
Future Generation Computer Systems 153 (2024) 84–96

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

ExDe: Design space exploration of scheduler architectures and mechanisms
for serverless data-processing
Sacheendra Talluri a,∗, Nikolas Herbst b, Cristina Abad c, Tiziano De Matteis a, Alexandru Iosup a

a Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
b University of Würzburg, Würzburg, Germany
c Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador

A R T I C L E I N F O

Keywords:
Serverless
Scheduler
Design
Mechanism
Architecture
Performance

A B S T R A C T

Serverless computing is increasingly used for data-processing applications in both science and business
domains. At the core of serverless data-processing systems is the scheduler, which ensures dynamic decisions
about task and data placement. Due to the variety of user, cluster, and workload properties, the design space for
high-performance and cost-effective scheduling architectures and mechanisms is vast. The large design space
is difficult to explore and characterize. To help the system designer disentangle this complexity, we present
ExDe, a framework to systematically explore the design space of scheduling architectures and mechanisms.
The framework includes a conceptual model and a simulator to assist in design space exploration.

We use the framework, and real-world workloads, to characterize the performance of three scheduling
architectures and two mechanisms. Our framework is open-source software available on Zenodo.
1. Introduction

Scientific data analysis [1], business analytics [2], search-based
decision-making [3], and other data-driven workloads with near-inter
active deadlines require their computation to complete within short
time spans. The short duration and the frequently changing quantity
of resources required by these workloads [4] form a natural fit for
serverless computing, which lets users lease only the resources required
for a short period of time [5–7]. Both academia (e.g., funcX [1],
Starling [8]) and industry (e.g., Snowflake [4], Databricks [9]) have
recognized this synergy and have proposed systems to leverage it.

Serverless data-processing systems run their computation on dis-
tributed clusters of virtual machines or containers as nodes and use
remote object storage (e.g., AWS S3, Azure Blob Storage). The data-
processing applications are workflows composed of tasks. A task is a
piece of computation that reads data, processes it, and writes out the
intermediate or output result. The scheduler is a crucial component of
these systems: it directs the tasks to different nodes in the cluster at
the right time, based on resource requirements, locality-awareness, and
other scheduling policies.

A scheduler is defined by its architecture, mechanisms, and the actions
they enable. Architecture refers to how multiple schedulers coordinate
to make resource management decisions [10]. Mechanisms refer to the
set of all inter-component communication and bookkeeping that make
policy enforcement possible [11]. The architecture and mechanisms
enable the scheduler to enact a scheduling policy through actions.

∗ Corresponding author.
E-mail address: s.talluri@vu.nl (S. Talluri).

Actions are resource management and communication decisions like
allocating resources, preempting tasks, and sending completion events
that a scheduler can take to achieve policy goals.

Scheduler architecture and mechanisms can significantly af-
fect serverless system performance. Fig. 1 shows the impact of the
scheduler architecture on interactive data-processing task performance.
The figure depicts the median task slowdown across multiple traces
when using different architectures. The slowdown is the ratio of the
actual task completion time to the ideal completion time. We observe
that the decentralized architecture can result in 2× the amount of task
slowdown than the centralized one. The traces are from the IBM COS
dataset [12], each containing 3 million tasks, and simulated on a cluster
sized to run each trace at 80% utilization. The cluster size ranges from
15 to 31 nodes depending on the trace.

Although much work focuses on policy (algorithm) design for
scheduling, the design of the entire scheduler remains a key but
underserved challenge, e.g.,Which architectures to leverage? Which mech-
anisms to include? Proper exploration of scheduling design space is
challenging. Changing the architecture or adding new mechanisms
requires time-consuming engineering efforts, as in the case of Con-
dor [13] and Borg [14], making design space exploration expensive.
Often the mechanisms, and the actions they enable, are under-specified
and implicit in the system design. The implicitness makes isolating
and modifying them difficult, rendering the systematic exploration
vailable online 15 November 2023
167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2023.11.013
Received 29 June 2023; Received in revised form 5 October 2023; Accepted 13 No
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

vember 2023

https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:s.talluri@vu.nl
https://doi.org/10.1016/j.future.2023.11.013
https://doi.org/10.1016/j.future.2023.11.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.11.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.

d

h
r
W
i
e

a
s
p

e
e

t
p
c
c

d
s
r
a
e
o
o
i
c
p
t
s
w
c

T
u
o
o
i
t

l
c

b
c

Fig. 1. Distribution of median task slowdown (lower is better) per trace when using
ifferent scheduler architecture.

ard [15,16]. Finally, we observe that not all actions in the scheduling
eference architecture [15,17] are available to all schedulers [18,19].
hile some actions can be implemented by changes to local bookkeep-

ng mechanisms in the scheduling policy, many cannot, depauperating
xploration options.
In this work, we address these challenges by proposing ExDe,
framework to systematically and conveniently explore the design
pace of scheduler architectures and mechanisms for serverless com-
uting.

With ExDe, we introduce the concept of a scheduler frame1 to
ncompass all such actions and the architecture and mechanisms that
nable them.

Formally, we define the scheduler frame as the set of all mech-
anisms in the scheduler that enable actions not possible by any
local modification of the scheduler algorithm and policy. In-
stead, a frame requires coordination between multiple scheduler
components.

The host software (e.g., hypervisor, kubelet [20]), the broker, and
he data manager (e.g., Pocket [21]) are examples of scheduler com-
onents. The components are described further in Section 2. Hierar-
hical scheduling and work stealing are examples of mechanisms that
onstitute a scheduler frame.
ExDe uses scheduler frames to allow system designers to explicitly

efine and explore actions that require the coordination of multiple
cheduler components to occur. It comes with various scheduler frames
eady to be used and modeled after the state-of-the-art alternatives
vailable for each design choice. ExDe relies on trace-based discrete
vent simulation [22]. We justify our design choice with the following
bservations. First, existing serverless data-processing systems perform
ther tasks besides scheduling [1,23], and it can be challenging to
solate the impact of the scheduler frame. Using simulation, the user
an evaluate different frames in isolation. Second, many existing ap-
roaches use a limited set of workloads or individual applications in
heir evaluation as it is expensive and time-consuming to evaluate each
ystem on a wide variety of workloads [24]. By resorting to simulation,
e conduct thousands of performance evaluations in a timely and

ost-effective manner.
The use of simulation presents a challenge in terms of validation.

o overcome this challenge, we adopt a two-step approach. First, we
tilize real-world measurements in our network model, which makes
ur simulations more closely approximate the real-world [25–27]. Sec-
nd, we transform our simulation model into an emulated system
mplementation, conduct experiments, and compare the results from
he two systems.

Towards improving the design space exploration process for server-
ess data-processing system scheduler design, we make a three-fold
ontribution:

1 The term is inspired by the structural frame used in construction. The
uilding’s frame cannot change, but the layout and composition of the floors
an. The word framework shares the same etymological roots.
85
Fig. 2. The scheduler frame model differentiated from the mechanism-policy separation
and pluggable mechanism conceptual models. The scheduler frame consists of the
parts of the systems which require multiple components to be changed to enable new
features.

1. We design a conceptual model of scheduler frames (Section 2).
We classify a number of existing scheduler designs into design
frames. The designs we classify include different scheduling
architectures and mechanisms.

2. We design, implement, and validate a trace-driven simulator to
enable design space exploration of scheduler frames for server-
less data-processing systems (Section 3). Our simulator provides
first-class support for inter-component communication enabling
ergonomic scheduler frame implementation.

3. We conduct systematic design space exploration using ExDe
(Section 4). We evaluate representative design frames related to
scheduler architecture, work stealing, and data migration across
different cluster and workload configurations, considering a set
of 54 real-world traces from IBM [12].

We make ExDe open-source and easily extensible to enable practi-
tioners to re-run the experiment as storage and network characteristics
change in the future. It is available at https://zenodo.org/record/
7829151. Our approach ensures that the simulations accurately reflect
real-world scenarios and can be applied in practical computer systems.

2. Conceptual model of scheduler frames

In this section, we describe the motivation behind the conceptual
model, expand on the definition of the scheduler frame, describe sched-
uler components, introduce how frames encompass mechanisms, and
how the conceptual model can help scheduler design.

The flexibility in scheduler design makes it difficult for the system
designer to qualitatively and quantitatively compare different scheduler
designs. The community has tackled this problem for a long time and
has adopted mechanism and policy split as a standard practice [11]
(Fig. 2a). All the components, subsystems (e.g.: containers, caches),
and communication mechanisms which enable the policy to manage
resources are the mechanisms. The policy itself can be split into the
optimization goal we wish to achieve and the algorithm we use for
optimization [41]. However, the comparison and systematization of the
mechanism have received less attention than the algorithms [42,43]
and the policies [44,45].

Mechanisms which can be plugged into the system during run-
time were introduced in OS design in the 1980s with virtual re-
sources [46]. Pluggable mechanisms (Fig. 2b) have been used to enable
programmable caches [47] and scheduler mechanisms such as gang
scheduling [18]. In Fig. 2b, virtual resources such as the cache are used

by the scheduler to schedule tasks. These virtual resources in-turn are

https://zenodo.org/record/7829151
https://zenodo.org/record/7829151
https://zenodo.org/record/7829151

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
Table 1
The components affected and actions made available by different mechanisms. Actions are changes to system state that the mechanisms enable. (DM = Data manager).

Mechanism Components used Implementations Frame actions

Placer(s) Broker Host Client Metadata DM (Not exhaustive)

Architecture ✓ ✓ ✓ Centralized [28,29], decentralized [4,30],delegated [13,31], hybrid [32,33] Pick scheduler,read metrics
Preemption ✓ ✓ Threshold-based [34], fair sharing [24] Migrate
Control-flow ✓ ✓ ✓ Push/pull [35], speculative exec. [36] Pull/push task,rollback state
Data placement ✓ ✓ ✓ Shuffle [27], intermediate data [21] Store, move, etc.
Fault tolerance ✓ ✓ ✓ ✓ Checkpoint [37], retry [38] Recover, retry
Networking ✓ ✓ NetHint [39] Change placement
Barriers ✓ ✓ Gang scheduling [18,40] Reserve hosts
scheduled onto the physical resources. The scheduler can have virtual
resource specific scheduling policies. For example, the cache resource
can have a corresponding eviction policy which is irrelevant to other
resources.

