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Abstract

In the rapidly evolving landscape of cloud computing, container orchestration

tools have become critical for managing large-scale applications. Among these

tools, Kubernetes has established itself as the de facto standard due to its ex-

tensive features and community support. Central to Kubernetes’ architecture

is its control plane, responsible for managing the overall state of the cluster. In

cases of large clusters, the control plane needs to scale to manage the increas-

ing pressure exerted by the workers. However, the relatively large size of its

containers can lead to slow startup times, making it challenging for the control

plane to promptly respond to variations in workloads. Serverless computing,

characterized by its ability to dynamically scale resources based on demand,

presents a promising solution to this problem.

This thesis aims to address the problem of insufficient elasticity in Kuber-

netes’ control plane, through the design, implementation and evaluation of

Kubeλess, a novel serverless architecture for Kubernetes’ control plane. Our

results demonstrate that Kubeλess significantly reduces the startup time of

control plane components and achieves more efficient pod deployment in high-

demand scenarios. The code for this thesis work is openly available GitHub.

https://github.com/ddarbinyan/kubernetes/tree/job-lambda
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Introduction

With the growing popularity of containerization techniques, container orchestration tools

gained significant attention and became essential for automating the deployment, scaling,

and management of container-based applications in the cloud [1]. Among these tools,

Kubernetes stands out as the most popular and widely adopted, establishing itself as the

de facto standard in the industry [2, 3, 4]. While other orchestration tools like Docker

Swarm [5] and Apache Mesos [6] are also popular, Kubernetes’ extensive features and

community support made it a favorite among end-users, with 66% using it in production

[7]. Some authors have even referred to the last several years as a “Kubernetes Tsunami”

in the IT world, highlighting the overwhelming impact and rapid adoption of the system

[8].

This widespread adoption is evident as many large companies, including IBM, Pinterest,

and OpenAI, have successfully migrated their infrastructure to Kubernetes for managing

their containerized applications [9]. These companies have reported improved deployment

speeds, enhanced scalability, and more efficient resource utilization, demonstrating the

transformative impact of Kubernetes on their operations. The economic impact of Ku-

bernetes is also substantial, with 44% of companies citing the need to increase revenue or

profits as one of the primary reasons for using Kubernetes [10].

1.1 Context

Kubernetes, originally developed by Google and inspired by a decade of experience in

deploying reliable container applications through systems such as Borg and Omega [11], has

evolved into a comprehensive platform for managing containerized workloads. Currently,

it is widely used for deploying large and scalable applications due to its robust auto-scaling
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1. INTRODUCTION

mechanisms that efficiently manage varying loads. Depending on workload fluctuations,

these mechanisms determine how to scale the number of compute nodes in an existing

cluster (i.e., horizontal scaling) and/or the quantity of assigned computing resources (CPU

time, cores memory, etc.) for each node (i.e., vertical scaling) [12].

Central to Kubernetes’ architecture is its control plane, consisting of a datastore and

containerized API servers, schedulers, controller managers, and more [13]. Together, these

components are responsible for managing the overall state of the cluster. The control

plane follows a “hub-and-spoke” design pattern where each component reads and writes

to the datastore via the API server and does not directly communicate with any other

control plane component [11]. In cases of large clusters, the control plane components

need to scale to manage the increasing pressure exerted by the worker nodes. However, the

relatively large size of its containers can lead to slow startup times, making it challenging

for the control plane to promptly respond to variations in the workload. Thus, Kubernetes

fails to provide a sufficient degree of elasticity, which is a fundamental attribute of cloud

computing.

Elasticity enables applications to quickly adapt to fluctuating workloads by dynami-

cally scaling computational resources (such as CPU cores, memory, VM, and container

instances) [12]. It ensures that the application can meet user demands efficiently while

optimizing resource utilization and cost-effectiveness [14]. In production environments,

the need for elasticity is crucial due to the nature of workloads that can vary drastically,

often experiencing sudden and unpredictable spikes in demand. A study on the real-world

workloads of Azure Functions reveals that functions can exhibit a range of 8 orders of

magnitude in invocation frequencies [15]. Although the vast majority of these functions

are invoked infrequently, the most popular ones can be triggered as much as 100 million

times a day. Such variability highlights the necessity for an elastically scaling solution

capable of adapting to these dynamic demands.

One solution to this need is serverless computing, popular for its ability to scale op-

erations elastically. It has emerged as a relatively recent paradigm in cloud computing,

transforming the way programs are built and scaled [16]. At its core, serverless computing

abstracts the underlying infrastructure, allowing users to run event-driven and granularly

billed applications without having to address the operational logic [17]. By taking re-

sponsibility for the setup, management, and maintenance of the physical infrastructure,

serverless technologies enable rapid development and deployment, as developers can focus

primarily on the business logic of their applications.

