
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Exploring the Performance of the
io_uring Kernel I/O Interface

Author: Brynjar Ingimarsson (2721481)

1st supervisor: Animesh Trivedi
2nd reader: Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

June 25, 2024

“If debugging is the process of removing bugs, programming must be
the process of putting them in”

by Edsger W. Dijkstra

ii

Abstract

The demand for faster and more capable computer systems grows every year,

as their role in society becomes ever more important. In particular, large-scale

applications are increasingly being deployed in cloud environments due to their

flexibility and scalability. Most of these applications are data-intensive, and

thus storage devices are an important aspect of cloud computing. The cloud

computing market size was valued at $590 billion in 2023, and the amount of

data created has grown from 2 zettabytes in 2010 to 120 zettabytes in 2023.

The advent of solid-state storage devices (SSDs) has sparked a revolution in

high-performance storage. A modern SSD can provide millions of IOPS in

throughput and single-digit microsecond latencies. The introduction of SSDs

has exposed various overheads and limitations of existing software stacks, lead-

ing to new designs for operating systems, file systems, and database systems. In

addition, more efficient storage interfaces have been introduced for both hard-

ware and software. To enable high-performance storage, Linux has introduced

io_uring, a new asynchronous I/O interface for user applications.

In this thesis, we make a systematic study of the io_uring interface. The

interface offers many configuration options that affect how I/O is submitted

and completed. The effect of these options is largely ignored in previous studies,

and existing documentation provides limited details. In this thesis, we study

io_uring configuration options in detail and provide guidelines for application

developers. We study several io_uring options with microbenchmarks and

provide a detailed understanding of their internal workings. Finally, we show

that our guidelines can improve the performance of RocksDB, a popular key-

value store.

The artifacts of this thesis are available online on GitHub at https://github.

com/Ingimarsson/iouring-perf-analysis.

https://github.com/Ingimarsson/iouring-perf-analysis
https://github.com/Ingimarsson/iouring-perf-analysis

iv

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 4

1.3 Research Questions . 4

1.4 Research Methodology . 5

1.5 Contributions . 5

1.6 Societal Relevance . 5

1.7 Thesis Structure . 6

1.8 Plagiarism Declaration . 6

2 Background 7

2.1 Flash Storage . 7

2.2 Linux Kernel . 9

2.2.1 Linux Storage Stack . 9

2.2.2 Context Switches . 10

2.2.3 Interrupts . 11

2.3 Asynchronous I/O Interfaces . 11

2.4 The io_uring Interface . 12

2.4.1 Basic Usage . 13

2.4.2 Polling Modes . 13

2.5 Summary . 14

i

CONTENTS

3 Design of Experimental Setup 15

3.1 Benchmarking Tools . 15

3.2 Evaluation Plan . 16

3.3 Hardware Configuration . 17

3.4 Implementing a fio Engine with liburing . 18

3.5 Summary . 19

4 Experiments 21

4.1 Cooperative Task Running (COOP_TASKRUN) 21

4.1.1 First Experiments . 22

4.1.2 Understanding What the Flag Does 23

4.1.3 Investigating IRQ Affinity . 24

4.1.4 Understanding Interrupt vs Non-interrupt Cores 28

4.1.5 Quantifying the Benefits of No IPIs 30

4.1.6 IRQ Affinity and NUMA Topology 32

4.1.7 Ring Completions on a Separate Thread 34

4.1.8 First Run and Investigating Absence of kick_process Calls 35

4.1.9 Investigating Absence of IPIs . 36

4.1.10 A Case Where COOP_TASKRUN Breaks Things 39

4.1.11 Conclusion . 42

4.2 Forced Asynchronous Submission (IOSQE_ASYNC) 42

4.2.1 Function of IOSQE_ASYNC . 43

4.2.2 Worker Pools . 45

4.2.3 File Inode Locks . 46

4.2.4 First Experiment with IOSQE_ASYNC 46

4.2.5 Counting Worker Thread Operations with eBPF 47

4.2.6 Experimenting with IOSQE_ASYNC and Lock Contention 48

4.2.7 IOSQE_ASYNC and Lock Contention with Readers and Writer . . 50

4.2.8 Conclusion . 52

4.3 Registered Files (IOSQE_FIXED_FILE) 52

4.3.1 Function of Registered Files . 52

4.3.2 Experimental Results . 53

4.3.3 Other Factors . 54

4.3.4 Conclusion . 55

4.4 Submission Queue Polling (SQ_POLL) . 56

ii

CONTENTS

4.4.1 Behavior of Polling Threads . 56

4.4.2 Limitations of liburing . 57

4.4.3 Evaluation of Submission Queue Polling 58

4.4.4 Exploring Polling Efficiency . 58

4.4.5 Conclusion . 61

5 Evaluation with RocksDB 63

5.1 How Does RocksDB Work? . 63

5.2 Implementing a RocksDB Backend with liburing 64

5.3 Evaluation Results . 65

5.4 Summary . 67

6 Related Work 69

7 Conclusion 71

7.1 Research Questions . 71

7.2 Guidelines . 72

7.3 Limitations . 73

7.4 Future Work . 73

References 75

8 Appendix 79

8.1 Artifacts . 79

8.2 Using liburing . 80

8.3 Using eBPF . 81

iii

CONTENTS

iv

List of Figures

1.1 Modern memory hierarchy, showing the relation between latency and capacity 1

1.2 The main components in a typical OS storage stack 3

1.3 Comparison of a synchronous and asynchronous system call 3

2.1 Internal structure of an SSD with flash chips on multiple channels 8

2.2 Ring buffers as used by io_uring, with head and tail pointers 13

4.1 IOPS, average and p99 latency, and context switches per second for the

initial COOP_TASKRUN experiment . 22

4.2 eBPF counts for the number of calls to kick_process and number of IPIs

sent with native_smp_send_reschedule . 23

4.3 IRQ handler placement (a) before and (b) after lowering the number of

available NVMe hardware queues . 24

4.4 eBPF counts for number of function calls and the number of NVMe IRQs

received per core . 25

4.5 A flow diagram of io_uring’s call to task_work_add showing where COOP_TASKRUN

changes the behavior. 26

4.6 IOPS, average and p99 latency for the four cases 27

4.7 Number of calls to kick_process and native_smp_send_reschedule as a

function of queue depth for the four cases 28

4.8 Number of calls to wake_up_state as a function of queue depth and grouped

by return value (true or false) for the four cases, showing that for QD ≤ 2

the return value is always false, after that it is always true 29

4.9 Flow of events running on an interrupt core 30

4.10 Flow of events running on a non-interrupt core, two scenarios 31

4.11 The difference between an IPI that preempts kernel- and userspace, the red

dot shows where task work is run. 32

v

LIST OF FIGURES

4.12 An application that spends more time in usermode will have a higher ratio

of IPIs arriving in usermode. 32

4.13 The ratio of IPIs that preempt user mode as a function of thinkcycles . . . 33

4.14 The effect of increasing thinkcycles on throughput (IOPS) with and without

COOP_TASKRUN . 34

4.15 The effect of increasing thinkcycles on average and p99 latency with and

without COOP_TASKRUN . 35

4.16 The four levels in our NUMA hierarchy, with IRQ on either a local or remote

NUMA node . 36

4.17 IOPS when running fio in 4 different levels of our NUMA hierarchy, for two

different queue depths. 37

4.18 Average latency when running fio in 4 different levels of our NUMA hier-

archy, for two different queue depths. 38

4.19 Read commands sent between two threads in a "ping pong" dynamic, show-

ing the liburing functions used for the two rings 39

4.20 Duration of the custom benchmark with and without COOP_TASKRUN . 39

4.21 eBPF function call counts for completion thread experiment 40

4.22 Latency of main-fail over 1000 iterations 41

4.23 Comparison of a a successful non-blocking submission and submission that

falls back to an asynchronous worker . 45

4.24 IOPS, average and p99 latency with and without IOSQE_ASYNC, single fio

thread pinned to a single core, random reads 47

4.25 IOPS, average and p99 latency with and without IOSQE_ASYNC, single fio

thread without pinning, random reads . 48

4.26 IOPS, average and p99 latency with and without IOSQE_ASYNC, two fio

threads doing random writes to the same file on an ext4 file system 49

4.27 IOPS, average and p99 latency with and without IOSQE_ASYNC, one fio

thread doing random reads to a file on an ext4 file system, while a back-

ground thread does random writes to the same file 51

4.28 Throughput (IOPS) for a raw device and ext4 file system, with and without

a registered file, random reads . 54

4.29 Average latency for a raw device and ext4 file system, with and without a

registered file, random reads . 55

4.30 IOPS and average latency, with and without a registered file, with additional

thread, random reads . 56

vi

LIST OF FIGURES

4.31 IOPS and average latency for different queue depths comparing our fio

liburing engine to the built-in io_uring engine 58

4.32 IOPS, average and p99 latency for different queue depths, comparing one

fio thread with SQPOLL (a kernel thread) with 2 normal fio threads, random

reads . 59

4.33 IOPS, average and p99 latency for different thinkcycle values, comparing

one fio thread with SQPOLL (a kernel thread) with 2 normal fio threads,

random reads . 60

5.1 The levels of an LSM tree . 64

5.2 Throughput (MB/s) and p95 latency (µs) for each RocksDB I/O backend

configuration, running the multireadrandom benchmark 66

5.3 Throughput in IOPS for each RocksDB I/O backend configuration 66

8.1 The components of eBPF and flow when one process adds a probe to monitor

another process . 81

vii

LIST OF FIGURES

viii

List of Tables

1.1 Comparison of a Seagate Exos X10 (HDD) and Intel Optane P5800X (SSD) 2

3.1 Hardware configuration used for evaluation 17

3.2 Software versions used for evaluation . 18

4.1 eBPF counts during first benchmark run . 35

4.2 Latency of 1000 iterations with COOP_TASKRUN, before and after filtering 41

4.3 eBPF function call counts for worker threads 49

4.4 eBPF counts for EAGAIN errors in the io_issue_sqe function, with and

without the FORCE_ASYNC flag . 50

4.5 eBPF counts for whether IOCB_NOWAIT flag is set on kiocb objects passed to

ext4_file_read_iter, depending on whether FORCE_ASYNC is set on SQE,

showing that IOCB_NOWAIT is not set for async requests 50

4.6 eBPF counts for fget, with and without using registered files 53

4.7 eBPF counts for kthreads created and io_uring_enter system calls, com-

paring SQ polling with normal operation . 60

ix

LIST OF TABLES

x

1

Introduction

In today’s world, computer systems are an integral part of society. In particular, cloud

computing has grown exponentially in the last decade, as businesses increasingly rely on

computer systems to make their operations more efficient. The cloud computing market

size was estimated at $590 billion in 2023 and is predicted to grow (1). The amount of

data created in the world is also growing exponentially, and one study estimates that 120

zettabytes of data were created in 2023, compared to just 2 zettabytes in 2010 (2). This

rapid growth constantly calls for more efficient hardware and software.

Tape Storage

Hard Disk Drives

Solid State Drives

Persistent Memory

DRAM

Higher capacityLower latency

Figure 1.1: Modern memory hierarchy, showing the relation between latency and capacity

An important part of the digital world is persistent storage, as the data created must be

stored somewhere. For example, individuals often connect their devices to cloud providers,

so that their photos and documents are synced between devices and backed up in case of

data loss. Figure 1.1 shows the different levels of the memory hierarchy, with persistent

storage in the lower half. It depends on the application which type of persistent storage

is most suitable. High-performance applications may require solid-state drives, while hard

1

1. INTRODUCTION

disk drives may be more cost-efficient for others. For archival storage, a tape drive may

offer the most benefits (3).

In the 2010s, it became more economical to produce large storage devices with flash

memory chips, as opposed to hard disk drives based on spinning platters. The introduction

of these devices, known as solid-state drives (SSDs) has brought rapid advancements in

storage, including new database designs, operating systems, file systems, and interfaces

on both the hardware side and software side. Table 1.1 compares two modern SSDs and

HDDs. While the HDD is more economical for capacity, the SSD provides an order of

magnitude higher throughput (IOPS) and five orders of magnitude lower latencies. The

SSD also provides much better throughput for random access, while the HDD performs

much better with sequential access (4).

Seagate Exos X10 (5) Intel Optane P5800X (6)

Capacity (GB) 10,000 800
Sequential read (IOPS) 62,500 1,800,000

Random read (IOPS) 170 1,500,000
Average latency (µs) 4,600.0 1.5

Table 1.1: Comparison of a Seagate Exos X10 (HDD) and Intel Optane P5800X (SSD)

1.1 Context

A storage stack refers to all the components involved in storing data, from the hardware

device to the user application. Figure 1.2 shows a typical storage stack that starts at the

SSD (1), where multiple flash chips are connected to a controller, which exposes a block

interface to the host. A block interface is an I/O interface where data is read or written in

blocks of fixed size, often 512 or 4096 bytes, or a multiple of that. The operating system

must include a driver (2) for this interface, in addition to an optional I/O scheduler that

reorders requests for an optimal operation (3). However, applications do not typically

submit block requests, but rather interact with files that belong to file systems. A file

system (4) maps file offsets to blocks on the device, and allocates blocks when files grow.

Above the file system, data may be cached in the OS page cache (5), so that frequent

access to the same data is quickly served. A user application (6) uses generic system calls

to interact with files, abstracting away all the details of the storage stack (7).

On a Linux system, disk I/O is traditionally done by blocking system calls such as open,

read, and write. These calls block until the operation has been completed, even though

2

1.1 Context

I/O request System Call

Storage

Device
Driver

I/O

Scheduler

File

System

Page

Cache
Process

Block I/OBlock I/O
Device

Command

1 2 3 4 5 6

Figure 1.2: The main components in a typical OS storage stack

most of the duration was spent waiting for the device, and that duration could have been

spent on other work. There exist several variants of the traditional I/O system calls, for

example, readv and writev, which are vectored operations that take in a vector of offsets

and lengths to operate on, and pread and pwrite, which are POSIX-compliant versions of

the operations. For some applications, it may be beneficial to run some other tasks while an

I/O request is in flight, which is possible with an asynchronous interface. Figure 1.3 shows

the difference between a synchronous and an asynchronous request. Note that although

no other work can be done by the process during synchronous I/O, the OS can schedule

other processes in the meantime to make use of the available CPU time.

Synchronous Asynchronous

Wait for
response

Process Kernel Process Kernel

Continue
working

Figure 1.3: Comparison of a synchronous and asynchronous system call

On Linux, synchronous operations were the only option for a long time. Application

developers often introduced I/O worker threads to run I/O requests on another thread,

so that the main thread would not block during I/O. To offer asynchronous I/O, the aio

interface was introduced in the Linux kernel. However, it has many limitations, such as

not supporting non-direct operations that go to the page cache (8). In 2019, the io_uring

interface was introduced to Linux, which offers an improved asynchronous I/O interface to

applications.

The io_uring interface is based on ring buffers (queues), which allow for lock-free and

zero-copy operation. To use io_uring, an application first creates an instance of io_uring,

3

1. INTRODUCTION

also known as a ring. The application then maps two ring buffers into memory, which

are used for a submission queue (SQ) and completion queue (CQ). To submit I/O, the

application places a request in the submission queue and tells the kernel that there are

new requests to submit. The application can then move on to other work, and it can poll

the completion queue to see if a corresponding response has arrived. The interface also

supports two polling modes that can prevent a high number of system calls and hardware

interrupts, in addition to many other configuration options that affect how I/O is submitted

and completed.

1.2 Problem Statement

Several studies have explored the io_uring interface and demonstrated improved perfor-

mance compared to other I/O interfaces (8, 9). However, we find that the performance

effect of most io_uring configuration options has not been well studied, and existing doc-

umentation only provides vague hints about when to use them. Thus, the goals that we

want to achieve with this thesis are the following.

• Provide guidelines for application developers about what io_uring configuration

can be beneficial under what circumstances, and what configuration can harm per-

formance

• Provide a detailed explanation of the internals of each configuration option, to mo-

tivate what factors can affect their performance

• Confirm that our guidelines are beneficial by applying them to an existing real-world

data-intensive application

The man page of io_uring lists 17 configuration options (10), in addition to 7 flags

that can be set on submission events (11). As each option requires significant time to

study, we select only a few options that we categorize as likely to affect performance. The

documentation of many flags indicates that they may not be relevant to performance, as

we will explain in chapter 3.

