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QoS guarantees

® latency
® Throughput

Up to millions of IOPS
< 10 ps latency




Background: I/O Schedulers
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Why Kyber?
In our previous paper: BFQ, Multiqueue-Deadline, or Kyber? Performance
Characterization of Linux Storage Schedulers in the NVMe Era (ICPE’24)
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The Kyber I/O Scheduler + =777~ < Configuration:
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SSD Performance: Interference
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Write has significant effect on read performance.



SSD Performance: Interference
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Read has less significant effect on write.
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RQ1:
Effects of the configurations on performance
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Read L-app + Write T-app (Read Latency)
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Read T-app + Write T-app (Read Throughput)
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RQ2:
Effect of the configurations with different file systems
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Read L-app + Write T-app, with File System
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All the three file systems can provide lower read latency than the block layer.

Prioritize read — low read latency at the cost of write throughput.
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Read L-app + Write T-app, with File System
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ext4 and xfs: prioritizing read/write —high read/write throughput.

f2fs: prioritizing read — slightly higher read throughput but much lower
write throughput.
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Conclusion

1. What are effects of the Kyber configurations on performance?

e Relative lower target latency — lower latency and higher

throughput.
e Read performance is more sensitive

than write.
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2. What are the effects of the configurations with different file systems?
e ext4 and xfs — similar to using the block layer directory.

e f2fs — prioritizing reads lead to comparable read throughput

than other configurations.
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Take-home Messages

1. Kyber’s configurations, read/write target latency, can be treated as
priority.

2. How much that Kyber’s configuration affect the performance depends
the sensitivity of the requests on concurrency.

3. Kyber’s configuration has different effect on the I/O performance
with different file systems.

Paper: https://atlarge-research.com/pdfs/hotcloudperf24-kyber.pdf
Source code: https://github.com/ZebinRen/hotcloudperf24-kyber-artifact-public
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Thank you!
Questions?

Paper: https://atlarge-research.com/pdfs/hotcloudperf24-kyber.pdf
Source code: https://github.com/ZebinRen/hotcloudperf24-kyber-artifact-public
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Linux I/O schedulers
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Baseline Performance

¢ | Worldoad R TP W TP R P99 Lat | W P99 Lat
(in KIOPS) | (in KIOPS) (in us) (in us)
1 R1 17.0 - 77.5 -
2 R256 364.3 = 793.8 -
3 W1 - 62.3 - 23.1
4 W256 - 70.0 = 15,794.2
5 R1-W1 4.0 65.0 1,879.2 26.8
6 R1-W256 0.3 68.9 15,217.5 15,558.2
7 R256-W1 302.6 61.5 3,044.1 32.1
8 | R256-W256 83.2 93.1 15,283.0 15,938.4

Baseline performance of Samsung 980 PRO SSD with the None scheduler.
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Block Interface: L-app (Read) + T-app (Write)
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Block Interface: T-app (Read) + T-app (Write)
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Performance of the combination of T-app (read) and
T-app (write) with different Kyber configurations.
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FS: R-app (Read) + T-app (Write)
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Performance of the combination of R1-W256 with
different Kyber configurations with file systems.
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T-app (Read) + T-app (Write)
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Performance of the combination of R256—-W256 with
different Kyber configurations with file systems.
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SSD Performance: Asymmetric R/W Performance

Workload Read Throughput Read Latency
(KIOPS) (us)

L-app (R) 17.0 77.5

T-app (R) 364.3 793.8

L-app (R) + L-app (W) 4.0 1,879.2

L-app (R) + T-app (W) 0.3 15,217,5

T-app (R) + T-app (W) 83.2 15,283.0
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