE Kyber
=B FQ === MQ-DL

0 1 2 4 8 16 32
Number of T-app (64KiB)

BFQ and Kyber — low latency for the foreground L-app.

16

Conclusions

RQ1: What is the overhead of Linux I/O schedulers?

e Minor latency overhead.
e Significantly throughput overhead.

Throughput (KIOPS)

Throughput of T-apps

36.7% lower

None BFQ MQ-DL Kyber

RQ2: What is the scalability of Linux I/O schedulers?

® Latency — depends on CPU.

e Throughput, BFQ and MQ-DL — high lock contention.
® Throughput, Kyber — good, similar to None.

RQ3: Can the Linux I/O schedulers tame 1/O inference?

e Only BFQ and Kyber can 7o M.
provide bounded performance. /

0 1 2 4 8 16 32
Number of T-app (64KiB)

QD=32

o 100 e
<

8 075

[

2

£ 050

E

E 025

o

0.00 =0

Latency (ps)

400

'S

3.42 MIOPS

w

2.67 MIOPS|

1.90 MIOPS|

1.26 MIOPS|

&)

ughput (MIOPS)

o —

Thro

I3 5 7 9 11 13 15
Number of processes

17

Take-Home Messages

1. 1/O Schedulers can influence the performance significantly.
None has the lowest overhead and highest scalability.
BFQ has the highest overhead and lowest scalability.

2. Different schedulers have different locking and scaling overheads.
BFQ = MQ-Deadline > Kyber > None.

3. Use Kyber to prioritize foreground reads with background writes.
HotCloudPerf’24 A Systematic Configuration Space Exploration of the
Linux Kyber 1/0O Scheduler
==

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24 io_scheduler study_artifact

18

https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

Thank you!
Questions?

Paper: https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
Source code: https://github.com/ZebinRen/icpe24 io_scheduler study_artifact

19

https://atlarge-research.com/pdfs/2024-io-schedulers.pdf
https://github.com/ZebinRen/icpe24_io_scheduler_study_artifact

Resources

Images used:

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1tObw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.storagereview.com/review/intel-x25-v-ssd-review-40gb

References

[1] Till Miemietz, Hannes Weisbach, Michael Roitzsch, Hermann Hartig: K2: Work-Constraining Scheduling of
NVMe-Attached Storage. RTSS 2019: 56-68

[2] Mohammad Hedayati, Kai Shen, Michael L. Scott, Mike Marty: Multi-Queue Fair Queuing. USENIX Annual Technical
Conference 2019: 301-314 2018

[3] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, Rachit Agarwal: Rearchitecting Linux Storage Stack for ps
Latency and High Throughput. OSDI 2021: 113-128

[4] Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong: D2FQ: Device-Direct Fair Queueing for NVMe SSDs. FAST
2021: 403-415

[5] https://www.phoronix.com/news/BFQ-10-Better-Scalability

[6] https://www.phoronix.com/news/MQ-Deadline-Scalability

20

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1t0bw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand
https://www.storagereview.com/review/intel-x25-v-ssd-review-40gb
https://www.phoronix.com/news/BFQ-IO-Better-Scalability
https://www.phoronix.com/news/MQ-Deadline-Scalability

Resources

Linux 1/O schedulers

1. BFQ (Budget Fair Queueing) https://www.kernel.org/doc/html/latest/block/bfg-iosched.html

2. Two new block I/O schedulers for 4.12 https://lwn.net/Articles/720675/

3. Deadline 10 scheduler tunables
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20g0al%200f%20the%20deadline,value%20in%20units%200f%20milliseconds.
4. BFQ 1/0 Scheduler For Linux Sees Big Scalability Improvement https://www.phoronix.com/news/BFQ-10-Better-Scalability

5. MQ-Deadline Scheduler Optimized For Much Better Scalability

New I/O schedulers

1. Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A Host Interface I/O Scheduler for Solid State Disks.
ISCA 2014.

2. Mingyang Wang and Yiming Hu. An I/O Scheduler Based on Fine-Grained Access Patterns to Improve SSD Performance and Lifespan. In Symposium on
Applied Computing, SAC 2014.

3. Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. vFair: Latency-Aware Fair Storage Scheduling via per-10 Cost-Based
Differentiation. SoCC 2015.

4. Jiayang Guo, Yiming Hu, Bo Mao, and Suzhen Wu. Parallelism and Garbage Collection Aware 1/0 Scheduler with Improved SSD Performance. IPDPS
2017.

5. Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for Providing Fairness and High Performance in SSD Devices. IMCOM 2017.

6. Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. Multi- Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX
ATC 2019.

7. Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Hartig. K2: Work-Constraining Scheduling of NVMe-Attached Storage. RTSS 2019.

8. Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. Rearchitecting Linux Storage Stack for us Latency and High Throughput. OSDI
2021.

9. Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. D2FQ: Device- Direct Fair Queueing for NVMe SSDs. FAST 2021.

10. Jieun Kim, Dohyun Kim, and Youjip Won Fair 1/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory.
HotStorage 2022.

11. Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. Do We Still Need 1/0 Schedulers for Low-Latency Disks?. HotStorage 2023.

https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://lwn.net/Articles/720675/
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds
https://www.phoronix.com/news/BFQ-IO-Better-Scalability

Backup Slides

30

CPU or NVMe SSD, What is the Bottleneck?

750

)
-
-

)
D
—

Average latency (us)

===] proc
=== DIOC
4 proc

| =3 proc

256 236

0

To saturate a SSD:

200

400 600 800

Throughput (KIOPS)

Multiple 1/O requests
Enough CPU resources — 4 processes

Peak
Throughput

SSD Performance

1,000,

2| —s12—4K —32K
Q:; 2K ——16K

2 500 1632 4 37QKIOPS
) 16

S 250

g |

<

Throughput (KIOPS)

(a) Vary request sizes, 1 SSD.

100 200 300 400

5 1000 — 75 ——4,—1p SPDK

3 ——2p——8p——2p SPDK

2 130 56 56
2

3_.(; 500 774 KIOPS

E)D 128 8
£ 250 y :

z 248 16 Kol

200 400 600 800
Throughput (KIOPS)

(b) Vary # processes with 1 SSD.

’21’000 ——1p—*—4p—=—10p—— 1p SPDK
5 —#—2p—*=8p 16p=+—6p SPDK
> 7150

Q

=

2

kS 500

()

80

8 250

9

<

O—1 % 3 1 5

Throughput (MIOPS)

(c) Vary # processes with 8 SSDs.

32

L-app Scalability

"8 140 None: 77.3 us None: 136.2 s None: 183.3 s - None: 806.9 s

E- BFQ: 79.4 s FQ: 136.2 us FQ: 199.7 us BFQ: 1,155.1 s

0075 Kyber: 78.3 us Kyber: 136.2 us Kyber: 189.4 us None: 276.5 pis Kyber: 1,003.5 us

> MQ-DL: 78.3 us MQ-DL: 136.2 us MQ-DL: 185.3 us BFQ: 329.7 us MQ-DL: 946.2 us

S 0.50 Kyber: 305.2 us

?E, — ggrée MQ-DL: 297.0 us

5 0.25 Kyber

—— MQ-DL
0'000 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400 0 300 600 900 1,200
Latency (us) Latency (us) Latency (us) Latency (us) Latency (us)
(aQD =1 (b) QD = 16 (c) QD =32 (d) QD = 64 (e) QD = 256

Figure 2: Intra-process scalability latency CDFs with increasing queue depth (QD); Note the different x-axis scale for (e).
3 10 None: 77.3 ps None: 205.8 s None: 419.8 yis
= FQ: 84.8 us FQ: 236.5 us FQ: 485.4 us
30.75 Kyber: 78.3 s Kyber: 2263 s Kyber: 456.7 s None: 897.0 us
> MQ-DL: 78.3 s MQ-DL: 218.1 pis MQ-DL: 448.5 pis BFQ: 1,028.1 ps Gne: 3,883.0 s
2050 Kyber: 962.6 pis BFQ: 4,292.6 s
= —— None MQ-DL: 938.0 yis Kyber: 4,227.1 s