We present the conceptual model of scheduler frames to help the
system designer tackle the difficulty of mechanism design. Comparing
different alternative designs and assessing their fit for the requirements
is integral to the design process. Using scheduler frames, the designer
can compare if two different scheduler designs can support the same
mechanisms. If they cannot, the designer can qualitatively compare
the effort of implementing the necessary features to support additional
mechanisms. This comparison is possible because a scheduler frame can
explicate the actions a design needs to support the desired mechanisms.

2.1. Components of a scheduler frame

We depict an example scheduler model with the scheduler frame
highlighted in Fig. 2c. The scheduler is composed of multiple compo-
nents. The components interact to provide mechanisms related to work-
flow scheduling, data storage, speculative execution, and more. The
figure depicts the frame overlaid on top of the interacting components.
The scheduler frame provides common features and the data model
used by the components to coordinate with each other. Once a frame
is designed and implemented, components can use it to implement
mechanisms.

We describe briefly components in used Fig. 2 and Table 1 here.
Placer (Scheduler): Placer is the part of the scheduler that assigns

application tasks to appropriate resources. In Fig. 2, it is a part of the
scheduler. A scheduler can have multiple placers. In a fully decentral-
ized scheduler, placers might not even interact with each other or only
interact occasionally.

Broker (Scheduler): In some distributed schedulers, placers interact
via a centralized component called the broker. The broker decides
which subset of the resources each placer is responsible for.

Host software: The host software is responsible for interacting with
the scheduler enforcing the scheduler’s decisions on the host. Kubelet
[20] in Kubernetes and different hypervisors are examples of host
software. Host software limits the actions available to the scheduler.
For example, a scheduler cannot implement migration or preemption
without host software which support that feature. The hostlet in Fig. 2
represents the host software.

Client: The client uses the scheduler to schedule applications. It can
provide the scheduler with relevant information for better scheduling.
For example, a client can inform the scheduler of data objects the
application accesses so that the application can be scheduled closer to
the data location.

Metadata: Different scheduler components use the metadata storage
component to store resource state and application state. The Kubernetes
project uses etcd for this purpose. For example, if an application needs
access to a particular system service, the metadata helps locate that
service using its service discovery feature.

Data manager: Application data needs to be tracked, replicated, and
secured even when applications are not using the compute resources.
The data manager keeps inventory of the data objects on each physical
86

node. It moves and replicates the data objects to balance load.
2.2. Scheduler frames in existing systems

Examples of scheduler frames include communication protocols for
interacting between scheduler components, the consistency models the
components use to agree upon data correctness, coordination mecha-
nisms for migration and rollback, etc. The Kubernetes data model is an
example of communication protocols which form the frame. Users can
implement new mechanisms in Kubernetes through operators [48]. The
operators need to make use of the Kubernetes data API to interact with
other Kubernetes components and operators. Even a basic action such
as starting a container requires using the API. The consistency models
used in Omega [49] are another example of a scheduler frame. Omega
explores different consistency models for distributed schedulers. For a
scheduler to effectively enforce its scheduling policies, all components
of a distributed scheduler need to adhere to the same consistency
policy.

The architecture involves implementing the appropriate mechanisms
in the placers, the broker, and the client. Even a decentralized archi-
tecture where the placers do not communicate with each other could
use a broker to coordinate global actions such as node addition and
removal. The control-flow mechanism requires the implementation in
host, placer, and broker. Work stealing requires control-flow support
for hosts to steal tasks from other hosts via the placer. Speculative exe-
cution requires host and place modification [36]. Speculative execution
also requires support from the data manager to read not yet committed
data, commit data of successful speculative executions and rollback
stored data from failed speculation. The data placement mechanism
uses the metadata to estimate the load and object popularity across
different hosts and uses the data manager to migrate data to improve
load balance.

Multiple components need to coordinate and work together for
the mechanisms to function. This is the essence of a scheduler frame.
A policy implemented in just one component, such as the placer or
the host, cannot implement these mechanisms by itself. The policy is
limited in the actions it can perform by the frame. For example, the
host cannot implement pull-based work stealing alone. The placer must
support hosts pulling tasks and remove stolen tasks from other host
queues.

We summarize some mechanisms, systems that implement them,
and the frames requires by them in Table 1. We mark each component
that is modified by one of the systems with a checkmark (✓). We list
the actions made available to the scheduling policy by each mechanism.
Actions are changes to system state that the mechanisms enable.

Using the scheduler frames concept, system designers can system-
atically reason about the actions that will be available to implement
scheduling mechanisms and policies. They can then evaluate the en-
gineering cost of implementing the mechanism and the performance
(throughput, cost, energy, or other metrics) benefit of making the

corresponding actions available.

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
Fig. 3. The process to characterize a scheduler frame.

Table 2
Mechanisms implemented in the ExDe simulator.

ExDe additions Already in OpenDC

Architecture-support Simulator core
Work stealing Scheduling policies
Locality-awareness Preemption
Caching Trace readers
I/O latency models Energy models

3. Simulation-based process for scheduler frame characterization

Evaluating the performance of a scheduler frame requires char-
acterizing the mechanisms that utilize the frame. Implementing all
the mechanisms in a real system can be onerous and cost a lot of
engineering resources. Therefore, we turn to simulation to characterize
and explore different scheduler frames.

Fig. 3 depicts the process a system designer would use to evaluate
a scheduler frame using simulation. We start with a set of workload
traces 1 . The traces are combined 3 with scenarios 2 the designer
wants to characterize to come up with a set of simulations to run.
The distributed simulation runner 4 executes the simulations on a
cluster of machines. Each simulation run consists of three phases.
The simulator 5 is first run with an approximate set of parameters.
The simulator parameters are then calibrated 6 using the results of
the previous simulation to meet system utilization constraints. The
calibration is necessary because different traces require different sized
cluster to achieve the same utilization. Finally, the simulation is run
again with calibrated parameters 7 . The simulation results are then
analyzed by the designer using distributed analysis tools 8 we provide,
or the designer herself develops. The designer uses the analysis results
to configure the scenarios for the next round of the process. The process
is repeated until the designer is satisfied with the results.

We use the Ray [50] framework to implement our distributed
simulation runner. The designer supplies simulation parameters as rows
in a Pandas [51] dataframe. The rows are then converted to command-
line arguments that are passed on to each individual OpenDC simulator
run. We also use Ray and Pandas to implement the tools to analyze
simulation results.

3.1. Implementing scheduler frames in the simulator

We extend the OpenDC simulator [22], implementing a framework
to support scheduler frame characterization. The framework consists of
easily-extensible components and mechanisms that can be combined to
make a scheduler frame. The simulator has constructs to ergonomically
model communication between components. Both the simulator and
ExDe are implemented in the Kotlin programming language.

The user can easily define a new scheduler frame by implementing
the SchedulerFrame interface depicted in Fig. 4. The interface offers
87
Fig. 4. SchedulerFrame Interface Outline.

metadata storage 1 components required by mechanisms such as data
placement and networking. A set of blocking queues 2 is used to rep-
resent asynchronous communications between scheduler components.
Each host server has a queue, but other queues can be created based
on mechanism needs. The select 3 functionality allows a component
to implement multiple strategies for receiving asynchronous communi-
cation from other components. The blocking queues are not FIFO, but
can be used like them. Users can inspect all tasks in the queue, sample
tasks, or specify priorities to implement custom scheduling policies. A
task can be dequeued from any position in the queue. Apart from these
policies, there are local scheduling policies unrelated to communication
that are built into OpenDC.

The getNextTask 4 method is used by the hosts to retrieve the next
task to run. It supports both push-based and pull-based scheduling. The
offerTask 5 method is used by clients to enqueue tasks for scheduling.
All components required to implement a scheduler are injected, and
their interactions are specified in the scheduler frame. The scheduler
frame is also responsible for transferring the task objects to the required
components. All components are provided with a virtual clock which
they can advance on a per-task basis. The time duration a task spends
using a resource is sampled from a user-specified empirical model [52],
linear model [27], or stochastic model [53] (e.g., Pareto distribution).

The scheduler frame interface abstracts away numerous details
necessary for simulation, such as reading the workload trace, writing
the results, warming up the simulator for steady-state execution, the
host model, the network model, and more. Table 2 lists all the compo-
nents and mechanisms we implemented in ExDe and the ones already
available through OpenDC.

With this approach, we enable users to specify accurate storage and
network models to enable the exploration of different cloud computing
paradigms, from virtual machines to serverless computing.

4. Using ExDe to characterize frames for serverless data-proces
sing

We use ExDe to characterize the impact of different scheduler
frames on serverless data-processing systems. The model of the system

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.

r

c
c
i
a

S
c
b
d
g

t
a
t
t
o
p

W
o
s
p

4

t

Fig. 5. Serverless data-processing system model with possible design decisions.

we characterize is depicted in Fig. 5. Data-processing applications are
structured as workflows of tasks 1 . The placer 2 assigns the tasks to
nodes 3 . Tasks read data objects 4 they process from local cache 5 or
emote storage 6 .

In our scheduler frame, we consider the following properties invari-
ant: (i) the local cache is partitioned across nodes; and (ii) the placer is
locality-aware and tries to schedule tasks in a locality-aware manner.
Locality-aware scheduling means that the scheduler knows in which
node an object is likely to be cached and directs tasks accessing that
object accordingly.

The design space that we consider for inclusion in our scheduler
frame consists of the scheduler architecture (centralized, decentralized,
or delegated), work stealing 7 , and data migration 8 .

We characterize the impact of this design space across different
luster sizes 9 and node sizes 10 . We also characterize the impact of
luster scaling (size change) and workload properties like the popular-
ty distribution. Next, we describe in detail the design space outlined
bove.

cheduler architecture. The scheduler architecture affects engineering
omplexity, performance (task execution latency), and scalability (num-
er of tasks it can timely schedule as they arrive). We consider three
esign alternatives: Centralized, decentralized (ring hash), and dele-
ated.

