
Vrije Universiteit Amsterdam

Master Thesis

Controless: A serverless control plane for
Kubernetes

Author: Debarghya Saha (2738094)

1st supervisor: Alexandru Iosup
daily supervisor: Matthijs Jansen
2nd reader: Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for the joint UvA-VU Master of
Science degree in Computer Science

August 20, 2024

ii

Abstract

Cloud-native applications have gained massive popularity and adoption in the

last decade due to their ease of scaling, development and deployment. Cloud na-

tive applications make use of containers to package applications, and container

orchestration technologies are used to manage these containers. Kubernetes is

the most popular container orchestration tool used by cloud native developers.

The control plane is the brain of Kubernetes, which handles all the operations

like receiving incoming requests, authentication and authorisation, scheduling

requests to workers etc. It has a serverful architecture, meaning that control

plane components, like the API server, datastore and scheduler, are created

at the start of the lifetime of a cluster, and are always running throughout

the lifetime of the cluster. If the workload on the cluster increases, and the

CPU and memory resources allocated to the control plane cannot keep up with

it, then the latency in the system increases. In contrast, in the past decade,

there has been development of serverless computing, which replaces containers

for lightweight functions, and handles resource allocation on the fly. Serverless

functions are able to scale faster than containers, and without the need for

infrastructure management which is offloaded to the cloud provider. In this

work, we explore making the Kubernetes control plane using a serverless ar-

chitecture, with the aim of enhancing scalability and elasticity of the control

plane. We design, implement and evaluate a novel serverless control plane.

We find that while it takes 400ms, compared to Kubernetes’ 60ms, to serve a

request, it introduces no additional latency when scaled up to 1000s of requests

per second. In our tests, with 500 requests a second, Kubernetes reaches 100%

CPU usage and starts to queue up requests, taking 19 minutes to complete a

3-minute test, while the serverless control plane maintains the same resource

usage and latency even at 1000 requests per second.

iv

Contents

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 4

1.3 Research Questions . 4

1.4 Research Methodology . 6

1.5 Thesis Contributions . 7

1.6 Plagiarism Declaration . 7

2 Background 9

2.1 A Primer on Kubernetes . 9

2.2 The Kubernetes control plane . 10

2.3 A Primer on Serverless Computing . 11

3 Design of the Serverless Control Plane 13

3.1 Requirements for a serverless control plane 13

3.2 Overview of the design . 15

3.3 Design of the API server . 15

3.3.1 The Authentication function . 16

3.3.2 The Authorisation function . 17

3.3.3 The Write-Request-to-DB function 18

3.3.4 The Send-To-Worker function . 18

3.4 Design of the datastore . 18

3.4.1 The Users table . 18

3.4.2 The Roles table . 19

3.4.3 The RoleBindings table . 19

3.4.4 The Requests table . 19

3.4.5 Access control for the datastore . 19

i

CONTENTS

3.5 The Scheduler function . 20

4 Implementation of our Serverless Control Plane 21

4.1 Implementation of the datastore . 21

4.1.1 Users Table . 22

4.1.2 Roles table . 23

4.1.3 RoleBindings table . 23

4.1.4 Requests table . 24

4.2 Implementation of the API Server . 24

4.2.1 Authentication Lambda . 25

4.2.2 Authorisation Lambda . 26

4.2.3 Initiate Request Lambda . 27

4.2.4 Send Request to Worker Lambda . 28

4.3 Implementation of the Scheduler . 28

4.4 Alternatives Considered . 28

4.4.1 Alternatives for the datastore . 28

4.4.2 Alternatives for the architecture . 29

5 Evaluation 31

5.1 Experimental Setup . 32

5.2 Latency of requests . 33

5.3 Throughput . 35

5.4 Resource Usage . 37

5.5 Cost . 38

5.6 Limitations and Threat to Validity . 38

5.7 Summary of Evaluation . 39

6 Related Work 41

6.1 Scaling in Kubernetes . 41

6.2 Kubernetes and Serverless Computing . 42

7 Conclusion 43

7.1 Answering Research Questions . 43

7.2 Limitations and Future Work . 45

References 47

ii

CONTENTS

A Reproducibility 49

A.1 Abstract . 49

A.2 Artifact check-list (meta-information) . 49

A.3 Description . 49

A.3.1 How to access . 49

A.3.2 Data sets . 49

A.4 Installation . 50

A.5 Evaluation and expected results . 51

A.6 Experiment customization . 51

B Kubernetes YAML definition examples 53

B.1 Role definition YAML . 53

B.2 Rolebinding definition YAML . 53

B.3 Request definition YAML . 54

iii

CONTENTS

iv

1

Introduction

The advent of cloud-native technologies has revolutionized the way applications are devel-

oped, deployed, and managed. The Cloud Native Computing Foundation (CNCF) is an

open source software foundation that promotes the adoption of cloud-native computing,

and according to their 2023 annual survey, 76% of organisations are using cloud native ap-

plications in production (1). Cloud-native applications are software programs composed of

multiple small, interdependent services known as microservices and designed specifically to

run in cloud computing environments. Traditionally, developers built monolithic applica-

tions with a single block structure containing all the required functionalities. In contrast,

the cloud-native approach involves breaking these functionalities into smaller microser-

vices. This approach makes cloud-native applications more agile since these microservices

operate independently and require minimal computing resources to run. The popularity

of cloud-native applications is due to several advantages. Cloud-native applications are

typically built using microservices that are packaged in containers and can easily scale up

or down to handle varying levels of demand, ensuring responsiveness and availability. A

good example of a cloud native application is Netflix, which has been able to handle a

growth in viewership of three orders of magnitude since switching over to the cloud (2).

Containers package an application and its dependencies together, ensuring that it runs

reliably in different computing environments. For orchestrating containers, container or-

chestration technologies like Kubernetes are used. Of the 76% of organisations using cloud

native applications, mentioned above, 84% use Kubernetes. Kubernetes is an open-source

platform that automates the deployment, scaling, and operation of application containers.

Kubernetes helps manage these containers by providing tools to easily deploy them across

a cluster of computers, monitor their performance, and scale them up or down as needed.

With Kubernetes, applications can scale rapidly to handle demand spikes. However, there

1

1. INTRODUCTION

Figure 1.1: Kubernetes Architecture

is a bottleneck to this scaling ability, the control plane of Kubernetes. In a simple analogy,

if the worker nodes of Kubernetes can be thought of as puppets, then the control plane is

the puppet-master pulling the strings and ensuring each puppet does what it is supposed

to. More and more puppets can be added, but at some point the puppet-master becomes

overwhelmed. In this research, we propose making the Kubernetes control plane elastic

and scalable in response to load.

1.1 Context

The architecture of Kubernetes can be broadly divided into two parts - the data plane and

the control plane, or the puppets and the puppetmaster respectively, from the previous

analogy. The architecture is illustrated in Figure 1.1. The data plane provides capacity

such as CPU, memory, network, and storage so that the containers can run and connect to

a network. The control plane is the brain of Kubernetes, which is responsible for managing

the cluster and carries out essential tasks like authentication, scheduling workloads and

managing the cluster. The control plane consists of four components: the API server,

the database, the scheduler and the controller manager. In Kubernetes, each of these

components are run in individual containers that start during the initialisation of the

cluster and never shut down during the lifetime of the cluster. The data plane is able

2

1.1 Context

to scale in response to demand, it can scale up in times of high demand, increasing its

resources, and scale down, even to zero if there is no workload. However, the control plane

is not so flexible because of the following reasons: it is unable to scale dynamically in

response to demand. While it can be replicated for high availability, that is not the same as

scaling dynamically in response to load. Control plane components are resource-intensive

and require careful planning of CPU and memory resources. Dynamically scaling these

components requires sophisticated resource management to ensure that new instances are

provisioned with adequate resources without overloading existing nodes. Secondly, control

plane components have elevated privileges and access to critical cluster data. Dynamically

scaling these components requires robust security mechanisms to ensure that new instances

are securely provisioned and configured without introducing vulnerabilities.

But is there a need to scale the control plane? A previous analysis of workload

traces from production clusters in Microsoft Azure reveals peaks of up to 2000 VM creation

requests per second (3). As the size of a cluster, or load on a cluster grows, the control

plane needs to keep up with it. If the control plane cannot scale up fast enough, the latency

in the cluster increases as new requests are queued up, in extreme cases leading to request

timeouts. This is also evident by OpenAI’s attempt to scale their clusters to a large number

of nodes, wherein the load on the control plane was the main bottleneck (4, 5). Conversely,

if the control plane cannot scale down efficiently in times of low demand, it leads to resource

wastage. The aforementioned peaks in requests of 2000 VM creations per second drop to 0

almost instantly, which also highlights the importance of the speed of scaling, or elasticity,

in the control plane. The current design of a somewhat rigid control plane was required

at the time Kubernetes was developed, due to reasons highlighted above. However, since

then there have been new developments in cloud computing, namely, serverless comput-

ing. Serverless computing allows for faster scaling, without worrying about the underlying

servers and infrastructure. When using serverless services, the cloud provider automati-

cally handles the provisioning, scaling, and management of the infrastructure needed to

run the code. This approach not only simplifies the development process but also ensures

that applications can scale seamlessly, even to zero, in response to demand. Users only

pay for the actual computing resources consumed. Serverless computing is event-driven,

meaning functions can be started up in response to specific events - like an incoming work-

load request. The architecture of Kubernetes is also event-driven, albeit with a serverful

approach. The main benefit is that serverless functions are lightweight compared to VMs

or containers, meaning that they can be invoked and shut down quicker. This intuitively

3

1. INTRODUCTION

makes serverless functions an attractive option for fast scaling. This thesis explores the po-

tential of integrating serverless principles with the Kubernetes control plane, transforming

its components into serverless services that can scale up in milliseconds to handle spikes

in workload, and also down to zero when idle to save resources and cost.

