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ABSTRACT
Data centers have become an increasingly significant contributor to
the global carbon footprint. In 2021, the global data center industry
was responsible for around 1% of the worldwide greenhouse gas
emissions. With more resource-intensive workloads, such as Large
Language Models, gaining popularity, this percentage is expected
to increase further. Therefore, it is crucial for data center service
providers to become aware of and accountable for the sustainability
impact of their design and operational choices. However, reduc-
ing the carbon footprint of data centers has been a challenging
process due to the lack of comprehensive metrics, carbon-aware
design tools, and guidelines for carbon-aware optimization. In this
work, we propose FootPrinter, a first-of-its-kind tool that supports
data center designers and operators in assessing the environmental
impact of their data center. FootPrinter uses coarse-grained opera-
tional data, grid energy mix information, and discrete event simula-
tion to determine the data center’s operational carbon footprint and
evaluate the impact of infrastructural or operational changes. Foot-
Printer can simulate days of operations of a regional data center
on a commodity laptop in a few seconds, returning the estimated
footprint with marginal error. By making this project open source,
we hope to engage the community in the development of method-
ologies and tools for systematically assessing and exploring the
sustainability of data centers.

CCS CONCEPTS
• Hardware → Impact on the environment; Renewable en-
ergy; • Computing methodologies→ Agent / discrete models.
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Figure 1: The energy mix and carbon intensity of the energy
grid in the Netherlands during the month of October 2023
from the ENTSO-E Transparency Platform1. The top graph
shows the energy mix during the month into green and non-
green energy. The bottom graph shows the resulting carbon
intensity of the grid.

1 INTRODUCTION
Climate change is a significant social challenge today, affecting
various aspects of our daily lives [34]. In 2015, world leaders reached
a breakthrough with the Paris Agreement, which aims “to limit the
temperature increase to 1.5°C above pre-industrial levels." [31]. To
achieve this goal, the European Union (EU) has established a 55%
reduction in greenhouse gas emissions by 2030 for all its member
states [12].

Data centers significantly contribute to the global carbon foot-
print [13], accounting for 1% of global greenhouse gas emissions in
2021 [24]. As a result of demands from governments and users [30],
and financial considerations, data center operators have been work-
ing to reduce their carbon footprint. The recent energy price cri-
sis and sustainability efforts (e.g., through green bond emissions)
have made operational expenses a primary cost factor for data
centers [36].

1https://transparency.entsoe.eu/dashboard/show
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So far, data center designers and operators have been focusing
mainly on improving their power efficiency. Data centers already
use more than 1% of the global energy consumption [28], and some
estimate this will rise to as much as 8% in 2030 [3]. Despite the
improvements in energy efficiency, aggregate energy usage has in-
creased in the last 15 years [7]. Moreover, efficiency improvements
have slowed down significantly in recent years [38]. A bigger prob-
lem, however, is that optimizing energy does not directly reduce
the carbon footprint. The carbon emitted by a data center depends
not just on the amount of energy used but also on the type. For
instance, Figure 1 shows how the grid energy mix and its carbon
intensity can change continuously over time.

Reducing the carbon footprint of a data center is a challenging
process. There is no consensus on measuring carbon emissions [19],
and there is a lack of carbon-aware design tools and guidelines for
carbon-aware optimization [18]. These challenges have resulted
in many companies still relying on rule-of-thumb reasoning [4],
which has led to carbon-inefficient practices, such as significant
overprovisioning of resources [20]. Improving the carbon footprint
has been even more difficult for smaller data centers [23], which
often lack insight into tenant workloads and their provided en-
ergy mix. Besides the technical challenges, significant costs are
involved. Data centers operate on a large scale, making experimen-
tation costly and time-consuming. Making uninformed decisions
can also have a significant economic impact. Data center projects
have been stopped in countries like the Netherlands based on vague,
qualitative statements about their potential climate impact2.
In this work, we make three contributions:

(1) We discuss what information data center operators need to quan-
tify and optimize their operational carbon footprint.Measuring
a data center’s energy consumption requires that operators
invest in hardware and software tools. Attributing this to indi-
vidual applications is complex and requires even more tooling.
Therefore, we suggest using coarse-grained execution metrics,
as a convenient yet effective way of assessing the data center’s
energy consumption.