1.3 Research Questions

To solve the problems mentioned previously, we present the following research questions

to help us understand the problem.

4

1.4 Research Methodology

• RQ1 - What methods are available for evaluating and measuring io_uring perfor-

mance under different configurations?

• RQ2 - What io_uring configuration options can affect the throughput and latency

of application I/O and under what circumstances?

1.4 Research Methodology

To answer our research questions, we make use of the following methodology.

• M1 - Microbenchmarking: we run small benchmarks that perform a simple task such

as random reads, for this we use the fio storage benchmarking tool, with our custom

liburing engine

• M2 - Profiling: we collect various data during the run of our experiments to gain

insights into internal behavior, for this we use eBPF programming

• M3 - Real-world benchmarking: we implement a storage engine for a real-world

key-value store based on our results and measure the effect on performance metrics

1.5 Contributions

The contributions of this thesis are threefold. First, we provide four guidelines about how

the configuration of io_uring can significantly affect performance. Second, we provide

detailed explanations of how the Linux kernel implements io_uring configuration options

internally, which further supports our guidelines. Finally, we show that the io_uring

support in RocksDB, a popular key-value store, can provide 12% higher throughput and

13% lower latency after applying our guidelines. To the best of our knowledge, these

contributions have not appeared in publicly available work before.

1.6 Societal Relevance

As the cloud computing industry keeps growing, so does its carbon footprint. In 2025, it

is predicted that the cloud industry will use 20% of global electricity, and produce 5.5%

of global carbon emissions (12). In this thesis, we show that selecting the appropriate

configuration for io_uring can result in better performance. This means using computing

resources more efficiently, and thus allowing cloud operators to run less hardware. In

5

1. INTRODUCTION

addition, improving I/O performance can result in more efficient operation of businesses,

allowing them to grow faster.

1.7 Thesis Structure

In chapter 2, we provide background on storage systems, the Linux storage stack, the

io_uring interface, and kernel concepts that we will come across in our exploration. In

chapter 3 we explain how we choose configuration options to evaluate, how we use fio to

run microbenchmarks, and how we implement a custom liburing engine. In chapter 4 we

run detailed microbenchmarks for each configuration option, in addition to various kernel

profiling, and exploring the kernel internals of each feature. In chapter 5 we implement a

liburing backend for RocksDB and evaluate its performance. In chapter 6 we describe

several areas of research that relate to our work. Finally, in chapter 7 we conclude our

thesis by listing our guidelines and answering the research questions. In chapter 8 we

describe our artifacts and how to reproduce our experiments, and explain how to program

with liburing and eBPF.

1.8 Plagiarism Declaration

I confirm that this thesis is my own work, and is not copied from any other source (e.g. a

person, the internet, or a machine) unless explicitly stated. This work has not been sub-

mitted for assessment anywhere else. I acknowledge that plagiarism is a serious academic

offense that should be dealt with if found.

6

2

Background

In this section, we discuss the necessary background on storage and systems topics that

this thesis builds on. First, we discuss flash storage, its history, internal architecture,

performance characteristics, and host interfaces. We then discuss Linux and in particular,

its block layer, including the main components that are involved with I/O requests, and

we also give a detailed explanation of interrupts and context switches, as these concepts

occur frequently in this thesis. We then discuss asynchronous I/O and the history of

asynchronous interfaces. Finally, we introduce io_uring, its main design features, and

usage from the viewpoint of a user process.

2.1 Flash Storage

Flash storage is a popular type of NVM (Non-Volatile Memory), a class of semiconductor-

based memory that persists data after losing power, and involves no moving mechanical

parts. Flash memory has been available since the 1980s, and was previously mainly found

in embedded systems, as it could not compete with mechanical disks (HDDs) in terms

of capacity and price until recently. An SSD (Solid State Drive) consists of one or more

flash chips that are connected to an FTL (Flash Translation Layer), that exposes a block

interface to the host (4).

Inside an SSD, flash chips are arranged into channels, and within each flash chip, memory

cells are divided into dies, planes, blocks, and pages. Read operations can read any page,

but write operations can only write to pages in sequential order within blocks. The erase

operation is used to reset all memory cells in an entire block. This means that flash chips

do not support random access with respect to write operations. Pages are typically 4 kB

7

2. BACKGROUND

DRAM

Channel

Channel

Chip

Host Interface
Logic (HIL)

Flash Translation
Layer (FTL)

FCC

FCC

Chip

Chip Chip

Figure 2.1: Internal structure of an SSD with flash chips on multiple channels

in size, and a typical block might contain 32-128 pages. Figure 2.1 shows the internal

structure of an SSD.

An operation on an SSD can be seen as three separate steps.

1. Controller - The controller translates a request from the host into a flash chip

operation.

2. Channel Bus - The flash operation and data are transferred over a channel bus into

control and data registers on a flash chip.

3. Flash Chip - The flash chip executes an operation based on the contents of its

registers.

Each plane in a flash chip usually has its own control and data registers, and the flash

chip can execute multiple operations on different planes independently. As the transfer

time over a channel bus may be shorter than the flash operation time, multiple operations

can be interleaved. Because of this, most SSDs need to have multiple requests in flight

to fully saturate their performance, i.e. SSDs have internal parallelism. A typical NAND

flash chip might offer 25 µs reads, 200 µs writes, 1.5 ms erases and 100,000 erase cycles (4).

Because of the speed of flash chips and internal parallelism, SSDs can provide millions of

IOPS in throughput and single-digit microsecond latencies. This has exposed bottlenecks

in software and driven the need for lightweight I/O interfaces such as io_uring.

The limitation of only being able to write to erased pages results in what is known as

the semantic gap of flash storage. The host expects a generic block interface where any

page can be read or written, but internally the writes must happen sequentially within

blocks. The FTL is responsible for mapping logical block addresses (LBAs) from the host

into physical block addresses on the flash chips. On a write request, the FTL will find a

8

2.2 Linux Kernel

free page on a flash chip, and update its mapping table. This means that if the LBA was

previously written, that data is still taking space on a flash page, but there is no mapping

to it anymore, making it a zombie page. To reclaim zombie pages, the FTL runs a garbage

collector that merges and erases multiple blocks, leaving only active pages. The FTL also

distributes flash operations to improve parallelism, and ensures equal wear on the chips,

due to the limited erase cycles (4, 13).

Early SSDs came with a SATA or SCSI host interface. However, as SSD throughput and

latency improved, these interfaces became insufficient, as they involve an HBA (Host Bus

Adapter) between devices and the host, with expensive translations between interfaces.

The NVMe interface is designed for high-performance SSDs, and connects directly to a

host PCIe bus. It is also better designed for parallelism, and supports up to 64k queue

pairs, where each queue can have a depth of up to 64k (13).

2.2 Linux Kernel

Operating systems typically provide extensive facilities for disk I/O, including drivers for

the hardware device, a block layer with queueing and scheduling of block requests, file sys-

tems, caching layers, and a virtual file system. These facilities allow application developers

to work with the abstraction of files, which are generic containers of binary data identified

by a filename. This makes programs highly portable, and leaves complex tasks to the OS,

such as crash recovery and sharing devices between processes. In this section, we explain

the components involved in disk I/O on Linux, along with interrupts and context switches,

which appear frequently in this thesis.

2.2.1 Linux Storage Stack

Applications typically perform disk I/O with system calls such as open, read, and write.

These calls interact with files in the VFS (Virtual File System), which combines multiple

physical file systems into a single interface. A file on any file system is identified by a

unique path in the VFS. A physical file system may store data on a block device (e.g.

ext4, xfs), connect to a remote system over a network (e.g. nfs, samba), or provide access

to special system files (e.g. sysfs, proc). File systems can also make use of the OS page

cache, to cache frequently accessed data.

Below file systems is the block layer, which allows sending generic block requests, known

as struct bio in the Linux kernel, to block devices. For each block device, the kernel

sets up a multi-queue block layer, also known as blk-mq. A block request first goes into a

9

2. BACKGROUND

software staging queue, where a scheduler may reorder requests for better performance or

QoS guarantees. The block request is then moved to a hardware dispatch queue, where the

device driver can consume requests from. There is typically one staging queue per core, to

prevent expensive lock operations across cores. There may also be a dispatch queue per

core if the device supports enough hardware queues, otherwise, dispatch queues will be

shared by two or more staging queues. The staging and dispatch queue split also allows

for less locking overhead (7).

The Linux kernel provides several I/O schedulers that operate on the per-core staging

queues in the block layer. Storage devices have various performance characteristics, and it

is possible that when multiple applications submit I/O, the interleaved sequence of oper-

ations results in poor performance, or applications receive unequal shares of performance.

For example, on SSDs, mixing reads and writes can severely hurt the latency of reads. The

kyber I/O scheduler aims to throttle writes in order to guarantee better read latencies.

Applications are typically more sensitive to read latencies, as data may be needed to per-

form the next step of computation, while write requests typically don’t stop an application

from continuing (9).

As we have previously described, SSDs can provide millions of IOPS in throughput and

single-digit microsecond latencies. This has exposed various overheads and bottlenecks in

the Linux kernel block layer. Before the introduction of the multi-queue block layer, the

Linux kernel was unable to fully saturate some high-performance storage devices (14). In

addition, SSDs have necessitated the development of high-performance I/O interfaces such

as io_uring.

2.2.2 Context Switches

On Linux, every process has its own context, which includes a private virtual memory

space, and the values of registers. When an application makes a system call, most of the

context remains, but execution switches into kernel mode, a special per-process kernel stack

is used, and the kernel’s address space becomes accessible. If the system call is blocking,

e.g. a synchronous I/O operation, or a sleep system call, then the scheduler will be invoked

to switch to a different process. In that case, the context of the application is saved, and

the new process context is loaded. The jump from user to kernel mode is typically known as

a mode switch, and a jump between processes is known as a context switch, but sometimes

both are referred to as context switches. Context switches are expensive, as they involve

saving register state, a TLB (Translation Lookaside Buffer) flush, along with other CPU

overhead (7).

10

2.3 Asynchronous I/O Interfaces

2.2.3 Interrupts

Interrupts are events that can be generated by hardware devices or the CPU itself, and

force the CPU into executing different code, known as interrupt handlers. In multi-core x86

systems, each CPU core has a local APIC (Advanced Programmable Interrupt Controller)

that manages interrupts. The kernel must register interrupt handlers for each type of

interrupt, identified by an interrupt vector. To balance the work of interrupts between

CPU cores, the kernel runs a process called irqbalance. The irqbalance kernel process

periodically checks the number of interrupts that have occurred per core, and moves them

between cores to balance the load of each core. When an interrupt comes in, the CPU

jumps to kernel mode with a mode switch. A mode switch results in a performance

overhead as we described in the previous subsection. For disk I/O, there is typically one

interrupt generated on the completion of each request, letting the host know that the result

is available, that can be passed to a process. For SSDs that support millions of IOPS in

throughput, the amount of interrupts can result in a significant overhead. Another type

of interrupts are IPIs (Inter-Processor Interrupts), which are used by the Linux kernel to

communicate across CPU cores, for example, to deliver a signal to a process, or to invoke

the process scheduler on a different core (7).

2.3 Asynchronous I/O Interfaces

The standard POSIX I/O system calls such as read and write are both synchronous and

blocking. The term synchronous means that a call to the function does not return until

the operation is completed. For disk I/O, this means that when the operation is called, a

request is sent to the disk, the disk performs the operation, a response is sent to the host,

and only then does the system call return, with the result available. A synchronous system

call can be either blocking or non-blocking, where non-blocking means that the system call

will fail fast, e.g. if the file is locked, a “try again later” error code is returned, rather than

waiting for the lock. The term asynchronous means that the call returns immediately after

sending a request to the device, and the program can keep running while the device runs

the operation. A separate call may then be needed to check if the result has arrived.

Synchronous I/O has two big problems. First, the application can not do anything else

while the device runs the operation, even though the host CPU is free. The OS then

typically tries to schedule a different task during that time. Second, applications can not

submit multiple I/O requests in parallel, i.e. concurrency is not possible. To solve these

problems, a common solution is to create more threads, where each thread can have one

11

2. BACKGROUND

in flight request, providing concurrency. However, the number of threads determines the

degree of concurrency, which limits scalability as maintaining a high number of threads

can be expensive.

More generally, there has been a long debate between using multiple threads or event-

based systems for concurrency. In an event-based system, function calls are pushed to an

event queue, and an event loop continuously pops from the queue and runs the functions.

Event systems are cooperatively scheduled, i.e. only when an event finishes running, a new

event is run. In an event loop, programmers do not need to think about synchronization.

On the other hand, threads are preemptively scheduled, so their state must be saved when

descheduled. Threads have been considered to scale poorly because of the overhead of

context switching and saving state, in addition to schedulers relying on O(n) operations

where n is the number of threads. However, opponents of event systems have shown that

threads can scale as well as events with a good threading implementation. An event loop

also runs on a single thread, and thus having multiple threads is the only way to obtain

true CPU concurrency (15, 16).

On Linux, asynchronous I/O has been available since version 2.6 with the AIO interface.

However, the interface has limited adoption, and is generally considered sub-optimal. Its

main limitations are that it can only be used for direct I/O, as otherwise it falls back to

synchronous submission, and if meta-data is required before the operation, it also becomes

synchronous. In addition, each operation involves memory copying that adds overhead,

and each operation requires two system calls, for submission, and completion, adding more

overhead. The limited success of AIO is what led to the introduction of a new asynchronous

I/O interface for Linux, namely io_uring.

2.4 The io_uring Interface

The io_uring interface was introduced in Linux version 5.1 in 2019 to address the short-

comings of AIO. io_uring is an asynchronous I/O interface that can be used for network-

ing and storage I/O. At the center of io_uring’s design are two ring buffers, a submission

queue (SQ) and a completion queue (CQ). The ring buffers reside in memory that is shared

by the user process and kernel, eliminating the need for expensive copying between user

and kernel space. Figure 2.2 shows the structure of ring buffers. Another benefit of the ring

buffer data structure is that operating on it does not require locking. 57 different opcodes

are supported by io_uring for different operations, including readv and writev (17). One

12

2.4 The io_uring Interface

criticism of io_uring is that it exposes a significant attack surface in the Linux kernel,

and has been difficult to integrate with the Linux security modules (18).

Head

Tail

Submission Queue Completion Queue

Head

Tail

User ApplicationUser Application

Kernel

io_uring

Figure 2.2: Ring buffers as used by io_uring, with head and tail pointers

2.4.1 Basic Usage

To use io_uring, an application starts by calling the io_uring_setup system call with

the desired queue depth, which returns a file descriptor for the ring. Two mmap system calls

are then needed to map the submission queue (SQ) and completion queue (CQ) into the

process. The application can add events to the submission queue (SQE), which describe

an operation, e.g. a readv operation with a pointer to a buffer and file descriptor to use.

Then, an io_uring_enter system call is needed to notify the kernel that there are new

events. This also makes it possible to submit multiple events in one system call. When an

operation is finished, the kernel adds an event to the tail of the completion queue (CQE)

with the result. The application can see new CQEs without the need for a system call, but

it can also call io_uring_enter with the GETEVENTS flag to wait (i.e. sleep) until a certain

number of events (specified by the min_complete argument) are available (19).

2.4.2 Polling Modes

We previously explained that to notify the kernel of new SQEs, a call to io_uring_enter

is needed. However, io_uring also offers a polling mode called SQ polling, which creates a

kernel thread that constantly polls the SQ for new events, eliminating the need for system

calls. Modern storage devices also support polling for completed operations, instead of

13

2. BACKGROUND

notifying the host with an interrupt. For this, io_uring supports I/O polling. I/O polling

is only possible for direct I/O, and is hinted to provide lower latency than interrupt-driven

I/O, at the cost of using more CPU resources (17, 19).

2.5 Summary

Solid-state drives (SSDs) are a type of storage medium based on non-volatile memory.

SSDs have become popular for mass storage in the last decades, as they can provide

millions of IOPS in throughput and low latencies. The introduction of SSDs has exposed

various bottlenecks and overheads in the Linux kernel and has led to the redesign of the

Linux block layer. In addition, SSDs have driven the need for new high-performance I/O

interfaces such as io_uring.