2



1.2 Problem Statement

1.2 Problem Statement

As illustrated in the aforementioned study of Azure Functions, workloads in a production

environment can vary frequently and rather drastically. While Kubernetes’ control plane

has auto-scaling mechanisms to handle these fluctuating workloads, those are not fast

enough to provide a sufficient degree of elasticity in large clusters. This poses a serious

problem, especially when 50% of Azure workloads execute in less than one second on

average [15]. As a result, large delays in the control plane are extremely obstructive, and

elastic mechanisms are necessary to ensure its responsiveness to workload variations. A

serverless architecture designed for rapid scaling operations presents a promising solution.

Kubernetes’ control plane follows an event-driven architecture which aligns well with this

serverless design, allowing it to scale quickly in response to changing demands.

In addition to ensuring elasticity, a serverless control plane can offer significant advan-

tages in terms of resource utilization and cost efficiency. Traditional Kubernetes envi-

ronments often pre-allocate more control plane instances than required, to handle peak

workloads. However, leasing costly cloud-based resources can be unaffordable in the long

run, as those would be underutilized during periods of low demand. In contrast, a server-

less control plane can dynamically allocate and deallocate resources based on workload

demands, thus optimizing resource usage and reducing operational costs. This aligns with

the economic impact that Kubernetes has had on companies, as it can further contribute

to cost savings and increase profits.

Lastly, optimized resource utilization, provided by a serverless control plane, also ad-

dresses energy efficiency and climate responsibility, tackling one of the four grand societal

challenges highlighted in the CompSys Manifesto for the Netherlands [18]. This manifesto

also identifies Resource Management and Scheduling as a foundational research theme re-

quired to tackle those challenges and urges researchers to study new approaches to its

operational efficiency. This study’s aims align with these calls, as it attempts to enhance

elasticity in one of the most popular resource management platforms. By improving Kuber-

netes’ responsiveness to dynamic workloads, this research can lead to more sustainable and

efficient cloud computing, benefiting both industry and society through smarter resource

utilization.
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1. INTRODUCTION

1.3 Research Questions

In this work, we attempt to address the challenge of elasticity present in Kubernetes’

control plane using a serverless architecture. To tackle the aforementioned challenge, we

identify the following research questions.

RQ1 How can the Kubernetes control plane be redesigned to operate entirely

within a serverless architecture?

To identify a suitable approach for adapting Kubernetes’ control plane to a serverless

architecture, it is essential to develop a design that takes into account the specific

requirements and constraints of both Kubernetes and serverless computing.

RQ2 What are the practical steps required to implement a serverless Kuber-

netes control plane?

Once the appropriate design has been identified, we must understand the integration

process of the new control plane within the Kubernetes framework to ensure that the

overall system’s functionality and reliability are maintained.

RQ3 What are the performance characteristics of a serverless Kubernetes con-

trol plane, and how do they compare to the traditional Kubernetes?

Having designed and implemented the new architecture, it is essential to evaluate its

performance and analyze its behavior under regular operations. This will allow us

to quantify the potential improvements brought about by this solution.

1.4 Research Methodology

A combination of various research methodologies is used to address the aforementioned

research questions. To answer RQ1, we carry out a systematic study of Kubernetes’ ar-

chitecture, focusing primarily on its control plane. We also conduct a shortened literature

survey investigating existing systems with serverless control planes (M1; quantitative re-

search [19, 20]). This helps us get an in-depth understanding of Kubernetes and gather

insights and best practices in serverless design, forming the background of this research.

To build on our answer for RQ1 and tackle RQ2, we design and implement a serverless

control plane, following a process inspired by the AtLarge vision on the design of dis-

tributed systems. This process involves an iterative cycle with various stages, including

requirements formulation, design, implementation, and analysis (M2; design, abstraction,
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1.5 Thesis Contributions

prototyping [21, 22, 23]). The implementation of the serverless control plane focuses pri-

marily on control loops, which are the backbone of most of control plane components, and

are responsible for continuously monitoring and reconciling the state of resources.

Finally, to address RQ3, we design a series of experiments to evaluate the performance

characteristics of the serverless control plane (M3; experimental research, designing ap-

propriate micro and workload-level benchmarks, quantifying a running system prototype

[24, 25, 26]). These experiments are conducted using the Continuum framework [27], which

was designed to automate infrastructure deployment and benchmarking for the cloud.

Throughout all phases of our research, we prioritize and follow the principles of open

and reproducible science. Thereby, our implementation and experiment results are open-

sourced and adhere to standard practices (M4; open-science, open-source software, com-

munity building, peer-reviewed scientific publications, reproducible experiments [28, 29,

30, 31]).