(2) We introduce FootPrinter3, a data center discrete simulator based
on the OpenDC4 framework. FootPrinter takes as input the
hardware configuration of a data center and workload traces
and uses simulation to determine the corresponding energy
footprint. The energy profile is combined with the energymix of
the location region to calculate the operational carbon footprint
of the data center when it runs the given workload.

(3) We validate FootPrinter using a wall-socket energy trace from
SURF, the Dutch national supercomputing center, showing that
the simulated data center has the same energy usage as the data
center running the same workload in the real world.

With FootPrinter, we aim to contribute with a tool for data center
designers and operators to reason about the environmental impact
and associated costs of their infrastructures and plan for appropriate
measures to improve their sustainability.

2https://www.datacenterknowledge.com/meta-facebook/scorned-meta-data-center-
holland-met-all-environmental-standards
3https://github.com/atlarge-research/FootPrinter
4https://opendc.org/
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Figure 2: The average Power Usage Effectiveness (PUE) of 669
data centers from 2007 to 2022 [14]. The dotted line shows
the optimal value of 1.0.

2 BACKGROUND
The carbon footprint of a data center is characterized by two

types of carbon emission: the embodied carbon footprint and the op-
erational carbon footprint. Embodied carbon is the carbon emitted
from manufacturing and production. Operational carbon footprint
is the CO2 emissions caused by energy usage during operations. In
this work, we focus on reducing the operational carbon footprint
of data centers.

2.1 Power Usage Effectiveness
In recent years, much focus has been placed on improving the effi-
ciency of data centers. The most commonly used metric for energy
efficiency is Power Usage Effectiveness (PUE). PUE is calculated
using Equation 1:

𝑃𝑈𝐸 =
𝐸𝑇

𝐸𝐼𝑇
(1)

In which 𝐸𝑡 and 𝐸𝐼𝑇 denote the total energy used by the data
center and the energy used by the IT components of the data center.
In an optimal data center, no energy is required for redundant tasks,
using all energy for the IT equipment doing the computation. This
results in a PUE of 1.0. However, while many data centers have
been able to optimize their PUE, with for instance Google getting
close to 1.1 5, the aggregate energy consumption of data centers
has still increased over the last 15 years [7]. One reason for this
is the rebound effect, which states that if the energy required to
perform a task (and thus its price) decreases, the number of tasks
performed will increase [40]. Another reason is that the rate of
improvement of PUE has slowed down significantly in recent years.
Figure 2 shows the average PUE of 669 data centers during the
period of 2007 to 2022 [14]. While great improvements were made
between 2007 and 2013 (from 2.5 to 1.6), recent years did not bring
any more significant improvements, with the lowest average PUE
of 1.55 being achieved in 2022.

We suggest two possible reasons for this slowdown of improve-
ment. First, as the PUE is already highly optimized, it is becoming
increasingly difficult to optimize it further. Second, the shift to hy-
perscale data centers had a significant impact on the average PUE.
Because this shift is nearly finished, it is unclear where significant
improvements will come from [7].

5https://www.google.com/about/datacenters/efficiency/
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2.2 Carbon Intensity
While PUE is a good metric to determine infrastructure energy
efficiency, it is not taking everything into account. PUE does not
consider the energy efficiency of applications and workloads [43].
PUE also completely ignores the type of energy used. The source
of energy can have an enormous impact on the carbon emitted. In
some cases, energy sourced from renewable sources, such as wind
or solar, can emit up to 20x less CO2 compared to traditional en-
ergy sources, such as coal [22]. The Carbon Intensity of an energy
source defines the amount of carbon emitted per unit of energy
used. Many data centers do, however, not use energy from a single
energy source, but get their energy from the grid. Energy provided
by the grid is often gathered from many different energy sources
with different carbon intensities. The carbon intensity of the grid
is calculated by aggregating the different energy sources in Equa-
tion 2:

𝐶𝐼𝑔 =
∑︁
𝑠∈𝑆

𝐶𝐼𝑠
𝐸𝑠

𝐸𝑔
(2)

In which 𝐶𝐼𝑠 is the carbon intensity of energy source 𝑠 , 𝐸𝑠/𝐸𝑔 is
the share of energy that 𝑠 contributes to the grid, and 𝑆 is the set of
all available energy sources. Green energy is primarily gained from
natural phenomena, such as wind or sunlight. This results in a con-
tinuously changing mix of available energy (see Figure 1). During
this time, the ratio of green and non-green energy varied signif-
icantly. As a result, the carbon intensity of the grid also changes
significantly over time (100 to 400 gCO2/kWh). This means that to
minimize the carbon footprint of a data center, not only the amount
of energy used is important, but also when this energy is used.