—— BF MQ-DL: 4,112.4
8025 o e =
&) —— MQDL
000" 300 600 900 1200 0 300 600 900 1200 0 300 600 900 1,200 0 300 600 900 1200 0 1,000 2,000 3,000 4,000 5000
Latency (us) Latency (us) Latency (us) Latency (us) Latency (us)
(a) 1L-app

(b) 16 L-apps (c) 32 L-apps (d) 64 L-apps (e) 256 L-apps

Figure 3: Inter-process scalability latency CDFs with increasing number of L-apps; Note the different x-axis scale for (e).

33

L-app CPU cost

1.00 1.00
() ()
800.75 800.75
5] 5]
= =
=) 0.50 —— None =) 0.50
: — 5o 5
0.25 Kyber 0.25
—— MQ-DL
000795 4 g 16 32 64128256 200 1 2 4 § 16 32 64128256
QD # processes
(a) Intra-process (b) Inter-process

Figure 4: CPU usage for intra/inter-process concurrency.

34

L-app Scalability Heatmap

601
2561502 555 547 82| 256
50+ 128 128
64 64
] 32 32
30 16 16
8 8
20 4 4
10 2 2
8 1 1

éo"‘\ & "@é\ Q\) éo @@ Q\) %O Q@@ Q\)

(a) 1 core, 1 process (b) 1core,QD1 (c) 10 cores, QD 1

y-axis: QD y-axis: # processes y-axis: # processes
35

SSD Scalability

'—— None |
—«— BFQ 3.42 MIOPS

Lo ﬁ}geﬁL "2.63 MIOPS

1.90 MIOPS——.,

W
[S—
(=]

[\

776 KIOPS

KIOP -
\ ,814/.9%5/‘/
e 1.25 MIOPS
286 KIOPS :

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of SSDs Number of SSDs

CPU usage
S N B~ O

Throughput (MIOPS)

OO

(a) Total throughput (b) Total CPU usage

Figure 9: T-app inter-process scalability (10 cores, 10 concur-
rent T-4KiB-apps) with an increasing number of SSDs.

030 400
L-app g = E300
Interference 2 o = 2200 ,
= =
20.050 —— None Kyber = 100
g BFQ MQ-DL A
0.00 0
’ 0O 1 2 4 8 16 32 0O 1 2 4 8 16 32
Concurrent workloads Concurrent workloads
(a) T-4KiB-app (reads) (b) T-64KiB-app (reads)
400
» 30 "
E E300 /
> >
20
&% ;ﬁ; 200
S oL
o 10 g 100
g - 2
0 O — —_—
0O 1 2 4 8 16 32 0O 1 2 4 8 16 32
Concurrent workloads Concurrent workloads
(c) T-4KiB-app (writes) (d) T-64KiB-app (writes)

Figure 11: L-app tail latency with an increasing number of
interfering background applications; Note: scales differ on
the y-axis and they are in Milliseconds! 37

T-app Interference

10°

N %’/\'\%@s 3 <
210 NE
& !
3 10 None Kyber 3
i= —«— BFQ —— MQ-DL E
=101 101
0 1 2 4 8 16 32 0 1 2 4 8 16 32
Concurrent workloads Concurrent workloads
(a) T-64KiB-apps (reads) (b) T-64KiB-apps (writes)

Figure 12: Read throughput (IOPS) of a T-4KiB-app work-
load with an increasing number of interfering background
T-64KiB-app workload. Note: The y-axis is log-scale.

1 T-app (R) + Increasing T-apps (W)

Foreground

Read T-app

4
KB

128x

J

Background

/Write '{—app
64 128x
KB ﬂj/v

Increasing 101

2

—

—

Throughput (KIOPS)

L R

2

Foreground: Read T-app

s\ O1NE Kyber
mttmBF(Q === MQ-DL

0 1 2 4 8 16 32
Number of T-app (64KiB)

BFQ and Kyber — higher bandwidth for the foreground T-app.