1.5 Thesis Contributions

In answering our research questions, we provide the following contributions, mapped to

the research question that they answer:

1. (Design, RQ1) Design of a Kubeλess, a novel architecture for Kubernetes with a

serverless control plane.

2. (Artifact, RQ2) Implementation of a prototype for Kubeλess, focusing on imple-

menting a serverless job controller.

3. (Experimental, RQ3) Quantitative results and analysis of the serverless control

plane’s performance compared to the traditional architecture.

1.6 Plagiarism Declaration

I confirm that this thesis work is my own work, is not copied from any other source (person,

Internet, or machine), and has not been submitted elsewhere for assessment.

1.7 Thesis Structure

We briefly introduce the structure of the rest of the paper. In Chapter 2, we cover the

relevant background information. In Chapter 3, we address RQ1 by presenting the design

5



1. INTRODUCTION

of Kubeλess. Chapter 4 discusses the steps required to implement a prototype for Kubeλess,

addressing RQ2. This prototype is then evaluated in Chapter 5, answering RQ3.
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2

Background

In this section, we present the core concepts required to understand our work. We begin

by providing an architectural overview of a Kubernetes cluster, looking at its main com-

ponents and their functionalities. We then discuss control loops, one of the fundamental

mechanisms used in Kubernetes, in more detail and explore its internal components.

2.1 Overview of Kubernetes’ Architecture

A Kubernetes cluster consists of various components, that together form the control plane,

responsible for managing the lifecycle of containers, and the data plane, responsible for

running the containerized applications. The main architectural components of both planes

are depcited in Figure 2.1.

The control plane is composed of several vital components, that can possibly be replicated

to manage increasing workloads. At the heart of the control plane is the API server, which

serves as the sole interface for reading and writing workload objects and their states to a

persistent datastore. The remaining control plane components regulate the state of those

workloads, reconciling their current state to the desired state through control loops. A

control loop (i) watches the datastore through the API server, (ii) reads newly created or

updated objects, (iii) manages the state of the read objects, and (iv) writes them back

to the datastore [32]. For example, the controller manager reads submitted workload

objects, creates pod objects (the smallest deployable unit of Kubernetes housing a group

of containers) described in the workload, and writes them to the datastore. Afterwards,

the scheduler watches for newly created pods with no assigned node, selects a node for

them to run on, and writes the decision back.

7
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Figure 2.1: Main architectural components of a Kubernetes cluster

The data plane is composed of one or more worker nodes (physical and/or virtual) that

execute the actual workloads. On each node runs the kubelet and the kube-proxy. The

former is an agent which makes sure that the containers described in the specifications of

pods scheduled on its node are running and healthy. The latter handles the networking

layer, allowing communication to pods from inside or outside the cluster.

2.2 Internal Components of a Control Loop

As highlighted in the previous section, the control loop is a key mechanism used by many of

the control plane components. It is central to how Kubernetes ensures the cluster’s current

state consistently aligns with the desired state defined by users. Therefore, it is crucial

to understand the intricate workings of the control loops and its internal components, as

depicted in Figure 2.2.

One of the key components of a control loop is the Informer, which provides a higher-level

abstraction over the resource tracking mechanisms. It starts its operation by requesting

the API server to list all instances of a specific resource (such as job, pod or deployment).

Following this, the Informer initiates a watch against the API server, using the resource ver-

sion returned as a response to the previous request. This mechanism allows the controllers

to fetch the current state and then subscribe to changes that occur after the specified re-

source version, without missing any events. When such a change is detected, the Informer

updates its internal cache holding the last known state of the watched resources. This local

caching is vital as it reduces the load on the API server and ensures that controllers can

access the current state of resources efficiently.

8



2.2 Internal Components of a Control Loop

syncHandler()

Get()processNext
WorkItem()

Add()enqueue
Controller()

Event Handler

Controller Loop

Work Queue

Trigger Event 
Handler

List & Watch

Informer

API Server

Datastore

Figure 2.2: Internal components of a control loop

After updating its cache, the Informer triggers relevant event handlers, which are callback

functions registered by the controllers during initialization. These functions are designed

to respond to specific events, such as the addition or deletion of a resource. Once they

receive the modified resource object, they process it and enqueue the object key into a rate

limiting work queue. This work queue is operated on by multiple workers started by the

controller, which run periodically in separate goroutines, fetch the next item to process and

invoke the syncHandler, a function that synchronizes the state of the resource. It starts off

by reading the current state of the resource, performs the necessary operations to align it

with the desired state, and writes any changes back to the datastore. For instance, when

a new job is created, the syncHandler of the job controller chechs the job’s specifications,

such as the number of desired completions and paralellism, creates the necessary amount

of pod objects from the mentioned template, and writes them to the datastore.