2.3 Operational Footprint
The operational carbon footprint is characterized by the carbon
emitted when the system is running. The operational carbon foot-
print can be calculated by combining the carbon intensity of the
data center𝐶𝐼𝑑 (gCO2/kWh) and the operational energy of the data
center 𝐸𝑜𝑝 (kWh) as defined in Equation 3:

𝐶𝑜𝑝 = 𝐶𝐼𝑑𝐸𝑜𝑝 (3)
We assume that the carbon intensity of the energy used by a data

center is proportional to the carbon intensity of the grid (𝐶𝐼𝑑 = 𝐶𝐼𝑔).
Some data centers have special energy contracts providing them
direct access to specific types of energy6. However, these data
centers still have to resort to using energy from the grid, when not
enough energy is available [1]. In this work, we focus on the carbon
footprint of a data center. However, several other metrics for data
center sustainability exist [35].

2.4 Simulation
FootPrinter uses discrete-time simulation to estimate the carbon
footprint of a data center in a time and energy-aware manner. Using
simulation for data center research is not new. Simulators such as
Grid/CloudSim [9], SimGrid [10], and iCanCloud [32] have demon-
strated the ability to simulate complex operations at cluster and data

6https://www.datacenterdynamics.com/en/news/meta-signs-renewable-energy-
deal-in-arizona-with-orsted/
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Figure 3: A method of determining the impact of making
changes to a data center. 1) Determine initial performance, 2)
Change data center infrastructure and/or operations based
on metrics and goals, 3) Determine the performance of the
changed data center, and when requirements are met 4) Con-
solidate the changes in the data center. The red lines highlight
the challenging steps.

center levels. In this work, we use OpenDC, a trace-based discrete
data center simulation framework [29]. OpenDC uses real-world
workload traces to drive simulation. A workload trace describes
when jobs get submitted and their computational requirements.
More advanced workload traces also define their computational
demand over time. OpenDC replays the workload on a specified
data center and allows users to explore "what-if" scenarios. Foot-
Printer uses these features and extends them to compute the energy
required to run the workload on a user-specified data center and
derive its corresponding carbon footprint.

3 PROBLEM STATEMENT
Reducing the carbon footprint of a data center is a challenging

task. Due to a lack of carbon-aware tooling, data center design-
ers and operators need to decide between different options with
limited insight into their effects [18]. Therefore, determining how
to change the data center infrastructure and operations is often a
process of trial and error, in which new experiments are executed
based on the results of previous experimentation until the imposed
requirements are met (see Figure 3). Using a similar approach when
working with data centers is ineffective due to the time, energy, and
monetary costs involved. Collecting energy metrics on the level
of individual servers or server components requires significant
investments in hardware and software, such as power meters for
measurement and software to process data and storage. The more
detailed the information required, the more power meters, storage,
and computing are needed. Furthermore, the energy usage of a data
center can assist the operator in identifying problems and areas of
improvement, such as idle VMs, or inefficient resource management.
It does, however, not provide enough information to determine the
effect of changes made to address the identified problems. This
insight is vital to determine where to invest the available budget
and engineering time. Small real-world experiments followed by
analysis are often used to quantify efficacy (see Figure 3). However,
this feedback loop might be slow because of the long execution
time of experiments, or even unfeasible due to economic reasons.