A centralized scheduler consists of a single placer and is the easiest
o implement correctly, but cannot increase scheduling throughput by
dding more placers. When the workload requires more throughput
han can be provided by a centralized scheduler, one can choose be-
ween a decentralized scheduler architecture (e.g.: Snowflake-like [4]),
r a delegated scheduler architecture (e.g.: Atoll-like [31]) with multi-
le centralized placers coordinating using a broker 11 . Out of these two

designs, the decentralized one is easier to engineer than the delegated
one as it requires no coordination between the nodes.

All schedulers we implement use a locality-aware greedy scheduling
policy. Locality-awareness means that the scheduler tries to assign
tasks to a node where the data object required by the task is already
available. The centralized scheduler is aware of the location of all data
objects and the load of all nodes. So, it schedules a task to a node
with the required object, and the least loaded node if the object is not
cached. The delegated scheduler has multiple placers which assign tasks
to nodes. The fraction of nodes managed by each placer are dynamic
and depend on the node of the placer. The node to placer allocation is
balanced every 5 min of simulation time. The decentralized scheduler
uses a consistent hash to always schedule a task requiring a certain
88

m

Table 3
Overview of experiments.

Section Varying
parameters

Fixed
parameters

Metrics

Section 5.1 Cluster size
(utilization)

Workload,
Tasks per node = 4

Slowdown,
storage delay,
wait time

Section 5.3 Tasks per node Workload,
Utilization = 0.8

Slowdown

Section 5.4 Workload
(doubles in size
after half time)

Utilization = 0.8,
Tasks per node = 4

Slowdown,
Resource
usage

Section 5.5 Workload
(Object popularity
distribution)

Utilization = 0.8,
Tasks per node = 4

Slowdown

object to the same node. The object identifier is used as input to the
hash function.

The centralized scheduler is aware of the load of all nodes. In the
delegated case, the placers are aware of the load of the nodes assigned
to them. The broker periodically reallocates the nodes as it is aware of
the load of each placer. The decentralized scheduler is not load aware.
A decentralized load-aware version is possible by using two different
hashes and trying power of two random choices between the output.
But, it would still be unaware of the load of all other nodes.

Schedulers queue tasks at the worker nodes. When multiple placers
in the decentralized scheduler queue tasks at the same worker node,
they are added to the queue. The queue is processed in a FIFO order.

Work stealing. When work stealing is supported by the scheduler, a
node with execute capacity can pull a task from another node’s queue
(e.g., from the node with the largest wait queue) and execute that
task. This allows the nodes to correct scheduling decisions that have
led to the overload of some workers while some others have spare
capacity. This technique leads to reduced task latency at the cost of
extra scheduling logic. Unlike traditional workload stealing, in locality-
aware scheduling the issue of heterogeneous task execution latency is
an issue: the stealing node can execute the task sooner, but the task may
take longer to execute. The increased latency is because the stealing
node does not have the task’s data in the cache, but the original node
likely does.

In a centralized scheduler, whenever a node does not have any tasks
in the queue, the centralized scheduler picks a task from the busiest
node to assign to it. In the delegated scheduler, the empty node contacts
two other schedulers and picks a task to execute from the busiest one.
In the decentralized case, the empty node also contacts two random
schedulers and picks a task from the busiest one.

Data migration. When data migration is supported by the scheduler,
data objects are migrated from busy nodes to idle nodes based on
a trigger. We evaluate three triggers in this work. The global trigger
periodically migrates the most popular objects from busy nodes to
idle nodes till load balance is achieved. The popularity of an object
is computed based on the number of tasks that read the object. The per
task trigger migrates a task based on the time since insertion or last
migration. On timer expiration, the scheduler checks if a node with
a lower load than the object’s current node and migrates the object.
The worksteal trigger can only be used when work stealing is enabled.

hen a task is stolen, it moves the object the task is accessing from the
riginal node to the stealing node. Data migration can lead to increased
torage delay if triggered too frequently. But, with the appropriate
olicy, it can even out load imbalances.

.1. Experiment setup

We run a series of experiments using our simulator to characterize
he impact of the aforementioned design decisions on scheduler perfor-

ance. We choose a realistic network model for the simulation based

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
Fig. 6. The impact of scheduler architecture and operational techniques on performance, represented by the task slowdown per trace, at different system utilization levels. The
lower, the better. Horizontal axes are normalized, while vertical axes use different scales to appreciate differences. The points and whiskers have minor horizontal offset to improve
clarity. The tracemed and tracetail of scenarios ➀, ➁, ➂, and ➃ are represented.
on real-world measurements. For communication with remote storage,
we use an empirical distribution with bandwidth and latency values
from recent work [25,26]. According to Bian and Ailamaki [25], the
median latency to remote storage (AWS S3) is 13 ms and the tail latency
can exceed 1,000 ms. The average read bandwidth is 80 MBps [54]. We
set the latency for communication between components to 1 ms based
on recent characterization of networking between virtual machines [52,
55]. The latency and bandwidth distributions can be changed by the
user, and the characterization rerun, to update the results for the chang-
ing ecosystem. We use the FIFO scheduling policy for all experiments.
In the case of decentralized and delegated architectures, the policy is
local FIFO per placer.

For our simulation, we use 54 real-world traces of data access
patterns from the IBM COS dataset [12]. We use the traces to generate
a simulable trace of task executions. Each simulable trace consists of
3 million tasks executed over three hours. The median task runtime is
100 ms. In total, we run 10,230 simulations for this characterization.
Each simulation ran for approximately 1.5 minutes. All experiments
consumed over 255 h of CPU time. Including the exploratory exper-
iments, and other experiments not analyzed in the paper, the simula-
tions consumed over 1,000 h of CPU time. As running many simulations
is an embarrassingly parallel problem, we parallelized the evaluation
over a cluster of 20 physical machines.

The experiments we run to characterize the design are outlined in
Table 3. We characterize the impact of architecture, work stealing, and
data migration as a function of the varying parameters. All parameters
are configurable and easy to change using command-line arguments.
This allows users to quickly rerun the characterization, and reevaluate
their design decisions with a different set of parameters as their cluster
setup changes.

5. Frame characterization results

Using simulation, we characterize the performance of different de-
cisions that are part of a scheduler frame across different cluster config-
urations (node utilization, node size, and scaling). Table 3 summarizes
the different experiment configurations.

We quantify system performance using the task slowdown metric,
defined as the ratio of the actual execution time of a task over its ideal
execution time. Task slowdown is a ratio and has no units. Because
we use multiple traces, and each trace has its task slowdown distri-
bution, we analyze them using summary metrics representing their
89
distribution. We use the median and the tail latency (99th percentile)
of the task slowdown distribution for each trace. In the following, we
refer to them as the tracemed and tracetail, respectively. We
quantify both the median and the dispersion between the 25th and
75th percentile values of the summary metrics. The dispersion between
the 75th percentile and 25th percentile values is the Inter Quartile
Range (IQR)

The actual execution time of a task is the sum of the time spent
processing, waiting in the scheduler queue (wait delay), and waiting for
remote storage (storage delay). A high wait delay is caused by a load
imbalance across cluster nodes in systems running below saturation
(100% utilization) for most of the experiment duration [56]. All our
experiments meet this criterion. Hence, we use wait delay as a proxy
for the amount of load imbalance in the system. The storage delay is a
proxy for the number of tasks experiencing cache misses and accessing
remote storage. We further investigate the root cause of the slowdown
in-depth for a specific experiment in Section 5.2.

5.1. Impact of utilization-level

One cluster configuration parameter available to the system de-
signer is the number of nodes in the cluster (cluster size). For the same
workload, a lower number of nodes implies higher system utilization.
It is important for the system designer to know which scheduler frames
can help her meet performance objectives at a given utilization. In
this section, we investigate how and why the performance of differ-
ent scheduling frames varies with cluster utilization using simulation.
Cluster utilization is the ratio of time the cluster resources are being
used to the total time they are available. The cluster size used in the
simulation is different for different traces. For results to be comparable,
the different traces are simulated in configurations such that the aver-
age utilization for each simulation is the same. Fixing the utilization
required us to vary the cluster size per trace. The specific cluster size
for a simulation is determined in the calibration phase specified in
Section 3. The cluster size ranges from 15 to 31 nodes.

We consider four scenarios. In scenario ➀ we compare the three
considered scheduler architectures. In scenario ➁ we consider the same
frames but with the work stealing mechanism enabled. Each frame
has an architecture-specific work stealing implementation. Scenario ➂

compares two data migration policies for two frames. We only choose
two because the fully decentralized frame does not support the central

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.

a
s
s
s
p
a
T
w

e
(
h
a
t
a
m
c

o
t
t
d
I
w
d
f
l
d

m
i
t
t
d

i
s
a
d
p
d
s
u

5

f
T

Fig. 7. Normalized delay contribution from wait delay and storage delay for different
architectures. Lower is better.

coordination required for data migration. Finally, in scenario ➃ we
quantify data migration combined with work stealing.

The tracemed and tracetail for all four scenarios considered
re depicted in Fig. 6. For each scenario, the top plot depicts the median
lowdown per trace (tracemed), and the bottom plot shows the tail
lowdown (tracetail) per trace. The horizontal axis in each figure
hows the system utilization, and the vertical axis the task slowdown
er trace. The lines in the plot depict the trend of median tracemed
nd tracetail. The points in the plot are the median measurements.
he whiskers around the median indicate the IQR. The points and
hiskers have minor horizontal adjustments to improve clarity.