This reconciliation process is iterative and ongoing. For instance, if the desired state

specifies that a certain number of pods should be running, the controller ensures that

this number is maintained by creating or terminating pods as needed. By continuously

comparing the current state with the desired state and making adjustments, controllers

ensure that the system remains consistent and operates as intended.
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3

Design of Kubeλess

In the traditional Kubernetes architecture, control plane components, such as the API

server, controller manager, and scheduler are constantly running to manage the state of

the cluster. This always-on nature poses significant challenges in terms of elasticity and

resource utilization. When there is a sudden spike in workloads, scaling up the control

plane requires the allocation of new nodes, a process that is inherently slow and inefficient.

Alternatively, pre-allocating multiple control plane instances can ensure availability, but

results in wasted resources and higher costs during periods of low workload.

To address this lack of rapid elasticity and poor resource utilization in the Kubernetes

control plane, we formulated RQ1, asking how can the Kubernetes control plane be re-

designed to operate entirely within a serverless architecture?. In this chapter, we answer

RQ1 by following the AtLarge design framework [21] to propose the design of Kubeλess,

a novel Kubernetes architecture with a serverless and elastic control plane.

3.1 Requirements Analysis

We started the design process by eliciting the requirements for the new Kubernetes archi-

tecture, based on its current architecture and the problems found in it. The list of the core

requirements is presented below.

R1 Serverless Control Loops: Monolithic containerized components shall be split

into separate control loops, each of which running as a separate serverless function

in the control plane, and capable of maintaining and reconciling the desired state for

its necessary resources.

Running each control loop in a serverless function ensures that the system is modular

and can scale independently based on the specific demands of each resource type.

11



3. DESIGN OF KUBEλESS

R2 Event-Driven Triggers: The new architecture shall support an event-driven model

where these serverless functions are triggered by changes in the datastore.

This requirement ensures that the control plane operates efficiently, only taking up

resources when necessary, rather than continuously polling or running processes.

R3 Elastic Scalability: Each control plane component shall be able to scale dynami-

cally in response to fluctuating workloads.

This requirement ensures that the system can handle sudden spikes in demand with-

out performance degradation, while minimizing idle resource usage during periods of

low activity.

R4 Security and Access Controls: The system shall enforce strong authentication

and authorization controls, ensuring that only authorized entities can access and

modify resources.

This requirement is crucial to protect the integrity and confidentiality of the cluster,

ensuring that only authorized users and services can interact with the control plane

and underlying resources.

3.2 Design of the Kubeλess Architecture

Figure 3.1 portrays the conceptual design of a Kubeλless cluster. The first thing to note in

this new architecture is that the datastore is now at the center of the cluster, as opposed

to the API server. This fundamental shift in the design reflects the decision to move the

control plane to the cloud, a choice driven by the inherent advantages of cloud-native

services that allow rapid scalability and better resource utilization. This move allows us

to offload responsibilities traditionally managed by the API server to the cloud provider.

For instance, authentication and authorization can be offloaded to the cloud provider’s

identity and access management (IAM) services, which are designed to scale effortlessly

and provide robust security features. Similarly, access controls and API version translation

can be managed by the cloud provider’s datastore. Therefore, the API server becomes no

longer necessary in this new architecture. Moreover, the integrity and confidentiality of

the cluster is protected, addressing R4.

In place of the API server, the datastore now acts as the central hub for all control plane

operations. This datastore is not just a repository for the states of the objects but also

a critical component that triggers control plane actions. The serverless functions, which

replace traditional monolithic components like the controller manager and scheduler, (R1)

12
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Figure 3.1: Main architectural components of a Kubeλless cluster

are event-driven and are triggered by changes in the datastore, addressing R2. This event-

driven model is at the core of the Kubeλless architecture, ensuring that control plane

operations are executed only when necessary, thereby optimizing resource usage.

Among the most important components of the Kubeλless architecture are the serverless

controller functions, implementing the control loops of the built-in Kubernetes controllers.

These functions are responsible for managing the lifecycle of a particular resource type

within the cluster. When a change is detected in the datastore, the corresponding server-

less function is triggered to perform the necessary actions for reconciling the actual state

of the resource with the desired state specified by the user. After executing the required

operations, the function updates the resource’s state in the datastore, if necessary. This

update can, in turn, trigger other serverless controller functions responsible for manag-

ing related resources, creating a chain of event-driven operations that ensure the cluster

remains in its desired state.

Another critical component in this architecture is the serverless scheduler function, which

is a special type of controller that determines the placement of pods across the cluster’s

nodes. When new pods are created, the scheduler function is triggered to evaluate the

current state of the cluster, including node capacity and resource availability, before making

scheduling decisions. This function then updates the datastore with the scheduling results,

ensuring that the pods are deployed according to the optimal resource allocation.