FootPrinter enables a convenient approach to analyzing and op-
timizing the carbon footprint of a data center. Through the use
of discrete simulations, it allows the user to consider several sce-
narios, keeping costs and operational impact low. FootPrinters’
stakeholders are data center designers, who architect the data center
infrastructure, and operators who run the data center operations.

https://www.datacenterdynamics.com/en/news/meta-signs-renewable-energy-deal-in-arizona-with-orsted/
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We present three use cases that showcase the difficulties faced by
these stakeholders. In the remainder of the paper, we elaborate
on how FootPrinter can currently be utilized to tackle the first
two, while UC-Hardware is utilized to discuss how FootPrinter’s
capabilities can be expanded.
UC-Footprint Operational carbon footprint: Knowing the opera-
tional carbon footprint of a data center is an essential part of
evaluating its effectiveness. Determining the operational carbon
footprint requires knowledge about both the energy usage and
the carbon intensity of the used energy sources. As discussed pre-
viously, properly monitoring energy usage requires specialized
hardware and software.

UC-Location Selecting a location: The location of a data center can
have a big impact on its operational carbon footprint due to the
available energy mix. Choosing the right location is challenging
for both data center designers and operators. Designers need to
decide where to build new data centers. Operators must decide
where to execute submitted jobs when accessing multiple data
centers. In both cases, insight into the effect of location on the
operational carbon footprint is required.

UC-Hardware Selecting hardware upgrades: A designer responsi-
ble for upgrading a data center hardware has to make choices
within a limited budget. With a wide range of hardware op-
tions, deciding what to install can be difficult. To make informed
decisions, designers must understand the impact of hardware
changes.

4 FOOTPRINTER
We propose FootPrinter, an energy-aware discrete data center simu-
lator based on the OpenDC framework. FootPrinter takes as input
the hardware configuration of a data center and workload traces,
and uses simulation to determine the energy footprint. The energy
footprint is combined with the energy mix of the data center’s
region to determine the operational carbon footprint of the data
center during the execution of the given workloads.

Figure 4 shows the architecture of FootPrinter and illustrates
how it could be used by data center operators. Using the FootPrinter
starts at the real data center I . Over time, different workloads 1
are submitted to the servers 2 , and the operations software 3 is
used to decide when, where, and how these workloads are executed.
The activity of the data center is monitored during operations
and recorded. To use FootPrinter, three pieces of information are
required as input data II :
4 Workload traces that describe when jobs are submitted and hard-

ware requirements of each job. The trace also describes the
computational demand over time. FootPrinter is designed to
work with traces of any sample frequency. However, provid-
ing traces with higher frequency will result in more precise
results.

5 Hardware and environment specifications that describe the hard-
ware used by the datacenter. To determine the carbon foot-
print, it is also important to define where a data center is
located.

6 Operational techniques that define how and when jobs are run.
Important factors are the scheduling and resource allocation
policies.

(IV) Output

(II) Input data

(I) Data Center (User)

(III) FootPrinter

Hardware
Specification

Operational
Technique

Event-Driven
Simulation

Workload
Traces

Energy
Sampler

Sustainability
Predictor

4

5

6

A B

C

ServersWorkloads Operations
Software

Sustainability
Report

Performance
Report

D E

1 2
3

Figure 4: A diagram of the FootPrinter functionality. Four
areas are defined: The Data Center which is controlled by
the user I , the input data gathered from the data center II ,
The FootPrinter which simulated the input data III , and the

output IV .

The input data is sent to the FootPrinter to replay. The Foot-
Printer architecture III consist of the following components:

A The Event-Driven Simulator replays the given workload traces
on the given data center configuration. During the run, the
simulator is sampled for performance metrics and energy
usage. The frequency of sampling can be chosen to best fit
the current experiment. Higher frequency will result in more
precision at a cost of increasing the simulation time.

B The Energy Sampler determines the carbon intensity of the
grid while the simulation is run. Whenever the event-driven
simulator is sampled, the carbon intensity of the grid is
needed. The energy mix of the grid is sampled using the
Python API7 of the ENTSO-E Transparency Platform8.

C The Sustainability Predictor aggregates the results of the sim-
ulation into sustainability metrics, such as the total carbon
emitted and the carbon emission over time. These metrics
can be used to determine the operational carbon footprint
of the data center during the workload.

FootPrinter generates two types of output IV . First, the Per-
formance Report D shows the performance of the data center
during the provided workload. Examples of performance metrics
are the time of completion, or average CPU utilization. Next to
the performance of the data center, a sustainability report E is
made. Examples of sustainability metrics are the energy usage, or
the carbon emitted. Designing data centers is a difficult process,
in which often improvements in sustainability are connected to
decreases in performance. FootPrinter reports both sides to provide
the data center operators with a complete insight.