16

Lock in the I/O Schedulers in block/mg-deadline.c

84
85
86
87
88
89
90
91
92
93
94
95
96
97
08
99
100
101
102
103
104
105
106
107

108
100

struct deadline_data {

33

/%
% run time data
*/

struct dd_per_prio per_prio[DD_

/* Data direction of latest dis
enum dd_data_dir last_dir;
unsigned int batching;

unsigned int starved;

/%

*x settings that change how the
*/

int fifo_expire[DD_DIR_COUNT];
int fifo_batch;

int writes_starved;

int front_merges;

u32 async_depth;

int prio_aging_expire;

| spinlock_t lock; I

829
830
831
832
833
834

835
Q2R

572
573
574
915
576
577
578
579
580
581
582

*/

i static void dd_insert_requests(struct blk_mg_hw_ctx xhctx,
828

struct list_head x1list, bool at_head)
{
struct request_queue *xq = hctx—>queue;
struct deadline_data *dd = g->elevator->elevator_data;

spin_lock(&dd->1ock) ;
——re——crrcenpoy e

struct request *rq;

static struct request xdd_dispatch_request(struct blk_mq_hw_ctx xhctx)
{
struct deadline_data *dd = hctx->queue->elevator->elevator_data;
const unsigned long now = jiffies;
struct request xrq;
enum dd_prio prio;

spin_lock(&dd->1lock) ;
= j j requests(dd, now);

if (rq)
goto unlock;

40

Lock in the 1/O Schedulers Reduced lock contention
Dispatch

/* Maps an I/0 priority class to a deadline scheduler priority. */
@@ -600,6 +607,15 @@ static struct request xdd_dispatch_request(struct blk_mg_hw_ctx xhctx)
struct request *rq;
enum dd_prio prio;

/*
* If someone else is already dispatching, skip this one. This will
* defer the next dispatch event to when something completes, and could
* potentially lower the queue depth for contended cases.
*/
if (test_bit(DD_DISPATCHING, &dd->run_state) ||
test_and_set_bit(DD_DISPATCHING, &dd->run_state))
return NULL;

-+
+
+
-+
+
+
+
+
-+

spin_lock(&dd->1lock);
rq = dd_dispatch_prio_aged_requests(dd, now);
if (rq)
@@ -616,6 +632,7 @@ static struct request xdd_dispatch_request(struct blk_mg_hw_ctx xhctx)
}

linux-block/20240118180541.930783-2-axboe@kernel.dk

https://lore.kernel.org/linux-block/20240118180541.930783-2-axboe@kernel.dk/

Lock in the 1/O Schedulers Reduced lock contention

Insertion

+/%
+ x If we can grab the dd—->1lock, then just return and do the insertion as per
+ % usual. If not, add to one of our internal buckets, and afterwards recheck
+ x if if we should retry.
+ x/
+static bool dd_insert_to_bucket(struct deadline_data *dd,
struct list_head *list, int *seq)
__acquires(&dd—>1lock)

struct dd_bucket_list xbucket;
int next_seq;

*seq = atomic_read(&dd->insert_seq);

if (spin_trylock(&dd->1lock))
return false;

if (!test_bit(DD_INSERTING, &dd->run_state)) {
spin_lock(&dd->1ock);
return false;

B

xseq = atomic_inc_return(&dd->insert_seq);

bucket = &dd->bucket_lists[get_cpu() & DD_CPU_BUCKETS_MASK];
spin_lock(&bucket->1lock) ;

list_splice_init(list, &bucket->list);
spin_unlock(&bucket->1ock);

put_cpu();

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fdad1df81@kernel.dk/

42

https://lore.kernel.org/linux-block/ede4179c-8fa5-4496-ac21-4e3fda41df81@kernel.dk/

Lock in the 1/O Schedulers Reduced lock contention

Results

Jobs I0PS Lock contention

null_blk 1090K
nvmeOnl 1070K

With that in place, the same test case now does:

Device Jobs I0PS Contention

null_blk 2250K
nvmednl 2560K

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09

https://lore.kernel.org/linux-block/20240118180541.930783-1-axboe@kernel.dk/?s=09

Who Are We/Am |?

44