Although Linux has supported asynchronous I/O for a long time with the AIO interface,

it has limited adoption and is considered sub-optimal. To overcome the limitations of AIO

and support high-performance asynchronous I/O, the io_uring interface was introduced

to Linux in 2019. io_uring is based on ring-buffers that reside in shared memory for lock-

free and zero-copy operation. In addition, io_uring supports several high-performance

features, such as batched submission and polling modes.

14

3

Design of Experimental Setup

In chapter 1, we declare our goals for this thesis, which are to evaluate different io_uring

features, and to come up with guidelines for getting the best performance out of io_uring

based on these features. In this section, we explain the design of our experiments. In par-

ticular, the choice of tooling, the choice of io_uring features to evaluate, how we evaluate

each feature, the hardware configuration for our experiments, and the implementation of

custom storage backends.

3.1 Benchmarking Tools

The fio storage benchmarking tool is popular for storage research due to its flexibility,

extendability, and low CPU overhead. We use fio as we can build our own io_uring engine

to support the features that we evaluate. The fio tool comes with multiple I/O engines,

such as sync (POSIX), libaio, and io_uring. It also supports different I/O patterns such

as read, write, randread, and randwrite. We can specify the block size, queue depth,

the number of workers, and even the statistical distribution for random access. To mimic

real applications, we can add a think time between I/O operations, or we can replay a

trace from a real application.

For our evaluation, we also need insights into the Linux kernel while our benchmarks

run, to understand what happens inside the kernel when a given feature is enabled. Many

tracing tools are available on Linux, such as strace to understand what system calls a

process makes (including arguments), and perf can count various events and collect traces.

In recent years, the eBPF kernel feature has become popular to debug and observe kernel

internals. We will make extensive use of eBPF in this thesis, e.g. to count function calls,

15

3. DESIGN OF EXPERIMENTAL SETUP

get stack traces of kernel functions, and confirm that the kernel takes a certain code path.

We give a more detailed explanation of eBPF in the appendix in chapter 8.

3.2 Evaluation Plan

The io_uring_setup system call that is used to create a ring, supports 17 different flags to

configure the ring (10). All flags are boolean options, that are either enabled or disabled,

except for three flags, for specifying an SQ polling CPU affinity, a maximum number

of CQEs for clamping, and a file descriptor for sharing a work queue. In addition, the

io_uring_enter system call supports 7 different flags on SQEs, all of which are boolean,

but may depend on the flags that the ring was created with (11). In addition to configura-

tion options, the performance that an application gets from io_uring might also depend

on its own structure and behavior.

However, for this thesis, we prioritize the features that we think are most relevant, as

doing a detailed evaluation of a single flag can be a significant effort. Based on information

from the io_uring man pages, and other resources that we find online, we believe the

following configuration flags are most likely to show interesting results for performance.

• COOP_TASKRUN - Turn off IPIs (Inter-Processor Interrupts) for notifying a

process of new completion events, which can be an overkill for many applications.

Setting the flag will improve performance according to the man page (10).

• IOSQE_ASYNC - Request that an SQ is submitted asynchronously from a worker

thread, rather than trying non-blocking submission first and then asynchronous on

failure. The man page suggests it should be used if an application can assume most

requests will block (11).

• IOSQE_FIXED_FILE - Use a registered file rather than a normal file descrip-

tor (20). The man page does not hint an effect on performance, but online sources

mention that normal file descriptors have an overhead (21).

• REGISTER_BUFFERS - Keep data buffers of user process persistently mapped

into the kernel. Normally the buffers are mapped and unmapped into the kernel for

each I/O operation (20).

• SQPOLL - Use submission queue polling, i.e. a kernel thread that constantly polls

the submission queue, so that the application does not need to make system calls to

submit (10). Previous research suggests that it can improve performance (8, 9).

16

3.3 Hardware Configuration

• IOPOLL - Use polling on the device, i.e. instead of an interrupt from the device.

The device must support polling and the NVMe driver must have polling queues

setup rather than default queues (10). Previous research suggests that it can improve

latency (8, 9).

• SINGLE_ISSUER - This option can be used if SQEs are always issued from

a single thread. The man page hints that this allows the kernel to make some

optimizations (10).

As an example of a flag that does not suggest improved performance, we can look at

IORING_SETUP_SQE128, which is needed to make SQEs 128 bytes instead of 16 bytes, to

fit certain operations. It is only used in specific applications that need these non-standard

operations (10). For this thesis, we evaluate the first four flags listed, due to the time

required to evaluate each flag.

To evaluate a configuration option, we start by running the simplest possible fio bench-

mark, e.g. comparing random reads with and without the flag, with a single thread, on

an idle system, and look at throughput and latency for different queue depths. We then

take a deeper look at the flag, its internal implementation in the kernel, and look for hints

about what factors affect the performance from that flag. Based on that, we run bench-

marks with system conditions that we believe affect the flag’s performance, and use eBPF

to confirm that the conditions have the effect that we suspect.

3.3 Hardware Configuration

We perform all our evaluation on the same system. The hardware configuration of the

system is shown in Table 3.1, and the software versions used are listed in Table 3.2. Note

that for all experiments we leave CPU turbo boosting disabled, and we also leave dual

threading disabled (giving 20 instead of 40 cores), unless stated otherwise, in order to get

more predictable performance.

CPU 2 x Intel Xeon Silver 4210R (10 core, 20 thread)
Memory 256 GB (4 x 64 GB) - 2933 MHz DDR4
Storage 7 x Intel Optane SSD 900P Series (280 GB)

Table 3.1: Hardware configuration used for evaluation

17

3. DESIGN OF EXPERIMENTAL SETUP

Distro Ubuntu 22.04.1
Kernel Linux 6.3.8
fio 3.35

Table 3.2: Software versions used for evaluation

3.4 Implementing a fio Engine with liburing

In this section we explain how we implement a liburing engine for fio. Although fio

comes with an existing io_uring engine, we implement our own engine with liburing to

make it easier to implement configuration options and because for real-world applications,

it is recommended to use liburing rather than the low-level interface. The appendix

in chapter 8 and documentation in the artifacts repository provide more details on how

to compile fio with our custom engine. To write an engine, we must provide a number

of function pointers through the ioengine_ops struct. We explain the most important

functions here.

• First init is called to initialize our engine, where we create our ring with the desired

flags to enable different features.

• Then u_init is called for each I/O unit, the number of I/O units is the same as the

queue depth. We only use this function to create a mapping between unit ID and its

struct.

• Then post_init is called, where we create iovec structs for each I/O unit, that will

be needed for our readv and writev operations.

• In queue, we acquire a free SQE slot in the ring buffer, and prepare a readv or

writev request.

• In commit, we submit the SQEs using the io_uring_submit function.

• To retrieve events, getevents is called, there we call io_uring_wait_cqe, and return

the number of finished events.

• For each event returned from getevents, a call is made to event to finish that event,

where we pass the result to the I/O unit.

In our engine, we have added options to enable the features that we want to evaluate. The

features can be enabled with the flags –coop_taskrun, –force_async, –registerfiles,

and –sqthread_poll.

18

3.5 Summary

3.5 Summary

In this chapter, we come up with a plan for our experiments. First, we explore what

configuration options are available for io_uring and what their impact is on performance

based on existing work. We then prioritize the configuration options and select 4 options

for detailed study. We also explore what tools are available for our experiments, and the

hardware setup that we will run experiments on. Finally, we describe how we implement

a custom storage engine for fio with liburing. Although fio has an existing io_uring

storage engine, we implement our own engine as liburing is recommended for real-world

applications. In addition, the configuration options that we selected are not supported by

the existing engine, and using liburing makes it simpler to add support for them.

19

3. DESIGN OF EXPERIMENTAL SETUP

20

4

Experiments

In this section, we explore the four io_uring configuration options that we selected in the

previous section. The options were chosen based on their likeliness to affect performance

as hinted by man pages and other resources. For each option, we start by exploring its

implementation to understand what might affect its performance. We then run experiments

with fio using our liburing engine, where we have added support for the options. For

each option, we try to understand in what scenario it provides the most benefits, and in

what scenarios it can degrade performance.

4.1 Cooperative Task Running (COOP_TASKRUN)

In the io_uring manpage, the flag COOP_TASKRUN is described as preventing a storm of

IPIs that are sent for completion events, it is implied that this lowers CPU load with a

potential downside on latency.

By default, io_uring will interrupt a task running in userspace when a comple-

tion event comes in. This is to ensure that completions run in a timely manner.

For a lot of use cases, this is overkill and can cause reduced performance from

both the inter-processor interrupt used to do this, the kernel/user transition,

the needless interruption of the tasks userspace activities, and reduced batch-

ing if completions come in at a rapid rate. Most applications don’t need the

forceful interruption, as the events are processed at any kernel/user transition.

The exception are setups where the application uses multiple threads operating

on the same ring, where the application waiting on completions isn’t the one

that submitted them. For most other use cases, setting this flag will improve

performance. Available since 5.19.

21

4. EXPERIMENTS

4.1.1 First Experiments

For our first experiment, we run fio with and without the COOP_TASKRUN flag on a single

core. We use fio with the liburing engine to run a random read benchmark, using

a single Intel Optane device and a single thread. Figure 4.1 shows the IOPS, average

and p99 latency, and context switches per second. We do not observe any difference in

performance with or without the COOP_TASKRUN flag.

(a) IOPS (b) Latency (average)

(c) Latency (p99) (d) Context switches per second

Figure 4.1: IOPS, average and p99 latency, and context switches per second for the initial
COOP_TASKRUN experiment

We also run the same experiment on multiple cores by adding more threads, and we also

experiment with running CPU intensive tasks in parallel to force more context switches.

22

4.1 Cooperative Task Running (COOP_TASKRUN)

However, these experiments also showed no difference in performance. The full results are

omitted but can be found in the artifacts repository (experiment 2 and 3).

4.1.2 Understanding What the Flag Does

Next, we start reading the kernel source code to see what the COOP_TASKRUN flag does. We

see that it changes something called a notify method, a property that is passed when calling

a task_work_add function. We figure out that io_uring creates something called a task

work, a callback that finishes each I/O completion. This task work is put in a queue on the

submitting process task_struct, and all task works are processed when the process exits

to user mode. The task_work_add function takes in an argument called notify method,

which COOP_TASKRUN changes to SIGNAL_NO_IPI from SIGNAL. We see that when SIGNAL

is set, task_work_add will call kick_process, which kicks a process that is running in

userspace back into kernelspace, so that it will run its task work. The kick is done by

sending a reschedule IPI to the CPU running the process. There are two conditions for

kick_process to send an IPI, that the process is running on a remote core, and the process

is currently the active process on that core.

We use eBPF to count the number of calls to kick_process and the function that sends a

reschedule IPI (native_smp_send_reschedule). Figure 4.2 shows that the COOP_TASKRUN

flag is indeed preventing calls to kick_process (first figure), but regardless of the flag, no

IPIs are actually being sent (second figure).

(a) Calls to kick_process (b) Calls to send reschedule IPI

Figure 4.2: eBPF counts for the number of calls to kick_process and number of IPIs sent
with native_smp_send_reschedule

23

4. EXPERIMENTS

4.1.3 Investigating IRQ Affinity

This motivates us to experiment with an environment where I/O can not happen locally

on a single core. As our system has 20 CPU cores, the Linux kernel sets up one NVMe

hardware queue for every core, giving us 20 hardware queues. We configure our system

such that only 11 NVMe hardware queues are available, in that case Linux spreads the

queues (and thus NVMe IRQs) across the CPUs as shown in Figure 4.3.

#0 #1 #2 #3 #4

#5

IRQ

#6 #7 #8 #9

IRQ IRQ IRQ IRQ

IRQ IRQ IRQ IRQ IRQ

#10 #11 #12 #13 #14

#15

IRQ

#16 #17

NVMe #0

#18 #19

IRQ IRQ IRQ IRQ

IRQ IRQ IRQ IRQ IRQ

NUMA #0 NUMA #1

NVMe #1

NVMe #2 NVMe #3

NVMe #4 NVMe #5

(a) Interrupts on all cores

#0 #1 #2 #3 #4

#5 #6 #7 #8 #9

IRQ IRQ

IRQ IRQ IRQ

#10 #11 #12 #13 #14

#15

IRQ

#16 #17

NVMe #0

#18 #19

IRQ IRQ

IRQ IRQ

NUMA #0 NUMA #1

NVMe #1

NVMe #2 NVMe #3

NVMe #4 NVMe #5

(b) Interrupts on half the cores

Figure 4.3: IRQ handler placement (a) before and (b) after lowering the number of available
NVMe hardware queues

We configure our system so that only odd numbered cores have an IRQ registered. In

this experiment we use a single Intel Optane device and experiment with running fio on

cores 11 and 13 (cores with interrupts), and cores 10 and 12 (cores without interrupts).

We use two cores as that still allows saturating the Optane device, and we are interested

in seeing what activity happens between CPUs.

Now, we count the calls to kick_process and native_smp_send_reschedule again using

eBPF, and we also count the number of NVMe IRQs coming in per core. First running

fio on CPU (11, 13) and then on CPU (10, 12). We run a fio random read benchmark

with two threads pinned to the two CPU cores using taskset.

The results are shown in Figure 4.4. For CPU (11, 13) we see the same result as before,

kick_process is only called when the COOP_TASKRUN flag is not set, but no reschedule

IPIs are sent regardless of the flag. However, for CPU (10, 12) we see a high number of

reschedule IPIs being sent by default, and COOP_TASKRUN prevents them from being sent.

We also see that for all experiments, NVMe interrupts are always coming in on cores 11

and 13.

24

4.1 Cooperative Task Running (COOP_TASKRUN)

(a) eBPF kick and IPI counts (b) Interrupt counts per CPU

Figure 4.4: eBPF counts for number of function calls and the number of NVMe IRQs received
per core

We now investigate whether there is a performance difference for these four cases, i.e.

with or without COOP_TASKRUN, running on IRQ or non-IRQ cores. The results are shown

in Figure 4.6. Starting with throughput (IOPS), we see that running on interrupt cores

(11, 13) we get the same throughput regardless of the COOP_TASKRUN flag, which is the same

result as we got in our first experiments. When running on non-interrupt cores (10,12) we

see slightly higher throughput without COOP_TASKRUN, and significantly higher throughput

with COOP_TASKRUN. The same result is reflected in the latency.

We see that the improvement in throughput is mostly at QD ≥ 4, at low queue depths

the COOP flag makes little difference. We investigate this further with eBPF, and find out

that kick_process is only called if a function called wake_up_state returns false. That

function wakes up a sleeping task, in which case it is enough to place it on the run queue

again, while kick_process is needed for currently running tasks. Figure 4.5 shows the

complete logic as we now understand it, with the following six steps:

1. io_uring receives a completion event from the NVMe drive and creates a task_work

that will finish the IO. If the COOP_TASKRUN flag is set, the notify mode will be

TWA_SIGNAL_NO_IPI, but by default it is TWA_SIGNAL.

2. After the task_work_add function has inserted the task_work into the linked list of

task works on the task task_struct, it will notify the task. The TIF_NOTIFY_SIGNAL

25

4. EXPERIMENTS

task_work_add (

 task,

 work,

 notify_mode

)

TWA_SIGNAL_NO_IPI

TWA_SIGNAL

truefalse

true

false

true

false

returnreturn

return

io_uring

return

wake_up_state (

 task,

 TASK_INTERRUPTIBLE

)

smp_processor_id() != task_cpu(task)

 && task_curr(task)

test_and_set_tsk_thread_flag (

 task,

 TIF_NOTIFY_SIGNAL

)

send IPI and return

kick_process (

 task

)

smp_send_reschedule(

 task_cpu(task)

)

switch (notify_mode)

1 2 3

4

5

6

Figure 4.5: A flow diagram of io_uring’s call to task_work_add showing where
COOP_TASKRUN changes the behavior.

flag is added to the task, but if it was already set, then task_work_add does nothing

and returns.

3. Otherwise, if the signal flag was not previously set, task_work_add tries to wake up

the task, but only if it’s in the TASK_INTERRUPTABLE state. In that case, the task

will be put in the run queue again, and when it gets scheduled, the task_work will

run. task_work_add returns unless the wake up call was unsuccessful.

4. The wake up call might have failed because the task was already in the RUNNABLE

state (or some other state), in that case, a kick_process call is needed to notify the

task, but if COOP_TASKRUN and thus TWA_SIGNAL_NO_IPI is set, then nothing is done

and task_work_add returns.