Considering scenario ➀, the centralized scheduler exhibits the low-
st median tracemed and the decentralized scheduler the highest
worst) at all utilization levels. The tracemed distribution exhibits
igh IQR for all architectures at high utilization (0.8). The centralized
rchitecture also exhibits the lowest median tracetail for all utiliza-
ion levels up to 0.7. All architectures exhibit high tracetail IQR
t all utilizations. The decentralized architecture exhibits an order of
agnitude worse tracetail performance than the delegated and the

entralized architectures.
Next, in scenario ➁ we look at the impact of the work stealing

perational technique on all architectures. In this case, the median
racemed increases from 2 to 2.5 with work stealing for the cen-

ralized and delegated architectures at utilizations below 0.6. The
ecentralized architecture has the least tracemed. The tracemed
QR at 0.8 utilization decreases significantly for all architectures with
ork stealing. Work stealing significantly impacts the tracetail
istribution of all architectures. The median tracetail decreases
rom 10 to 5 for the centralized and decentralized architectures at
ow utilization (0.5). At high utilization (0.8), the median tracetail
ecreases an order of magnitude for all architectures.

In scenario ➂, we quantify the slowdown of two different data
igration policies. The two policies, global and per task, are described

n Section 4. We observe that the migration policy has no effect on
he tracemed. At high utilization (≥ 0.7), data migration reduces
he median tracetail by an order of magnitude for centralized and
elegated architectures. But, it has no effect on the tracetail IQR.

In scenario ➃, we quantify the slowdown of combining work steal-
ng with data migration. We term this combination mechanism mig-
teal for ease of reference. We use two migration policies, per task
nd worksteal, to represent two ways to combine work stealing with
ata migration. For per task, we combined the per task data migration
olicy (similar to ➂) with a work stealer. For worksteal, we trigger
ata migration on a work steal event. We observe that combining work
tealing with migration does not reduce slowdown any better than just
sing work stealing.

.2. Slowdown attribution

In this section, we analyze the root causes for all four scenarios
rom Section 5.1 of the slowdown for one experiment configuration.
90

he configuration we use is the 0.8 utilization one. We investigate by
Fig. 8. Normalized delay reduction (gain) because of work stealing. Higher is better.

Fig. 9. Normalized delay reduction (gain) because of data migration. Higher is better.

Fig. 10. Normalized delay reduction (gain) because of data migration and work
stealing. Higher is better.

attributing the delay experienced by a task, over its ideal runtime,
into wait delay and storage delay. We find the cause for both the
median value of tracemed and tracetail, and the dispersion. This
attribution helps us understand how well the different frames balance
load among cluster nodes. It also helps us understand how the different
frames navigate the trade-off between better load balance and more
remote storage reads.

Fig. 7 depicts the normalized delay distribution across all workload
traces for the three frames involving only the architecture. The distribu-
tion is depicted for five categories (four quartiles and the tail) for each
frame. The distribution across all workloads is depicted using boxes
and whiskers. The box and whiskers have their usual meaning. The
delay is normalized by dividing the cumulative delay in each category
(quartile/tail) by the number of tasks in that category. We need to
normalize at the tail category has much fewer tasks than the quartile
categories. Normalizing per task makes the tail comparable to the other
categories. We plot the individual quartiles instead of the CDF as each
quartile has measurements for multiple traces. A combined CDF for all
traces would be unreadable.

Figs. 8, 9, and 10 depict the reduction (gain) in delay due to
the frame including mechanisms in addition to the architecture. The
gain is also normalized. The gain is obtained by subtracting the delay
experienced when using mechanism from the delay experienced by the
architectures without any mechanisms. A positive gain is an improve-
ment. A negative gain means the delay worsened. Note that all plots have
a log scale.

Considering scenario ➀ (Fig. 7), we observe that the wait time, and
therefore imbalance, is the leading cause of slowdown at the higher

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.

a
a
m
i

w
n

5

o
p
t
s
T
m
c
s

a
s
r
t
t
p

c

quartiles. We observe that the storage delay has low dispersion, while
the wait delay has high dispersion q3, q4, and the tail. From this,
we can attribute the high IQR we observed for the tracemed and
the tracetail to the wait delay. We observe that the decentralized
architecture experiences an order of magnitude higher tail delays than
the centralized or delegated architectures. A high wait delay is caused
by imbalance. Imbalance causes head of line blocking on the busy
nodes leading to high wait times. The decentralized architecture has
high imbalance because each placer in our implementation of the
decentralized architecture independently makes decisions, either using
consistent hashing, which is sometimes combined with power of two
random choices. Therefore, the placer is not aware of the load across
the cluster and only aware of the node across two nodes in the case of
two random choices.

High wait delay can also be caused by complex scheduling policies
and insufficient scheduler resources. We use a simple scheduler policy
and allocate plenty of resources to the scheduler to control for these
factors in our experiments. We do not further explore the impact of
these factors. But a different scheduler policy can result in different
findings from what we obtain.

In scenario ➁ (Fig. 8), we observe that the decentralized architec-
ture experienced the most gain due to work stealing. The decentralized
architecture experiences gain in all quartiles. This implies that even
lower quartile tasks experience blocking with the decentralized sched-
uler. The centralized architecture and the delegated architectures also
experience gains in the higher quartiles. The negative gain for the cen-
tralized scheduler in the lower quartiles explain the increase in median
tracemed from 2.5 to 3. Work stealing reduces head of line blocking
at the expense of median latency for the centralized architecture.

In scenario ➂ (Fig. 9), we observe that the centralized architecture
benefits from multiple orders of magnitude higher gain than the del-
egated architecture. The gain is highest in the tail. This indicates that
data migration reduces load imbalance, and hence head of line blocking
for the centralized architecture. The median gain for the delegated
architecture is negative, but we see high 75th percentile gains in the
tail. This implies that data migration combined with the delegated
scheduler reduces blocking for some traces, but not others.

In scenario ➃ (Fig. 10), we observe that work stealing combined
with data migration results in gains across all quartiles for both the
centralized and decentralized architectures. The gain for the delegated
architecture is similar to using only work stealing (Fig. 8). The central-
ized architectures see higher gain in the lower quartiles compared to
just using work stealing.

Key takeaways: All architectures exhibit similar performance at
low utilizations. Work stealing improves tail performance by an order
of magnitude in all cases. Data migration is only beneficial with the cen-
tralized architecture. The decentralized architecture, while simple to
implement and horizontally scalable, comes at a performance cost. The
performance cost is greatly reduced by work stealing. The delegated
architecture approaches the performance of the centralized architecture
with work stealing, but requires more implementation effort.

5.3. Impact of node size

The node size refers to the number of tasks a node can process
simultaneously. The system designer can choose to populate her cluster
with a few large nodes instead of many small nodes. In this experiment,
we evaluate the performance spectrum between these two extreme sce-
narios. We evaluate the performance of cluster configurations ranging
from many small nodes with 2 processing slots each, all the way to a
configuration with a few large nodes with 16 processing slots each. The
total number of resources (task processing slots) in the cluster and the
cluster utilization (0.8) remain the same throughout the experiment.
Similar to Section 5.1, the cluster size used in the simulation is different
for different traces to ensure that the utilization is the same for all
91

traces. The specific cluster size for a simulation is determined in the t
Fig. 11. Impact of node size on task slowdown.

calibration phase specified in Section 3. The cluster size ranges from
7, in a scenario with 16 processing slots per node, to 60, in a scenario
with 2 processing slots per node.

Fig. 11 depicts the results of our evaluation under two scenarios:
with and without work stealing. The horizontal axis represent the node
size in number of tasks a node can process. The vertical axis represents
the tracemed and tracetail. We observe that the tracemed de-
creases for all architectures with increasing node size. The tracetail
lso decreases over an order of magnitude for centralized and delegated
rchitectures with increasing node size. It decreases two orders of
agnitude for the decentralized architecture Work stealing can result

n low tracemed and tracetail even at small node sizes. At large
node sizes, all architectures achieve performance close to work stealing,
but without the engineering effort of implementing work stealing.

Key takeaway: Low slowdown, comparable to that achieved with
ork stealing, can be achieved by using a small-sized cluster with large
odes.

.4. Impact of scaling

Changing the number of nodes in a cluster dynamically while it is in
peration, using autoscaling, is a common operation in serverless data-
rocessing clusters. We investigate if different architectures impact the
ask performance after the dynamic scaling operation. We observed
imilar results for doubling the workload and halving the workload.
herefore, we only present results for doubling case. For this experi-
ent, we double the workload intensity halfway through the trace. The

luster is then scaled such that the system utilization after scaling is the
ame as the system utilization before scaling, 0.8 in our case.

Fig. 12(a) depicts the performance of three architecture before and
fter scaling. We observe that there is no significant difference in task
lowdown before and after scaling. Fig. 12(b) depicts the additional
esources required after scaling to maintain the same resource utiliza-
ion. We observe that a median of 4% additional resource are required
o maintain the same resource utilization, and hence obtain the same
erformance.
Key takeaway: We exemplify that scaling the number of nodes ac-

ording to the workload as a valid approach with reasonable overhead
o keep performance stable in a serverless data-processing context.

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.

i
n

5

a
(
t
m
w
𝑥
o

v
c
t
i
o

s
w

e
w
o

Fig. 12. Impact of scaling on task slowdown.

Fig. 13. Impact of object popularity distribution on task slowdown.

Fig. 14. Comparing median and tail task slowdown between a serverless system
mplementation and the simulation, for one trace at 0.8 utilization and 4 tasks per
ode.

.5. Impact of object popularity

Skewed object popularity is present in the real-world traces [12]
nd impacting the resulting performance. In Fig. 13, we plot the median
left) and tail (right) slowdown compared to object popularity skew for
he three architecture variants in comparison. Object popularity skew
easures the fraction of tasks that access the top 1% objects. In other
ords, 0.1 means that 10% of accesses go to the top 1% objects. The
-axis is cut at 0.4 as none of our traces exhibit a higher skew, except
ne outlier trace.