1.2 Problem Statement

The main problem that this thesis tackles is how to increase the scalability and speed

of scaling (elasticity) of the control plane. Each of the control plane components

have varying resource requirements as well as different security considerations. When the

control plane is overloaded, for example due to many incoming requests, it could mean that

either a single component is overloaded, or multiple components are overloaded. Simply

scaling up all components is not a good solution. The interactions between the different

components also needs to be taken into account, which components will write what data to

the datastore, how will that data be modelled, what will be the access control mechanisms,

and so on. Apart from the perspective of system design, there are also considerations to be

made for the serverless platform. Which serverless platform to use, which database to use,

and what security mechanisms are offered by the platform. Finally, there are performance

considerations, using a serverless architecture will most likely add some latency compared

to a serverful architecture, this is because a serverless system is not always running but

rather constantly turning off and on with demand, unlike a serverful system which is always

running.

1.3 Research Questions

The research questions are related to the design decisions of our system because we design

and prototype a system in this work.

RQ1: How do we design the Kubernetes control plane as a serverless system?

As described earlier, the control plane has many components, and to implement these as

serverless functions some considerations are needed. For example, how will the functions

interact with one another, what data needs to be passed between them, can each component

be replaced with one function or is further granularity needed. Since there are components

with varying functionalities, we split this question into three sub-questions, each dealing

with a specific component of the control plane:

4

1.3 Research Questions

RQ1.1: How can the API server be implemented in a serverless system?

The API server has several functions including managing requests, authentication

and authorisation. It is also the only component that communicates directly with

the database. Answering this research question will provide us with the main design

considerations for a serverless API server, including: how will a serverless API server

receive user requests? What will be the authentication process? How will authorisation

take place and what will be the scope of authorisation? How will the API server

interact with the database? To answer these questions, we take a look at how the

API server is implemented in Kubernetes, with the aim of modelling our system as

close to it as possible.

RQ1.2: How can the database be implemented in a serverless system?

Answering this question will lead to design choices for the database, including: what

database to use? How will the data be modelled? What will be the access control mech-

anism for the database, and how will it interact with the API server? To answer this,

we look at how the data is stored and retrieved by etcd, which is the default database

in a Kubernetes installation, and consider the cloud database options available for a

serverless implementation.

RQ1.3: How can the scheduler be implemented in a serverless system?

The scheduler in Kubernetes is always running and listening for new requests. In

a serverless system, we cannot have an always running scheduler. Answering this

question will help us in implementing a scheduler in our serverless system.

RQ2: How do we deploy and configure a serverless control plane in the cloud?

This research question deals with design choices relating to the serverless platform, wherein

we look at how the system designed in RQ1 will translate to a cloud ecosystem. We look at

various services offered by the cloud platforms and consider how they fit into our system.

This leads to considerations for security and authentication mechanisms and which cloud

database service to use, for instance. Answering this question will lead to the system design

from RQ1 becoming actual components and services running in the cloud.

RQ3: What is the latency impact when the control plane is serverless?

When using a serverless system, containers for the serverless functions will be created and

destroyed, sometimes we will have warm starts and other times cold starts, all this will

affect the total latency of the system. It is therefore important to benchmark how much the

latency is affected and what components take up the most latency. This will also enable

5

1. INTRODUCTION

us to get some insight into possible areas for optimisation of latency. To answer this, we

benchmark the latency at various stages in the lifecycle of a request in our system.

RQ4: What is the impact on cost of a serverless control plane?

Since the serverless functions making up the control plane in our system can scale to zero

and have per millisecond billing granularity, we can expect the cost of running a serverless

control plane to be less when compared to the traditional approach. The aim of this

question is to measure the impact on cost.

1.4 Research Methodology

In this thesis, we address the research questions through a combination of conceptual,

technical, and experimental approaches.

M1 (Quantitative, surveys): To answer RQ1.1, we go through the Kubernetes doc-

umentation and source code to find out exactly how the API server operates, how is the

authentication and authorisation carried out, and how does it interact with the database.

These are detailed in Section 3.3. To answer RQ1.2, we look at the database. There are

various options available when choosing a cloud database - object stores, key-value stores,

SQL and NoSQL databases to name a few. Since the goal of our system is to mimic Ku-

bernetes as closely as possible, we go through the Kubernetes and etcd documentation to

figure out the best option for a cloud database. To implement a database in our system,

we need to know how is the Kubernetes data in etcd modelled, what are the tables and

the keys used to carry out different functionalities of the API server. To figure this out, we

run a Kubernetes installation in Continuum (6) and go into the etcd container to manually

inspect the data that gets added to etcd by Kubernetes. These are detailed in section 3.4.

M2 (Design, abstraction, prototyping): After conceptualising our system, we look

into how this system can be ported over to a serverless setting and implement a prototype

system that has a serverless API server that takes requests from a user, authenticates

the user and authorizes the request by querying the database, stores the request in the

database, and then passes the request to a worker. This system is detailed in Chapter 4.

M3 (Experimental research, benchmarking): We benchmark the latency and re-

source usage of this system, to answer RQ3. This is detailed in Chapter 5.

Finally, for RQ4, we also evaluate the cost of running this serverless control plane.

6

1.5 Thesis Contributions

1.5 Thesis Contributions

This thesis has the following contributions:

1. (Conceptual) Dissemination of system design, findings, and experiences:

(a) Design: We design a serverless control plane and document our design choices.

2. (Technical) Development and evaluation:

(a) Implementation and validation of the serverless control plane, running in

AWS.

(b) Evaluating and benchmarking the implemented system.

1.6 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

7

1. INTRODUCTION

8

2

Background

As mentioned previously, Kubernetes already has an event driven architecture where server-

ful components listen for events and react accordingly. Serverless computing is also event-

driven, where serverless functions are deployed to carry out tasks in response to events.

Intuitively, serverless is a good fit for Kubernetes as it can preserve the event driven ap-

proach with the benefit of having to only use compute resources when specific events occur,

instead of always running and listening for events. In this chapter, we provide a comprehen-

sive overview of topics related to the Kubernetes control plane and serverless computing,

establishing a foundation for the subsequent content of this thesis.

2.1 A Primer on Kubernetes

Kubernetes, often abbreviated as K8s, is an open-source platform designed to automate

the deployment, scaling, and operation of containerized applications. To understand Ku-

bernetes, it’s helpful to first understand a few basic concepts: containers, container orches-

tration, and the role Kubernetes plays. These are explained in the following paragraphs.

What Are Containers? Containers are a lightweight, portable way to package software.

They bundle an application and its dependencies together, ensuring that the application

runs reliably regardless of where it’s deployed. Containers are isolated from one another

and from the host system, providing a consistent environment across different stages of

development and deployment.

Container Orchestration. When running a few containers, managing them manually

is feasible. However, as the number of containers grows, managing them becomes increas-

ingly complex and challenging. Tasks such as deployment, scaling, and monitoring require

significant effort and resources, making manual management impractical for large-scale

9

2. BACKGROUND

environments. This is where container orchestration comes into play. Container orches-

tration automates the deployment, scaling, and management of containerized applications,

ensuring that containers are efficiently allocated across nodes, services are seamlessly dis-

covered and accessed, and resource usage is optimized.

Kubernetes is the most popular container orchestration platform. Originally developed

by Google, it is now maintained by the Cloud Native Computing Foundation (CNCF).

Some basic concepts of Kubernetes that are used in this thesis:

Cluster: The fundamental unit in Kubernetes, consisting of a set of worker machines

called nodes. A cluster runs containerized applications.

Node: A single machine in the Kubernetes cluster, which can be a physical or virtual

machine. Each node runs containerized applications managed by Kubernetes.

Pod: The smallest and simplest Kubernetes object. A pod represents a single in-

stance of a running process in the cluster. Pods can contain one or more containers

that share the same network namespace.

Namespace: A way to divide cluster resources between multiple users. Namespaces

are intended for use in environments with many users spread across multiple teams

or projects.

2.2 The Kubernetes control plane

The Kubernetes control plane is the central management entity responsible for maintaining

the desired state of the cluster, orchestrating the containerized applications, and ensuring

the system’s health and stability. It comprises four key components:

The API Server. It exposes the Kubernetes API, acting as the central hub for

communication between all components within the control plane and the cluster

nodes. The API Server handles all requests, including operations such as creating,

updating, deleting, and querying resources. In addition to that, the API server

is also responsible for authentication and authorisation, ensuring that requests are

from authenticated users that are authorized to perform specific actions. It also

validates and modifies requests as they are processed, enforcing policies and ensuring

consistency.

10

2.3 A Primer on Serverless Computing

Datastore. Kubernetes manages all the cluster information via a datastore. While

users are free to implement their own datastores, etcd is used in Kubernetes as

default. etcd is a distributed key-value store used for storing all cluster data in

a consistent and highly available manner. It holds the configuration data, state

information, and metadata of the Kubernetes cluster. All other components interact

with etcd to read or write necessary data, ensuring the desired state of the cluster is

consistently maintained.

Scheduler. The Scheduler is responsible for assigning newly created pods to suitable

nodes in the cluster based on resource availability and specific scheduling policies. It

evaluates various factors such as CPU and memory to make informed decisions.

Controller Manager. The Controller Manager runs various controllers that regu-

late the state of the cluster by managing different aspects of the system. Controllers

are control loops that watch the state of the cluster. Each controller is responsible

for a specific function and continuously works to ensure that the actual state matches

the desired state as defined in the configuration.