7https://github.com/EnergieID/entsoe-py
8https://transparency.entsoe.eu/dashboard/show
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Figure 5: The Carbon emission of a workload over time,
determined using FootPrinter. Graph 5A shows the power
draw over time. Graph 5B shows the carbon intensity of the
grid during the workload. Graph 5C combines the two other
graphs, showing the carbon emission during the workload.

5 EXPERIMENTS
This section demonstrates how FootPrinter can be used in different
use cases from section 3. The accuracy of FootPrinter is validated
by comparing it to an empirically measured energy usage trace.

5.1 Operational Carbon Footprint
We use FootPrinter to determine the operational carbon footprint of
a data center (UC-Footprint). To illustrate the process, we simulate
a workload trace gathered from the SURF Lisa9 cluster, an HPC
data center in the Netherlands. The workload consists of 7,850 jobs
executed over seven days. The duration of the jobs ranges from less
than an hour to several days. The CPU demand is sampled at a 30-
second interval for each job in the trace. The workload is run on a
data center comprising 277 physical machines. FootPrinter replays
this trace on a mid-range laptop (Intel Core I7-8750H Processor10)
in 10 seconds. This allows for rapid experimentation mentioned in
section 3.

Figure 5 depicts the process of determining operational car-
bon footprint using FootPrinter. Figure 5A shows the simulator-
determined power draw of the data center during the workload,
sampled every 30 seconds. The graph depicts the power draw of the
entire data center. However, FootPrinter can also provide similar
graphs for specific nodes or jobs. The aggregate power draw varies
in the range of 16 to 28 kW. The energy usage at a sample can be
9https://www.surf.nl/en/lisa-computing-cluster-extra-computing-power-for-
research
10https://ark.intel.com/content/www/us/en/ark/products/134906/intel-core-i7-
8750h-processor-9m-cache-up-to-4-10-ghz.html
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Figure 6: The carbon emission during the same workload
simulated executed on the same data center located in four
different locations.

determined by multiplying the power draw and the time since the
previous sample. Figure 5B depicts the carbon intensity of the grid
sampled from ENTSO-E. The difference in carbon intensity dur-
ing the chosen period is significant, ranging between 100 and 400
gCO2/h. Figure 5C depicts the carbon emission during the work-
load. Carbon emission at a sample can be calculated by multiplying
the energy usage at a sample with the carbon intensity. The carbon
emission is primarily influenced by the carbon intensity, due to the
much higher variability in the carbon intensity compared to the
power draw. This demonstrates the importance of measuring the
carbon footprint directly, instead of just energy usage.

5.2 Selecting location
FootPrinter can be used to compare the impact of building or ex-
panding the data center infrastructure in multiple locations (UC-
Location). Figure 6 depicts the effect of the data center location on
its carbon emission. The workload introduced in subsection 5.1 is
replayed on the same data center in different locations. France and
Belgium perform much better than the Netherlands and Germany.
This is because France and Belgium source around half of their
energy from nuclear power plants emitting almost no carbon. The
Netherlands and Germany, however, rely more on energy sources
such as coal, which is very carbon intensive.

5.3 Validation
To quantify the accuracy of our simulator, we compare the power
draw of a workload determined by the simulator, to the real-world
power draw of the same workload. We use the same workload
as used in subsection 5.1. Figure 7 shows the simulated power
draw determined by FootPrinter and the real-world power draw.
We determine the accuracy of the estimation using three different
metrics. Each metric is calculated separately for all points, the
points in which FootPrinter underestimates (underestimation error),
and the points in which FootPrinter overestimates the power draw
(overestimation error).

The first metric of estimation accuracy is the Mean Absolute
Percentage Error (MAPE), a popular measure of the accuracy of
forecastingmethods.MAPE is commonly used to determine forecast
accuracy because of its intuitive interpretation in terms of relative
error [16]. MAPE is a relative error measure that uses absolute
values to keep the positive and negative errors from canceling one
another out [33] and is calculated using Equation 4:

https://www.surf.nl/en/lisa-computing-cluster-extra-computing-power-for-research
https://www.surf.nl/en/lisa-computing-cluster-extra-computing-power-for-research
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Figure 7: The power draw of a data center during a given
workload simulated by the FootPrinter tool compared to the
actual Power Draw of the data center.