The negative impact on performance for increasing skew value is
isible both in median and tail for all three architecture variants. The
entralized and delegated architectures both cope in a similar way with
he skewed object accesses. With few exceptions but matching expert
ntuition, the decentralized architecture is suffering most from skewed
bject accesses both in median and tail slowdown.
Key takeaway: Centralized and delegated architectures can handle

kewed object popularity better than the decentralized architecture,
hen not using additional mechanisms.
92
6. Validating the simulation

To validate our simulations, we compare the results from one of
our experiments with those from a real-world setup. Specifically, we
compare the task slowdown at 0.8 utilization and 4 tasks per node for
all three architectures. In the real-world setup, we deploy the scheduler
in an OpenWhisk-like [29] serverless system. The system makes a
network call to our scheduler for every scheduling decision. In the real-
world setup, we mock the data processing and the latency to remote
storage with the same parameters we use in the simulation (Section 4).
Mocking the data processing allows us to run more workers than we
have physical cores available. All scheduler components are deployed
on the same physical machine: An Ubuntu 22.04 server with two Xeon
4210R CPUs and 256 GB of RAM. We run 17 workers executing the
tasks and 1 (centralized) to 5 (delegated and decentralized) scheduler
nodes based on the experiment configuration.

Generally, we notice the real-world experiments have a much higher
overhead per task than we modeled in the simulator. We believe these
overheads in the real system can be reduced using busy polling, a
thread per core architecture, and a better OS scheduler [16]. Nev-
ertheless, the overheads we observe are representative of deployed
systems that are not highly optimized. We plan to add models for
these systems with higher overheads to the simulator. We also noticed
queue build-ups when we receive task completion acknowledgment in
the load generation application. Therefore, for now, we separate the
acknowledgments from load generation. We plan to investigate this
further.

Fig. 14 compares the serverless system results with the simulation
results for the same trace. In the right plot (logarithmic scale), we
observe that the high tail slowdown of the decentralized architecture in
simulation is also matched by the serverless system. The tail slowdown
is 16% lower for the centralized architecture in the serverless system.
On the other hand, the tail slowdown is 26% higher in the serverless
system for the delegated architecture. Given the overheads in the
serverless system, we consider results in the same order of magnitude
and a maximum difference of 26% valid for the tail slowdown.

In the left plot, we observe that the centralized architecture expe-
riences a 20% lower median slowdown in the serverless system. The
decentralized architecture experiences a 78% higher median slowdown
in the serverless system compared to simulation. The decentralized
architecture experiences a 26% higher median slowdown. Despite the
differences, we observe that the relative order of performance across
the three architectures remains the same.

Based on the similar performance trend across three architectures
we observe in both the serverless system and the simulation, we con-
sider the results of our characterization indicative of real-world perfor-
mance. A better simulation model that takes into account the consid-
erable overhead of real systems is necessary before the precise perfor-
mance measurements from the simulator can be used in a real-world
setting.

7. Threats to validity

Incomplete conceptual model: We demonstrated that the scheduler
frame conceptual model covers architectures and six different mech-
anisms in Section 2. But, there is no proof that the conceptual model
is complete and exhaustive. We define a frame as the set of mecha-
nisms which cannot be implemented without communication between
scheduler components. The communication constraint is only a nec-
essary condition and not sufficient. Our model does not cover spe-
cific bookkeeping and implementation changes should be made to the
components.

Simulator validity: We use traces and realistic parameters for our
xperiments. We also validate one of our experiments by comparing
ith the results of a real-world emulation. But, the results we obtain are
nly indicative of real-world performance. A better network model and

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
a sensitivity study of the network-related parameters would improve
the applicability and generality of our results.

Other scheduling policies: We characterize three scheduler architec-
tures and two mechanisms. But, our characterization uses only the FIFO
scheduling policy. Scheduling policies have a major impact on system
performance [24]. Other, more sophisticated, scheduling policies can
lead to increase or decrease in the performance gap between different
architectures and can even result in an inversion in the performance
ranking. Our framework can be used to evaluate different scheduling
policies across multiple architectures quickly and consistently.

8. Related work

Simulation: Closest to our work are existing simulators like Cloud-
Sim [45], GangSim [44], and OpenDC [22]. CloudSim has been par-
ticularly successful with its many extensions for fog computing [57],
data placement [58], fault tolerance [59], energy awareness [60], and
more. These extensions indicate that adding new architectures and
mechanisms to simulators like CloudSim required significant effort.
We propose the conceptual model of scheduler frames to reduce this
effort. We enable easier scheduler mechanism design and exploration
by providing first-class support for inter-component communication in
our conceptual model and our simulator.

Systematic characterization: Ahmad and Kwok performed one of the
early characterization of task graph scheduling algorithms [42]. But,
they do not consider multiple architectures and mechanisms. Serverless
scheduling [24] and multi-core scheduling [16] have been systemati-
cally characterized recently. Both studies use the centralized scheduler
architecture. Both characterize task placement policies and resource
allocation policies. We characterize multiple scheduler architectures,
and the work stealing and data migration mechanisms. Work stealing
proved to be a successful mechanism for multi-core scheduling [16],
just like it did for serverless scheduling in this work.

Scheduler architectures: Many scheduler designs which use different
architectures exist: centralized [28,29], decentralized [4,30,61], dele-
gated [10,13,31], and hybrid [32,33,62]. Each scheduler explores dif-
ferent trade-offs and their ideas were integrated into other schedulers
that succeeded them. We propose a model to integrate the different ar-
chitectures into one conceptual model to ease design space exploration
without building the whole system. All the distributed scheduler papers
explore the impact of distribution on fair resource allocation, which we
do not explore in this work.

Serverless scheduling: Many existing serverless systems using cen-
tralized scheduling [24,29,63–65], but other designs have been pro-
posed [1,31]. Some serverless systems implement work stealing [65,
66], but only for the centralized architecture. We characterize the im-
pact of work stealing across different architectures. Data management
for serverless systems has seen much exploration [21,67–69]. We only
explore the data migration technique, and not others such as fusion and
prefetching.

9. Conclusion

The scheduler is a crucial component in serverless data-processing
systems: its architecture, mechanisms, and their interactions can dra-
matically impact the system’s performance.

In this work, we proposed ExDe, a framework to help system
designers explore the vast design space of scheduler architectures and
mechanisms thoroughly and conveniently. Reasoning on the concept
of scheduler frames, the users explicitly define and explore actions that
require the coordination of multiple scheduler components to occur.
ExDe relies on discrete-event simulation to evaluate different frames in
isolation and conduct thousands of performance evaluations in a timely
and cost-effective manner.

ExDe is open-source and thanks to its interface, can be easily
extended by practitioners, favoring the explorations of other different
variants of schedulers. It is available at https://zenodo.org/record/
93

7829151.
CRediT authorship contribution statement

Sacheendra Talluri: Conceptualization, Software, Investigation,
Validation, Visualization, Writing – original draft. Nikolas Herbst:
Conceptualization, Writing – original draft, Writing – review & editing.
Cristina Abad: Conceptualization, Writing – original draft. Tiziano De
Matteis: Validation, Visualization, Writing – original draft, Writing –
review & editing, Supervision. Alexandru Iosup: Writing, Conceptual-
ization, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We shared a link with the data and code used in the article.

Acknowledgments

This research was partially supported by the EU MSCA Cloudstars
grant. This research was partially supported by the AWS Cloud Credit
for Research program.

References

[1] R. Chard, Y.N. Babuji, Z. Li, T.J. Skluzacek, A. Woodard, B. Blaiszik, I.T.
Foster, K. Chard, funcX: A federated function serving fabric for science, in:
M. Parashar, V. Vlassov, D.E. Irwin, K. Mohror (Eds.), HPDC ’20: The 29th
International Symposium on High-Performance Parallel and Distributed Com-
puting, Stockholm, Sweden, June 23-26, 2020, ACM, 2020, pp. 65–76, http:
//dx.doi.org/10.1145/3369583.3392683.

[2] I. Müller, R. Marroquín, G. Alonso, Lambada: Interactive data analytics on
cold data using serverless cloud infrastructure, in: D. Maier, R. Pottinger,
A. Doan, W. Tan, A. Alawini, H.Q. Ngo (Eds.), Proceedings of the 2020
International Conference on Management of Data, SIGMOD Conference 2020,
Online Conference [Portland, OR, USA], June 14-19, 2020, ACM, 2020, pp.
115–130, http://dx.doi.org/10.1145/3318464.3389758.

[3] K. Rodrigues, Y. Luo, D. Yuan, CLP: Efficient and scalable search on com-
pressed text logs, in: A.D. Brown, J.R. Lorch (Eds.), 15th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2021, July 14-16,
2021, USENIX Association, 2021, pp. 183–198, URL https://www.usenix.org/
conference/osdi21/presentation/rodrigues.

[4] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, T. Cruanes,
Building an elastic query engine on disaggregated storage, in: R. Bhagwan,
G. Porter (Eds.), 17th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, USENIX Association, 2020, pp. 449–462, URL https://www.usenix.org/
conference/nsdi20/presentation/vuppalapati.

[5] E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai, A. Khandelwal, Q. Pu, V.
Shankar, J. Carreira, K. Krauth, N.J. Yadwadkar, J.E. Gonzalez, R.A. Popa,
I. Stoica, D.A. Patterson, Cloud programming simplified: A berkeley view on
serverless computing, 2019, CoRR abs/1902.03383, arXiv:1902.03383.

[6] Serverless: What it is, 2022, https://glossary.cncf.io/serverless/. (Accessed: 10
October 2022).

[7] E.V. Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, A. Iosup, Serverless is more:
From paas to present cloud computing, IEEE Internet Comput. 22 (5) (2018)
8–17, http://dx.doi.org/10.1109/MIC.2018.053681358.

[8] M. Perron, R.C. Fernandez, D.J. DeWitt, S. Madden, Starling: A scalable query
engine on cloud functions, in: D. Maier, R. Pottinger, A. Doan, W. Tan, A.
Alawini, H.Q. Ngo (Eds.), Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, Online Conference [Portland,
OR, USA], June 14-19, 2020, ACM, 2020, pp. 131–141, http://dx.doi.org/10.
1145/3318464.3380609.

[9] Databricks serverless compute, 2022, https://docs.databricks.com/serverless-
compute/index.html. (Accessed: 10 October 2022).