In conclusion, the control plane consists of 4 key components, the API Server handles

communication and requests, etcd stores critical cluster data, the Scheduler assigns pods

to nodes based on resource availability, and the Controller Manager ensures the cluster’s

state matches the desired configuration. Together, these components automate deploy-

ment, scaling, and operations, providing a robust and reliable foundation for cloud-native

applications. This integration allows Kubernetes to efficiently manage both small and

large-scale environments, making it a powerful tool for modern application development

and operations.

2.3 A Primer on Serverless Computing

Serverless computing is a cloud computing execution model where the cloud provider dy-

namically manages the infrastructure, allowing developers to focus solely on writing code.

Contrary to the name, serverless computing does involve servers, but the key distinction

is that developers do not need to manage or provision these servers. This model abstracts

away the complexities of server management, as shown in Figure 2.1, providing a highly

scalable and cost-effective environment for running applications. Serverless platforms au-

tomatically scale applications up or down based on demand. Serverless applications are

typically event-driven. They are triggered by specific events, called triggers, such as HTTP

11

2. BACKGROUND

Figure 2.1: The difference between container and serverless deployments.

requests, database changes, or message queue events, allowing for highly responsive appli-

cations that execute only when needed. With serverless computing, you pay only for the

compute resources you actually use. Billing is based on the number of requests and the

execution time of your code, per millisecond, rather than on pre-allocated server instances.

Containers take longer to set up initially than serverless functions because it is necessary to

configure system settings, libraries, and so on. Once configured, containers take only a few

seconds to deploy. But because serverless functions are smaller than container microser-

vices and do not come bundled with system dependencies, they only take milliseconds to

deploy. In addition to being quick to deploy, serverless functions are short-lived, typically

executing in under a second as evidenced in (7). All these properties, in combination, make

serverless a good fit for our objective of a load-based rapidly scalable control plane.

So far in this chapter we have presented background information on containers, the role

of container orchestration technologies, some basic concepts of Kubernetes and a detailed

look into its control plane. We also covered scaling mechanisms offered by Kubernetes

and why said mechanisms are only applicable to the data plane and not the control plane.

Lastly, we gave a background on serverless computing, its benefits and why it is a good fit

for scaling the Kubernetes control plane. In the next chapter, we will present (our system)

that makes the control plane serverless by implementing the control plane components as

serverless functions in order to make an elastic control plane that can respond quickly to

fluctuations in demand.

12

3

Design of the Serverless Control
Plane

In this chapter, we address RQ1.1:How can the API server be implemented in a serverless

system?, RQ1.2: How can the database be implemented in a serverless system? and

RQ1.3: How can the scheduler be implemented in a serverless system? Together they

cover the design decisions for the serverless control plane. To arrive at a design, we must

first have a set of requirements, which will help guide our design decisions. In the following

section, we formulate the requirements of our serverless system.

3.1 Requirements for a serverless control plane

To formulate requirements, we take a look at the design decisions of Kubernetes, with the

aim of modelling our serverless system as close to Kubernetes as possible. This suggests

three non-functional requirements (NFR) for our system:

NFR-1: Follow the design of the Kubernetes control plane as closely as

possible. Since with our system we are aiming to replace the serverful control plane

of Kubernetes with a serverless one, following the design of the Kubernetes control

plane will be helpful in insuring that our new system integrates seamlessly with

Kubernetes. Even so, we are going from a serverful system to a serverless system,

and thus there are bound to be some scenarios where we cannot completely follow

the same design as the serverful counterpart. Due to this, we set our requirement to

following the Kubernetes design as closely as possible, allowing us to come up with

new design choices when required by the serverless approach.

13

3. DESIGN OF THE SERVERLESS CONTROL PLANE

NFR-2: Follow serverless design principles1. Going from a serverful design to

a serverless design, we will have a different set of challenges, and so we follow the

serverless design principles to help in designing our system.

NFR-3: Minimize latency overhead. The serverless nature of our system adds

some latency that the serverful system does not have to deal with, in view of this we

try to make design decisions keeping latency in mind.

Next we define the functional requirements of our system. To define the functional require-

ments, we focus on the serverless and cloud-native nature of our system. We model our

requirements such that it favours a serverless design while also aligning with the Kubernetes

design principles of security, extendability and ease of use. The functional requirements of

our system are:

FR-1: Each serverless function should only be responsible for one specific

functionality. The control plane has components of varying functionalities, as de-

tailed earlier in 2.2, following NFR-2 we split up the components of the control plane

into functions such that each function is responsible for one distinct functionality.

FR-2: Allow requests to be submitted from outside the cloud environ-

ment. Following the Kubernetes approach, we want to keep our system open and

loosely coupled, meaning that the data plane and control plane are separate entities.

It should be possibl to integrate our control plane into any cluster. In view of this,

we must allow the requests to the control plane to submitted from outside the cloud

environment where the control plane is deployed. For example, if someone wishes to

submit a request from a local machine to our system, it should be able to receive

such a request, whether it is processed or not is subject to authentication.

FR-3: Only the API server can directly write to the datastore. This

follows from the same design choice in Kubernetes. By centralizing write access

to the datastore through the API server, Kubernetes ensures a consistent, secure,

and reliable mechanism for managing the cluster state. This design choice simplifies

validation, auditing, and recovery, while providing a robust foundation for scalable

and extensible cluster operations.

Now that we have a set of functional and non-functional requirements to base our design

on, the next sections outline the design of our system.
1AWS Serverless design principles: https://docs.aws.amazon.com/wellarchitected/latest/

serverless-applications-lens/general-design-principles.html

14

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/general-design-principles.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/general-design-principles.html

3.2 Overview of the design

3.2 Overview of the design

In this section, we give a high level overview of the components of the system and their

interactions, illustrated in Figure 3.1. We not include controllers in our design as in our

prototype system we are only concerned about latency and scaling of requests in the control

plane, and not the actual work done in the data plane. For this, we can use pod requests,

and pods do not require a controller.

The API server and the scheduler are serverless functions that form a chain, similar to

the flow of a request. First the request needs authentication, so first the authentication

function is called, after authentication the request needs to have proper authorisation, so

second the authorisation function is called. Next, on successful authorisation, the request

needs to be logged in the database, which is handled by the third serverless function in

the chain. After logging the request has to be scheduled, which is handled by the fourth

serverless function and finally the request needs to arrive at the worker to which it is

scheduled by the final fifth function in the chain. To carry out their respective tasks, these

functions need to interact with the datastore by either reading from it or writing to it. The

triggers to these functions are an API call, for the first function, and for the rest the next

function is triggered from within the previous function, this is explained in the following

subsections. We highlight that how the functions are triggered have no impact on the

function of the system. They could all be triggered by APIs, by database events or from

other functions, the only difference is in the latency of the system. Different triggers have

different latencies. This design, and the design of each component, is discussed in detail

in the following sections.

3.3 Design of the API server

This section deals with the design choices for the API server. Going through the Kubernetes

documentation and source code, we found that the API server has 4 distinct functions that

it needs to carry out upon receiving a request:

Authentication. The first step for the API server upon receiving a request is to

authenticate that the request comes from a valid user in the system.

Authorisation. After successful authentication, the API server determines whether

the user sending the request is allowed to carry out the functions in that request, for

example, creating pods, deleting pods, listing information about nodes, and more.

15

3. DESIGN OF THE SERVERLESS CONTROL PLANE

Figure 3.1: The overview of the design, with the components and their interactions.

Write request to the datastore. After successful authorisation, the request is

stored in the datastore for logging and monitoring purposes.

Carry out the request. Depending on the request, this involves communicating

with other components to carry out the requested function.

In a serverless system, each of these functions should be handled by a unique serverless

function, as per the serverless design principles (NFR-2, FR-1). For this reason, we split

the design for the API server into four parts, described below, each concerning one of the

four functions mentioned above.

3.3.1 The Authentication function

This function is solely responsible for authentication of an incoming request. It should be

the first function that is triggered upon receiving a request. Since a request can come from

anywhere (FR-2), we make our first design choice:

DC-1: The authentication function must be trigged by a public-facing API call.

This ensures that a request can be made to the API server from anywhere, from a local or a

cloud environment. Whether this request is allowed into the system for further processing

will depend on successful authentication. Aligning with our goal of designing our system as

close to the Kubernetes design as possible, we look at the authentication methods offered

by Kubernetes. Kubernetes offers the following methods for authenticating users:

Client Certificates. These are certificates signed by a certificate authority (CA).

Any user that presents a valid certificate signed by the cluster’s CA is considered

authenticated.

16

3.3 Design of the API server

Authenticating Proxy. This method is useful if you want to authenticate based

on data that is stored in an external service, like Google for example, by configuring

the service to export authentication information in HTTP headers.

Bearer Tokens. The API server reads bearer tokens from a file, or Authorization

header with a value of Bearer <token> in an HTTP request.

The Authentication function must support at least one of these methods to authenticate

the user submitting a request. When using Bearer Tokens, in Kubernetes, a static file

stored on the API server is used to validate the supplied token. However, as our API

server is serverless, we cannot store a file on it, leading us to our second design choice.

DC-2: Store the static token file on the datastore instead of the API server.

This aligns with serverless design principles (NFR-2) and has the benefit of decoupling

the token file from the API server, so that the token file can be modified without restarting

the API server, unlike Kubernetes where the API server needs to restart for the changes

to take effect. This decision does add some latency in the form of communication to the

datastore, but that is negligible (detailed in Section ??).