As opposed to the control plane, the data plane in the new design remains largely un-

13



3. DESIGN OF KUBEλESS

changed. This is because there are already various mechanisms available that can scale

the data plan up and down, such as horizontal/vertical pod autoscalers or managed Ku-

bernetes services like Google Kubernetes Engine. The only difference is that the Kubelet

now communicates directly with the datastore, to receive the specifications of the pods it

needs to run and to report the status of the pods it manages. This communication loop

ensures that the cluster remains healthy and allows the control plane to react dynamically

to changes in the cluster.

This reimagined architecture, centered around the datastore and driven by serverless

functions, offers a scalable and efficient Kubernetes environment. By eliminating the need

for a continuously running API server and leveraging event-driven serverless functions,

Kubeλless minimizes resource consumption, reduces operational complexity, and improves

control plane elasticity.

14



4

Implementation of Kubeλess

In this chapter, we answer RQ2: “What are the practical steps required to implement a

serverless Kubernetes control plane?”. Kubeλless is an implementation of the serverless

architecture proposed in Chapter 3 for the Kubernetes control plane. However, due to the

enourmous size and complexity of the Kubernetes source code (consisting of millions of

lines of code) and the limited time we have for the work, the implementation contains only

on a single control loop, namely that of the job controller. The rest of the control loops

follow the same structure highlighted in Section 2.2 and could be easily be adapted to the

new architecture following the same steps mentioned in this section.

4.1 Cloud Provider

As previously stated in Section 3.2, the Kubeλless control plane was designed to operate

within a cloud environment, maximizing the benefits of cloud-native services. Although

this design could have been implemented on any serverless cloud provider (such as Microsoft

Azure or Google Cloud), Amazon Web Services (AWS) was chosen as its foundation for

several compelling factors. Firstly, AWS offers a robust suite of serverless technologies that

align perfectly with the design goals of Kubeλless. Its comprehensive range of integrated

services, such as AWS Lambda, DynamoDB, and Identity and Access Management (IAM),

provides the necessary infrastructure to build a scalable, secure, and efficient serverless

control plane. Additionally, AWS’s well-documented services and its extensive support

make it easier to develop, deploy, and test a system in the cloud, ensuring a smoother

implementation process.

15



4. IMPLEMENTATION OF KUBEλESS
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Figure 4.1: Implementation of Kubeλess in AWS

4.2 Kubeλess Architecture in AWS

In this section we explore how the main components of the serverless control plane are

realized in the AWS environment, which is summarized in Figure 4.1.

The design of Kubeλless places the datastore at the heart of the control plane, making it

essential to choose one that can efficiently handle the demands of a serverless, event-driven

architecture. AWS offers several options for persistent storage, ranging from traditional

relational databases (RDS) to NoSQL databases (DynamoDB). However, DynamoDB was

ultimately selected as the datastore for Kubeλless due to its combination of scalability,

low-latency performance, and seamless integration with an event-driven architecture. The

native support for DynamoDB Streams allows for real-time event-driven operations, where

changes in resource states trigger the appropriate control loops without the need for con-

tinuous polling or additional infrastructure. Moreover, DynamoDB has a strong functional

overlap with the default Kubernetes datastore, making it relatively easy to use as a re-

placement.

To efficiently store and manage the state of various Kubernetes resources, the DynamoDB

table in Kubeλless is structured with three key attributes. The primary key is the resource

type (such as "job" or "pod"), ensuring that different types of resources are clearly sep-

arated within the table. The sort key is the resource name, allowing for quick retrieval
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4.3 Implementation of the Serverless Job Controller

and organization of specific resources. The third attribute is the resource value, containing

a string representation of the resource object’s JSON. This JSON string encapsulates all

the necessary details of the resource, making it easy for Lambda functions to parse and

process. This implementation does not strictly follow the complex structure of Kubernets’

default datastore, as it was simplified for our use case. However, it could easily be extended

to cover the entire structure with all of its complexities.

In order to execute the control loops in response to DynamoDB triggers, they were

implemented as independent AWS Lambda functions. These Lambda functions handle

the core logic of the control loops, such as reconciling the desired state of resources with

their actual state. For example, when a job is created or updated, the corresponding

Lambda function is triggered by an event captured in DynamoDB Streams, processes the

event, performs the necessary operations like creating or terminating pods, and updates

the resource state in DynamoDB.

4.3 Implementation of the Serverless Job Controller

In this section, we outline the steps taken to transform the traditional job controller, as

described in Section 2.2, into a serverless architecture suitable for the Kubeλless design.

The process involved significant modifications to the way the controller operates, moving

from a continuously running serverfull architecture to an event-driven, serverless model

using AWS Lambda and DynamoDB.