5. Kicking a process is only done if it is running on a different core than kick_process

is being called on, and only if that task is currently in the RUNNABLE state on that

remote core, otherwise nothing happens.

6. Finally, a reschedule IPI is sent to the remote core and task_work_add returns. The

remote core will invoke the IPI handler, which for reschedules does nothing but invoke

the scheduler again. Most likely, the same task will be run again, and before entering

user mode again, the new task_work will be run.

26

4.1 Cooperative Task Running (COOP_TASKRUN)

(a) IOPS (b) completion latency (clat) - average

(c) completion latency (clat) - p99

Figure 4.6: IOPS, average and p99 latency for the four cases

We now do more eBPF counts to confirm our understanding of task_work_add and the

effect that COOP_TASKRUN has. Figure 4.7 shows the counts of kick_process and reschedule

IPIs as a function of queue depth. Like before, we have four cases to examine, running fio

on interrupt cores (10, 12) or non-interrupt cores (11, 13), and running with or without

COOP_TASKRUN. We can see that kick_process is not being called at QD ≤ 2, but at

QD ≥ 4 it is called. This matches with the performance seen in Figure 4.6.

Figure 4.8 explains why kick_process is not being called at QD ≤ 2. It shows the

number of calls to wake_up_state for the four cases, with two lines for each case, the

number of calls that return true and false. We see that at QD ≤ 2, wake_up_state is

27

4. EXPERIMENTS

(a) Calls to kick_process (b) Calls to native_smp_send_reschedule

Figure 4.7: Number of calls to kick_process and native_smp_send_reschedule as a func-
tion of queue depth for the four cases

almost always returning true (for all four cases), meaning that the task was sleeping and

kick_process thus not necessary.

In this subsection we have demonstrated that when running an I/O process on non-

interrupt cores, specifying COOP_TASKRUN will give significant performance improvement.

We suspect that one reason for the improved performance is that the IRQ handler nvme_irq

still runs on the interrupt cores, thus freeing up CPU time on the non-interrupt cores.

4.1.4 Understanding Interrupt vs Non-interrupt Cores

We now have an environment where every other CPU has an interrupt (only odd numbered

cores), and we have seen that running fio on a non-interrupt core gives better performance,

in particular when IPIs are disabled with COOP_TASKRUN. We can now explain how the

path of an io_uring read changes when running on a non-interrupt core and the effect of

COOP_TASKRUN.

First, let’s assume that our process submits I/O commands on an interrupt core (e.g. 10

and 12), Figure 4.9 shows the following order of events:

1. Process submits SQ: fio submits a read request using the io_uring_enter syscall,

this system call returns to userspace after running (i.e. after step 2).

28

4.1 Cooperative Task Running (COOP_TASKRUN)

Figure 4.8: Number of calls to wake_up_state as a function of queue depth and grouped by
return value (true or false) for the four cases, showing that for QD ≤ 2 the return value is
always false, after that it is always true

2. Command is sent to NVMe device: the block layer adds an NVMe read com-

mand to the NVMe hardware queue and then rings the NVMe doorbell.

3. NVMe device raises IRQ: the device raises an IRQ to signal that it has finished

a command. Linux’s interrupt handler maps the IRQ vector to the nvme_irq han-

dler and calls it. The handler adds a task work, tctx_task_work, to the process

that submitted the IO. This task work will do the final processing of the command

completion event.

4. Returning to usermode: if nvme_irq preempted user mode, it will return back to

user mode after running. At every return to usermode, the task works that have been

added to the processes’ task work queue are called, in our case tctx_task_work.

5. Reading NVMe completion queue: the result of the read command is read from

the NVMe completion queue.

6. Back to usermode: after the task work queue of our process has been emptied, we

finally return to usermode.

Let’s now look at the second case, when our process submits I/O commands on a non-

interrupt core (e.g. 11 and 13). Figure 4.10 shows two cases, depending on whether the

IPI preempts user- or kernel mode execution. In any case, the difference starts when the

NVMe device raises an IRQ (3), which comes in on a different core than the submission

(2). Assuming that the submitting process is still running (not sleeping), an IPI will be

sent back to the submitting CPU (4). The IPI may either come during user- og kernel

29

4. EXPERIMENTS

IRQ

N
V

M
e

 #
0

CPU {10, 12}

CPU {11, 13}

io_uring_enter

tctx_task_work

nvme_irq

fio

DMA read

DMA write

1
2

5

3
4

6

Figure 4.9: Flow of events running on an interrupt core

mode execution. When preempting kernel mode, the task_work will not run when the IPI

handler exits, but when the previous kernel context returns to user mode (see Figure 4.11).

In a sense, the IPI is then useless, as the task_work runs at the same point regardless of

the IPI.

4.1.5 Quantifying the Benefits of No IPIs

We have seen that COOP_TASKRUN improved the performance by around 20% under the

conditions of our last experiment. We are now interested in quantifying the cost of IPIs,

as it may vary with system conditions. In normal operation, fio does little other than

submitting I/O as fast as possible.

The cost of an IPI may be different depending on whether it is preemting user- or kernel

space. In addition, an IPI handler preemting kernel space will not execute task_work on

exit, the handler exits to the previous kernel space operation, e.g. a syscall, and when that

syscall exits to userspace, the task works will be processed. In that sense, some IPIs may

be useless. Figure 4.11 shows where task_work is run during mode switches (red dots).

We expect that if an application spends more time in usermode, there will be a higher

ratio of IPIs that preempt usermode (Figure 4.12). This assumes that the IPIs are sent

uniformly and not in bursts. We are interested in whether IPIs that hit user mode are

more expensive.

30

4.1 Cooperative Task Running (COOP_TASKRUN)

IRQ

IPI

N
V

M
e

 #
0

CPU {10, 12}

CPU {11, 13}

io_uring_enter

tctx_task_work

nvme_irq

fio

DMA read

DMA write

1
2

6

3

5

7

ipi_reschedule

4

(a) IPI preempts user mode (4) and causes
task work to run (5)

IRQ

IPI

N
V

M
e

 #
0

CPU {10, 12}

CPU {11, 13}

io_uring_enter

tctx_task_work

nvme_irq

fio

DMA read

DMA write

1
2

6

3

5

7

ipi_reschedule

4

Req. N

Req. N - 1

(b) IPI preempts kernel space (4), no task
work is run directly, only when previous
kernel execution returns to user mode (use-
less IPI)

Figure 4.10: Flow of events running on a non-interrupt core, two scenarios

To investigate this, we use the thinkcycles option of fio, which will simulate a com-

putation of N cycles after each I/O completion. We first attempted to use the thinktime

option of fio, but that one results in system calls (get_microtime and wait), which alters

our results. The thinkcycles option does a pure CPU computation.

We start by measuring the total number of IPIs, and also the number of IPIs that are pre-

empting user space. We do this by counting the number of times exit_to_user_mode_prepare

is called from the stack of a reschedule IPI handler. We can then calculate the ratio of

IPIs that are hitting user mode.

As we increase the thinktime, we do see an increase in the ratio of IPIs that preempt

user mode (Figure 4.13). However, there is a sudden drop at 128-256 thinkcycles where

almost all IPIs are preempting kernel mode. We can not explain this drop.

Next, we investigate the performance for different thinkcycles values. We can see through-

put (IOPS) dropping as we increase the thinkcycles in Figure 4.14, but the rate of change

is the same with and without COOP_TASKRUN. The second graph shows the IOPS improve-

ment of COOP_TASKRUN, which does not increase with added thinkcycles. We see similar

results for latency in Figure 4.15.

31

4. EXPERIMENTS

U

K

IPI

(a) IPI preempts kernel

U

K

IPI

(b) IPI preempts user

Figure 4.11: The difference between an IPI that preempts kernel- and userspace, the red
dot shows where task work is run.

U

K

U

K

50%

80%

Figure 4.12: An application that spends more time in usermode will have a higher ratio of
IPIs arriving in usermode.

A possible explanation is that although IPIs on userspace may be more expensive, what-

ever increased cost comes from IPIs hitting userspace, it is small compared to the added

thinkcycles, and thus IOPS drops equally fast with and without COOP_TASKRUN.

However, this does show that as I/O applications get more CPU intensive, the COOP_TASKRUN

flag starts to make less difference.

4.1.6 IRQ Affinity and NUMA Topology

Our previous experiment showed that running an I/O process on a non-interrupt core can

give better performance, especially when using the COOP_TASKRUN flag. We now want to

quantify the improvement depending on what non-interrupt cores are used in a NUMA

topology.

In our system we have 2 NUMA domains and hyperthreading, so there are four levels

when considering communication between cores:

1. Local

2. Twin thread

32

4.1 Cooperative Task Running (COOP_TASKRUN)

Figure 4.13: The ratio of IPIs that preempt user mode as a function of thinkcycles

3. Core on same NUMA node

4. Core on other NUMA node

In this experiment, we configure the system with only a single NVMe IRQ, and then

experiment with running fio on a core from each of these levels. We experiment with having

the NVMe IRQ on a core in the NUMA node that has the Optane drive (Figure 4.16 (a),

and then on the remote NUMA node (Figure 4.16 (b).

The results are shown in Figure 4.17 and Figure 4.18. The four different colors indicate

where the benchmark is run in the NUMA topology compared to the interrupt core. The

four groups indicate which NUMA domain the NVMe interrupt core is in, and whether

COOP_TASKRUN is used.

For throughput (IOPS), we see that for QD = 16 the best throughput is when fio runs

on a CPU in the same NUMA domain as the interrupt core, but the core is not the same

as the interrupt core (local) or the interrupt core’s adjacent hyperthread (thread), and it

does not matter which NUMA domain fio and the interrupt are in. However, for QD = 1,

the best performance is slightly better when the NVMe interrupt is registered on NUMA

0.

Having an NVMe interrupt on NUMA domain 0 (remote from NVMe drive) is only

possible if we specify 2 hardware queues. When specifying a single queue, the interrupt

always gets registered on NUMA 1. This is why the red bar is missing for the NUMA 0

bars.

33

4. EXPERIMENTS

(a) Throughput (IOPS) as a function of
thinkcycles

(b) Relative improvement to IOPS when using
COOP_TASKRUN (percent)

Figure 4.14: The effect of increasing thinkcycles on throughput (IOPS) with and without
COOP_TASKRUN

4.1.7 Ring Completions on a Separate Thread

This experiment is about finding a case where COOP_TASKRUN makes things worse. We

go off a hint in the man page that it should not be used when completions happen on

a different thread from submissions. First we try modifying fio for this experiment, by

having each worker thread spawn an additional thread for its completions. We also attempt

to add a flag –single-ring that would share an io_uring with all worker threads, then a

completion could happen on a different thread from submission.

This design did not succeed, implementing dual-thread workers was too incompatible

with fio’s architecture. The main problems were that fio is designed with completions

happening (getevents) on the same thread, so we would need to get the completions

back to the submitting thread with IPC, and the getevents and event callbacks are not

suitable for multiple threads using the same ring.

We then write a simple io_uring program that does N reads and reports the latency

of each request. It forks a new thread that handles completions on a shared ring. First,

we try to store the submission time in nanoseconds in the SQE user data field, and then

reporting the latency on the consuming thread, but we run into the following problem:

1. We need a mechanism to limit the rate of submissions, otherwise it can submit too

many requests, causing a segfault

34

4.1 Cooperative Task Running (COOP_TASKRUN)

(a) Average latency as function of thinkcycles (b) p99 latency as function of thinkcycles

Figure 4.15: The effect of increasing thinkcycles on average and p99 latency with and without
COOP_TASKRUN

2. The clocks on each thread are not synced to nanoseconds, so the reported latency is

wrong

Then we modify the program to a "ping-pong" approach: thread 1 submits on ring 1, then

waits for completion on thread 2. thread 2 waits for completions on ring 1 and then submits

on ring 2. Then we can measure submission and completion time on the same thread (but

it will be the time of 2 requests). The program also fixes the CPU affinity of both threads

to separate cores. The custom benchmark is called io_uring_completion_thread and can

be found in the artifacts repository (see appendix).

4.1.8 First Run and Investigating Absence of kick_process Calls

We are ready to experiment with our new benchmark. We configure the machine to have

a single NVMe hardware queue, and we pin our two benchmark threads to separate cores,

neither having an NVMe interrupt. This will cause completion events to send an IPI, as

we saw in our previous experiment.

kick_process reschedule wake_up_state (F) wake_up_state (T)

Default 2,842 280 242 2,000,028
COOP 2,726 74 63 2,000,025

Table 4.1: eBPF counts during first benchmark run

35

4. EXPERIMENTS

IRQ

NVMe #0

NUMA #0 NUMA #1

NVMe #1

1 2

3

4

(a) Single IRQ on NUMA domain of NVMe
drives

IRQ

NVMe #0

NUMA #0 NUMA #1

NVMe #1

1 2

3

4

(b) Single IRQ on remote NUMA compared
to NVMe drive

Figure 4.16: The four levels in our NUMA hierarchy, with IRQ on either a local or remote
NUMA node

We start by using eBPF to verify that our benchmark is triggering the expected kernel

code path. However, counting kick_process calls (Table 4.1), we do not see any calls

regardless of whether COOP_TASKRUN is used. We then check the wake_up_state function

and see that it always returns true, it must return false for kick_process to be called.

It means that the task was sleeping (in INTERRUPTABLE state) and it was enough for the

kernel to wake the task up to make task_work run, i.e. no kick is needed. This is the same

result as in Figure 4.6, where we saw that COOP_TASKRUN only makes a difference at higher

queue depths. At higher queue depths the task is always busy and never goes to sleep, and

thus a kick_process is needed to kick the task into kernel mode, and then task_work will

run before entering user mode again.

The benchmark is currently submitting I/O at QD = 1. We modify our benchmark

to support variable queue depth with the same "ping pong" approach as before, but the

submission thread will start by submitting N operations before completing ("ponging")

the first response. Then we have N operations in flight at each moment. Figure 4.19 shows

how a queue depth of N is maintained.

4.1.9 Investigating Absence of IPIs

Running our benchmark with a higher queue depth, we now see a high number of kick_process

as expected. However, we do not see any IPIs with eBPF, even though our two benchmark

threads are running on non-interrupt cores. We need to investigate why kick_process

does not send an IPI. From our previous investigations (see Figure 4.5) we know that there

36

4.1 Cooperative Task Running (COOP_TASKRUN)

(a) IOPS (QD=16) (b) IOPS (QD=1)

Figure 4.17: IOPS when running fio in 4 different levels of our NUMA hierarchy, for two
different queue depths.

can only be two reasons: the task to kick is on the same CPU as kick_process is running,

or the task is not active at that moment (sleeping).

We start by investigating the first condition. We know that the tasks to kick, our

benchmark threads, run on CPU 0 and 2. The single NVMe interrupt handler is on CPU

26 and thus kick_process should be running there as well, making the first condition true.

We use eBPF to count on what CPU kick_process runs along with its stack trace (who

called it).

Listing 4.1: CPU ID of kick_process
(1 queue)

. . .
@[3 2] : 1527
@[4] : 2851
@[0] : 752962
@[2] : 755993

Listing 4.2: CPU ID of kick_process
(2 queues)

. . .
@[2 7] : 98
@[1 0] : 105
@[6] : 1522
@[2 6] : 448726

Surprisingly, we see that kick_process is running on CPU 0 and 2, same as our bench-

mark threads, which contradicts what we have previously seen. kick_process call counts

per CPU are shown in Listing 4.1. We then use eBPF to see the kernel stack when it is

called, to see where it gets called from. The stack is shown in Listing 4.3. We can see that

it is run from a softirq. However, if we look at the stack from our previous experiments,

shown in Listing 4.4, we see kick_process being called directly from the nvme_irq.

37

4. EXPERIMENTS

(a) Average latency (QD=16) (b) Average latency (QD=1)

Figure 4.18: Average latency when running fio in 4 different levels of our NUMA hierarchy,
for two different queue depths.