[10] A. Iosup, D.H.J. Epema, T. Tannenbaum, M. Farrellee, M. Livny, Inter-operating
grids through delegated matchmaking, in: B. Verastegui (Ed.), Proceedings of
the ACM/IEEE Conference on High Performance Networking and Computing,
SC 2007, November 10-16, 2007, Reno, Nevada, USA, ACM Press, 2007, p. 13,

http://dx.doi.org/10.1145/1362622.1362640.

https://zenodo.org/record/7829151
https://zenodo.org/record/7829151
https://zenodo.org/record/7829151
http://dx.doi.org/10.1145/3369583.3392683
http://dx.doi.org/10.1145/3369583.3392683
http://dx.doi.org/10.1145/3369583.3392683
http://dx.doi.org/10.1145/3318464.3389758
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://www.usenix.org/conference/osdi21/presentation/rodrigues
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
http://arxiv.org/abs/1902.03383
https://glossary.cncf.io/serverless/
http://dx.doi.org/10.1109/MIC.2018.053681358
http://dx.doi.org/10.1145/3318464.3380609
http://dx.doi.org/10.1145/3318464.3380609
http://dx.doi.org/10.1145/3318464.3380609
https://docs.databricks.com/serverless-compute/index.html
https://docs.databricks.com/serverless-compute/index.html
https://docs.databricks.com/serverless-compute/index.html
http://dx.doi.org/10.1145/1362622.1362640

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
[11] R. Levin, E.S. Cohen, W.M. Corwin, F.J. Pollack, W.A. Wulf, Policy/mechanism
separation in HYDRA, in: J.C. Browne, J. Rodriguez-Rosell (Eds.), Proceedings of
the Fifth Symposium on Operating System Principles, SOSP 1975, the University
of Texas At Austin, Austin, Texas, USA, November 19-21, 1975, ACM, 1975, pp.
132–140, http://dx.doi.org/10.1145/800213.806531.

[12] O. Eytan, D. Harnik, E. Ofer, R. Friedman, R.I. Kat, It’s time to revisit LRU
vs. FIFO, in: A. Badam, V. Chidambaram (Eds.), 12th USENIX Workshop
on Hot Topics in Storage and File Systems, HotStorage 2020, July 13-
14, 2020, USENIX Association, 2020, URL https://www.usenix.org/conference/
hotstorage20/presentation/eytan.

[13] D. Thain, T. Tannenbaum, M. Livny, Distributed computing in practice: The
Condor experience, Concurr. Pract. Exp. 17 (2–4) (2005) 323–356, http://dx.
doi.org/10.1002/cpe.938.

[14] B. Burns, B. Grant, D. Oppenheimer, E.A. Brewer, J. Wilkes, Borg, omega, and
kubernetes, Commun. ACM 59 (5) (2016) 50–57, http://dx.doi.org/10.1145/
2890784.

[15] G. Andreadis, L. Versluis, F. Mastenbroek, A. Iosup, A reference architecture
for datacenter scheduling: Design, validation, and experiments, in: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018, IEEE
/ ACM, 2018, pp. 37:1–37:15, URL http://dl.acm.org/citation.cfm?id=3291706.

[16] S. McClure, A. Ousterhout, S. Shenker, S. Ratnasamy, Efficient scheduling policies
for microsecond-scale tasks, in: A. Phanishayee, V. Sekar (Eds.), 19th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2022,
Renton, WA, USA, April 4-6, 2022, USENIX Association, 2022, pp. 1–18, URL
https://www.usenix.org/conference/nsdi22/presentation/mcclure.

[17] J.M. Schopf, A general architecture for scheduling on the grid, Special Issue of
JPDC Grid Comput. 4 (2002).

[18] R. Bhardwaj, A. Tumanov, S. Wang, R. Liaw, P. Moritz, R. Nishihara, I. Stoica,
ESCHER: expressive scheduling with ephemeral resources, in: A. Gavrilovska,
D. Altinbüken, C. Binnig (Eds.), Proceedings of the 13th Symposium on Cloud
Computing, SoCC 2022, San Francisco, California, November 7-11, 2022, ACM,
2022, pp. 47–62, http://dx.doi.org/10.1145/3542929.3563498.

[19] A.M. Lasa, S. Talluri, A. Iosup, A reference architecture for datacenter scheduler
programming abstractions: Design and experiments (work in progress paper), in:
ACM/SPEC International Conference on Performance Engineering 2023, ACM,
2023.

[20] V.M. Gracia, O.F. Rana, J.Á. Bañares, U. Arronategui, Modelling performance &
resource management in kubernetes, in: C. Jiang, O.F. Rana, N. Antonopoulos
(Eds.), Proceedings of the 9th International Conference on Utility and Cloud
Computing, UCC 2016, Shanghai, China, December 6-9, 2016, ACM, 2016, pp.
257–262, http://dx.doi.org/10.1145/2996890.3007869.

[21] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, C. Kozyrakis, Pocket:
Elastic ephemeral storage for serverless analytics, in: A.C. Arpaci-Dusseau, G.
Voelker (Eds.), 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, USENIX As-
sociation, 2018, pp. 427–444, URL https://www.usenix.org/conference/osdi18/
presentation/klimovic.

[22] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai, J. Burley, J. Bosch, E.V.
Eyk, L. Versluis, V. van Beek, A. Iosup, Opendc 2.0: Convenient modeling
and simulation of emerging technologies in cloud datacenters, in: L. Lefèvre,
S. Patterson, Y.C. Lee, H. Shen, S. Ilager, M. Goudarzi, A.N. Toosi, R. Buyya
(Eds.), 21st IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, CCGrid 2021, Melbourne, Australia, May 10-13, 2021, IEEE, 2021,
pp. 455–464, http://dx.doi.org/10.1109/CCGrid51090.2021.00055.

[23] A. Mahgoub, E.B. Yi, K. Shankar, E. Minocha, S. Elnikety, S. Bagchi, S. Chaterji,
WISEFUSE: Workload characterization and DAG transformation for serverless
workflows, Proc. ACM Meas. Anal. Comput. Syst. 6 (2) (2022) 26:1–26:28,
http://dx.doi.org/10.1145/3530892.

[24] K. Kaffes, N.J. Yadwadkar, C. Kozyrakis, Hermod: Principled and practical
scheduling for serverless functions, in: A. Gavrilovska, D. Altinbüken, C. Binnig
(Eds.), Proceedings of the 13th Symposium on Cloud Computing, SoCC 2022,
San Francisco, California, November 7-11, 2022, ACM, 2022, pp. 289–305,
http://dx.doi.org/10.1145/3542929.3563468.

[25] H. Bian, A. Ailamaki, Pixels: An efficient column store for cloud data lakes,
in: 38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala
Lumpur, Malaysia, May 9-12, 2022, IEEE, 2022, pp. 3078–3090, http://dx.doi.
org/10.1109/ICDE53745.2022.00276.

[26] R.B. Roy, T. Patel, D. Tiwari, Characterizing and mitigating the I/O scalability
challenges for serverless applications, in: IEEE International Symposium on
Workload Characterization, IISWC 2021, Storrs, CT, USA, November 7-9, 2021,
IEEE, 2021, pp. 74–86, http://dx.doi.org/10.1109/IISWC53511.2021.00018.

[27] Q. Pu, S. Venkataraman, I. Stoica, Shuffling, fast and slow: Scalable analytics on
serverless infrastructure, in: J.R. Lorch, M. Yu (Eds.), 16th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2019, Boston, MA,
February 26-28, 2019, USENIX Association, 2019, pp. 193–206, URL https:
//www.usenix.org/conference/nsdi19/presentation/pu.

[28] D.B. Jackson, Q. Snell, M.J. Clement, Core algorithms of the maui scheduler,
in: D.G. Feitelson, L. Rudolph (Eds.), Job Scheduling Strategies for Parallel
Processing, 7th International Workshop, JSSPP 2001, Cambridge, MA, USA, June
94
16, 2001, Revised Papers, in: Lecture Notes in Computer Science, vol. 2221,
Springer, 2001, pp. 87–102, http://dx.doi.org/10.1007/3-540-45540-X_6.

[29] Apache whisk: Open source serverless cloud platform, 2022, https://openwhisk.
apache.org/. (Accessed: 10 October 2022).

[30] A. Fuerst, P. Sharma, Locality-aware load-balancing for serverless clusters, in:
J.B. Weissman, A. Chandra, A. Gavrilovska, D. Tiwari (Eds.), HPDC ’22: The
31st International Symposium on High-Performance Parallel and Distributed
Computing, Minneapolis, MN, USA, 27 June 2022 - 1 July 2022, ACM, 2022,
pp. 227–239, http://dx.doi.org/10.1145/3502181.3531459.

[31] A. Singhvi, A. Balasubramanian, K. Houck, M.D. Shaikh, S. Venkataraman,
A. Akella, Atoll: A scalable low-latency serverless platform, in: C. Curino, G.
Koutrika, R. Netravali (Eds.), SoCC ’21: ACM Symposium on Cloud Computing,
Seattle, WA, USA, November 1 - 4, 2021, ACM, 2021, pp. 138–152, http:
//dx.doi.org/10.1145/3472883.3486981.

[32] V.A. Olteanu, A. Agache, A. Voinescu, C. Raiciu, Stateless datacenter load-
balancing with beamer, in: S. Banerjee, S. Seshan (Eds.), 15th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2018,
Renton, WA, USA, April 9-11, 2018, USENIX Association, 2018, pp. 125–139,
URL https://www.usenix.org/conference/nsdi18/presentation/olteanu.

[33] P. Delgado, F. Dinu, A. Kermarrec, W. Zwaenepoel, Hawk: Hybrid datacenter
scheduling, in: S. Lu, E. Riedel (Eds.), 2015 USENIX Annual Technical Confer-
ence, USENIX ATC ’15, July 8-10, Santa Clara, CA, USA, USENIX Association,
2015, pp. 499–510, URL https://www.usenix.org/conference/atc15/technical-
session/presentation/delgado.

[34] H. Topcuoglu, S. Hariri, M. Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distributed Syst.
13 (3) (2002) 260–274, http://dx.doi.org/10.1109/71.993206.