The first step in transitioning to a serverless architecture is to create a Lambda handler

function, using the lambda package provided by AWS. This handler is the entry point

for the Lambda function and is automatically executed by Lambda whenever an event

triggers the function. It is responsible for processing incoming events, determining the

type of event (e.g., job creation, modification, or deletion), and initiating the appropriate

actions to reconcile the job’s state.

The next step is to remove the reliance of the controller on the Informer, and the watch

mechanism provided by it, to retrieve changes in resources and trigger the corresponding

event handlers. The Informer is an inherently serverfull component, as it requires a per-

sistent connection to the API server to receive updates in real time. However, to eliminate

the need of using the Informer, we can simply use the DynamoDB events passed to the

handler. These events contain a lot of information, including the type of data modification

and the actual record, which can be used to manually trigger the event handler functions.
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Figure 4.2: Internal components of the serverless job controller

The final step in the transformation is to modify all instances where the controller needs

to commnuicate with the API Server to read and write information. In the serverless

architecture, these interactions shall be directed to DynamoDB, which now serves as the

central datastore. The DynamoDB API was utilized for this task, provided by AWS’s

dynamodb and awa packages.

Figure 4.2 shows the internal components of the resulting job contorller. As can be seen,

we have tried to keep the core logic of the control loop the same in the new architecture.

The only difference lines in the communication with the datastore, and how the event

handlers are triggered.

18



5

Evaluation

In this chapter, we address RQ3: “What are the performance characteristics of a server-

less Kubernetes control plane, and how do they compare to the traditional Kubernetes?”.

To answer this question, we will evaluate Kubeλess against the traditional Kubernetes

implementation through a series of microbenchmarks.

5.1 Experimental Setup

We execute the experiments in two different environments. The benchmarks for traditional

Kubernetes are conducted on a single machine running Ubuntu 20.04, equipped with a 20

core Intel Xeon Silver 4210R CPU and 256 GB RAM. We use the Continuum framework

[27] to emulate a 2-Node Kubernetes cluster on QEMU virtual machines with an 8 core

CPU and 32 GB RAM. The Kubernetes version used for the the experiments is 1.27,

equipped with custom logs to timestamp the start and end of workflows. In contrast, the

benchmarks for Kubeλess are conducted on the AWS cloud, leveraging AWS Lambda for

serverless functions and DynamoDB for state management.

In both environments, sample job descriptions are written to the datastore, either via

kubectl or the AWS SDK for Python (Boto3), which are then sent to the job controller

to be processed. As we are only interested in the performance of the control plane, the

type of application chosen would not alter our results. In both environments, we repeat all

experiments 5 times, to ensure the resuls are statistically significant, and report the best

run.
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Figure 5.1: Time to start the job controller in Kubernetes and Kubeλess

5.2 Controller Startup Time

For our first experiment, we are going to measure and compare the startup times of the

job controller in Kubernetes and Kubeλess. One of the main problems identified with

Kubernetes’ control plane was its inability to scale elastically due to the large size of its

containers. By comparing the startup times, we can evaluate whether Kubeλess provides

a significant advantage over traditional Kubernetes in terms of initialization speed.

We measure the startup time for Kubernetes’ job controller across three distinct stages,

using custom timestamps to capture the duration of each phase. The first stage involves

measuring the time required to create the pod that hosts the controller manager, which

includes operations like mounting volumes and setting up the pod sandbox. The second

stage focuses on the time taken to create and start the container within this pod. Finally,

the last stage measures the time it takes for the job controller to become fully operational

after the controller manager has started. In contrast, for Kubeλess’ job controller, we

rely on the initialization times recorded in the AWS Lambda logs, which provide a direct

measure of the function’s startup time.

Figure 5.1 presents the results of our experiment, showing the comparison of startup

times of the job controller between Kubernetes and Kubeλess. As was expected, the server-

less job controller has a significantly faster startup time compared to Kubernetes, taking

around 450. However, an interesting observation is that the time it takes for the job con-

troller to become operational is significantly larger than the time taken to prepare and

start the container for the controller manager, taking 6.48 seconds.
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5.3 Pod Deployment Time

We aim to compare the deployment time of the traditional job controller with its serverless

implementation. More specifically, as our architecture is focused on the control plane,

we measure this time from the moment a user submits a job request until the controller

creates the necessary pod descriptions and writes them in the datastore. By comparing

the performances of both systems, we can assess whether the serverless control plane in

Kubeλess can match or exceed the performance of a traditional Kubernetes control plane.

To find out how the form of a workload affects the performance of the controller, we

compare two deployment methods. The first method submits 100 job requests (with a

single pod per job) to the datastore, using either kubectl for the traditional Kubernetes

setup or Boto3 for Kubeλess, while the second method submits a 100 pods in a single

job. To gather the measurements for Kubeλess, we timestamp the job and pod objects the

moment they are created. And for Kubernetes, we use custom timestamps to measure the

time from the start of the kubectl command to the moment the API server receives a write

request from the controller. This allows for a precise comparison of the time each system

takes to process the job requests and create the necessary pods.