𝑀𝐴𝑃𝐸 [%] = 1
𝑛

𝑛∑︁
𝑡=0

|
𝑃𝑡 − 𝑃 ′𝑡

𝑃𝑡
| × 100 (4)

In which 𝑃𝑡 and 𝑃 ′𝑡 are the actual and simulated power draw at
sample 𝑡 and 𝑛 is the number of samples. Comparing FootPrinter
to the ground truth results in a MAPE total error of 3.15%, underes-
timation error of 3.19%, and overestimation error of 2.93%.

The second metric of prediction accuracy is the Normalized
Absolute Differences (NAD). NAD describes the total error of the
prediction divided by the sum of the ground truth and is calculated
using Equation 5:

𝑁𝐴𝐷 [%] =
∑𝑛
𝑡=0 |𝑃𝑡 − 𝑃 ′𝑡 |∑𝑛

𝑡=0 𝑃𝑡
× 100 (5)

In which 𝑃𝑡 and 𝑃 ′𝑡 are the actual and simulated power draw at
sample 𝑡 and 𝑛 is the number of samples. Comparing FootPrinter
to the ground truth results in a NAD total error of 3.17%, underesti-
mation error of 3.22%, and overestimation error of 2.83%.

Finally, we look at the distribution of the errors. Figure 8 shows
the percentage of time points with an error less than the given
threshold. Over half of the points have an error less than 3%, and
93% an error less than 6%.

6 RELATEDWORK
The research community has built many high-quality simulators
that provide a rich set of features to build upon [6, 8]. CloudSim [9] is
the closest to OpenDC, the simulator used in this paper. CloudSim
offers a number of single-feature simulators such as CloudAna-
lyst [39], iFogSim [21], and WorkflowSim [11]. However, the single
focus of these simulators makes it challenging to combine without
extensive engineering. In contrast, OpenDC is a flexible general
purpose simulator that supports various different features. Building
FootPrinter op OpenDC guarenties support for a varied applictions.

Extending simulators to estimate the carbon footprint of a data
centers is not a novel idea. In their paper from 2022, Song et al. dis-
cuss over 100 papers working on data center carbon footprint in the
last ten years, in which 75% used simulators in their experiment [37].
Most of the works discussed extend third party simulators to esti-
mate carbon footprint. The Most popular simulator for this purpose
is Cloudsim [15, 25, 42], but other simulators, such as SimGrid [5],
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Figure 8: The distribution of the error of samples. Each point
represents the percentage of samples with an error less than
the specified threshold.

EcoMultiCloud [2], and iFogSim [41], are also used. Because of the
single-feature nature of the simulators used, most of these tools
are very specialized for their specific purpose. In contrast, Foot-
Printer is more general purpose. Another distinction is that many
tools focus on single green energy sources, such as solar [26, 27],
or wind [17]. FootPrinter is not dependent on any specific type of
energy source.

7 CONCLUSION
This work introduces FootPrinter, a first-of-its-kind tool that uses
simulation to determine the operational carbon footprint of a data
center. FootPrinter replays workload traces to determine the en-
ergy usage and carbon emission during the workload execution.
FootPrinter is designed to work with any trace granularity to make
it accessible to all data center operators. We have validated Foot-
Printer by comparing the simulated energy usage to the real-world
energy usage. FootPrinter can simulate energy usage with a Mean
Average Percentage Error of less than 3.15%.

We discussed three use cases highlighting challenges for data cen-
ter designers and operators who want to evaluate the sustainability
impact of their actions. In this paper, we showed how FootPrinter
can be used to determine operational carbon footprint and compare
data center locations. FootPrinter is an open-source tool and can
be extended to support more use cases and provide more insights.
We are already actively working on supporting hardware upgrades
and their impact on performance and carbon footprint. Addition-
ally, we are working on adding support for more elements that can
influence the energy usage of a data center, such as temperature
and humidity. Finally, while FootPrinter currently quantifies the
operational carbon emissions of a data center, we believe it can be
easily extended to also incorporate embodied carbon emissions.
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