A Systematic Configuration Space
Exploration of the Linux Kyber |/O Scheduler

Zebin Ren, Krijn Doekemeijer, and Animesh Trivedi

VU Amsterdam

WAy
S Q i
_ O ¢ V U UNIVERSITEIT
;—LE"TL“W% CLOUD AR° AMSTERDAM
SERVICES O STARS)

https://atlarge-research.com/ &

https://atlarge-research.com/

Background
m

QoS guarantees

® latency
® Throughput

Up to millions of IOPS
< 10 ps latency

Background: I/O Schedulers

hadeop

User space

Q

Kernel space

Soark

D)

Insert

§g kafka MyuSOL

Glock

layer

Software

1/0 schedulers

Aardware™
queue

Devices

Dispatch

D2FQ: Device-Direct Fair Queueing for NVMe SSDs

Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong
Sungkyunkwan University

Rearchitecting Linux Storage Stack for us Latency and High Throughput

Jachyun Hwang
Conell University

K2: Work-Constraining Scheduling of

Midhul Vuppalapati ~ Simon Peter
Cornell University UT Austin

NVMe-Attached Storage

“Till Miemietz, Hannes Weisbach
Operating Systems Group

Michael Roitzsch, Hermann Hirtig
Barkhausen Instiut

Multi-Queue Fair Queueing

Mohammad Hedayati Kai Shen

Michael L. Scott Mike Marty

Rachit Agarwal

btorg

Ready-to-use
implementation not

available!

Comell University

or 10 quoves

block layer of
s three steps
Ing (Figure 12)
10 scheduling
e layer. When.
faimess), some
e storage de-
ions incur high
) performance

o 4 e 7
rformance improvement for YCSB-on-Cassandra, using [P €S, $NVMe WRR
sl o ysms Syl e () PeoraCs pe 8 lely read BRI e uee
quete designs, and (2)describe a scalable implementation 0 oportth ll badvidh of modem devcs, ol 5% e makes O processing
J | D2FQselects
Wreatme york swiches |
sision oveesd. O mpetionolMQRQin il e comon i W i eSS e biechaign [P0
h quests. I Eler 01 King liratre Hection policy
tion with an NVMe over B loadis ssing ofindi.
08 QR ok p o3 i 0P 0 g e interval thatallows for fewer than 10 cross<ore cache — Butiniad | perork con
machine—20 higher tha the sae-ofthe-at Linux Bud- coberence mises, and i comparable o e ey ofasogle ——mplenenis o o
get Fair Quencing Lompamt 10 system with no faimess, inter-processor interrupt (PI). Seralizing requests at such ptaiing nologies 403
MOFQretos e dowdow cased by nanagons o igh s i e sow o will nly become e i s
3781 1o 1.33x for the FlashX increase thead of s ———— p—
103 for the Aeros mkelnlklwﬂl’x MRl he pubmmndemeiivivka enoeit A Sotaion 113
slowdown). fud-
. (35, 40), reqy lached ior. 7
1 Introduction in asingle queue, are unsuited for modemn fast devices. n). One
Recetjous b e i f e Gty ety b g i ho 03 s, fpaioge
‘Commod- direct ml ‘s radic
ity solid-sate e o s Opne P responsiiltyfo fimess and performance solation.
R—

‘Samsung PM1725a [38]) can perform at or near a million
1O operations per second. System-area networks (¢ In-

‘While 10 devices (¢.g, SSD fimware, NICs) may multiplex.
Bardare gueies, e support for fmess s hampered by

2],

their inabilty

or Linux

USENIX Associaion

2019 USENIX Annual Technical Conference 301

Why Kyber?
In our previous paper: BFQ, Multiqueue-Deadline, or Kyber? Performance
Characterization of Linux Storage Schedulers in the NVMe Era (ICPE’24)

Kyber has

Throughput (KIOPS)

~]
9
)

m N ONE Kyber
mtpmm BE(QQ mee= MQ-DL

Y1 3 5 7 9 11 13 15
Number of processes

Less overhead, better scalability.

00

~J
()

[\
()

Lock overhead (%) _
N
(-}

)

B None
B BFQ

s MQ-DL

1

Kyber

|

AL

2 3 4 5 10 15
Number of processes

Less lock contention.