Moreover, to find out how the overhead added by the Lambda invocation affects the

performance of Kubeλess, we measure both cold and warm starts. A cold start occurs

when the function is invoked for the first time or after a period of inactivity, requiring

the initialization of the execution environment. In contrast, a warm start occurs when

the function has already been initialized, allowing subsequent invocations to be processed

more quickly. To warm up the functions, we send dummy request to trigger them before

conducting the actual experiments.

The results gathered from the experiments are presented in Figure 5.2. The x-axis

represents the time in seconds, starting from when the job request is submitted until the

neccessary amount of pods are registered in the datastore. And the y-axis represents the

cumulative number of pods created.

The first thing to note is that there is a noticeable difference in performance between

the cold and warm runs of Kubeλess. However, from the previous experiment it was found

that the average initialization time for our function was around 450 milliseconds. Thus,

this small overhead could not have cause such a significant difference in performance. After

a closer inspection of the logs, it was found that the initial request to DynamoDB takes

about 2 seconds, if the function is invoked with a cold start, while the subsequent requests

only take several milliseconds. As the performance of Kubeλess is slowed down significantly
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Figure 5.2: Time to create 100 pod objects in Kubernetes and Kubeλess using different
deployment methods

by this initial DynamoDB request (not the startup times of the serverless function), and

this overhead is typically not shared by other datastores, we choose to focus on the warm

starts instead for a more precise comparison.

Another important observation is that Kubeλess performs considerably better than Ku-

bernetes for the first deployment method, but not for the second. It takes Kubeλess 6.46

seconds to create 100 pod descriptions and write them to the datastore with the first

method, which is more than twice as fast compared to traditional Kubernetes. One of the

reasons for this performance disparity is the overhead added by having to call kubectl a

100 times. Additonaly, the controller in Kubernetes processes requests from a rate lim-

iting queue, which while ensuring stability, can introduce latency with a large number of

requests. This highlights the significant improvement in scalability of our system, as it is

able to process jobs in parallel with minimal overhead.

Deploying 100 pods in a single job request presents much lower deployment times for

both systems, with Kubeλess taking 3.29 seconds on a warm run and Kubernetes taking

4.14 seconds. The difference in performance between the systems is minimal in this scenario

because both employ the same processing logic for handling a single job request. The slight

edge in Kubeλess can be attributed to the difference in backend infrastructure—Kubeλess

interacts directly with DynamoDB, optimized for fast, single-purpose transactions, whereas

Kubernetes relies on the API server, which introduces more latency due to its more complex

interactions and consistency checks across the cluster.
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5.4 Limitations

We identified multiple limitations in the setup and design of experiments that could affect

the relevance of our findings. Firstly, the number of concurrent Lambda executions was

limited to only 10 by AWS (while the default is 1000), as the account was newly created.

This lower concurrency limit may have artificially constrained the scalability and perfor-

mance of Kubeλess in our experiments, potentially underestimating its full capability.

Furthermore, all experiments were conducted using synthetic workloads rather than real

production workloads. As the implementation did not include a data plane where pods

could have been deployed and applications executed, it would not have been feasible to

monitor their state or evaluate the system under real-world conditions. As a result, the

performance observed in these experiments might not fully reflect the behavior of Kubeλess

in a production environment with live workloads.

5.5 Summary

To understand the performance charasteristics of Kubeλess and how they compare to the

traditional Kubernetes implementation, we conducted a series of experiments. In terms of

startup time, Kubeλess showed a significant improvement, with AWS Lambda’s serverless

architecture reducing the initialization time to around 450 milliseconds, compared to the

9.28 seconds it took Kubernetes.

In terms of pod deployment, Kubeλess outperformed Kubernetes when deploying multi-

ple jobs with single pods, completing the task in 6.46 seconds when warmed up, which is

more than twice as fast as Kubernetes. However, the results for deploying a single job with

multiple pods showed a smaller performance gap, with Kubeλess taking 3.29 seconds and

Kubernetes taking 4.14 seconds. The smaller difference can be attributed to both systems

employing similar processing logic for single requests, but with Kubeλess benefiting from

faster backend infrastructure.

In summary, the evaluation shows that Kubeλess can provide a more elastic and faster

control plane than traditional Kubernetes. The system’s ability to quickly scale and han-

dle workloads can make it a compelling alternative, especially in scenarios where rapid

elasticity is required.
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6

Related Work

Over the past decade, significant research has focused on analyzing and enhancing the

scalability of Kubernetes, given its prominence as a container orchestration platform. Some

studies aimed to provide better mechanisms for Kubernetes’ Horizontal Pod Autoscaler

(HPA), by incorporating additional metrics such as traffic characteristics [33] or response

latency [34]. Additionally, several works centered on implementing custom HPAs using

machine learning or heuristic analysis [35, 36, 37]. In parallel, research on Kubernetes’

Vertical Pod Autoscaler (VPA) has also continued to evolve with a focus on optimizing

resource allocation based on observed usage patterns through systems such as RUBAS [38].