In Kubernetes, the control plane components must also authenticate themselves. This is

required due to the open nature of Kubernetes, because anyone can add their own compo-

nents and have them masquerade as legitimate components. However, when we implement

the serverless control plane in the cloud, it comes with the cloud provider’s security mech-

anisms. These could be, for instance, registered accounts or IAM roles, so it is guaranteed

that only users with the proper credentials can modify our components. For example, if

the serverless control plane runs in the AWS ecosystem, only valid AWS accounts and IAM

roles can make changes to it. This leads us to our third design choice.

DC-3: The components of the serverless control plane need not authenticate

themselves, because they are already covered under the cloud provider’s security mech-

anisms. This also aligns with NFR-3 as bypassing additional authentication will reduce

latency. Upon successful authentication, the Authentication function must trigger the

authorization function.

3.3.2 The Authorisation function

The Authorisation function is responsible for checking if the user that submitted the request

is allowed to access the resources listed in the request. For example, if a user submits a

request to create pods, then the Authorisation function must check if the user in question

has the required permissions to create pods in the cluster. In Kubernetes, this is done

17

3. DESIGN OF THE SERVERLESS CONTROL PLANE

by querying the datastore to check if the appropriate Roles and RoleBindings exist (the

datastore is detailed later in Section 3.4). If the required Roles and RoleBindings for

the user in question are present, then the authorisation is successful. Upon successful

authorisation, the Authorisation function triggers the WriteRequest function.

3.3.3 The Write-Request-to-DB function

Now that the incoming request is authenticated and authorised, it can actually be worked

on. The next step is to write the request to the datastore. The WriteRequest function is

responsible for this action. It simply takes the request and writes it to the datastore. After

the write is completed, the Write-Request-to-DB function triggers the Scheduler function

(detailed in Section 3.5).

3.3.4 The Send-To-Worker function

This is the last step for an incoming request. So far, the request has been authenticated,

authorised, stored in the datastore and scheduled to a worker. The last step is to send

the request to the appropriate worker. The Send-To-Worker function takes a scheduled

request and sends it to the worker responsible for it.

This concludes the design for the serverless API server. In summary, the serverless

API server consists of four serverless functions, each responsible for one of the tasks of

authentication, authorisation, writing the request to the datastore, scheduling the new

request and sending the request to a worker.

3.4 Design of the datastore

Kubernetes requires a persistent key-value store, leading to the third design choice:

DC-4: The datastore used must be a persistent, key-value store. Depending on

the serverless provider, various options for a cloud key-value datastore are available, for

example, DynamoDB in AWS, Firestore in Google Cloud and CosmosDB in Azure. The

choice of datastore is trivial, however the data model is of importance. Below, we detail

the data model of the datastore that facilitates the various functions of the API server

described in the previous section, this is also summarised in Table 3.4.5.

3.4.1 The Users table

The datastore has a table that contains the users’ data. This table serves also as the

static token file as required by DC-1, outlined previously in Section 3.3.1, and is used

18

3.4 Design of the datastore

for authentication and authorisation. In Kubernetes, the token file is a csv file containing

at minimum these 3 fields: token, user name, user uid. The token field holds the unique

token value that is sent to the API server for authentication, the user field holds the user

name, used for authorization, and the uid field contains a unique ID for each user. The

users table must also contain these three fields.

3.4.2 The Roles table

This table in the datastore contains all the roles defined for the cluster.

3.4.3 The RoleBindings table

As per the Kubernetes design, Roles are not useful by themselves, they also need corre-

sponding RoleBindings, and so we define the RoleBindings table in the datastore. When-

ever the API server needs to authorise a request, it first queries the Users table to get the

user name and then queries the RoleBindings table to check if appropriate RoleBindings

exist for the user, finally it queries the Roles table to check if the user has the required

permissions to carry out the request. Together, the Users, Roles and RoleBindings tables

facilitate the authorisation process for the API server.

3.4.4 The Requests table

This table stores the requests that are authorised by the API server. Additionally, it also

stores the scheduling decision for the request along with the request itself.

3.4.5 Access control for the datastore

Following FR-3, only the API server functions should communicate with the datastore.

Out of the four functions that make up the API server in our system, only two write to

the datastore, the rest of them only read from the datastore. And so, the datastore should

only have the following interactions:

READ Allowed for Authentication, Authorisation, Scheduler and Send-To-Worker

functions.

WRITE Allowed for Write-Request-to-DB, Scheduler functions.

DENY Everything else.

This concludes the design for the datastore, next we detail the design of the scheduler.

19

3. DESIGN OF THE SERVERLESS CONTROL PLANE

Table Accessed by function Type of access
Users Authentication, Authorisation Read
Roles Authorisation Read

RoleBindings Authorisation Read
Requests Write-to-DB, Scheduler Write

Table 3.1: Access scope of the tables in the datastore.

3.5 The Scheduler function

The scheduler function is responsible for scheduling newly received requests. In Kuber-

netes, the scheduler is always running and listening for new requests, however we cannot

have a always running scheduler in a serverless system. In serverless, the scheduler has

to be triggered by an event. If we look at Kubernetes, the scheduler is already triggered

by an event, i.e a new request, the only difference is that in Kubernetes the scheduler

is actively running and listening for this event. Following this, we can intuitively design

a serverless scheduler to be triggered by an incoming request. We do not go into detail

about the scheduler in this section because any form of scheduler can be implemented in

this function following the basic design of receiving a new request, getting node metrics,

running a scheduling algorithm based on the received metrics and writing the scheduling

decision. The actual scheduler is not of substance here, apart from the fact that it is

implemented in a serverless function that gets triggered by new requests.

In this chapter, we have outlined the design of a serverless control plane for Kubernetes.

The components of the design include the API server (formed by a group of serverless func-

tions), a persistent key-value data store and the scheduler (also a serverless function). The

serverless functions interact with the datastore to carry out authentication, authorisation,

logging and scheduling of an incoming request.

20

4

Implementation of our Serverless
Control Plane

In this section, we answer RQ2: How do we deploy and configure a serverless

control plane in the cloud? This section deals with the implementation of the design

proposed in Chapter 3 by running the components of the serverless control plane as services

in the cloud. We note that the design proposed previously is agnostic to cloud providers,

and for our implementation we have chosen AWS. The components of the system and their

interactions are shown in Figure 4.1. We begin with the implementation of the datastore

(Section 4.1), followed by the implementation of the API server (Section 4.2) and then the

scheduler (Section 4.3). At the end, we also briefly talk about the alternatives considered

during implementation and why we reject the alternatives (Section 4.4).

4.1 Implementation of the datastore

For our datastore, we use AWS DynamoDB. As outlined in the design, the datastore must

have the following tables:

1. Users table

2. Roles table

3. RoleBindings table

4. Requests table

These tables are created in DynamoDB. The serverless functions can read and write to

these tables. Next, we describe the implementation of these tables, also shown in Figure

4.2.

21

4. IMPLEMENTATION OF OUR SERVERLESS CONTROL PLANE

Figure 4.1: The components in our system and their interactions.

4.1.1 Users Table

Users table contains three fields token, user name and user uid, with the token field serving

as the primary key for this table. We choose token as primary key, instead of user uid

which could also act as primary key. This decision was made because the token is supplied

with a request to the API server and the API server can then perform a look-up for the

user name during authorisation using token easily, instead of having to use the user uid to

find the matching token and then the user name.

22

4.1 Implementation of the datastore

Figure 4.2: The structure of the tables in DynamoDB. PK denotes the primary key. A
composite key (primary key made of multiple fields) is represented by multiple PKs in the
table. Only the compulsory fields are shown, and ’...’ denotes that it can have any other
fields, depending on the requirement.

4.1.2 Roles table

The Roles table contains all the roles defined for the cluster. They are exactly the same as

Kubernetes YAML role definitions, an example of which can be found in Appendix B.1.

All the keys in the YAML act as keys in DynamoDB, this enables copy-pasting a standard

Kubernetes role definition into the datastore, without any modifications. The data model

for this table is slightly more complex than that of the User table. In Kubernetes, Role

names are not unique, so name cannot serve as the primary key by itself. However, Role

names are unique per namespace, and so both the fields name and namespace together

make the composite key for this table.

4.1.3 RoleBindings table

Roles are not useful by themselves, they also need corresponding RoleBindings, and so

we define the RoleBindings table to store the rolebindings. Again following Kubernetes

convention, the structure of the RoleBindings table exactly matches that of a RoleBindings

23

4. IMPLEMENTATION OF OUR SERVERLESS CONTROL PLANE

definition YAML file, an example of which can be found in Appendix B.2.

Just as the Roles table, all the keys in this YAML are keys in the datastore for the

RoleBindings table, and namespace together make the composite key for this table.

4.1.4 Requests table

The requests table is used to store the authorised requests. The structure of this table

follows the structure of a request definition YAML in Kubernetes, an example of which

can be found in Appendix B.3.

We make a slight change to the data when storing requests in the datastore. First, to

uniquely identify each request, an id field is added to each request. This ID is generated

from the Write-Request-to-DB function, which is responsible for writing the request to the

datastore. The ID is the request ID of that particular invocation of the function. Secondly,

we add the scheduling decision to the request in the worker field. So, after writing the

request to the datastore, it looks like this:

id: 1cf0b12f-220a-4fcf-b672-716857a2668e

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- image: nginx:1.14.2

name: nginx

ports:

- containerPort: 80

worker: 1

The id field serves as the primary key for this table.

This concludes the implementation of the datastore in DynamoDB. In the next section,

we detail the implementation of the API server and how the different functions interact

with the data in the datastore.