Listing 4.3: Stack trace from
kick_process (1 queue)

k ick_process
__io_req_task_work_add
io_complete_rw
blkdev_bio_end_io_async
. . .
do_so f t i rq
. . .
secondary_startup_64_no_verify

Listing 4.4: Stack trace from
kick_process (2 queues)

k ick_process
__io_req_task_work_add
io_complete_rw
blkdev_bio_end_io_async
. . .
nvme_irq
. . .
handle_irq_event
. . .
common_interrupt
. . .
secondary_startup_64_no_verify

After comparing the two stack traces and exploring the kernel source code, we see that the

divergence is caused by blk_mq_complete_request_remote. If this function returns true,

the operation will be finished remotely. It returns false unless a few conditions are met,

one of which is rq->q->nr_hw_queues == 1. Thus if there is only one NVMe hardware

queue, the kernel calls blk_mq_raise_softirq to complete the request remotely. When

we run our benchmark with 2 queues, we do indeed get IPIs (Listing 4.4). We do not know

why this special case exists in the kernel.

38

4.1 Cooperative Task Running (COOP_TASKRUN)

Thread A

io_uring_get_sqe (ring1)
io_uring_prep_readv

io_uring_submit (ring1)

io_uring_wait_cqe (ring1)
io_uring_cqe_seen
...
io_uring_prep_readv
io_uring_submit (ring2)io_uring_wait_cqe (ring2)

io_uring_cqe_seen
...

io_uring_prep_readv
io_uring_submit (ring1)

Thread B

Figure 4.19: Read commands sent between two threads in a "ping pong" dynamic, showing
the liburing functions used for the two rings

4.1.10 A Case Where COOP_TASKRUN Breaks Things

We have now figured out what conditions are needed for our benchmark to show a difference

with COOP_TASKRUN, i.e. having a higher queue depth, and at least 2 hardware queues. We

now run our actual experiment, to see if COOP_TASKRUN makes a difference with a separate

thread consuming CQEs. We measure the time it takes to complete 1 · 109 requests. The

results are in Figure 4.20 and we see no difference in using the flag. In both cases, the

duration is highest for QD = 1 and decreases until QD = 4.

Figure 4.20: Duration of the custom benchmark with and without COOP_TASKRUN

Unlike our previous experiments, using COOP_TASKRUN is not resulting in higher through-

put. We verify that IPIs are being sent, figure Figure 4.21 shows that kick_process

is being called only when COOP_TASKRUN is omitted, and the number of kick_process

calls is determined by how often wake_up_state returns false, same as in our previous

experiments.

39

4. EXPERIMENTS

(a) kick_process counts (b) wake_up_state counts

Figure 4.21: eBPF function call counts for completion thread experiment

We also use eBPF to confirm our assumption that a task_work for a completion event

always runs on the submitting task, even if the completion takes place on a different core.

To do this, we have thread A do two submissions (pings) for every completion (pong), and

indeed we observe twice the number of tctx_task_work (the task work of io_uring) on

the submitting core.

We have an idea of when COOP_TASKRUN could break things: If the submitting thread

calls io_uring_submit to submit an SQE, and then moves on to pure CPU work that does

no system calls. In that case a kick_process would be needed to make the submitting

thread go into kernel mode and process the outstanding task_work that will make the

CQE visible to the consuming thread.

We modify our custom benchmark to submit only a single SQE, and then do a long busy

loop. We measure the time on the consuming thread that it takes io_uring_wait_cqe

(liburing) to return the CQE.

Running the benchmark 1000 times, we get the latency measurements shown in Fig-

ure 4.22. We observe a significant difference in latency, where not using COOP_TASKRUN

(the default configuration) gives a latency in the microsecond range as expected, but with

COOP_TASKRUN the latency is up to 7 milliseconds (7000µs). With COOP_TASKRUN, we also

notice a strange period where the latency doubles (ca. #100 - #400), but outside that the

latency seems bounded by 4 milliseconds. Table 4.2 shows the average of all iterations,

and also if we filter out points above 4 milliseconds.

40

4.1 Cooperative Task Running (COOP_TASKRUN)

(a) Latency with COOP_TASKRUN (b) Latency without COOP_TASKRUN

Figure 4.22: Latency of main-fail over 1000 iterations

samples average (µs) median (µs) standard deviation (µs)

All results 1000 2916.9 2712.3 1883.3
Filtered 775 2107.5 2116.8 1169.7

Table 4.2: Latency of 1000 iterations with COOP_TASKRUN, before and after filtering

We have found a case where COOP_TASKRUN hurts the latency significantly. This matches

with our assumption, that while the submitting thread is in a CPU busy-loop, no kernel

mode transition occurs to finish the I/O by running task_work. Still, the requests are

finishing eventually, so we use eBPF to find out what causes the submitting task to get its

task_work executed. Listing 4.5 shows the stack trace for this case.

This originates from the APIC timer interrupt. The kernel uses this interrupt as a

"system tick", to invoke the scheduler so that no task runs for too long. We can verify the

frequency of the timer with eBPF (Listing 4.6).

Indeed, we measure 250 times per second on the CPU where our benchmark runs, but

less on cores that go into sleep mode. This means that our task_work will be delayed at

worst by 4 milliseconds, and average 2 milliseconds, which matches with our measurement.

Listing 4.5: Stack trace of task_work corresponding to IO completion

tctx_task_work
get_s igna l
arch_do_signal_or_restart
exit_to_user_mode_prepare

41

4. EXPERIMENTS

irqentry_exit_to_user_mode
i rqen t ry_ex i t
sysvec_apic_timer_interrupt
asm_sysvec_apic_timer_interrupt

Listing 4.6: Counting APIC timer interrupts over 10 seconds

$ bp f t r a c e −e ’ kprobe : __sysvec_apic_timer_interrupt {@[cpu] = count () ; } ’
−e ’ i n t e r v a l : s : 10 { e x i t () ; } ’
−c ’ . / main− f a i l /dev/nvme2n1 1 coop ’

. . .

@[1 1] : 96
@[3 7] : 147
@[0] : 2503

A delay in the millisecond range is significant for NVMe drives that offer microsecond

range latencies. We conclude that COOP_TASKRUN should not be used when completions are

consumed on another thread.

4.1.11 Conclusion

We have discovered that the COOP_TASKRUN flag affects cases where io_uring completion

events must be communicated between cores. Our initial experiments did not show any

difference, because every CPU core on our system had an NVMe interrupt vector, and

thus completion events could always happen locally. Limiting the NVMe vectors and

submitting I/O on non-interrupt cores showed that COOP_TASKRUN can significantly improve

performance. We also observed that the choice of CPU cores for user application threads

and interrupt vectors in a NUMA topology can affect performance. Finally, we confirmed

that if consuming completion events is not done on the same process thread as submissions,

then COOP_TASKRUN can result in significantly worse (1000 x) latency. Apart from that case,

we recommend always setting the flag, as it either does nothing, or improves performance.

4.2 Forced Asynchronous Submission (IOSQE_ASYNC)

io_uring provides multiple options for the submission of I/O requests. By default, io_uring

tries to submit requests in non-blocking mode, which does not make use of worker threads.

However, if requests fail, io_uring may try to submit them again but through a worker

42

4.2 Forced Asynchronous Submission (IOSQE_ASYNC)

thread. In addition, io_uring provides modes for polling for submissions. In this exper-

iment, we explore the IOSQE_ASYNC flag, which forces io_uring to do submissions asyn-

chronously, by running them on a worker thread. The man page provides the following

description of the IOSQE_ASYNC flag.

Normal operation for io_uring is to try and issue an sqe as non-blocking first,

and if that fails, execute it in an async manner. To support more efficient over-

lapped operation of requests that the application knows/assumes will always

(or most of the time) block, the application can ask for an sqe to be issued

async from the start. Available since 5.6.

In this experiment, our goal is to understand under what conditions this flag is beneficial.

We will explore what can cause non-blocking submission to fail, whether asynchronous

submission can improve performance and under what conditions, and explore how the

io_uring worker pool works.

An io_uring SQE (submission queue event) is normally submitted in a non-blocking

mode, which means that the user application is not blocked while the I/O request is in

flight. However, before the request is considered in flight, the submission goes through the

kernel’s block layer, e.g. page cache, file system, and I/O scheduler. This submission path

is executed in the context of the application, and the syscall that submitted the request

(io_uring_enter) only returns after the request has been submitted to the device. In

that sense, the submission of a request is still blocking, it is only the in flight part that

is non-blocking. As we will see, the submission can block for an undetermined time, for

example due to inode lock contention within the file system, or due to expensive page cache

operations.

4.2.1 Function of IOSQE_ASYNC

As the description from the man page is rather vague, we begin by exploring the kernel

source code to see how the IOSQE_ASYNC flag is used. We are interested in what is meant

by a "submission failure", how worker threads are handled, what kind of requests are

submitted as non-blocking, and how setting the IOSQE_ASYNC flag changes the submission

of a request.

The request submission starts with a io_uring_enter syscall from the user application,

with the to_submit parameter set to a positive value. Let’s go through what happens on

the kernel side during this system call.

43

4. EXPERIMENTS

1. The entry point of this syscall is the SYS_io_uring_enter function. If the to_submit

parameter is set, then io_submit_sqes is called, which then calls io_submit_sqe for

each SQE to submit.

2. In io_submit_sqe, the action depends on the REQ_F_FORCE_ASYNC flag, which is

equivalent to the IOSQE_ASYNC flag. If the flag is not set, the SQE is passed to

io_queue_sqe, but otherwise to io_queue_sqe_fallback, which then calls io_queue_iowq

to pass the request to a worker thread.

3. We assume that the flag is not set and io_queue_sqe is called. This calls io_issue_sqe

with a IO_URING_F_NONBLOCK flag. If the issue call returns non-zero, the SQE is

passed to io_queue_async, which may be the failure case that the man page refers

to.

4. In io_issue_sqe, the request opcode is looked up in the io_issue_defs array.

Each opcode has an associated issue callback. For example, the readv opcode

has io_read as its issue callback. io_issue_sqe calls the associated callback and

forwards the return value back.

5. In io_read, a kiocb object is created and passed to the VFS through the io_iter_do_read

function. A kiocb object (kernel I/O callback) represents a general I/O request in

the kernel. We notice that io_read checks whether the IO_URING_F_NONBLOCK flag

is set, and in that case adds a IOCB_NOWAIT flag to the kiocb object.

6. We can see an example of how IOCB_NOWAIT is used by looking at the ext4_dio_read_iter

function. Every file inode in the Linux kernel has a lock. If the flag is set, the lock

is checked with a trylock operation, which immediately fails if the lock is set, and

ext4 returns an EAGAIN error, telling the caller to try again later. If the flag is not

set, a lock operation is used instead of trylock, which will block until the lock is

acquired. This lock operation can therefore block the io_uring_enter system call

for an undetermined time.

7. Assuming that EAGAIN is returned, this error is propagated back up to io_read,

io_issue_sqe, and io_queue_sqe. From io_queue_sqe, the SQE is passed to

io_queue_async as described in step 3.

8. In io_queue_async, the io_arm_poll_handler function is called which "arms" a

VFS poll handler through the vfs_poll function. Registering a poll handler results

44

4.2 Forced Asynchronous Submission (IOSQE_ASYNC)

in the process being woken up when the file descriptor becomes ready to perform

I/O, similar to the poll system call. A task_work is added that will perform the

I/O when the process is woken up by the poll handler.

Process Kernel

CQE

io_uring_enter

syscall returns

device

processing

Process Kernel

CQE

io_uring_enter

syscall returns EBUSY

submit to WQ

device

processing WQ submits I/O

Non-blocking submission Fallback to async submission

Figure 4.23: Comparison of a a successful non-blocking submission and submission that falls
back to an asynchronous worker

Figure 4.23 shows the difference between a successful non-blocking submission, and a

submission that falls back to an asynchronous worker thread. In the latter case, the non-

blocking submission fails with an EAGAIN error, and the SQE is submitted asynchronously.

This part happens in-line, so the io_uring_enter system call takes longer to return.

4.2.2 Worker Pools

We also explore how io_uring uses worker thread pools, known as io-wq, to make asyn-

chronous requests. For example when the IOSQE_FORCE_ASYNC flag is set and an SQE is

passed to io_queue_iowq. The SQE is then passed to io_wq_enqueue which adds a struct

io_wq_work into a worker thread’s work queue. If the current worker count is below the

max_workers limit, a new worker will be created. The worker threads consume from their

work queue and are destroyed after a 5 second timeout. This means that workers are

recycled and not created for every SQE.

Each io_uring ring can have two worker pools, for bounded and unbounded work. If

the request’s file descriptor has the type S_ISREG (a regular file) or S_ISBLK (a block

device), then the SQE goes to the bounded worker pool. Other file descriptors, such as

sockets (S_ISSOCK) go to the unbounded worker pool. For the unbounded worker pool, the

maximum worker count (max_workers) is the maximum limit of processes on the system

45

4. EXPERIMENTS

(RLIMIT_NPROC), but for the bounded pool, it is the lower value of four times the CPU

count (num_online_cpus), or the queue depth of the SQ ring.

4.2.3 File Inode Locks

As we discovered in the previous section, io_uring sets the IOCB_NOWAIT flag on kiocb

objects. We found out that this flag results in file systems attempting to take inode

lock, and if that fails, forcing io_uring to register a poll handler and submitting the

request asynchronously when the file descriptor becomes available. In a later section, we

will explore how lock contention affects the performance of io_uring, and whether the

IOSQE_ASYNC flag becomes beneficial in that case.

The inode lock is stored in the i_rwsem attribute of the struct inode structure. The

lock is a reader/writer semaphore, meaning that multiple readers can hold the lock, but

a writer must hold the lock exclusively. This ensures that if a file is opened by multiple

processes for writing, the writes will happen serially within the kernel.

In the following section, we will use eBPF to confirm that IOCB_NOWAIT is set for non-

blocking submissions, but not when submissions come from a worker thread. We will also

use eBPF to confirm that EAGAIN is returned if there is lock contention during non-blocking

submission.

4.2.4 First Experiment with IOSQE_ASYNC

For our first experiment, we explore what difference IOSQE_ASYNC makes for read requests.

We have implemented a flag to enable IOSQE_ASYNC in our liburing based fio engine. We

run fio with random reads and a single worker on a single Intel Optane NVMe device,

and we set the CPU affinity to core 0.

Figure 4.24 shows the IOPS, average, and p99 latencies for different queue depths, with

and without the IOSQE_ASYNC flag. We see that forcing asynchronous submissions results

in a much lower throughput and higher latencies. It is likely that the single CPU core is the

bottleneck, and creating and communicating with workers may be more CPU intensive.

We now run the same experiment again but without the CPU affinity. We still run

fio with a single worker so we expect a similar performance without worker threads. Fig-

ure 4.25 shows that without CPU affinity, using IOSQE_ASYNC results in a higher throughput

and lower latencies, unlike the previous experiment. It is likely that in this case, the worker

threads are running on different CPU cores. Thus IOSQE_ASYNC can help to offload I/O

submission to different CPU cores, even if our application itself is single threaded.

46

4.2 Forced Asynchronous Submission (IOSQE_ASYNC)

(a) IOPS (b) completion latency (clat) - average

(c) completion latency (clat) - p99

Figure 4.24: IOPS, average and p99 latency with and without IOSQE_ASYNC, single fio
thread pinned to a single core, random reads

4.2.5 Counting Worker Thread Operations with eBPF

To better understand how IOSQE_ASYNC uses worker threads in our previous experiments,

we can run eBPF to count important worker operations. Table 4.3 shows counts for the

creation of workers, which happens through the create_io_worker function, and number

of work that is processed by workers, through the io_worker_handle_work function. This

confirms that worker threads are only used when IOSQE_ASYNC is set. It also shows that

the number of threads created is much lower than the number of requests, showing that

the threads are heavily recycled.

47

4. EXPERIMENTS

(a) IOPS (b) completion latency (clat) - average

(c) completion latency (clat) - p99

Figure 4.25: IOPS, average and p99 latency with and without IOSQE_ASYNC, single fio
thread without pinning, random reads

4.2.6 Experimenting with IOSQE_ASYNC and Lock Contention

The man page for io_uring hints that IOSQE_ASYNC is beneficial when we know that non-

blocking submission will frequently fail. In a previous section, we explored the usage of

IOSQE_ASYNC in the io_uring source code, and noticed that if a trylock operation fails

on an inode lock, io_uring will fallback to asynchronous submission with the help of VFS

polling.