The Kyber I/O Scheduler + =777~ < Configuration:

Ve
coren "\ // B Yo Read target latency
/ core 0 \\‘ [o Write target latency
> \ 'Latency
" \,hlstogram |
I - = f u d :
< I pdate
1| 5 = ||| O ¥ | vorers |
| o () \ |
\
\ I’ \Tokens /I
\ \
\ / II \ /l Update
/ 7 ® Get token / latency
M /-
7 N\
\\ é Dispatch] \\ // \\
. o 7’ ~ . = = - .
Staging and dispatch S~=- + Traffic
) control
[Device)

Research Questions
4

.
[Applications]JJ

! RQ1: Effects of the configurations on
: I performance?

_ Kyber /

Limites the number
of requests. ~~ l” Update #tokens

T oeviee |

Research Questions
(

:
Applications JJ
) | ’ RQ1: Effects of the configurations on

performance?

File system

. |)
/CE A RQ2: Effect of the configurations with

core 0 different file systems?

i

WKybeﬂ

[Device]

Setup

[fio workloads

g

io_uring interface

—

Linux I/O schedulers

|

Latency-sensitive
application (L-app)

10 cores

[Application]

A

Throughput-bound
application (T-app)

[Application J

0

AbA

SSD Performance: Interference

20000
g 15000 15217.5
)
S 10000 196x
©
(@)
g =000 77.5 879 2

0 24X

L-app (R) +L-app (W) +T-app (W)

Write has significant effect on read performance.

SSD Performance: Interference

40

P99 latency (us)

L-app (W) +L-app (R) +L-app (W)

Read has less significant effect on write.

10

RQ1:
Effects of the configurations on performance

11

Read L-app + Write T-app (Read Latency)

— —\ —3.0
Prioritize—> 10 -2.9> 2.8 .
wiiie — Prioritize read — lower
throughput:E i 25 read latency.
131.3KIOPSZ 9] .
g 2 '
© | 5 15 Cost — lower write
D throughput.
2 0.50;
3 1.0
- 0.25]
©
z 0.10] 0.5
0.05{30 1.8 00
v Q’\/ 6’) ‘\(? (‘DQ \ (\/ 6) .
Lower Q& Q NEANT
Target Write target latency (ms) eroc tﬂﬁ?oughput

Latency - 97%16 KIOPS

12

Read T-app + Write T-app (Read Throughput)

Prioritize
write 100

[a—
-

Read target latency (ms)

0.05

1_
0.50
5 0.25]
0 10

Read throughput

178.5
154.2

00
)
W

175.2

184.8

181.1

QWQ(‘) q:‘)(,)Q\q/(’)

QQQQQ

Write target latency (ms)

Write throughput

0.25

0.05 67.8}

v O 5 Q0 N 9 °> S
QQQQQ Q%Q(’) \9
Write target latency (ms)

Lower target latency — higher throughput.
Read and write have different sensitivity to Kyber configurations.

—7250

200

150

Prioritize

read

13

RQ2:
Effect of the configurations with different file systems

14

Read L-app + Write T-app, with File System

250
200
150
100
50
0

P99 latency (us)

Read P99 Latency

® (50 ps, 20 pys) = (50 us, 100 ms)

/(100

ext4

20 ys) = (100 ms, 100 ms)

xfs

Write Throughput

® (50 us, 20 ps) = (50 ps, 100 ms)
= (100 ms, 20 pys) = (100 ms, 100 ms)

— —_—
[6)] o (&)
o o o

Throughput (KIOPS)

o

All the three file systems can provide lower read latency than the block layer.

Prioritize read — low read latency at the cost of write throughput.

15

Read L-app + Write T-app, with File System

Throughput (KIOPS)

Read Throughput Write Throughput
®m (50 ps, 20 ps) = (50 ps, 100 ms) ® (50 ps, 20 ps) = (50 us, 100 ms)
(1008, 20 ps) 00 ms, 100 ms) Z (100 ms, 20 ps) = (100 ms, 100 ms)
250 O 150
2
200 -
= 100
150 _D%
100 8 50
50 =
|_
0 0

xfs

ext4 and xfs: prioritizing read/write —high read/write throughput.

f2fs: prioritizing read — slightly higher read throughput but much lower
write throughput.

16

Conclusion

1. What are effects of the Kyber configurations on performance?

e Relative lower target latency — lower latency and higher

throughput.
e Read performance is more sensitive

than write.

0 3
glOOxlO 2.9

©100x10%1313

10x103 =

5x103| 125
2x103

1x103

100

500 .
250 50

25

Read target latency (u!