4.2 Implementation of the API Server

For the API server, AWS Lambda is used. The API server consists of four lambdas, one

each for authentication, authorisation, initiating request and writing request to a worker.

24

4.2 Implementation of the API Server

Figure 4.3: The Authentication function implemented as a lambda authoriser for the API
call to the Authorisation function. The user makes an API call to the Authorisation function,
and AWS calls the authoriser to authenticate the API call. If the authentication is successful,
the API call is allowed.

These are described in detail in the following sections. The lambdas are triggered directly

from the previous lambda in the chain, unless otherwise stated, such as in the case of

the Authentication lambda, described below. This choice of trigger arises from NFR-3:

Minimize latency overhead. because calling the next lambdas directly from the previous

lambdas has the lowest latency as it does not have to rely on external events and can be

triggered as soon as the previous lambda is finished.

4.2.1 Authentication Lambda

The basic function of the Authentication lambda is to take a post request, verify the

user and pass the request to the Authorisation lambda on successful authentication. For

our implementation, we have chosen to authenticate the users by using bearer tokens,

which means a token has to be supplied in the HTTP header, along with the request.

Following design choice DC-1: The authentication function must be trigged by a public-

facing API call, the lambda needs to be triggered by an API call. AWS API Gateway

is a service that allows interaction with other AWS services via API calls. We use the

API Gateway to make the API call to our lambda, but we also need to authenticate

calls to the API to make sure only legitimate users are allowed access. AWS offers many

mechanisms to authenticate API calls to the API Gateway service, like RBAC policies and

IAM Roles. It also offers authentication by Lambda Authorisers, which is a perfect fit for

our use case. Lambda authorizers are Lambda functions that control access to REST API

methods using bearer token authentication. Lambda authorizers are used to control who

can invoke REST API methods. Since we are already using token based access control

for authentication, making the Authentication function into a Lambda authoriser is best.

25

4. IMPLEMENTATION OF OUR SERVERLESS CONTROL PLANE

Figure 4.4: The interactions of the Authorisation function with the DB.

For that we need to invoke the next function, i.e the function that would be invoked by

the Authentication function, with a public API call. In this case, the next function is the

Authorisation function. So in our implementation, the user actually sends an API request

which triggers the Authorisation function, but because the Authentication function is

acting as the authoriser for this API call, AWS actually calls the Authentication function

first, and if authentication is successful, the API call is allowed and the Authorisation

function is triggered. This process is illustrated in Figure 4.3.

The Authentication lambda checks token in the HTTP header supplied with the request,

if it matches the value stored in the datastore, it allows the API call to be made. Upon a

successful API call, the Authorisation lambda is triggered.

4.2.2 Authorisation Lambda

The trigger for this lambda is an API call with a POST request. The POST request

contains the Kubernetes request YAML. Upon being triggered, this lambda first gets the

user name of the user making the request. It can do so by querying the Users table in

DynamoDB with the token supplied in the request. After getting the user, it then queries

the RoleBindings table to check if any rolebindings exist for the user: If rolebindings exist,

then it needs to check if the roles in the rolebindings allow access to the resource specified

in the request. For example, if a user requests to create pods, the Authorisation lambda

needs to check if roles relating to the resource type ’pods’ exist for the user, and because

in Kubernetes roles alone mean nothing without a corresponding rolebinding, the lambda

also has to check for appropriate rolebindings. So, after it gets rolebindings for a user, it

needs to check the corresponsing roles from the Roles table: If the roles for the resource

type specified in the request exist, the request is allowed. These interactions of this lambda

26

4.2 Implementation of the API Server

Figure 4.5: The node metrics table that is queried by the scheduler to get information about
the nodes in the cluster.

and the datastore are depicted in Figure 4.4. If the request is allowed, this lambda will

then trigger the next lambda, which is the Initiate Request lambda. If not allowed, then it

prints a message saying the specified user is not allowed to access this resource. After the

authorisation process is completed successfully, this lambda triggers the Initiate Request

lambda and passes the request file to it.

4.2.3 Initiate Request Lambda

This lambda writes the authorised request to the datastore and after the write is complete,

triggers the scheduler lambda. The input to this lambda is the request file. It adds an id to

the request, which is equal to the request ID for this particular invocation of this lambda.

And also adds a worker field with a value of ’-1’ to denote an unscheduled request. After

modifying the request with the id and worker fields, it writes it to the Requests table in

DynamoDB. After the write, it triggers the Scheduler lambda. Here we make the decision

to trigger the scheduler from this lambda, instead of from the database write event, which

was our choice initially. This is because, in AWS, DynamoDB triggers to lambda functions

are actually event streams which are polled at given intervals of time, and this leads to

additional latency that is avoided when invoking the lambda directly from the previous

lambda in the chain. This also follows the non function design requirement NFR-3:

Minimize latency overhead. This lambda triggers the Scheduler lambda, detailed in Section

4.3, however, we next describe the Write-Request-to-DB lambda which is triggered after

27

4. IMPLEMENTATION OF OUR SERVERLESS CONTROL PLANE

the scheduler lambda, since it is a part of the API server lambdas and fits better in this

section.

4.2.4 Send Request to Worker Lambda

This lambda reads the newly written and scheduled request from DynamoDB, which was

written to the DB by the Initiate Request lambda previously, and sends the request over to

the concerned worker node. Since the request has the ID of the worker that it is scheduled

to, this lambda can simply read that and figure out where to send the request.

4.3 Implementation of the Scheduler

In our implementation of the scheduler lambda, it pulls metrics (CPU, memory and disk

usage) for the nodes in the cluster from a table in the datastore. The structure of this

table is illustrated in Figure 4.5. The scheduling algorithm checks for the node with the

lowest CPU usage and schedules the request on to that node. After making the scheduling

decision, the scheduler lambda updates the worker field in the request with node-id and

writes it to the requests table in the datastore. In a real world scenario, the node metrics

would be pulled from a monitoring service running in the cluster. However, as we are not

concerned with the data plane in our system, we have substituted the node metrics server

with a table in the datastore.

4.4 Alternatives Considered

In this section we discuss some alternatives for system components like the datastore,

and the architecture of the system that we considered during implementation. We also

weigh into the pros and cons of each alternative and why we decided to not go with the

alternatives for our implementation.

4.4.1 Alternatives for the datastore

Since we implemented our system on AWS we had two options for a persistent key-value

store: DynamoDB and S3. S3 is mainly designed as an object store, to store large volumes

of unstructured data. It is useful for high-throughput data, but unsuitable for low latency

targets, unlike DynamoDB which was made for low latency. Unlike S3, DynamoDB is able

to scale on demand, which is a major requirement of our system. DynamoDB also has the

ability to create indexes on items, which we used for the Roles and RoleBindings table.

28

4.4 Alternatives Considered

In S3, instead of creating indexes on the namespace, we could have used multiple buckets,

each bucket acting as a namespace, but it adds unnecessary complexity. Lastly, we have

to factor in cost. S3 is significantly more expensive compared to DynamoDB, and in S3

the majority of the cost comes from accessing the data and not storing the data. Since in

our system, every request produces multiple accesses to the data, S3 is not a good choice.

Overall, due to the unpredictable scaling, high number of accesses to the data and the

model of the data, S3 was not a suitable datastore for our system.

4.4.2 Alternatives for the architecture

While implementing the system, we considered alternatives to triggering the lambdas com-

pared to the direct from lambda trigger that we have in our final implementation. Mainly,

we considered triggering the Scheduler and Send-to-Worker lambdas from WRITE and

MODIFY events in DynamoDB. This design is depicted in Figure 4.6, this is a simplified

figure, but the main point of interest is triggers to the Scheduler and Send Request to

Worker lambdas. Intuitively, this design makes sense, as the lambdas only need to be

triggered by a database event. However, compared to triggering directly from the previous

lambda, this method added a latency between 200ms to 500ms. This seems to be mainly

because the DynamoDB triggers are not kicked into action immediately on changes to the

database, but at set intervals of time by batching all events in that time interval together.

Due to this reason, we did not go with this architecture.

With this we conclude the implementation section. In this section, we discussed our

implementation of the system proposed in Chapter 3 within the AWS ecosystem. In

summary, we implemented a serverless control plane within AWS. The API server was

implemented as a group of four lambdas, each handling one of the following functions of

authentication, authorisation, writing requests to the datastore and sending request to

the concerned worker. The lambdas are executed one after the other, forming a chain,

where the next lambda is triggered by the previous lambda in the chain, except for the

authentication lambda which is the first lambda in the chain and trigged by the AWS API

Gateway as an authoriser to the API call that triggers the authorisation lambda. The

datastore was implemented in DynamoDB consisting of four tables - users table, requests

table, roles table and rolebindings tables. Finally, the scheduler is implemented as another

lambda that retrieves cluster state from a table in DynamoDB and makes a scheduling

decision.

29

4. IMPLEMENTATION OF OUR SERVERLESS CONTROL PLANE

Figure 4.6: The alternative implementation of the system, where database events trigger
lambdas.

30

5

Evaluation

In this chapter, we evaluate the serverless control plane that was designed in Chapter 3

and implemented in Chapter 4. For our evaluation, we focus on four dimensions:

1. Latency of the system. We measure how long it takes for a workload request to

arrive at a worker. In a serverless architecture, we can expect the latency to increase

compared to the serverful counterpart, this experiment will help us gauge how much

the latency increases in our system compared to standard Kubernetes.

2. Throughput of the system. For our evaluation, we define throughput as the

number of requests to our system at the same time, in other words the number of

concurrent requests. We measure how the latency of the system changes based on

the number of concurrent requests received. This will aid us in measuring the scaling

and elasticity of the serverless control plane.