[35] S. Viswanathan, B. Veeravalli, T.G. Robertazzi, Resource-aware distributed
scheduling strategies for large-scale computational cluster/grid systems, IEEE
Trans. Parallel Distributed Syst. 18 (10) (2007) 1450–1461, http://dx.doi.org/
10.1109/TPDS.2007.1073.

[36] J. Stojkovic, T. Xu, H. Franke, J. Torrellas, SpecFaaS: Accelerating serverless
applications with speculative function execution, in: IEEE International Sym-
posium on High-Performance Computer Architecture, HPCA 2023, Montreal,
QC, Canada, February 25 - March 1, 2023, IEEE, 2023, pp. 814–827, http:
//dx.doi.org/10.1109/HPCA56546.2023.10071120.

[37] S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas, C. McMahon,
C. Meiklejohn, X. Zhu, Netherite: Efficient execution of serverless workflows,
Proc. VLDB Endow. 15 (8) (2022) 1591–1604, URL https://www.vldb.org/pvldb/
vol15/p1591-burckhardt.pdf.

[38] V. Sreekanti, C. Wu, S. Chhatrapati, J.E. Gonzalez, J.M. Hellerstein, J.M. Faleiro,
A fault-tolerance shim for serverless computing, in: A. Bilas, K. Magoutis, E.P.
Markatos, D. Kostic, M.I. Seltzer (Eds.), EuroSys ’20: Fifteenth EuroSys Confer-
ence 2020, Heraklion, Greece, April 27-30, 2020, ACM, 2020, pp. 15:1–15:15,
http://dx.doi.org/10.1145/3342195.3387535.

[39] J. Chen, H. Zhang, W. Zhang, L. Luo, J.S. Chase, I. Stoica, D. Zhuo, NetHint:
White-box networking for multi-tenant data centers, in: A. Phanishayee, V. Sekar
(Eds.), 19th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 2022, Renton, WA, USA, April 4-6, 2022, USENIX Association, 2022,
pp. 1327–1343, URL https://www.usenix.org/conference/nsdi22/presentation/
chen-jingrong.

[40] D.G. Feitelson, L. Rudolph, Gang scheduling performance benefits for fine-
grain synchronization, J. Parallel Distrib. Comput. 16 (4) (1992) 306–318,
http://dx.doi.org/10.1016/0743-7315(92)90014-E.

[41] I. Gog, M. Schwarzkopf, A. Gleave, R.N.M. Watson, S. Hand, Firmament: Fast,
centralized cluster scheduling at scale, in: K. Keeton, T. Roscoe (Eds.), 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2016, Savannah, GA, USA, November 2-4, 2016, USENIX Association, 2016,
pp. 99–115, URL https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gog.

[42] Y. Kwok, I. Ahmad, Benchmarking and comparison of the task graph scheduling
algorithms, J. Parallel Distrib. Comput. 59 (3) (1999) 381–422, http://dx.doi.
org/10.1006/jpdc.1999.1578.

[43] Z. Zhan, X.F. Liu, Y. Gong, J. Zhang, H.S. Chung, Y. Li, Cloud computing resource
scheduling and a survey of its evolutionary approaches, ACM Comput. Surv. 47
(4) (2015) 63:1–63:33, http://dx.doi.org/10.1145/2788397.

[44] C. Dumitrescu, I.T. Foster, GangSim: A simulator for grid scheduling studies, in:
5th International Symposium on Cluster Computing and the Grid, CCGrid 2005,
9-12 May, 2005, Cardiff, UK, IEEE Computer Society, 2005, pp. 1151–1158,
http://dx.doi.org/10.1109/CCGRID.2005.1558689.

[45] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, R. Buyya, CloudSim:
A toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. Pract. Exp. 41 (1) (2011)
23–50, http://dx.doi.org/10.1002/spe.995.

[46] Y. Artsy, M. Livny, An Approach to the Design of Fully Open Computing Systems,
Tech. Rep., University of Wisconsin-Madison Department of Computer Sciences,
1987.

http://dx.doi.org/10.1145/800213.806531
https://www.usenix.org/conference/hotstorage20/presentation/eytan
https://www.usenix.org/conference/hotstorage20/presentation/eytan
https://www.usenix.org/conference/hotstorage20/presentation/eytan
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1145/2890784
http://dl.acm.org/citation.cfm?id=3291706
https://www.usenix.org/conference/nsdi22/presentation/mcclure
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb17
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb17
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb17
http://dx.doi.org/10.1145/3542929.3563498
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb19
http://dx.doi.org/10.1145/2996890.3007869
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
http://dx.doi.org/10.1109/CCGrid51090.2021.00055
http://dx.doi.org/10.1145/3530892
http://dx.doi.org/10.1145/3542929.3563468
http://dx.doi.org/10.1109/ICDE53745.2022.00276
http://dx.doi.org/10.1109/ICDE53745.2022.00276
http://dx.doi.org/10.1109/ICDE53745.2022.00276
http://dx.doi.org/10.1109/IISWC53511.2021.00018
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
http://dx.doi.org/10.1007/3-540-45540-X_6
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
http://dx.doi.org/10.1145/3502181.3531459
http://dx.doi.org/10.1145/3472883.3486981
http://dx.doi.org/10.1145/3472883.3486981
http://dx.doi.org/10.1145/3472883.3486981
https://www.usenix.org/conference/nsdi18/presentation/olteanu
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
https://www.usenix.org/conference/atc15/technical-session/presentation/delgado
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1109/TPDS.2007.1073
http://dx.doi.org/10.1109/TPDS.2007.1073
http://dx.doi.org/10.1109/TPDS.2007.1073
http://dx.doi.org/10.1109/HPCA56546.2023.10071120
http://dx.doi.org/10.1109/HPCA56546.2023.10071120
http://dx.doi.org/10.1109/HPCA56546.2023.10071120
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
https://www.vldb.org/pvldb/vol15/p1591-burckhardt.pdf
http://dx.doi.org/10.1145/3342195.3387535
https://www.usenix.org/conference/nsdi22/presentation/chen-jingrong
https://www.usenix.org/conference/nsdi22/presentation/chen-jingrong
https://www.usenix.org/conference/nsdi22/presentation/chen-jingrong
http://dx.doi.org/10.1016/0743-7315(92)90014-E
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1006/jpdc.1999.1578
http://dx.doi.org/10.1145/2788397
http://dx.doi.org/10.1109/CCGRID.2005.1558689
http://dx.doi.org/10.1002/spe.995
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb46
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb46

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
[47] M. Abdi, S. Ginzburg, X.C. Lin, J.M. Faleiro, G.I. Chaudhry, I. Goiri, R. Bianchini,
D.S. Berger, R. Fonseca, Palette load balancing: Locality hints for serverless
functions, in: G.A.D. Luna, L. Querzoni, A. Fedorova, D. Narayanan (Eds.),
Proceedings of the Eighteenth European Conference on Computer Systems,
EuroSys 2023, Rome, Italy, May 8-12, 2023, ACM, 2023, pp. 365–380, http:
//dx.doi.org/10.1145/3552326.3567496.

[48] X. Sun, W. Luo, J.T. Gu, A. Ganesan, R. Alagappan, M. Gasch, L. Suresh,
T. Xu, Automatic reliability testing for cluster management controllers, in:
M.K. Aguilera, H. Weatherspoon (Eds.), 16th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-
13, 2022, USENIX Association, 2022, pp. 143–159, URL https://www.usenix.org/
conference/osdi22/presentation/sun.

[49] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, J. Wilkes, Omega: flexible,
scalable schedulers for large compute clusters, in: Z. Hanzálek, H. Härtig, M.
Castro, M.F. Kaashoek (Eds.), Eighth Eurosys Conference 2013, EuroSys ’13,
Prague, Czech Republic, April 14-17, 2013, ACM, 2013, pp. 351–364, http:
//dx.doi.org/10.1145/2465351.2465386.

[50] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z.
Yang, W. Paul, M.I. Jordan, I. Stoica, Ray: A distributed framework for emerging
AI applications, in: A.C. Arpaci-Dusseau, G. Voelker (Eds.), 13th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI 2018, Carlsbad,
CA, USA, October 8-10, 2018, USENIX Association, 2018, pp. 561–577, URL
https://www.usenix.org/conference/osdi18/presentation/nishihara.

[51] W. McKinney, et al., Pandas: A foundational python library for data analysis and
statistics, Python High Perform. Sci. Comput. 14 (9) (2011) 1–9.

[52] D.D. Sensi, T.D. Matteis, K. Taranov, S.D. Girolamo, T. Rahn, T. Hoefler, Noise
in the clouds: Influence of network performance variability on application
scalability, Proc. ACM Meas. Anal. Comput. Syst. 6 (3) (2022) 49:1–49:27,
http://dx.doi.org/10.1145/3570609.

[53] S. Snyder, P.H. Carns, R. Latham, M. Mubarak, R.B. Ross, C.D. Carothers, B.
Behzad, H.V.T. Luu, S. Byna, Prabhat, Techniques for modeling large-scale HPC
I/O workloads, in: S.A. Jarvis, S.A. Wright, S.D. Hammond (Eds.), Proceedings of
the 6th International Workshop on Performance Modeling, Benchmarking, and
Simulation of High Performance Computing Systems, PMBS 2015, Austin, Texas,
USA, November 15, 2015, ACM, 2015, pp. 5:1–5:11, http://dx.doi.org/10.1145/
2832087.2832091.

[54] R.B. Roy, T. Patel, D. Tiwari, DayDream: Executing dynamic scientific workflows
on serverless platforms with hot starts, in: SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis, Dallas, TX,
USA, November 13-18, 2022, IEEE, 2022, pp. 1–18, http://dx.doi.org/10.1109/
SC41404.2022.00027.

[55] A. Uta, A. Custura, D. Duplyakin, I. Jimenez, J.S. Rellermeyer, C. Maltzahn,
R. Ricci, A. Iosup, Is big data performance reproducible in modern cloud
networks? in: R. Bhagwan, G. Porter (Eds.), 17th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020, USENIX Association, 2020, pp. 513–527, URL
https://www.usenix.org/conference/nsdi20/presentation/uta.