2. What are the effects of the configurations with different file systems?
e ext4 and xfs — similar to using the block layer directory.

e f2fs — prioritizing reads lead to comparable read throughput

than other configurations.

P99 latency (us)

250
200
150
100
50
0

Read P99 Latency

u (50 s, 20 ps) ® (50 ps, 100 ms)
(100 s, 20 ps) = (100 ms, 100 ms)

f2fs

Throughput (KIOPS)

Read Throughput
= (50 s, 20 ps) = (50 ps, 100 ms)
(100 ms, 20 ps) = (100 ms, 100 ms)
250

200
150
100
17

ext4 f2fs

Take-home Messages

1. Kyber’s configurations, read/write target latency, can be treated as
priority.

2. How much that Kyber’s configuration affect the performance depends
the sensitivity of the requests on concurrency.

3. Kyber’s configuration has different effect on the I/O performance
with different file systems.

Paper: https://atlarge-research.com/pdfs/hotcloudperf24-kyber.pdf
Source code: https://github.com/ZebinRen/hotcloudperf24-kyber-artifact-public

18

https://atlarge-research.com/pdfs/hotcloudperf24-kyber.pdf
https://github.com/ZebinRen/hotcloudperf24-kyber-artifact-public

Thank you!
Questions?

Paper: https://atlarge-research.com/pdfs/hotcloudperf24-kyber.pdf
Source code: https://github.com/ZebinRen/hotcloudperf24-kyber-artifact-public

19

https://atlarge-research.com/pdfs/hotcloudperf24-kyber.pdf
https://github.com/ZebinRen/hotcloudperf24-kyber-artifact-public

Resources

Images used:

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1t0bw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz2985-up-to-800gb-of-znand

References

[1] Till Miemietz, Hannes Weisbach, Michael Roitzsch, Hermann Hartig: K2: Work-Constraining Scheduling of
NVMe-Attached Storage. RTSS 2019: 56-68

[2] Mohammad Hedayati, Kai Shen, Michael L. Scott, Mike Marty: Multi-Queue Fair Queuing. USENIX Annual Technical
Conference 2019: 301-314 2018

[3] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, Rachit Agarwal: Rearchitecting Linux Storage Stack for ps
Latency and High Throughput. OSDI 2021: 113-128

[4] Jiwon Woo, Minwoo Ahn, Gyusun Lee, Jinkyu Jeong: D2FQ: Device-Direct Fair Queueing for NVMe SSDs. FAST
2021: 403-415

20

https://www.samsung.com/nl/memory-storage/nvme-ssd/980-pro-pcle-4-0-nvme-m-2-ssd-1tb-mz-v8p1t0bw/
https://www.intel.com/content/www/us/en/products/details/memory-storage/data-center-ssds/optane-dc-ssd-series.html
https://www.anandtech.com/show/12376/samsung-launches-zssd-sz985-up-to-800gb-of-znand

Further Reading

Linux I/O schedulers

1. BFQ (Budget Fair Queueing) https://www.kernel.org/doc/html/latest/block/bfg-iosched.html

2. Two new block I/O schedulers for 4.12 https://lwn.net/Articles/720675/

3. Deadline 10 scheduler tunables
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20g0al%200f%20the%20deadline,value%20in%20units%200f%20milliseconds.
4. BFQ1/0 Scheduler For Linux Sees Big Scalability Improvement https://www.phoronix.com/news/BFQ-10-Better-Scalability

5. MQ-Deadline Scheduler Optimized For Much Better Scalability

New I/O schedulers

1. Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T. Kandemir. HIOS: A Host Interface 1/O Scheduler for Solid State Disks.
ISCA 2014.

2. Mingyang Wang and Yiming Hu. An |I/O Scheduler Based on Fine-Grained Access Patterns to Improve SSD Performance and Lifespan. In Symposium on
Applied Computing, SAC 2014.

3. Hui Lu, Brendan Saltaformaggio, Ramana Rao Kompella, and Dongyan Xu. vFair: Latency-Aware Fair Storage Scheduling via per-10 Cost-Based
Differentiation. SoCC 2015.

4. Jiayang Guo, Yiming Hu, Bo Mao, and Suzhen Wu. Parallelism and Garbage Collection Aware 1/0 Scheduler with Improved SSD Performance. IPDPS
2017.