3. Resource usage of the system. Here we measure the resource usage (CPU and

memory) of our system.

4. Cost to run the system. We measure the cost to run our system on AWS. Since

serverless functions can scale to zero, we expect it to be cheaper than its serverful

counterpart. Measuring this allows us to gauge the impact on cost.

We describe the experimental setup in Section 5.1 and report the results of our experiments

in Sections 5.2 through 5.5. We also highlight the limitations of our experiments in Section

?? and close the chapter with a summary and discussion of the evaluation in Section 5.7.

31

5. EVALUATION

0 500 1000 1500 2000 2500 3000 3500

0

50

100

150

200

250

300

First 3600 processed data points: 1 second bins

Figure 5.1: Request frequency, per second, for the first hour (3600 seconds), from the Azure
VM allocation trace. The Y-axis denotes number of requests, while the X-axis denotes seconds.

5.1 Experimental Setup

In this section, we describe the setup and the process that we used to run and benchmark

our system. For our Kubernetes cluster, we use Continuum with the control plane having

10 CPU cores and 50GB of memory. For our serverless functions, we use lambdas with

memory of 512 MB, storage of 512 MB and a maximum execution time of 3 seconds. The

runtime for the lambdas is Python 3.12. For DynamoDB tables, we set the read and write

capacity to on-demand, so that our requests won’t be throttled if we hit a certain ceiling.

To simulate incoming workloads, we use Azure VM allocation traces1. This allows us to

simulate part of the workload on Azure clusters, providing a real world workload allocation

scenario.

We first convert the trace into 1 second bins and use a bash script to send X parallel curl

requests to our serverless API server, where X is the number of requests in that 1 second

bin. The distribution of the request frequency, per 1 second bins, for the first hour (3600

seconds) is shown in Figure 5.1. In the figure, the X-axis denotes time, in seconds, and the

Y-axis denotes the number of requests per second. For our evaluation we simulate the first
1Azure traces: https://github.com/Azure/AzurePublicDataset/blob/master/

AzureTracesForPacking2020.md

32

https://github.com/Azure/AzurePublicDataset/blob/master/AzureTracesForPacking2020.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureTracesForPacking2020.md

5.2 Latency of requests

Kubernetes Lambda warm Lambda cold
0

200

400

600

800

1000

1200
La

te
nc

y
(m

s)

Figure 5.2: Latency of 1 request for Kubernetes and our system. X-axis denotes the control
plane and Y-axis denotes the time in ms. Lower is better.

1 hour from the trace, which has a total of 15122 requests. To measure the throughput,

we send 500 and 1000 concurrent requests per second to our system for 60 seconds and

compare their latencies. We stop at 1000 concurrent requests as it was the highest number

of requests in 1 second from all bins in the trace. Each experiment is run 5 times, and the

average of the 5 runs in reported, to minimize bias.

To obtain the metrics like resource usage and latency after running these experiments,

we make use of AWS CloudWatch. We use CloudWatch because it offers detailed metrics

for all the dimensions we are interested in. It is also the metrics tool used by AWS to

calculate billing, meaning that the metrics reported from CloudWatch are accurate.

5.2 Latency of requests

The comparison of latencies of our system and the Kubernetes control plane, for a single

request, is shown in Figure 5.2, with the X-axis denoting the type of control plane, and

the Y-axis denoting latency to serve those requests. Lower latency is better. Comparing

latency for a single request, our system takes 1.2s per request for a cold start, and 0.4s for

warm starts. For Kubernetes, the latency for a single request was around 80ms.

Next, we run 1 hour of the trace on both systems, the completion time was similar

33

5. EVALUATION

initiateRequest

writeSchedulingDecision
writeRequestToWorker

authenticateRequest
authoriseRequest

1 60

Figure 5.3: Execution latency of the lambdas for the first hour of the trace, shown per
minute.

(around 3600 seconds) on both. The breakdown of 90th percentile latency per lambda can

be seen in Figure 5.3. In this figure, the X-axis denotes the different lambda functions

that make up our control plane, and the Y-axis denotes the 90th percentile latency of

those functions, with lower latency being better. On average, each request completed (i.e.

got sent to a worker) in 0.5 seconds. This measurement also includes the read and write

latencies from DynamoDB. The read and write latency from DynamoDB is around 10ms

and 15ms respectively, as such we consider them to be negligible.

Noticeably, the latency of the Authentication function is minimal. This is most likely

because this function only has to read one value from a table in DynamoDB, which it can

directly query for using the primary key. In comparison, the other functions have to carry

out reads as well as writes. In the case of the Authorisation function, the read is actually

a scan operation instead of a direct query with a primary key, which takes longer. From

this we conclude that although the individual read and write operations in DynamoDB are

around 10ms, the time that the lambdas take to process the DynamoDB operations are

significant, and constitute the bulk of the latency.

34

5.3 Throughput

Overall, for a single request, the latency of our serverless control plane is about 4 times

more than the standard Kubernetes control plane. The serverless control plane takes 400ms

while Kubernetes takes 80ms.

5.3 Throughput

1 Request 500 Requests 1000 Requests
0

100

200

300

400

500

600

700

La
te

nc
y

(m
s)

Figure 5.4: 90th percentile latency to complete 1 request, 500 concurrent requests and 1000
concurrent requests per second, for 60 seconds.

To test throughput, we send 500 and 1000 concurrent requests, per second for 60 seconds,

to our serverless control plane.

An interesting observation is the latency for completion of concurrent requests, shown in

Figure 5.4, with the X-axis denoting the number of concurrent requests sent to our control

plane and the Y-axis denoting the 90th percentile latency to serve those requests. It takes

about the same amount of time for our control plane to complete 1000 concurrent requests,

per second for 60 seconds, and 1 request per second for 60 seconds. These measurements

were carried out in intervals of 30 minutes to ensure there are no warm starts. This

proves that our system scales well to handle large number of requests in a short time. The

comparison of running this test on our system and Kubernetes is shown in Figure 5.5. The

total run time of the test is 3 minutes, and from Figure 5.5 we can see that our serverless

control plane completes the test in around 3 minutes, while Kubernetes takes 19 minutes

to complete. This is because at 500 requests per second and above, Kubernetes is not

able to keep up with the incoming requests and starts to queue requests, also evidenced

35

5. EVALUATION

Lambda Kubernetes

0

5

10

15

20

25
Co

m
pl

et
io

n
Ti

m
e

(m
in

ut
es

)

Figure 5.5: Total time taken to complete 1, 500 and 1000 concurrent requests per second,
each for 60 seconds, for a total test time of 3 minutes.

by the CPU usage of Kubernetes reaching 100% while handling 500 requests per second

as detailed in Section 5.4.

Next, we look at the concurrent executions of our lambdas during this test. Figure 5.6

shows the concurrent lambda executions for the respective number of requests, with the

X-axis denoting the lambdas and the Y-axis denoting the maximum number of concurrent

executions of those lambdas. Higher concurrent executions are better, with the ideal

scenario being the number of concurrent executions of each lambda matching the number

of requests.

We see that even though we sent 500 and 1000 requests in parallel, the concurrent

execution of the lambdas is below that. We suspect this may be because of some internal

load balancing done by AWS as the concurrent executions get closer to the account limit

of 1000 concurrent executions. To test this, we launched 100 requests in parallel, which

means a total of 500 concurrent executions (100 executions for 5 lambdas). This is well

below the account limit of 1000 concurrent executions, and we see that all lambdas are

able to reach 100 concurrent executions (Figure 5.7a). The Authentication lambda, which

has an execution duration of about 14ms, is always below the ideal concurrency. This

most likely is due to its short execution time, due to which it is not making use of the

maximum concurrency. Next, we send 200 requests in parallel, amounting to a total of

1000 concurrent lambda executions. This is equal to the account limit, and we see that 200

36

5.4 Resource Usage

Initiate RequestWrite Request to WorkerAuthorize Request

Write Scheduling Decision Authenticate Request

(a) 500 concurrent requests. (b) 1000 concurrent requests.

Figure 5.6: Maximum number of concurrent lambda executions for 500 and 1000 concurrent
requests.

concurrent requests per lambda isn’t reached, the maximum is 195 concurrent executions

(Figure 5.7b). This leads us to believe that higher concurrency can be achieved if we have

a higher account concurrency limit from AWS.

5.4 Resource Usage

We measured the resource usage during the throughput test, where we sent 1 request per

second, 500 requests per second, and 1000 requests per second, each for 60 seconds. The

CPU and memory usage for Kubernetes is shown in Figure 5.8, with Figure 5.8a showing

the CPU usage and Figure 5.8b showing the memory usage. As mentioned in Section 5.1,

the control plane has a 10 core CPU with 50GB of memory. CPU and memory usage per

lambda for every request is shown in Figure 5.9a and 5.9b, respectively.

Kubernetes often touched 100% CPU usage during the 500 requests per second and

above. The memory usage for Kubernetes went from 2GB at the start of the test, to 4GB

by the end, increasing over time. In contrast, the CPU time for every lambda to process

requests is about 110ms, except around 15ms for the Authentication lambda. The total

memory for every lambda is 512 MB, which means for every request, the lambdas use

about 16%, or 96 MB of memory.

37

5. EVALUATION

Initiate RequestWrite Request to WorkerAuthorize Request

Write Scheduling Decision Authenticate Request

(a) 100 concurrent requests. (b) 200 concurrent requests.

Figure 5.7: Maximum number of concurrent lambda executions for 100 and 200 concurrent
requests.

