
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

DPFS++: Cloudifying the DPU-Powered
File System Virtualization Framework

Author: Peter-Jan Gootzen (2703924)

1st supervisor: dr. ir. Animesh Trivedi Vrije Universiteit Amsterdam
daily supervisor: ir. Jonas Pfefferle IBM Research, Yorktown Heights
daily supervisor: dr. dipl. ing. Radu Stoica IBM Research, Zurich
2nd reader: dr. ir. Tiziano De Matteis Vrije Universiteit Amsterdam

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

Parallel Computing Systems track

September 29, 2023

“We can solve any problem by introducing an extra level of indirection.”

David J. Wheeler

ii

Abstract

Cloud data centers are the backbone of our modern-day digital society. These

large buildings, full of computing power and networking capabilities, run work-

loads that support all aspects of our daily lives. As our demand for computing

power has increased, data center operators have shifted towards heterogeneous

architectures for computing that can provide more computing power for less

energy.

Part of this heterogeneous evolution has been happening in the networking

side of the server machine with so-called Data Processing Units (DPUs) (some-

times called SmartNICs). These pieces of hardware are network interfaces with

offload capabilities baked in and allow data center operators to provide ser-

vices to tenants in an isolated and performant manner. Today, all major cloud

providers deploy DPUs for cloud services like block storage, networking, and

data center orchestration.

Several academic research papers have proposed designs and prototypes for

offloading a file system storage service to the DPU. In this thesis, we answer

the following scientific question: Can DPFS provide a cloud-native solution

for DPU-offloaded file system services? We analyze the file system service

design space and identify currently untested designs. Through design, imple-

mentation, and evaluation, we also propose DPFS++, an augmented version of

the established DPFS framework (51) for building DPU-powered file system

services. DPFS++ has the following enhancements: (1) performance improve-

ments, (2) a previously unexplored system design, (3) a backend for consuming

existing cloud storage infrastructure (e.g., Ceph), and (4) provide dynamic

multi-tenancy support.

With these extensions, we report that DPFS++ can satisfy the multi-tenancy

requirements of a DPU-powered file system service in a cloud data center,

and that its performance is on par with current NFS-based cloud solutions.

But to achieve state-of-the-art performance, last generation’s DPU hardware

is not capable enough and tighter coupling between the DPU’s hardware and

remote storage server is required. The DPFS++ framework and its artifacts

are publically available at https://github.com/IBM/DPFS.

https://github.com/IBM/DPFS

iv

Preface

This Master’s thesis has been a long time in the making (one and a half years!).

In April of 2022, I moved to Zürich for five months for a research internship

at IBM Research Zurich. Together with Jonas and Radu, I explored the un-

documented virtio-fs feature Jonas had found by chance in the NVIDIA

BlueField-2 DPU. A year later, in March 2023, we built a prototype of our

DPFS framework and wrote a research paper with Animesh. In June of 2023,

I was given the opportunity to present our research paper and work at SYS-

TOR’23 in Haifa, Israel, something that I would never have imagined possible

when I started with my Master’s degree at VU Amsterdam in 2020.

I want to thank Jonas Pfefferle and Radu Stoica from IBM Research for allowing

me to do research in the Hybrid Cloud Infrastructure Software group at the

IBM Research Zurich laboratory, giving me an environment to learn about every

layer of the Cloud hardware and software stack, and for helping me improve

my research, presenting, and writing skills. I would also like to thank Animesh

Trivedi, my supervising Professor from VU Amsterdam, for taking me on as

a research student to research file systems and sparking an interest in storage

systems research that has led to the work on DPFS and this Master’s thesis.