To introduce lock contention, we run fio with two workers doing random writes on the

same file. We create an ext4 file system on an Intel Optane NVMe drive. Figure 4.26

48

4.2 Forced Asynchronous Submission (IOSQE_ASYNC)

create_io_worker io_worker_handle_work

single core 0 0
single core + async 64 29,360,383

all cores 0 0
all cores + async 5,178 53,682,699

Table 4.3: eBPF function call counts for worker threads

(a) IOPS (b) completion latency (clat) - average

(c) completion latency (clat) - p99

Figure 4.26: IOPS, average and p99 latency with and without IOSQE_ASYNC, two fio threads
doing random writes to the same file on an ext4 file system

shows IOPS, average and p99 latencies for different queue depth, with and without the

IOSQE_ASYNC flag. We are unable to draw a meaningful conclusion from this experiment,

49

4. EXPERIMENTS

Default FORCE_ASYNC

Success 3,051,615 3,139,685
Failure (EAGAIN) 3,051,615 0

Table 4.4: eBPF counts for EAGAIN errors in the io_issue_sqe function, with and without
the FORCE_ASYNC flag

we suspect that is because write performance on Intel Optane devices is less predictable

than read performance.

We also run the experiment for QD = 64 with an eBPF script to count the return

value of io_issue_sqe. Table 4.4 shows the counts for two different return values, zero

(success), and EAGAIN (try again later). We see that if FORCE_ASYNC is not set, every

SQE first results in an EAGAIN, and then success, which can be attributed to inode lock

contention. If FORCE_ASYNC is set then all SQEs are issued from a worker thread, where

the inode lock operation is allowed to block.

4.2.7 IOSQE_ASYNC and Lock Contention with Readers and Writer

As we could not draw a conclusion from the previous locking experiment, we modify the

experiment to observe lock contention in fio reader threads, while a fio writer thread

runs on the same file in the background. As before, we use an ext4 file system on an

Intel Optane device. The fio worker performs random read, while the background worker

performs random writes.

Default FORCE_ASYNC

No IOCB_NOWAIT 0 19,075,609
With IOCB_NOWAIT 10,818,768 0

Table 4.5: eBPF counts for whether IOCB_NOWAIT flag is set on kiocb objects passed to
ext4_file_read_iter, depending on whether FORCE_ASYNC is set on SQE, showing that
IOCB_NOWAIT is not set for async requests

Figure 4.27 shows the IOPS, average and p99 latencies for different queue depths, with

and without the IOSQE_ASYNC flag. This time, we observe that IOSQE_ASYNC gives up to

15% higher IOPS at higher queue depths, and lower latencies. However, at queue depths

1 and 2, async submission produces worse results.

Finally, we use eBPF to observe whether the IOCB_NOWAIT flag is set on kiocb objects.

As we discovered in a previous section, this flag controls whether file systems do a trylock

50

4.2 Forced Asynchronous Submission (IOSQE_ASYNC)

(a) IOPS (b) completion latency (clat) - average

(c) completion latency (clat) - p99

Figure 4.27: IOPS, average and p99 latency with and without IOSQE_ASYNC, one fio thread
doing random reads to a file on an ext4 file system, while a background thread does random
writes to the same file

operation on the inode lock and return EAGAIN, or do a lock operation and block until

getting a lock. Table 4.5 shows the count of calls to the ext4_file_read_iter function,

depending on whether the IOCB_NOWAIT flag is set on the passed kiocb object. As we can

see, IOCB_NOWAIT is never set during async submission, but always set for non-blocking

submission.

51

4. EXPERIMENTS

4.2.8 Conclusion

In this experiment we have investigated the IOSQE_ASYNC flag. We have confirmed that

setting this flag forces I/O requests to be submitted from an io_uring kernel worker

thread. We have explored how io_uring manages worker pools, how it decides what

requests should be attempted as non-blocking first, and we discovered a scenario that

causes io_uring to fallback from non-blocking to asynchronous submission, namely file

system inode lock contention.

Our experimental results reveal two cases where IOSQE_ASYNC can be beneficial to per-

formance. First, when an application is limited to running on a single thread, but the

system has other CPU cores that are under-utilized, IOSQE_ASYNC can help offload work

to other CPU cores. Second, as hinted by the man page, when we know non-blocking

submission is likely to fail, IOSQE_ASYNC can improve performance, compared to having

frequent failures in non-blocking submission. A downside of IOSQE_ASYNC is that worker

threads use more CPU resources, and thus in a CPU bound environment, the flag can

cause decreased performance.

4.3 Registered Files (IOSQE_FIXED_FILE)

io_uring provides a feature called registered files, also known as fixed files, or direct

descriptors. When submitting a reqular SQE, the file must be opened by the application

first, and the file descriptor (fd) specified on the SQE. As we will explore in this section,

submitting I/O on regular descriptors requires some setup work in the kernel for each I/O.

Registered files are intended to prevent that repetitive setup work.

To submit I/O on a registered file, the file must first be registered in the ring, by using

the io_uring_register system call with the IORING_REGISTER_FILES flag. After the file

has been registered, an SQE can be created with the IOSQE_FIXED_FILE flag, and instead

of a regular file descriptor, the index of the registered file is used.

In this section, our goal is to understand the benefits of using registered files, how the

kernel handles them internally, and how that differs from using regular files.

4.3.1 Function of Registered Files

We are interested in what effect registered files have internally in the kernel. We first

look at the submission side, and see that the IOSQE_FIXED_FILE flag is used internally as

REQ_F_FIXED_FILE. For each I/O submission, the io_submit_sqe function makes a call to

52

4.3 Registered Files (IOSQE_FIXED_FILE)

io_assign_file to retreive a struct file for the given file descriptor on the SQE, and

assigns it to the kiocb object. The io_assign_file function handles regular files and

registered files differently.

• Regular files are handled through io_file_get_normal, which calls fget, a function

that belongs to the kernel’s file system layer, and returns a struct file for a given

file descriptor.

• Registered files are handled through io_file_get_fixed, which looks up the regis-

tered file’s index (stored in the file descriptor field) in the rings internal file table and

returns a struct file.

The fget function looks up a file descriptor in the current task’s table of open files. The

task’s open files are stored in its task_struct under the files_struct property, which

contains an array of struct file that is indexed by file descriptor. As the file table

can be shared by multiple processes on different threads, the RCU (read-copy-update)

synchronization mechanism is used. In addition to looking up the file descriptor, fget also

increments the reference count (f_count) on the file, using an atomic operation. When an

operation has finished, the fput function is called to decrease the reference count.

We use eBPF to confirm that using registered files prevents repeated calls to fget.

Table 4.6 shows the number of fget calls, with and without using registered files. The

counts were collected while running fio with the conditions that are described in the next

section.

fget call count

Registered file 731
Regular file 12,321,840

Table 4.6: eBPF counts for fget, with and without using registered files

4.3.2 Experimental Results

We have added support for registered files in our fio liburing I/O engine. We run fio

with a single worker on a single Intel Optane NVMe device, and we set the CPU affinity to

core 0. Figure 4.28 shows the IOPS for different queue depths, with and without registered

files, for I/O on a raw block device and an ext4 file system, using a single Intel Optane

device. Figure 4.29 shows the average latency for the same cases. For I/O on a raw block

53

4. EXPERIMENTS

(a) Block device (b) File system (ext4)

Figure 4.28: Throughput (IOPS) for a raw device and ext4 file system, with and without a
registered file, random reads

device, we observe up to 2.6% increase in throughput with a registered file, and 2.5%

decrease in average latency. For the file system (ext4), we do not get conclusive results.

4.3.3 Other Factors

In our experiment, we observed a 2.6% increase in IOPS when using registered files. We are

now interested in whether there may be cases that result in a higher performance increase,

or in a performance decrease. We notice the following hint in the liburing documentation

for the io_uring_register_files function. That if the process has created any threads,

the cost of reference counting goes up (22).

Registered files have less overhead per operation than normal files. This is due

to the kernel grabbing a reference count on a file when an operation begins, and

dropping it when it’s done. When the process file table is shared, for example

if the process has ever created any threads, then this cost goes up even more.

Using registered files reduces the overhead of file reference management across

requests that operate on a file.

This motivates us to look into the case where a process file table is shared. As we

explored earlier, the fput function increments a file’s reference count by using an atomic

operation (atomic_long_inc), which contains a memory barrier. This memory barrier

54

4.3 Registered Files (IOSQE_FIXED_FILE)

(a) Block device (b) File system (ext4)

Figure 4.29: Average latency for a raw device and ext4 file system, with and without a
registered file, random reads

might cause a performance decrease if the cache line containing the counter is being used

on multiple CPU cores.

We extend our fio engine to have each worker thread fork an additional thread that does

an infinite no-op busy-loop. We use the same setup as in the previous experiment, running

on a raw block device, but we set the CPU affinity to two CPU cores, allowing the fio

worker and busy loop to run on separate cores.

Figure 4.30 shows the IOPS and average latency for different queue depths, with and

without registered files. The results show a similar performance difference as in the previous

experiment, so the introduction of the busy-loop thread did not affect performance. This

does not prove that the memory barrier does not affect performance, but it might be that

our busy-loop thread is too simple to affect it.

4.3.4 Conclusion

Registered files provide a slight performance increase. However, we are unable to find a

case where registered files degrade performance, and we could also not find a case where the

performance increase is more significant, despite a hint that we found in documentation.

55

4. EXPERIMENTS

(a) IOPS (b) completion latency (clat) - average

Figure 4.30: IOPS and average latency, with and without a registered file, with additional
thread, random reads

4.4 Submission Queue Polling (SQ_POLL)

Submission queue polling is a feature of io_uring that can replace the need for expensive

io_uring_enter system calls to submit SQEs. By configuring the ring with the SQ_POLL

flag, a separate kernel thread is created that constantly polls the submission queue for

new entries. Previous work has found that SQ polling can provide significant performance

improvements.

The nature of polling requires one or more CPU cores to be dedicated to polling for

new events, any hick-ups such as interrupts or scheduling of other processes will block

the submission of new events. In addition, a polling CPU core can be either overloaded,

(requiring more CPU cores for polling), or underutilized (e.g. wasting a whole CPU core

polling). In this section, we explore the performance benefits of SQ polling, the internal

implementation of the polling thread, and configuration options for the polling thread. We

also explore how an imbalance between user threads and polling threads can lead to wasted

CPU resources.

4.4.1 Behavior of Polling Threads

To make use of submission queue polling, the io_uring_setup system call is called with

the IORING_SETUP_SQPOLL flag. In addition, we may set the IORING_SETUP_SQ_AFF flag

and set the CPU affinity of the kernel thread. The polling thread continuously peeks the

56

4.4 Submission Queue Polling (SQ_POLL)

submission queue (SQ) and submits any new SQEs that it finds.

In a previous experiment, we explored asynchronous worker threads, that are created

using the create_io_thread function. SQ polling threads do not share the async worker

system, apart from also being created using the create_io_thread function. This hap-

pens only one time, in the io_sq_offload_create function, which is called during the

io_uring_setup system call. We will use eBPF to confirm that this happens when sub-

mission queue polling is enabled.

SQ polling also has a timeout feature, so that if the process does not submit SQEs in

a certain period, the polling thread goes to sleep. The timeout value can be specified in

sq_thread_idle (in milliseconds) when setting up the ring. If the value is not specified, the

default value is 1 second. If the SQ polling thread goes to sleep, the user process is responsi-

ble for waking it up again. The ring’s flag property will have the IORING_SQ_NEED_WAKEUP

set if a wake-up is needed, and then io_uring_enter must be called be the user process

to wake up the thread.

4.4.2 Limitations of liburing

When attempting to implement SQ polling in our liburing fio engine, we came across a

problem. When fio commits an I/O unit, we use liburing’s io_uring_submit function.

Without SQ polling, this function returns the number of SQEs that were submitted, and

fio can subtract them from the number of queued SQEs. However, when using SQ polling,

this function may report a higher number than the actual submit count. This unexpected

behavior has been documented before (23).

This is a problem for applications that need to keep track of the number of submitted

requests, such as fio. One solution is to use the io_uring_sq_ready function from liburing

to get the number of requests that have not been submitted yet. However, this function

relies on a memory barrier for synchronization, making it more expensive.

We have implemented SQ polling in our fio engine with the help of io_uring_sq_ready.

However, when comparing our liburing engine to the built-in io_uring engine, we see

that our engine does not provide the same performance. Figure 4.31 shows IOPS and

average latency for different queue depths, running with a single fio thread and a kernel

polling thread running on another core. We can see that the throughput is up to 40%

lower and latency is also higher. We are unable to optimize our liburing engine, and we

will thus use the built-in io_uring engine for our SQ polling experiments.

57

4. EXPERIMENTS

(a) IOPS (b) Completion latency (clat) - average

Figure 4.31: IOPS and average latency for different queue depths comparing our fio
liburing engine to the built-in io_uring engine

4.4.3 Evaluation of Submission Queue Polling

For our first experiment, we will run fio with a single thread and SQ polling enabled (thus

using 2 threads including the kernel thread) and compare it with running fio with two

normal threads (without SQ polling). We run a random read benchmark on a single Intel

Optane device, and in both runs we pin the threads to the same CPU cores.

Figure 4.32 shows IOPS, average and p99 latency for the two cases. We can see that

both configurations converge to roughly the same throughput, although running two normal

threads is faster with lower queue depths. However, SQ polling results in significantly lower

latency at higher queue depths. The average latency at QD ≥ 64 is around 50% lower

when using SQ polling.

4.4.4 Exploring Polling Efficiency

For the second experiment, we are interested in the balance between the user application

thread and the kernel polling thread. Assuming that the two threads are pinned to separate

CPU cores, one of them is likely to become a bottleneck before the other, and thus leaving

wasted CPU time on the other core.

Fio provides the thinkcycles configuration parameter to simulate CPU load, as most

real world applications are a mix of CPU and I/O work, unlike fio which normally submits

I/O continuously with minimal CPU work on the user space side. For this experiment,

58

4.4 Submission Queue Polling (SQ_POLL)

(a) IOPS (b) Completion latency (clat) - average

(c) Completion latency (clat) - p99

Figure 4.32: IOPS, average and p99 latency for different queue depths, comparing one fio
thread with SQPOLL (a kernel thread) with 2 normal fio threads, random reads

we run fio with the same configuration as before, but this time we gradually increase the

thinkcycles value. We keep the queue depth fixed at 64.

Figure 4.33 shows IOPS, average and p99 latency for different thinkcycles values,

comparing a single thread with SQ polling, and two normal threads. First, the IOPS

results show that adding thinkcycles with SQ polling does not impact throughput until a

certain threshold (after 64 thinkcycles), but adding thinkcycles impacts the two normal

threads immediately. In both cases, we see much lower latency with SQ polling, as in the

previous experiment.

59

4. EXPERIMENTS

kthreads created io_uring_enter

Normal 0 12,855,461
SQ polling 1 7

Table 4.7: eBPF counts for kthreads created and io_uring_enter system calls, comparing
SQ polling with normal operation

(a) IOPS (b) Completion latency (clat) - average

(c) Completion latency (clat) - p99

Figure 4.33: IOPS, average and p99 latency for different thinkcycle values, comparing one
fio thread with SQPOLL (a kernel thread) with 2 normal fio threads, random reads

The fact that adding thinkcycles did not impact throughput until reaching a threshold

means that the CPU core running the user thread (fio) was not fully utilized. In other

words, io_uring does more work within the kernel polling thread than in the user thread.

60

4.4 Submission Queue Polling (SQ_POLL)

Finally, we also used eBPF to confirm that a kernel polling thread is being created,

and that the number of system calls drops. Table 4.7 shows that when using SQ polling,

a single kernel thread is created, and the number of io_uring_enter system calls drops

almost to zero.

4.4.5 Conclusion

Our two experiments show that SQ polling provides very different performance charac-

teristics. First, SQ polling may not necessarily provide better throughput, but it shows

significantly better latency. At lower queue depths, SQ polling may provide worse through-

put. Secondly, SQ polling can have different results depending on the CPU intensity of

the user thread, too little CPU intensity may leave one CPU core underutilized. On the

other hand, too much CPU intensity may leave the kernel polling thread underutilized, in

that case, it may be beneficial to share the kernel polling thread with multiple io_uring

instances.

61

4. EXPERIMENTS

62

5

Evaluation with RocksDB

In the previous section, we explored several io_uring features with small fio benchmarks

and found that adjusting the io_uring configuration can improve I/O throughput and

latency under certain conditions. However, fio benchmark results may not be represen-

tative of real-world applications, as it is only designed to submit as much I/O as possible,

with minimal CPU workload. In this section, we implement a liburing storage backend

for the RocksDB key-value store and evaluate how the same io_uring features affect its

performance.