5.5 Cost

In our experiments, we were within the AWS free tier limit for all resources. So in order to

estimate cost for our system, we use the AWS Pricing Calculator. AWS Pricing Calculator

is a service offered by AWS to measure the cost of running AWS services based on specific

usage criteria. For every request, our system has 5 lambda invocations, 5 DynamoDB reads

and 2 DynamoDB writes. Using this information in the AWS pricing calculator, we find

that for 2 million requests a month, the cost of running the serverless control plane comes

to 65.24 USD. In comparison, running the control plane in AWS EKS, costs 0.10 USD per

hour per cluster, making it 74 USD a month to run the control plane for a single cluster,

even if there is no workload.

5.6 Limitations and Threat to Validity

For our tests, we used lambdas with 512MB of memory and no provisioned concurrency, due

to cost. Provisioned concurrency is a feature for lambdas where AWS will keep a specified

number of instances of a function pre-warmed to reduce latency. Increasing the memory

of lambdas and configuring provisioned concurrency will allow for lower latencies than

observed in our tests. Other possible optimisations include using DynamoDB accelerator

(DAX), which caches frequently accessed items in memory. This could improve latencies

38

5.7 Summary of Evaluation
C
on
cu
rre
nt
 E
xe
cu
tio
ns

Initiate Request

(a) 303 requests. (b) 1035 requests.
(a) CPU Usage (%) (b) Memory Usage (%)

Figure 5.8: CPU and memory usage, in percent, for Kubernetes control plane. The Y-axis
denotes the respective percentages, and the X-axis denotes the time, with the start time of 1
request/s, 500 requests/s and 1000 requests/s shown.

of Authorisation and Scheduler lambdas as they read from DynamoDB frequently. We

chose to not implement this because this is specific to AWS and we focused on keeping our

design and implementation cloud provider agnostic.

For our throughput tests in Section 5.3, we were unable to get the per-request latency for

Kubernetes, which would have been useful to further visualise how the latency increased

with increase in requests.

For testing resource usage, in Section 5.4, we measured CPU usage percent from Kuber-

netes but CPU time for lambdas. This is because AWS only shows CPU usage in terms of

CPU time and otherwise has no other information regarding CPUs of lambda functions.

Due to this, we could not make a direct comparison between them, but we can still see that

CPU usage is constant in lambdas and increases with number of requests in Kubernetes.

5.7 Summary of Evaluation

In this section, we give a brief summary of the findings from our experiments in the

previous section. The latency of our serverless control plane is, on average, 4x

higher than the standard Kubernetes control plane for a single request. The

average time to complete one request by our system was 1.2 seconds when cold started, and

0.4 seconds when warm started. A point of note here is that we used 512 MB of memory

for our lambdas, and since AWS scales the CPU allocated to the lambdas in proportion

with the allocated memory, opting for 1024 MB or higher memory for the lambdas may

39

5. EVALUATION

C
on
cu
rre
nt
 E
xe
cu
tio
ns

Initiate RequestWrite Request to WorkerAuthorize Request

Write Scheduling Decision Authenticate Request

(a) 303 requests.
(a) CPU Time (ms)

1 req/s 500 req/s 1000 req/s

(b) Memory Usage (%)
1 req/s 500 req/s 1000 req/s

Figure 5.9: CPU time and memory usage per lambda for every request. The Y-axis denotes
the respective percentages, and the X-axis denotes the time, with the start time of 1 request/s,
500 requests/s and 1000 requests/s shown.

see a performance increase.

For throughput, we sent 1, 500 and 1000 parallel requests to our control plane per second,

for 60 seconds each. We notice that for our serverless control plane, the time to serve

500 concurrent requests and 1000 concurrent requests is equal to the time it

takes to serve one request. The serverless control plane completes the test in 3

minutes, while Kubernetes takes 19 minutes. This highlights the scalability of our

system, showing that it is able to handle sudden increases in concurrent requests without

increasing the latency, unlike the standard Kubernetes control plane which starts to buffer

requests when under load.

The lambdas in our serverless control plane use, on average, 105ms of CPU

time and 96MB of memory per request. Lastly, the cost to run the serverless control

plane is based on actual usage, unlike the managed Kubernetes services offered by cloud

providers like AWS, where the control plane has a fixed price regardless of workload. For

2 million requests a month, the serverless control plane costs 65.25 USD to run

on AWS compared to the 74 USD per month for running the control plane in EKS, even

under zero workload.

40

6

Related Work

In this section, we briefly discuss some of the previous papers and surveys that deal with

scaling Kubernetes or combining serverless computing with Kubernetes. To the best of

our knowledge, our work is the first that tries to dynamically scale the control plane with

load.

6.1 Scaling in Kubernetes

Cloud Computing With Kubernetes Cluster Elastic Scaling (8). They develop an

open source solution for autoscaling Kubernetes worker nodes within a cluster to support

dynamic workloads, particularly for ubiquitous computing and AI applications. This differs

from our work in two ways. Firstly, they scale the data plane instead of the control plane,

and secondly, they scale up using VMs due to which latencies of up to 90 seconds are

observed.

Decentralized Kubernetes Federation Control Plane (9) proposes a decentralized

control plane for Kubernetes federations, designed to address the scalability and reliability

challenges of managing thousands of clusters in edge computing scenarios. While the vision

of this paper is somewhat similar to ours, in the sense that it proposes scaling the control

plane, it is limited to federations of clusters and not applicable to smaller scale clusters.

The authors present this as a conceptual framework and starting point for future work,

rather than a fully realized and tested system.

A Survey of Autoscaling in Kubernetes (10) presents a comprehensive survey of

autoscaling techniques in Kubernetes. In contrast to our work, they only cover scaling in

the data plane.

41

6. RELATED WORK

6.2 Kubernetes and Serverless Computing

Benchmarking Serverless Workloads on Kubernetes (11) runs serverless workloads

on Kubernetes and benchmarks the latency and throughput. Differing from our work,

they use serverless in the data plane of Kubernetes, while using the traditional Kubernetes

control plane to manage the serverless workloads.

An evaluation of open source serverless computing frameworks (12) evalu-

ates various serverless frameworks, including some based on Kubernetes by extending the

Kubernetes API to support serverless functions as a custom resource type.

A scheduler for serverless framework base on kubernetes (13) proposes a new

scheduling algorithm that enables rapid scheduling of pods for serverless workloads. In

similarity to our work, they also modify the control plane, but with the goal of supporting

serverless workloads in the data plane.

42

7

Conclusion

In this thesis we designed, implemented and evaluated a serverless control plane for Ku-

bernetes. The main goal of this was to improve the elasticity of the control plane wherein

it can respond to sudden large spikes in workload, and also scale to down in times of low

demand to save cost and resources. We implemented and evaluated this system in AWS

and found that our serverless control plane takes has 6x more latency compared to the

standard Kubernetes control plane for a single request (400ms vs 60ms), but has good

performance in high throughput situations where it takes the same time to serve 1000

requests a second as it does for 1 request a second.

7.1 Answering Research Questions

In this section we present our answers to the research questions proposed in Section 1.3.

RQ1.1 : How can the API server be implemented in a serverless system?

Typically, each serverless function should be responsible for only one particular function-

ality of the system. Therefore to design a serverless API server we split the basic func-

tionalities of the Kubernetes API server into separate serverless functions, leading to four

separate functions that together make up the API server. These functions handle authen-

tication of a request, authorisation of the request, processing the request and sending the

request to the appropriate worker. Due to the serverless nature of our system, our design

choices deviated from Kubernetes in some areas. We chose to store the token file for au-

thentication in the datastore because it cannot be stored on the serverless functions, as

storage there is ephemeral. Second, we chose to not authenticate the control plane compo-

nents to each other, unlike Kubernetes. This is because authentication of the components,

in our case serverless functions and cloud services like datastore, is already handled by the

43

7. CONCLUSION

cloud provider and only authorised parties (for example with the proper IAM roles) can

modify these components. We found that, at least in AWS, triggering the functions from

datastore events introduced significant latency because the events are batched together

and executed, instead of being immediately executed as the event occurs. For this reason,

in our design we trigger the functions directly from the previous functions in the chain,

which reduces latency.

RQ1.2 : How can the datastore be implemented in a serverless system?

The data store needs to a persistent key-value store, following the same from Kubernetes

design. Not all serverless functions should have write access to the datastore, only the

functions responsible for scheduling the requests and processing the request should be able

to write to the datastore, while the others should have only read access.

RQ1.3: How can the scheduler be implemented in a serverless system?

After completion of authentication and authorisation of a new request, the function re-

sponsible for processing the request triggers the scheduler function, which in our imple-

mentation, pulls metrics for the nodes in the cluster from a table in the datastore. In a

realistic scenario, the scheduler function will query the metrics endpoint to get the node

metrics, and then schedule the request to a worker.

RQ2: How do we deploy and configure a serverless control plane in the cloud?

For deploying the serverless control plane, we chose AWS, but our design is agnostic of

cloud provider. We use DynamoDB as the datastore, due to it being a key-value store as

well as focused on low latency execution of requests.

RQ3: What is the latency impact when the control plane is serverless?

In our evaluation, we find that for a single request, our serverless control plane has 6x

more latency than Kubernetes. The average time to serve one request is 1.8 seconds when

cold started, and 0.4 seconds when warm started. The serverless control plane is good in

high throughput situations, where it was able to handle 1000 requests per second, for 60

seconds with the same latency as it handled 1 request per second.

RQ4: What is the impact on cost when the control plane is serverless?