While the existing body of research has made substantial advancements in enhancing

Kubernetes’ scalability, these efforts have failed to address the underlying elasticity of

the control plane itself. Kubeλess has filled this gap in the literature by introducing a

serverless design able to manage highly variable workloads more efficiently. Its design was

inspired by emerging trends in serverless architectures, found in various modern systems

such as LambdaFS, Unum, and Ilúvatar. LambdaFS [39] is a serverless metadata service,

enabling an elastic and high-performance architecture crucial for large-scale distributed

file systems. Unum [40] is a decentralized orchestration system for serverless applications

which reduces operational costs and improves flexibility. Ilúvatar [41] is a modular control

plane for serverless computing, which reduces latency and allows for more efficient resource

management.
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7

Conclusion

Kubernetes, while being the most widely adopted container orchestration platform, faces

significant challenges in providing the necessary level of elasticity in its control plane,

particularly when managing large and dynamic workloads. The traditional architecture’s

inability to scale rapidly in response to workload fluctuations often leads to inefficiencies

in resource utilization and increased operational costs. To address this critical challenge of

elasticity in Kubernetes’ control plane, we identified three research questions, the answers

to which are given in the following section.

7.1 Answering Research Questions

RQ1 How can the Kubernetes control plane be redesigned to operate entirely

within a serverless architecture?

To address this question, we developed the Kubeλess architecture by reimagining the

core components of Kubernetes’ control plane as serverless functions. In this new design,

each control loop within Kubernetes, such as the job controller or scheduler, is transformed

into a standalone serverless function. Moreover, the API server is removed in favor of a

cloud-native datastore, which now acts as the central hub for triggering the functions.

By shifting the control plane to a serverless model, the architecture eliminates the need

for continuously running components, which traditionally consume resources even during

periods of low demand.

RQ2 What are the practical steps required to implement a serverless Kuber-

netes control plane?
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7. CONCLUSION

The implementation of Kubeλess involved several key steps: selecting a cloud provider

capable of supporting a serverless architecture, structuring the datastore to handle event-

driven operations, and transforming control loops into serverless functions. The practical

steps detailed in Chapter 4 demonstrate how AWS services, particularly AWS Lambda and

DynamoDB, were employed to achieve a responsive and scalable control plane.

RQ3 What are the performance characteristics of a serverless Kubernetes con-

trol plane, and how do they compare to the traditional Kubernetes?

The performance evaluation of Kubeλess demonstrated that it can significantly reduce

the startup time of the controllers and achieves more efficient pod deployments in high-

demand scenarios.

7.2 Limitations and Future Work

Due to the enormous size and complexity of Kubernetes, and the limited scope of this thesis,

our work implemented only a single control loop as a prototype. Future work should extend

the serverless architecture to other control plane components to fully realize its benefits.

Additionally, the experiments conducted were based on synthetic workloads; thus, testing

Kubeλess in a real-world production environment would provide further insights into its

performance and scalability.

In conclusion, Kubeλess provides a promising direction for future Kubernetes architec-

tures, demonstrating that serverless computing can effectively address the scalability and

elasticity challenges of cloud-native environments. The insights gained from this research

lay the groundwork for further exploration and refinement in the deployment of scalable,

cost-efficient Kubernetes clusters.
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Appendix A

Reproducibility

A.1 Abstract

Kubeλess is a prototype of the architecture proposed in Chapter 3, implementing Kuber-

netes’ job controller as a serverless function in AWS. In this section, we will describe the

details of the artifact, how to use it, and how to reproduce the results.

A.2 Artifact check-list (meta-information)

• Run-time environment: Amazon Linux 2023

• How much disk space required (approximately)?:

• How much time is needed to prepare workflow (approximately)?: 10 minutes

• Publicly available?: Yes

A.3 Description

A.3.1 How to access

The implementation can be accessed on GitHub.

A.4 Installation

To setup the required infrastructure in AWS, we need to:

1. Create a Lambda with 128 MB memory, running Amazon Linux 2023 on x86_64

architecture.

2. Create a zip of the code following the steps mentioned here and upload it to Lambda
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A. REPRODUCIBILITY

3. Create a DynamoDB table, setting resource-name (string) and resource-type (string)

as sort key

4. Add a trigger to your Lambda, setting DynamoDB as the source

A.5 Evaluation and expected results

The expected results are similar to the results discssed in Chapter 5
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