5.1 How Does RocksDB Work?

RocksDB is a high-performance embeddable database for key-value data that is optimized

for flash storage. It was developed by Facebook in 2012, and is based on LevelDB, a previ-

ous embeddable key-value store from Google. RocksDB is primarily based on a data struc-

ture known as Log-Structured Merge (LSM) tree, which results in flash-friendly sequential

I/O operations. It provides a flexible API that supports a broad range of applications, and

can be used as a backend for many databases (e.g. MySQL, Cassandra, and MongoDB),

but also for search indexes, and caching services. It also includes a powerful benchmarking

tool called db_bench. This makes RocksDB a popular target for storage research, and as it

supports writing custom storage backends, we decide to use it for our evaluation (24, 25).

The basic key-value operations provided by RocksDB are put, get, and delete. Both

keys and values are treated as byte arrays and can be of variable length. In addition,

an iterator operation is provided to scan over a range of keys. RocksDB arranges keys

in sorted order, and applications can optionally specify their own comparator function.

63

5. EVALUATION WITH ROCKSDB

RocksDB also provides a multiget operation, that allows fetching multiple keys in one

operation, which can be faster than a loop of get operations (24).

index

SSTable

index

SSTable

index

SSTable

index

SSTable

index

SSTable

index

SSTable
Level 1

Disk

Level 2

memtableLevel 0Memory

Figure 5.1: The levels of an LSM tree

LSM trees are the primary data structure used by RocksDB. An LSM tree consists of a

series of levels, where each level is in sorted order, and the levels are periodically merged.

When inserting into an LSM-tree, the value is written into an in-memory part known

as a memtable. When the memtable has reached a maximum size, it is written to disk

into an SSTable (Sorted String Table) in level 0. An SSTable stores the data in sorted

order, and also contains an index for fast lookup. When a level in the LSM tree has

reached a maximum size, some of its SSTables are moved one level down, and merged with

overlapping SSTables in that level. LSM trees are well suited for write-heavy workloads,

and as SSTables are always written sequentially, they result in good performance on flash

storage. Figure 5.1 shows the structure of an LSM tree, with a memtable stored in memory,

and increasingly larger levels of SSTables stored on disk (25).

5.2 Implementing a RocksDB Backend with liburing

RocksDB provides an API to write plugins, including a file system API. To write a file

system plugin, we must extend the FileSystem class, and implement various metadata

operations, in addition to file abstractions such as SequentialFile, RandomAccessFile,

and WritableFile. For our liburing plugin, we extend the FileSystemWrapper class,

which includes all operations from the default storage backend, allowing us to extend

only the operations that we need. For the benchmark that we will run, we only need to

64

5.3 Evaluation Results

customize the RandomAccessFile, so we start with a copy of the POSIX version, and then

customize the io_uring initialization to support the features that we want to evaluate.

The default RocksDB POSIX storage backend already uses io_uring for some opera-

tions, using functions from liburing. We discover that a ring is created with a constant

queue depth of 256, and no configuration flags passed. In the default backend, we only

find io_uring usage in the MultiRead function, which is used when applications use the

RocksDB multiget operation. Running db_bench with the readrandom benchmark does

not result in io_uring calls, however, the multireadrandom benchmark does. The fact

that the RocksDB key-value API is synchronous may explain why there is limited async

support in the file system layer.

We use eBPF to observe the I/O system calls used by the POSIX backend and by our

liburing backend. It confirms that multiget operations result in io_uring usage in the

POSIX backend, and that the configuration flags we use in our backend are used, e.g.

worker threads are created, and IPIs are prevented.

5.3 Evaluation Results

For our evaluation, we create an ext4 file system on an Intel Optane device. We then

create a RocksDB database with the fillrandom benchmark, creating a database of 10

million key-value pairs, with keys being 100 bytes, and values 100 bytes. We then run the

multireadrandom benchmark for each backend configuration. We disable compression,

enable direct reads, and always run benchmarks with the same random seed.

In addition, we pin the RocksDB process to a single CPU, and we configure the NVMe

driver so that interrupts do not come in on that core. As we saw in chapter 4, running

on a non-interrupt CPU core is needed to see improved performance with io_uring’s

COOP_TASKRUN flag. For experiments with a kernel polling thread, we also pin the kernel

thread to a non-interrupt core, different from where RocksDB runs.

We run experiments with 6 backend configurations, 2 with RocksDB’s default io_posix

backend, and 4 with our custom liburing backend. For the default backend, we run

using default configuration (P-DEF), and with io_uring disabled (P-SYNC). For our

backend, we run with a ring in the default configuration (L-DEF), with cooperative task

running enabled (L-COOP), with SQ polling enabled (L-SQPOLL), and with forced

async submission enabled (L-ASYNC). We were unable to get registered files working in

our backend, so we skip that experiment.

65

5. EVALUATION WITH ROCKSDB

(a) Throughput (b) P95 Latency

Figure 5.2: Throughput (MB/s) and p95 latency (µs) for each RocksDB I/O backend con-
figuration, running the multireadrandom benchmark

Figure 5.2 shows the results for each backend configuration. The left figure shows

throughput in megabytes per second and the right figure shows 95th percentile latency in

microseconds. First, we observe that the default backend performs better with io_uring

enabled (which it is by default), with 26.5% higher throughput and 16.5% lower latency.

Second, we see that our backend gives the same performance as the default backend, both

with the default configuration, and with the COOP_TASKRUN flag. Using submission queue

(SQ) polling gives the best performance, with 11.9% higher throughput and 13.1% lower

latency compared to the default configuration. However, using forced asynchronous sub-

mission in our backend gives a worse performance.

Figure 5.3: Throughput in IOPS for each RocksDB I/O backend configuration

Figure 5.3 shows the measured IOPS on the NVMe device during each experiment. This

66

5.4 Summary

shows that the RocksDB configuration that we used results in disk throughput between

35 and 49 thousand IOPS. In addition, we measure that 95.3% of requests are between 8k

to 16k in size, and 4.7% are between 4k and 8k. In chapter 4 we have shown that this

device is capable of over 200 thousand IOPS on a single core. From this, we conclude that

RocksDB is more CPU intensive than our microbenchmarks, which can explain why the

same io_uring configurations result in less performance difference here compared to in

the previous chapter.

5.4 Summary

In this chapter, we successfully implement a liburing storage backend for RocksDB and

evaluate it with different io_uring configurations. We run experiments on both the default

RocksSB storage backend, and our custom liburing backend. First, we show that having

io_uring enabled in the default backend improves throughput by 26.5% and lowers P95

latency by 16.5%. Second, we show that by changing the io_uring configuration to use SQ

polling, we can improve throughput by 11.9% and lower latency by 13.1% compared to a

ring with the default configuration. The default RocksDB storage backend always creates

an io_uring ring with default configuration. Finally, we conclude that because RocksDB

is more CPU intensive than the previous microbenchmarks, the performance improvements

here are not as pronounced as in the previous chapter.

67

5. EVALUATION WITH ROCKSDB

68

6

Related Work

In this thesis, we have concentrated on a single I/O interface, io_uring, that the Linux

kernel provides to applications. There is a wide range of research in storage systems that

relates to our work. For example in OS block layer design, I/O scheduling, interfaces for

storage hardware, and the design of flash-based storage. In this section, we describe several

areas of related work.

Linux Block Layer

Bjorling et al. (14) explain how the Linux block layer had become a bottleneck for high-

performance storage, and how they redesigned the block layer to SSD scale, with multi-

queue (MQ) support and separate software and dispatch queues, to decrease lock con-

tention. Zang et al. (26) explain SPDK, a userspace NVMe storage stack that bypasses

the OS block layer, providing higher performance with lower overhead. Didona et al. (8)

compare io_uring with AIO and SPDK, and evaluate io_uring’s polling features. Ren

et al. (9) compare the different I/O interfaces and also the performance impact of different

Linux I/O schedulers. Joshi et al. (27) describe I/O Passthu, a new Linux mechanism that

is not limited to block devices, and extends io_uring for NVMe commands.

I/O Schedulers

Most older studies on Linux I/O scheduling are centered around HDDs, where the focus was

mainly on ordering requests to maintain sequential access. After the MQ block layer was

introduced, running without a scheduler (nosched) was the only option for several years,

and is still the default option on many systems today. With high-performance SSDs,

the CPU overhead of I/O schedulers has become significant. Ren et al. (9) show that

the available schedulers on Linux significantly hurt performance. However, the nosched

69

6. RELATED WORK

option does not account for fairness, and some processes can become starved of resources.

Several fair I/O schedulers have been introduced, including MQFQ (28), D2FQ (29), and

blk-switch (30), which demonstrate that fair I/O scheduling is possible with little CPU

overhead.

Interfaces for SSDs

In addition to software interfaces, there is also existing research on hardware (device)

interfaces, and proposals for new interfaces. Bjorling et al. (31) argue that the traditional

block interface is not suitable for the characteristics of flash storage, and introduce ZNS,

a zoned block-interface, where zones can only be written sequentially, matching with the

append-only nature of flash storage. This eliminates the need for a complex FTL (Flash

Translation Layer) on the device to expose a block interface. Previously, Bjorling et al. (31)

introduced Open-Channel SSDs, an even less abstracted interface that exposes all internal

flash topology to the host. Kang et al. (32) introduced multi-streamed SSDs, an interface

that separates hot and cold data, depending on how frequently the data will be updated,

allowing the SSD to make better decisions about flash allocation. Ioannou et al. (33)

introduce SALSA, an FTL-like software middleware that converts I/O from the host into

large sequential blocks on the device.

SSD Performance Characteristics

As described in chapter 2, SSDs contain complex FTLs (Flash Translation Layer) to map

block addresses from the host into locations on flash chips, while also running garbage

collection, which merges blocks containing stale (overwritten) data, and wear leveling to

ensure equal lifetime of flash chips. These internal mechanisms can cause unpredictable

performance, such as high tail latencies. He et al. (34) come up with several guidelines

for developing programs for SSDs, and explore how well existing applications and file

systems conform to these rules. Li et al. (35) come up with a system to learn key internal

properties of SSDs, that are normally hidden behind the block interface, and how to use

these properties to optimize applications.

70

7

Conclusion

In this thesis, we have explored the io_uring interface, and have made several observa-

tions about how its configuration can affect performance. First, we explored the available

io_uring configuration options, and came up with an evaluation plan. We extended the

fio benchmarking tool to support the options that we planned to study in detail. We

also used eBPF and other profiling tools to understand the internals of io_uring and its

internal implementation of the configuration options. Finally, we wrote a storage backend

for RocksDB, to evaluate whether our guidelines could help improve the performance of

an I/O-intensive application.

In this section, we start by answering the research questions that we presented in the

beginning, along with the guidelines that we have come up with for application developers

interested in using io_uring for storage. We then discuss the limitations of our work, and

finally, describe several ideas for future work in this area of research.

7.1 Research Questions

RQ1 - What methods are available for evaluating and measuring io_uring
performance under different configurations?

In chapter 3, we came up with an evaluation plan and discussed what tools could help in

our exploration. We found that fio is easy to extend and provides detailed results, and

eBPF can give insights into almost every aspect of internal kernel behavior.

71

7. CONCLUSION

RQ2 - What io_uring features can affect the throughput and latency of appli-
cation I/O and under what circumstances?

In chapter 4, we found that several io_uring features can significantly affect performance,

but the results can depend on specific host or application conditions, such as IRQ place-

ment or CPU utilization. In the following subsection, we provide the guidelines that our

evaluation has resulted in.

7.2 Guidelines

From our evaluation of io_uring, we have come up with the following guidelines based on

the features that we have explored.

• Using the COOP_TASKRUN flag can result in significantly higher throughput and lower

latency if doing I/O on a device that has fewer NVMe hardware queues than the

number of host CPU cores. In other cases, including the flag is also harmless, un-

less doing ring completions on a different thread from submissions, in which case

completions can stall for a long time

• In general, registered files should always be used. Using registered files results in a

slight increase in throughput and a decrease in latency. We could not find a case

where registered files impacted performance negatively.

• Using FORCE_ASYNC to submit requests asynchronously on a kernel worker thread

may improve throughput, e.g. if your application is not utilizing all CPU cores.

If your application is limited to a single thread, forcing asynchronous submission

can work as offloading I/O to other cores. The flag is also beneficial if SQEs are

expected to fail in non-blocking submission, e.g. due to lock contention. The flag can

degrade performance in CPU-bound applications, as spawning and communicating

with worker threads has a higher overhead compared to in-line submission.

• SQ (Submission Queue) polling can provide significantly lower latency, and compa-

rable throughput, but requires dedicating a CPU core to a kernel polling thread. In

addition, to optimally utilize I/O and CPU resources, it is recommended to look into

polling efficiency, i.e. whether each application and kernel thread are close to fully

utilizing a CPU core.

72

7.3 Limitations

7.3 Limitations

The first limitation of our study is that we only evaluated 4 configuration options of

io_uring. In chapter 3 we discussed that io_uring offers 24 configuration flags and we

categorized 7 of them as likely to affect performance positively. There may also be more

flags that impact performance negatively. In addition, all benchmarks in this study use

simple read operations, however io_uring supports many other operations, for example,

passthrough of NVMe commands.

Another limitation is that our evaluation was only done on a single machine, with a

single Intel Optane device. Ideally, we would run our evaluations on other types of SSDs,

and systems with different NUMA characteristics. In future work, this could be done with

the help of an emulator for example, as there exist emulators for flash storage, and qemu

can emulate different NUMA topologies.

Finally, there were some results that we could not fully explain during our evaluations

with fio. For example, when exploring registered files, we followed a hint about threads

with children showing a higher benefit when using registered files, because of the file

table being shared. However, we did not find a configuration that could show a higher

performance difference.

7.4 Future Work

During this thesis, many ideas for future work have come to mind. First, a recurring

theme in modern storage is that both hardware interrupts and OS context switches, have

a high overhead and should be avoided, especially if they occur for each I/O submission or

completion. The io_uring API supports both polling (i.e. interrupt-free) and zero system

call (i.e. context switch-free) operation. However, io_uring is only one recent example of

a successful asynchronous I/O interface. We think that there are opportunities to further

explore the design space of storage interfaces.

Second, during this thesis, we were only able to explore 4 specific features of io_uring.

Further research could explore other potential configuration options, such as I/O polling,

as we discussed in chapter 3. In addition, comparing the performance of io_uring with

other available I/O interfaces, such as POSIX system calls, AIO, and SPDK, and exploring

what features they provide. A future study could come up with guidelines about storage

programming with respect to all available interfaces.

73

7. CONCLUSION

Finally, during our evaluation of the COOP_TASKRUN flag, we found that disk I/O perfor-

mance can depend on what CPU core the workload runs on, e.g. due to IRQ or NUMA

asymmetry. On such systems, applications should be manually pinned to their optimal

CPU cores, as the Linux process scheduler does not account for storage resources. Design-

ing an I/O aware process scheduler could provide performance benefits and is a possible

area of future research.

74

References

[1] Cloud Computing Market Size, Share Industry Analysis. https://

www.fortunebusinessinsights.com/cloud-computing-market-102697. Accessed:

2024-05-31. 1

[2] Volume of data/information created, captured, copied, and consumed

worldwide from 2010 to 2020, with forecasts from 2021 to 2025. https:

//www.statista.com/statistics/871513/worldwide-data-created/. Accessed:

2024-05-31. 1

[3] Randal E Bryant and David Richard O’Hallaron. Computer systems: a

programmer’s perspective. Prentice Hall, 2011. 2

[4] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance. In

2008 USENIX Annual Technical Conference (USENIX ATC 08), 2008. 2, 7, 8, 9

[5] Seagate Exos X10. https://www.seagate.com/files/www-content/datasheets/

pdfs/exos-x-10DS1948-1-1709-GB-en_GB.pdf. Accessed: 2024-05-31. 2

[6] Intel Optane P5800X. https://www.intel.com/content/www/us/en/products/

sku/201860/intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/

specifications.html. Accessed: 2024-05-31. 2

[7] Marco Cesati Daniel P. Bovet. Understanding the Linux Kernel, Third Edition.