5. Minhoon Yi, Minho Lee, and Young Ik Eom. 2017. CFFQ: I/O Scheduler for Providing Fairness and High Performance in SSD Devices. IMCOM 2017.

6. Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. Multi- Queue Fair Queuing. In 2019 USENIX Annual Technical Conference, USENIX
ATC 2019.

7. Till Miemietz, Hannes Weisbach, Michael Roitzsch, and Hermann Hartig. K2: Work-Constraining Scheduling of NVMe-Attached Storage. RTSS 2019.

8. Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. Rearchitecting Linux Storage Stack for us Latency and High Throughput. OSDI
2021.

9. Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. D2FQ: Device- Direct Fair Queueing for NVMe SSDs. FAST 2021.

10. Jieun Kim, Dohyun Kim, and Youjip Won Fair I/O Scheduler for Alleviating Read/Write Interference by Forced Unit Access in Flash Memory.
HotStorage 2022.

11. Caeden Whitaker, Sidharth Sundar, Bryan Harris, and Nihat Altiparmak. Do We Still Need 1/0 Schedulers for Low-Latency Disks?. HotStorage 2023. 21

https://www.kernel.org/doc/html/latest/block/bfq-iosched.html
https://lwn.net/Articles/720675/
https://docs.kernel.org/block/deadline-iosched.html#:~:text=The%20goal%20of%20the%20deadline,value%20in%20units%20of%20milliseconds
https://www.phoronix.com/news/BFQ-IO-Better-Scalability

Backup Slides

22

Baseline Performance

¢ | Worldoad R TP W TP R P99 Lat | W P99 Lat
(in KIOPS) | (in KIOPS) (in us) (in us)
1 R1 17.0 - 77.5 -
2 R256 364.3 = 793.8 -
3 W1 - 62.3 - 23.1
4 W256 - 70.0 = 15,794.2
5 R1-W1 4.0 65.0 1,879.2 26.8
6 R1-W256 0.3 68.9 15,217.5 15,558.2
7 R256-W1 302.6 61.5 3,044.1 32.1
8 | R256-W256 83.2 93.1 15,283.0 15,938.4

Baseline performance of Samsung 980 PRO SSD with the None scheduler.

23

Block Interface: L-app (Read) + T-app (Write)

n 100x103 2.
= 3
o 10x10
2 5x10°
L 2x103
(]

— 1x103
S 500
] 250
o 100
Q

2

503

Write target latency (us)

©100%103131.3

3

el 10%x103

2 5x10°

I 2x103

(v}

— 1x103

S 500

s 250

= 100

= 50152.1

Q.00

IREORANAS AN

Write target latency (us)

Performance of the combination of L-app (read) and
T-app (write) with different Kyber configurations.

150

125

100

75

50

25

24

Block Interface: T-app (Read) + T-app (Write)

©w100ms
10ms
5ms
2ms
1ms
500us
250us
100us
50us

Read target latency (u

2.6 178.5
8255 108. 154.2

1754

Write target latency (us)

250
250

200
200

150
150

100 100

50

Write target latency (us)

Performance of the combination of T-app (read) and
T-app (write) with different Kyber configurations.

25

FS: R-app (Read) + T-app (Write)

300 300
%)
2 S
200 2 200
o N
g 2
=100 5100
: é
0~ extd f2fs xfs 0~ extd f2fs xfs
(a) R latency in R1-W256 (b) W throughput in R1-W256

Performance of the combination of R1-W256 with
different Kyber configurations with file systems.

26

T-app (Read) + T-app (Write)

300 300
~ S : T oy Noy ~ & A ~ B (50 us, 20 us) (100 ms, 20 us)
gz E B (50 us, 100 ms) B (100 ms, 100 ms)
@) o
4 200 200
5 =
'?0 100 'g'; 100

ext4 f2fs xfs

f2fs xfs

ext4

(c) R throughput in R256-W256 (d) W throughput in R256-W256

Performance of the combination of R256—-W256 with
different Kyber configurations with file systems.

27

Unused Slides

28

SSD Performance: Asymmetric R/W Performance

Workload Read Throughput Read Latency
(KIOPS) (us)

L-app (R) 17.0 77.5

T-app (R) 364.3 793.8

L-app (R) + L-app (W) 4.0 1,879.2

L-app (R) + T-app (W) 0.3 15,217,5

T-app (R) + T-app (W) 83.2 15,283.0

29