[56] E. Frachtenberg, D.G. Feitelson, Pitfalls in parallel job scheduling evaluation,
in: D.G. Feitelson, E. Frachtenberg, L. Rudolph, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing, 11th International Workshop,
JSSPP 2005, Cambridge, MA, USA, June 19, 2005, Revised Selected Papers, in:
Lecture Notes in Computer Science, vol. 3834, Springer, 2005, pp. 257–282,
http://dx.doi.org/10.1007/11605300_13.

[57] M.R. Mahmud, S. Pallewatta, M. Goudarzi, R. Buyya, iFogSim2: An extended
iFogSim simulator for mobility, clustering, and microservice management in
edge and fog computing environments, J. Syst. Softw. 190 (2022) 111351,
http://dx.doi.org/10.1016/j.jss.2022.111351.

[58] M.I. Naas, J. Boukhobza, P.R. Parvédy, L. Lemarchand, An extension to iFogSim
to enable the design of data placement strategies, in: 2nd IEEE International
Conference on Fog and Edge Computing, ICFEC 2018, Washington DC, USA, May
1-3, 2018, IEEE, 2018, pp. 1–8, http://dx.doi.org/10.1109/CFEC.2018.8358724.

[59] M. Jammal, H. Hawilo, A. Kanso, A. Shami, ACE: Availability-aware CloudSim
extension, IEEE Trans. Netw. Serv. Manag. 15 (4) (2018) 1586–1599, http:
//dx.doi.org/10.1109/TNSM.2018.2879665.

[60] D. Kliazovich, P. Bouvry, S.U. Khan, GreenCloud: A packet-level simulator of
energy-aware cloud computing data centers, J. Supercomput. 62 (3) (2012)
1263–1283, http://dx.doi.org/10.1007/s11227-010-0504-1.

[61] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, L. Zhou,
Apollo: Scalable and coordinated scheduling for cloud-scale computing, in: J.
Flinn, H. Levy (Eds.), 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014, USENIX As-
sociation, 2014, pp. 285–300, URL https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/boutin.

[62] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G.M. Fumarola,
S. Heddaya, R. Ramakrishnan, S. Sakalanaga, Mercury: Hybrid centralized and
distributed scheduling in large shared clusters, in: S. Lu, E. Riedel (Eds.), 2015
USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10, Santa Clara,
CA, USA, USENIX Association, 2015, pp. 485–497, URL https://www.usenix.org/
conference/atc15/technical-session/presentation/karanasos.
95
[63] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, Y. Cheng, Wukong: A
scalable and locality-enhanced framework for serverless parallel computing, in:
R. Fonseca, C. Delimitrou, B.C. Ooi (Eds.), SoCC ’20: ACM Symposium on Cloud
Computing, Virtual Event, USA, October 19-21, 2020, ACM, 2020, pp. 1–15,
http://dx.doi.org/10.1145/3419111.3421286.

[64] A. Tariq, A. Pahl, S. Nimmagadda, E. Rozner, S. Lanka, Sequoia: enabling
quality-of-service in serverless computing, in: R. Fonseca, C. Delimitrou, B.C.
Ooi (Eds.), SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event,
USA, October 19-21, 2020, ACM, 2020, pp. 311–327, http://dx.doi.org/10.1145/
3419111.3421306.

[65] K. Kaffes, N.J. Yadwadkar, C. Kozyrakis, Centralized core-granular scheduling
for serverless functions, in: Proceedings of the ACM Symposium on Cloud
Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, ACM,
2019, pp. 158–164, http://dx.doi.org/10.1145/3357223.3362709.

[66] P.K. Gadepalli, S. McBride, G. Peach, L. Cherkasova, G. Parmer, Sledge: a
serverless-first, light-weight wasm runtime for the edge, in: D.D. Silva, R. Kapitza
(Eds.), Middleware ’20: 21st International Middleware Conference, Delft, the
Netherlands, December 7-11, 2020, ACM, 2020, pp. 265–279, http://dx.doi.org/
10.1145/3423211.3425680.

[67] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji, S. Bagchi, SONIC:
Application-aware data passing for chained serverless applications, in: I. Calciu,
G. Kuenning (Eds.), 2021 USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021, USENIX Association, 2021, pp. 285–301, URL https:
//www.usenix.org/conference/atc21/presentation/mahgoub.

[68] D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam, R.
Lachaize, J. Hwang, T. Wood, D. Hagimont, N.D. Palma, B. Batchakui, A. Tchana,
OFC: An opportunistic caching system for FaaS platforms, in: A. Barbalace, P.
Bhatotia, L. Alvisi, C. Cadar (Eds.), EuroSys ’21: Sixteenth European Conference
on Computer Systems, Online Event, United Kingdom, April 26-28, 2021, ACM,
2021, pp. 228–244, http://dx.doi.org/10.1145/3447786.3456239.

[69] F. Romero, G.I. Chaudhry, I. Goiri, P. Gopa, P. Batum, N.J. Yadwadkar, R.
Fonseca, C. Kozyrakis, R. Bianchini, Faa$t: A transparent auto-scaling cache for
serverless applications, in: C. Curino, G. Koutrika, R. Netravali (Eds.), SoCC ’21:
ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4, 2021,
ACM, 2021, pp. 122–137, http://dx.doi.org/10.1145/3472883.3486974.

Sacheendra Talluri is a Ph.D. student at Vrije Universiteit
Amsterdam working on fault tolerance and scheduling in
the cloud. He received his M.Sc. from TU Delft, The
Netherlands.

Nikolas Herbst is a research group leader at the chair
of software engineering at the University of Wurzburg. He
received a Ph.D. from the University of Wurzburg in 2018
and serves as elected vice-chair of the SPEC Research Cloud
Group. His research topics include predictive data analysis,
elasticity, auto-scaling, resource management, performance
evaluation of virtualized environments.

Cristina Abad is a professor at Escuela Superior Po-
litecnica del Litoral, in Ecuador, where she leads the
Distributed Systems Research Lab (DiSEL). She obtained MS
and Ph.D. in CS degrees from the University of Illinois
at Urbana-Champaign. Her main research interests lie at
the intersection of distributed systems and performance
engineering.

http://dx.doi.org/10.1145/3552326.3567496
http://dx.doi.org/10.1145/3552326.3567496
http://dx.doi.org/10.1145/3552326.3567496
https://www.usenix.org/conference/osdi22/presentation/sun
https://www.usenix.org/conference/osdi22/presentation/sun
https://www.usenix.org/conference/osdi22/presentation/sun
http://dx.doi.org/10.1145/2465351.2465386
http://dx.doi.org/10.1145/2465351.2465386
http://dx.doi.org/10.1145/2465351.2465386
https://www.usenix.org/conference/osdi18/presentation/nishihara
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb51
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb51
http://refhub.elsevier.com/S0167-739X(23)00421-1/sb51
http://dx.doi.org/10.1145/3570609
http://dx.doi.org/10.1145/2832087.2832091
http://dx.doi.org/10.1145/2832087.2832091
http://dx.doi.org/10.1145/2832087.2832091
http://dx.doi.org/10.1109/SC41404.2022.00027
http://dx.doi.org/10.1109/SC41404.2022.00027
http://dx.doi.org/10.1109/SC41404.2022.00027
https://www.usenix.org/conference/nsdi20/presentation/uta
http://dx.doi.org/10.1007/11605300_13
http://dx.doi.org/10.1016/j.jss.2022.111351
http://dx.doi.org/10.1109/CFEC.2018.8358724
http://dx.doi.org/10.1109/TNSM.2018.2879665
http://dx.doi.org/10.1109/TNSM.2018.2879665
http://dx.doi.org/10.1109/TNSM.2018.2879665
http://dx.doi.org/10.1007/s11227-010-0504-1
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
https://www.usenix.org/conference/atc15/technical-session/presentation/karanasos
http://dx.doi.org/10.1145/3419111.3421286
http://dx.doi.org/10.1145/3419111.3421306
http://dx.doi.org/10.1145/3419111.3421306
http://dx.doi.org/10.1145/3419111.3421306
http://dx.doi.org/10.1145/3357223.3362709
http://dx.doi.org/10.1145/3423211.3425680
http://dx.doi.org/10.1145/3423211.3425680
http://dx.doi.org/10.1145/3423211.3425680
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
https://www.usenix.org/conference/atc21/presentation/mahgoub
http://dx.doi.org/10.1145/3447786.3456239
http://dx.doi.org/10.1145/3472883.3486974

Future Generation Computer Systems 153 (2024) 84–96S. Talluri et al.
Tiziano De Matteis is an Assistant Professor at Vrije Uni-
versiteit Amsterdam, working on Multiscale and Post-Moore
Architectures for Distributed Computer Ecosystems. His
principal research interests are related to High-Performance
Computing (HPC), FPGAs and Dataflow Architecture for
HPC, and Energy Awareness in Parallel Computing.
96
Alexandru Iosup is tenured full Professor and University
Research Chair with the Vrije Universiteit Amsterdam, the
Netherlands. He is also Chair of the SPEC Research Cloud
Group. He received a Ph.D. from TU Delft, the Nether-
lands (2009) and an M.Sc. from Politehnica University of
Bucharest, Romania (2004), both in computer science. He
has received numerous awards and nominations. Topics
include cloud computing and big data, with applications
in big science, big business, online gaming, and massivized
education.

	ExDe: Design space exploration of scheduler architectures and mechanisms for serverless data-processing
	Introduction
	Conceptual Model of Scheduler Frames
	Components of a Scheduler Frame
	Scheduler Frames in Existing Systems

	Simulation-based Process for Scheduler Frame Characterization
	Implementing Scheduler Frames in the Simulator

	Using ExDe to Characterize Frames for Serverless Data-proces sing
	Experiment Setup

	Frame Characterization Results
	Impact of Utilization-level
	Slowdown Attribution
	Impact of Node Size
	Impact of Scaling
	Impact of Object Popularity

	Validating the Simulation
	Threats to Validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