O’Reilly Media, 2005. 2, 10, 11

[8] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and

Animesh Trivedi. Understanding modern storage APIs: a systematic study

of libaio, SPDK, and io_uring. In Proceedings of the 15th ACM International

Conference on Systems and Storage, pages 120–127, 2022. 3, 4, 16, 17, 69

75

https://www.fortunebusinessinsights.com/cloud-computing-market-102697
https://www.fortunebusinessinsights.com/cloud-computing-market-102697
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.seagate.com/files/www-content/datasheets/pdfs/exos-x-10DS1948-1-1709-GB-en_GB.pdf
https://www.seagate.com/files/www-content/datasheets/pdfs/exos-x-10DS1948-1-1709-GB-en_GB.pdf
https://www.intel.com/content/www/us/en/products/sku/201860/intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/201860/intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/specifications.html
https://www.intel.com/content/www/us/en/products/sku/201860/intel-optane-ssd-dc-p5800x-series-800gb-2-5in-pcie-x4-3d-xpoint/specifications.html

REFERENCES

[9] Zebin Ren and Animesh Trivedi. Performance characterization of modern

storage stacks: Posix i/o, libaio, spdk, and io_uring. In Proceedings of the

3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage

Systems, pages 35–45, 2023. 4, 10, 16, 17, 69

[10] Linux man pages - io_uring_setup. https://man.archlinux.org/man/io_

uring.7.en. 4, 16, 17

[11] Linux man pages - io_uring_enter. https://man.archlinux.org/man/io_

uring_enter.2.en. 4, 16

[12] Rajkumar Buyya, Shashikant Ilager, and Patricia Arroba. Energy-

efficiency and sustainability in new generation cloud computing: A vision

and directions for integrated management of data centre resources and

workloads. Software: Practice and Experience, 54(1):24–38, 2024. 5

[13] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder.

Operational Characteristics of SSDs in Enterprise Storage Systems: A

Large-Scale Field Study. In 20th USENIX Conference on File and Storage Tech-

nologies (FAST 22), pages 165–180, 2022. 9

[14] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. Linux

block IO: introducing multi-queue SSD access on multi-core systems. In

Proceedings of the 6th international systems and storage conference, pages 1–10, 2013.

10, 69

[15] Rob Von Behren, Jeremy Condit, and Eric Brewer. Why Events Are a

Bad Idea (for High-Concurrency Servers). In 9th Workshop on Hot Topics in

Operating Systems (HotOS IX), 2003. 12

[16] John Ousterhout. Why threads are a bad idea (for most purposes). In

Presentation given at the 1996 Usenix Annual Technical Conference, 5, pages 33–

131. San Diego, CA, USA, 1996. 12

[17] Jens Axboe. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.

Accessed: 2024-05-30. 12, 14

[18] Tamás Koczka. Learnings from kCTF VRP’s 42 Linux ker-

nel exploits submissions. https://security.googleblog.com/2023/06/

learnings-from-kctf-vrps-42-linux.html. Accessed: 2024-05-30. 13

76

https://man.archlinux.org/man/io_uring.7.en
https://man.archlinux.org/man/io_uring.7.en
https://man.archlinux.org/man/io_uring_enter.2.en
https://man.archlinux.org/man/io_uring_enter.2.en
https://kernel.dk/io_uring.pdf
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html

REFERENCES

[19] Jens Axboe. Lord of the io_uring. https://unixism.net/loti/index.html.

Accessed: 2024-05-30. 13, 14

[20] Linux man pages - io_uring_register. https://man.archlinux.org/man/io_

uring_register.2.en. 16

[21] Jonathan Corbet. Descriptorless files for io_uring. https://lwn.net/

Articles/863071/. 2021-07-19. 16

[22] Linux man pages - io_uring_register_files. https://man.archlinux.org/

man/io_uring_register_files.3.en. 54

[23] SQPOLL: io_uring_submit return value greater than what’s newly sub-

mitted 88. https://github.com/axboe/liburing/issues/88. Accessed: 2024-05-

31. 57

[24] RocksDB Wiki. https://github.com/facebook/rocksdb/wiki. 63, 64

[25] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. Rocksdb:

Evolution of development priorities in a key-value store serving large-scale

applications. ACM Transactions on Storage (TOS), 17(4):1–32, 2021. 63, 64

[26] Ziye Yang, James R Harris, Benjamin Walker, Daniel Verkamp, Chang-

peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and

Luse E Paul. SPDK: A development kit to build high performance storage

applications. In 2017 IEEE International Conference on Cloud Computing Technol-

ogy and Science (CloudCom), pages 154–161. IEEE, 2017. 69

[27] Kanchan Joshi, Anuj Gupta, Javier González, Ankit Kumar, Kr-

ishna Kanth Reddy, Arun George, Simon Lund, and Jens Axboe. I/O

Passthru: Upstreaming a flexible and efficient I/O Path in Linux. In 22nd

USENIX Conference on File and Storage Technologies (FAST 24), pages 107–121,

2024. 69

[28] Mohammad Hedayati, Kai Shen, Michael L Scott, and Mike Marty. Multi-

Queue Fair Queuing. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19), pages 301–314, 2019. 70

[29] Jiwon Woo, Minwoo Ahn, Gyusun Lee, and Jinkyu Jeong. D2FQ:Device-

Direct Fair Queueing for NVMeSSDs. In 19th USENIX Conference on File and

Storage Technologies (FAST 21), pages 403–415, 2021. 70

77

https://unixism.net/loti/index.html
https://man.archlinux.org/man/io_uring_register.2.en
https://man.archlinux.org/man/io_uring_register.2.en
https://lwn.net/Articles/863071/
https://lwn.net/Articles/863071/
https://man.archlinux.org/man/io_uring_register_files.3.en
https://man.archlinux.org/man/io_uring_register_files.3.en
https://github.com/axboe/liburing/issues/88
https://github.com/facebook/rocksdb/wiki

REFERENCES

[30] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.

Rearchitecting linux storage stack for µs latency and high throughput. In

15th USENIX Symposium on Operating Systems Design and Implementation (OSDI

21), pages 113–128, 2021. 70

[31] Matias Bjørling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh,

Damien Le Moal, Gregory R Ganger, and George Amvrosiadis. ZNS:

Avoiding the block interface tax for flash-based SSDs. In 2021 USENIX Annual

Technical Conference (USENIX ATC 21), pages 689–703, 2021. 70

[32] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. The

multi-streamed Solid-State drive. In 6th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 14), 2014. 70

[33] Nikolas Ioannou, Kornilios Kourtis, and Ioannis Koltsidas. Elevating

commodity storage with the SALSA host translation layer. In 2018 IEEE

26th International Symposium on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems (MASCOTS), pages 277–292. IEEE, 2018. 70

[34] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau, and Remzi H

Arpaci-Dusseau. The unwritten contract of solid state drives. In Proceedings

of the twelfth European conference on computer systems, pages 127–144, 2017. 70

[35] Nanqinqin Li, Mingzhe Hao, Huaicheng Li, Xing Lin, Tim Emami, and

Haryadi S Gunawi. Fantastic SSD internals and how to learn and use

them. In Proceedings of the 15th ACM International Conference on Systems and

Storage, pages 72–84, 2022. 70

78

8

Appendix

8.1 Artifacts

In this section, we explain how to reproduce the results of this thesis. The artifacts are avail-

able online on GitHub at https://github.com/Ingimarsson/iouring-perf-analysis.

The repository contains a README file with details about each experiment, and each exper-

iment folder contains the shell script to run the experiment, its full output, parsed output,

and plots. To run the experiments, the custom versions of fio and RocksDB have to be

compiled.

fio

To compile fio with our liburing engine, run the following commands. First, clone fio and

checkout the specified version.

git clone git@github.com:axboe/fio.git

git checkout 06812a4f

Then apply our patch, which includes the liburing engine. Then fio can be compiled.

git apply this/fio/liburing.patch

./configure

make

RocksDB

To compile RocksDB with our liburing storage backend, run the following commands.

First, clone RocksDB and checkout the specified version.

79

https://github.com/Ingimarsson/iouring-perf-analysis

8. APPENDIX

git clone git@github.com:facebook/rocksdb.git

git checkout 9d64ca55

Then, copy our liburing plugin, and compile.

cp this/rocksdb/ plugin/liburing/

DEBUG_LEVEL=0 ROCKSDB_PLUGINS="liburing" make -j48 db_bench

8.2 Using liburing

In chapter 2, we explained how io_uring works from an application programmers perspec-

tive. As we saw, io_uring is a low-level interface. There are many steps involved, and it

requires a fair bit of boilerplate code. To make programs shorter and simpler to write, the

liburing library provides helper functions that make the code shorter and more readable.

In this section, we give an example of a liburing program, with explanations of each step.

The full program can be found under tools/io-uring-simple in the repository, we only

show the most important lines here.

First, we create a ring. This makes two calls to mmap to allocate buffers, and then calls

io_uring_setup.

struct io_uring ring;

ret = io_uring_queue_init(QUEUE_DEPTH, &ring, 0);

Then, we get a free SQE, put a read request into it, and submit it. Submitting involves

a io_uring_enter system call with the to_submit argument set to 1 or higher.

sqe = io_uring_get_sqe(&ring);

io_uring_prep_readv(sqe, fd, iovec, 1, 0);

ret = io_uring_submit(&ring);

After submitting, the request is in flight and the application can move on to other tasks.

To receive the SQEs result, i.e. the CQE, we can wait for it. This liburing function is

smart, and first checks if the CQE has been put into the completion queue. In that case,

no system call is required. Otherwise, it calls io_uring_enter with the GET_EVENTS flag,

and min_complete to 1 or higher. This call will block until that number of events are

available. The CQE must also be marked as seen after its result is not needed, to free up

space in the ring buffer.

80

8.3 Using eBPF

ret = io_uring_wait_cqe(&ring, &cqe);

io_uring_cqe_seen(&ring, cqe);

Finally, we close the ring. This makes a close system call to the ring’s file descriptor,

and then two munmap calls to free the two ring buffers.

io_uring_queue_exit(&ring);

8.3 Using eBPF

eBPF is a Linux kernel feature that makes it possible to run small programs in the kernel

without having to modify the kernel source code or build a kernel module. eBPF programs

can be attached to various hooks that the kernel provides, including system calls and

most kernel functions. The flexible nature of eBPF results in many use cases, including

debugging and performance investigations, security monitoring, network packet filtering,

and many more.

An eBPF program is loaded into the kernel through the bpf system call. The kernel runs

the eBPF verifier that makes sure that the program won’t hurt the kernel, run for too long,

or use too much memory. After that, the program is JIT compiled into native machine

code, which will run in kernel mode with full privileges. This makes eBPF programs very

fast. The program can read or write values into key-value maps that have been created

with the bpf system call. User processes with the right privileges can also interact with

eBPF maps. This allows the programs to pass e.g. collected statistics to a user process for

printing or further handling.

eBPF

probe

observed

process

system call

handler

system callbpf()

Kernel

Userspace

eBPF

mapeBPF verifier

eBPF compiler

observing

process

Figure 8.1: The components of eBPF and flow when one process adds a probe to monitor
another process

81

8. APPENDIX

After being loaded into the kernel, an eBPF program needs to be attached to one or

more hooks. The Linux kernel provides multiple classes of hooks, including tracepoints,

kprobes, and kretprobes. The hooks differ in what information will be available to the

program, for example register values and function call arguments. For networking, there

are eBPF hooks that allow the program to make decisions, e.g. whether to accept packets

or not. eBPF network programs can even be offloaded to some network cards using the

XDP standard (eXpress Data Path). Figure 8.1 shows the main components involved in

eBPF for observability.

Programs are most commonly written in a C-like syntax that can be compiled into eBPF

byte code. In addition, there are several libraries for loading and interacting with eBPF

programs from userspace. Two popular libraries are ebpf-go for Go and BCC for Python.

In addition, the bpftrace tool is convenient for debugging and tracing with one liner

commands. It provides a compact syntax for writing scripts and prints out map contents

after running.

During the experiments of this thesis, eBPF was extremely invaluable for gaining in-

sights into the kernel. For example, understanding what system calls are used, what their

arguments are, and where certain kernel functions are called from, by printing their stack

traces. For most of our experiments, we used the bpftrace tool. We will now explain the

main features of bpftrace and show several useful examples.

bpftrace

A bpftrace script typically contains one or more blocks of the following format.

probe[,probes...] { action }

To list all available probes, we can run bpftrace -l. For example, if we want to inspect

readv system calls, we can use the tracepoint:syscalls:sys_enter_readv probe. The

action is a program, consisting of e.g. if statements, while statements, and variable assign-

ments. Output can be written to maps, which are prefixed with @, for example @counter

= 0, or @map[key] = value.

Several reduction functions are available for maps, such as count() and hist(), and

several built-in variables contain the current context, e.g. arg0, ..., argN (function ar-

guments), kstack (current call stack), cpu (current CPU core), and pid. We now demon-

strate a few examples of bpftrace scripts that we have used in this thesis.

82

8.3 Using eBPF

Counting the number of IPIs

kprobe:native_smp_send_reschedule { @counter = count(); }

Counting the number of NVMe interrupts by CPU

kprobe:nvme_irq { @irq[cpu] = count(); }

Most frequent stack traces of function

kprobe:kick_process { @stack[kstack()] = count(); }

Flags on I/O requests passed to ext4 read iterator

kprobe:ext4_file_read_iter {

@[((struct kiocb*)arg0)->ki_flags] = count();

}

Disk I/O size histogram per process

tracepoint:block:block_rq_issue { @[comm] = hist(args->bytes); }

83

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Research Methodology
	1.5 Contributions
	1.6 Societal Relevance
	1.7 Thesis Structure
	1.8 Plagiarism Declaration

	2 Background
	2.1 Flash Storage
	2.2 Linux Kernel
	2.2.1 Linux Storage Stack
	2.2.2 Context Switches
	2.2.3 Interrupts

	2.3 Asynchronous I/O Interfaces
	2.4 The io_uring Interface
	2.4.1 Basic Usage
	2.4.2 Polling Modes

	2.5 Summary

	3 Design of Experimental Setup
	3.1 Benchmarking Tools
	3.2 Evaluation Plan
	3.3 Hardware Configuration
	3.4 Implementing a fio Engine with liburing
	3.5 Summary

	4 Experiments
	4.1 Cooperative Task Running (COOP_TASKRUN)
	4.1.1 First Experiments
	4.1.2 Understanding What the Flag Does
	4.1.3 Investigating IRQ Affinity
	4.1.4 Understanding Interrupt vs Non-interrupt Cores
	4.1.5 Quantifying the Benefits of No IPIs
	4.1.6 IRQ Affinity and NUMA Topology
	4.1.7 Ring Completions on a Separate Thread
	4.1.8 First Run and Investigating Absence of kick_process Calls
	4.1.9 Investigating Absence of IPIs
	4.1.10 A Case Where COOP_TASKRUN Breaks Things
	4.1.11 Conclusion

	4.2 Forced Asynchronous Submission (IOSQE_ASYNC)
	4.2.1 Function of IOSQE_ASYNC
	4.2.2 Worker Pools
	4.2.3 File Inode Locks
	4.2.4 First Experiment with IOSQE_ASYNC
	4.2.5 Counting Worker Thread Operations with eBPF
	4.2.6 Experimenting with IOSQE_ASYNC and Lock Contention
	4.2.7 IOSQE_ASYNC and Lock Contention with Readers and Writer
	4.2.8 Conclusion

	4.3 Registered Files (IOSQE_FIXED_FILE)
	4.3.1 Function of Registered Files
	4.3.2 Experimental Results
	4.3.3 Other Factors
	4.3.4 Conclusion

	4.4 Submission Queue Polling (SQ_POLL)
	4.4.1 Behavior of Polling Threads
	4.4.2 Limitations of liburing
	4.4.3 Evaluation of Submission Queue Polling
	4.4.4 Exploring Polling Efficiency
	4.4.5 Conclusion

	5 Evaluation with RocksDB
	5.1 How Does RocksDB Work?
	5.2 Implementing a RocksDB Backend with liburing
	5.3 Evaluation Results
	5.4 Summary

	6 Related Work
	7 Conclusion
	7.1 Research Questions
	7.2 Guidelines
	7.3 Limitations
	7.4 Future Work

	References
	8 Appendix
	8.1 Artifacts
	8.2 Using liburing
	8.3 Using eBPF