Using the AWS Pricing Calculator, we find that it costs 65.25 USD to serve 2 million

requests a month, and the cost decreases if there is less workload. In comparison, the AWS

managed Kubernetes service, EKS, costs 74 USD per month per cluster to run. This is

even when no workload is carried out.

44

7.2 Limitations and Future Work

7.2 Limitations and Future Work

Our focus in this work was to design a proof of concept serverless control plane that can

scale quickly with increase in workload. As such, we have only implemented the bare

functionality required to send a request to a worker, in order to measure latency and

scalability. We have left out some components of the Kubernetes control plane from our

system. Notably, we did not implement controllers, the controller manager, and validation

and translation of API requests.

45

7. CONCLUSION

46

References

[1] CNCF. Cloud Native 2023: The Undisputed Infrastructure of Global Tech-

nology, 2023. 1

[2] Ruslan Meshenberg Yury Izrailevsky, Stevan Vlaovic. Completing the

Netflix Cloud Migration, 2016. 1

[3] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Gre-

eff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russi-

novich, et al. Protean:{VM} allocation service at scale. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20), pages 845–

861, 2020. 3

[4] Christopher Berner. Scaling Kubernetes to 2,500 nodes, 2018. 3

[5] Benjamin Chess Eric Sigler. Scaling Kubernetes to 7,500 nodes, 2021. 3

[6] Matthijs Jansen, Linus Wagner, Animesh Trivedi, and Alexandru Iosup.

Continuum: automate infrastructure deployment and benchmarking in the

compute continuum. In Companion of the 2023 ACM/SPEC International Con-

ference on Performance Engineering, pages 181–188, 2023. 6

[7] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. Serverless in the wild: Characterizing

and optimizing the serverless workload at a large cloud provider. In 2020

USENIX annual technical conference (USENIX ATC 20), pages 205–218, 2020. 12

[8] Brandon Thurgood and Ruth G Lennon. Cloud computing with kuber-

netes cluster elastic scaling. In Proceedings of the 3rd International Conference

on Future Networks and Distributed Systems, pages 1–7, 2019. 41

47

https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
https://openai.com/index/scaling-kubernetes-to-2500-nodes/
https://openai.com/index/scaling-kubernetes-to-7500-nodes/

REFERENCES

[9] Lars Larsson, Harald Gustafsson, Cristian Klein, and Erik Elmroth.

Decentralized kubernetes federation control plane. In 2020 IEEE/ACM 13th

International Conference on Utility and Cloud Computing (UCC), pages 354–359.

IEEE, 2020. 41

[10] Minh-Ngoc Tran, Dinh-Dai Vu, and Younghan Kim. A survey of autoscal-

ing in kubernetes. In 2022 Thirteenth International Conference on Ubiquitous and

Future Networks (ICUFN), pages 263–265. IEEE, 2022. 41

[11] Hima Govind and Horacio González-Vélez. Benchmarking serverless

workloads on kubernetes. In 2021 IEEE/ACM 21st International Symposium on

Cluster, Cloud and Internet Computing (CCGrid), pages 704–712. IEEE, 2021. 42

[12] Sunil Kumar Mohanty, Gopika Premsankar, and Mario Di Francesco.

An evaluation of open source serverless computing frameworks. In IEEE

International Conference on Cloud Computing Technology and Science, pages 115–

120. IEEE, 2018. 42

[13] Dayong Fan and Dongzhi He. A scheduler for serverless framework base

on kubernetes. In Proceedings of the 2020 4th High Performance Computing and

Cluster Technologies Conference & 2020 3rd International Conference on Big Data

and Artificial Intelligence, pages 229–232, 2020. 42

48

Appendix A

Reproducibility

A.1 Abstract

The serverless control plane was tested on AWS, the comparison with Kubernetes was done

using Continuum Framework on an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz with

10 cores and 50GB of memory. The code is publicly available.

A.2 Artifact check-list (meta-information)

• Run-time environment: AWS Lambda with Python 3.12

• How much time is needed to prepare workflow (approximately)?: 15 minutes

• How much time is needed to complete experiments (approximately)?: 1.5 hours

• Publicly available?: Yes

A.3 Description

A.3.1 How to access

https://github.com/minoritydev/msc-thesis/tree/main

A.3.2 Data sets

Azure VM allocation trace for packing : https://github.com/Azure/AzurePublicDataset/

blob/master/AzureTracesForPacking2020.md

49

https://github.com/minoritydev/msc-thesis/tree/main
https://github.com/Azure/AzurePublicDataset/blob/master/AzureTracesForPacking2020.md
https://github.com/Azure/AzurePublicDataset/blob/master/AzureTracesForPacking2020.md

A. REPRODUCIBILITY

A.4 Installation

The installation involves setting up the infrastructure on AWS, with the following steps:

Set up DynamoDB:

1. Make ’Requests’ table, with ’id’ (string) as partition key.

2. Make ’Roles’ table, with ’name’ (string) as partition key and ’namepspace’(string)

as sort key.

3. Make ’Rolebindings’ table, with ’name’ (string) as partition key and ’namepspace’(string)

as sort key.

4. Make ’node-metrics’ table with ’node-id’ (string) as partition key.

Set up EFS:

1. Create a new EFS filesystem in the default VPC.

2. Create an access point for the EFS by going to EFS > Access Points > Create access

point.

Set up Lambdas:

1. Create 5 lambdas with 512MB memory (or more) and runtime of Python 3.12 with

Arcchitecture x86_64. Name them ’authenticateRequest ’, ’authorizeRequest ’, ’ini-

tiateRequest ’, ’writeSchedulingDecision’ and ’writeRequestToWorker ’. The code for

these lambdas is available in the GitHub repo.

2. Attach EFS to writeRequestToWorker lambda by going to Lambda > Configuration

> File Systems and attaching the EFS created earlier.

3. To make sure the writeRequestToWorker lambda can access the EFS, you need to

add it to the same VPC as the EFS. Do this by going to Lambda > VPC.

4. You may need to add this lambda to a security group that allows all inbound traffic.

Set up API Gateway trigger:

1. Create a new API endpoint to trigger the authorizeRequest lambda. The easiest way

to do this is to go to the lambda in AWS console > Add Trigger > Set source to API

Gateway > Create New API > HTTP API > Set security to Open > Add.

50

A.5 Evaluation and expected results

2. Now set up a lambda authorizer for the create API endpoint. To do this, go to the

API route in AWS console > Click Configure under Authorizarion > Create and

attach an authorizer > Set authorizer type to Lambda > Give it a name > select

the authenticateRequest lambda under Lambda Function > Set response mode to

IAM Policy > under identity sources enter $request.header.Authorization > Enable

’Automatically grant API Gateway permission to invoke your Lambda function’ >

Create and attach.

A.5 Evaluation and expected results

Numbers similar to evaluation section

A.6 Experiment customization

The tests are available on GitHub and you are free to customize them.

51

A. REPRODUCIBILITY

52

Appendix B

Kubernetes YAML definition
examples

B.1 Role definition YAML

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

namespace: development

name: pod-manager

rules:

- apiGroups: [""]

resources: ["pods"]

verbs: ["get", "list", "create", "delete"]

B.2 Rolebinding definition YAML

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

name: bind-pod-manager

namespace: development

subjects:

- kind: User

name: jane

apiGroup: rbac.authorization.k8s.io

roleRef:

53

B. KUBERNETES YAML DEFINITION EXAMPLES

kind: Role

name: pod-manager

apiGroup: rbac.authorization.k8s.io

B.3 Request definition YAML

apiVersion: v1

kind: Pod

metadata:

name: nginx

spec:

containers:

- name: nginx

image: nginx:1.14.2

ports:

- containerPort: 80

54

	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Thesis Contributions
	1.6 Plagiarism Declaration

	2 Background
	2.1 A Primer on Kubernetes
	2.2 The Kubernetes control plane
	2.3 A Primer on Serverless Computing

	3 Design of the Serverless Control Plane
	3.1 Requirements for a serverless control plane
	3.2 Overview of the design
	3.3 Design of the API server
	3.3.1 The Authentication function
	3.3.2 The Authorisation function
	3.3.3 The Write-Request-to-DB function
	3.3.4 The Send-To-Worker function

	3.4 Design of the datastore
	3.4.1 The Users table
	3.4.2 The Roles table
	3.4.3 The RoleBindings table
	3.4.4 The Requests table
	3.4.5 Access control for the datastore

	3.5 The Scheduler function

	4 Implementation of our Serverless Control Plane
	4.1 Implementation of the datastore
	4.1.1 Users Table
	4.1.2 Roles table
	4.1.3 RoleBindings table
	4.1.4 Requests table

	4.2 Implementation of the API Server
	4.2.1 Authentication Lambda
	4.2.2 Authorisation Lambda
	4.2.3 Initiate Request Lambda
	4.2.4 Send Request to Worker Lambda

	4.3 Implementation of the Scheduler
	4.4 Alternatives Considered
	4.4.1 Alternatives for the datastore
	4.4.2 Alternatives for the architecture

	5 Evaluation
	5.1 Experimental Setup
	5.2 Latency of requests
	5.3 Throughput
	5.4 Resource Usage
	5.5 Cost
	5.6 Limitations and Threat to Validity
	5.7 Summary of Evaluation

	6 Related Work
	6.1 Scaling in Kubernetes
	6.2 Kubernetes and Serverless Computing

	7 Conclusion
	7.1 Answering Research Questions
	7.2 Limitations and Future Work

	References
	A Reproducibility
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.3.1 How to access
	A.3.2 Data sets

	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Experiment customization

	B Kubernetes YAML definition examples
	B.1 Role definition YAML
	B.2 Rolebinding definition YAML
	B.3 Request definition YAML