I am incredibly proud to present the DPFS framework and its DPFS++ itera-

tion in this Master thesis. So, without further ado, let’s dive into the mysterious

world of data centers, Cloud storage services, and DPU-offloading hardware.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 The state-of-the-art cloud is DPU-powered 2

1.2 DPFS - A DPU-powered file system virtualization framework 3

1.3 Problem statement - Evolving DPFS into a cloud-native system 4

1.4 Research questions . 5

1.5 Research methods . 7

1.6 Thesis research contributions . 8

1.7 Societal relevance . 9

1.8 Plagiarism Declaration . 9

2 Background 11

2.1 Cloud Computing . 11

2.2 The great wave of heterogeneous architectures 15

2.3 A brave new DPU-powered cloud . 17

2.4 Current state of file system services in the cloud 18

3 The design space of offloaded distributed file systems (Related work) 21

3.1 State-of-the-art DPU hardware . 21

3.2 The current DPU-offloaded file system design space 25

3.3 Opportunities in the design space . 26

4 DPFS - a DPU-Powered File System virtualization framework 31

4.1 The case for a full-offload DPU-Powered File System Virtualization framework 32

4.2 The design and implementation of DPFS 34

4.3 Evaluation . 39

iii

CONTENTS

4.4 Limitations . 43

5 Evolving the DPFS framework into DPFS++ 47

5.1 virtio-fs driver improvements . 48

5.2 Supporting kernel-based distributed file systems 51

5.3 Escaping the DPU with gateway passthrough 55

5.4 Multi-tenancy in a dynamic cloud environment 58

6 Evaluating the DPFS++ framework 65

6.1 Experimental setup and reproducibility . 66

6.2 virtio-fs latency driver patch . 68

6.3 DPFS-Kernel with a distributed Ceph storage cluster 69

6.4 The gateway implementation of DPFS-Gateway 73

6.5 Multi-tenancy in DPFS++ . 75

7 Concluding remarks 79

7.1 Conclusion . 79

7.2 Limitations . 81

7.3 Future work . 82

References 85

Appendices 111

A Support for file system operations in io_uring 111

B Artifact Appendix . 112

iv

List of Figures

1.1 High-level architectural diagram of the DPFS framework and its proposed

use in a cloud data center. 4

2.1 Architectural diagram of the hardware residing in a cloud data center server

and the software systems running on that hardware. 13

2.2 50 years of microprocessor trend data by Karl Rupp (132) 14

2.3 Architectural diagram of the hardware residing in a DPU-powered server

and the software systems running on that hardware. Blue boxes indicate

systems that the operator manages. 17

2.4 High-level architectural diagram of a traditional distributed file system (left)

and a cloud file system service (right) . 20

3.1 Diagram of the gateway design . 28

4.1 The architecture of DPFS compared to a host NFS client. Green boxes are

the standard in-kernel code, and orange boxes are our contributions. 35

4.2 Three DPFS performance experiments . 39

4.3 DPFS-Null multi-threading experiment with 1,2,4 or 8 fio threads 40

4.4 DPFS-NFS large block size (64 KiB) experiment 41

5.1 Diagram of the added multi-queue support in the virtio-fs Linux kernel

device driver. 50

5.2 Diagram of the added multi-queue support in the virtio-fs Linux kernel

device driver. 53

5.3 Diagram of the gateway passthrough design and implementation in DPFS++. 57

5.4 Diagram of the design and implementation of multi-tenancy support in

DPFS++. 60

v

LIST OF FIGURES

6.1 virtio-fs driver latency patch experiments 69

6.2 Virtualization overhead experiments of DPFS-Kernel, comparing the waiting

and polling completion methods of io_uring 70

6.3 Synthetic throughput (fio) experiments of DPFS-Kernel with Ceph 72

6.4 Real-world workload experiments of DPFS-Kernel with Ceph (in polling and

waiting mode) compared to host-NFS with Ceph 73

6.5 Synthetic random I/O workload (fio) of DPFS-Gateway with the DPFS-Null

backend and one thread on the DPU, throughput for block sizes 4 KiB,

16 KiB and 64 KiB. 74

6.6 Synthetic workload (fio) throughput experiments with Ceph of DPFS-Gateway

and the DPFS-Kernel backend, compared against host-NFS and DPFS-Kernel

on the DPU. 75

6.7 Synthetic workload (fio) throughput experiments of DPFS-Null with multi-

tenancy. 76

vi

List of Tables

3.1 Hardware specifications and software versions of the machines (including

the DPU) used in the evaluation of DPFS++. 22

4.1 Analysis of storage (block) or network (packets with NVMoF) operations

for a single 4KiB file write. 32

4.2 Host NFS vs. DPFS-KV 4 KiB file I/O latencies. 42

4.3 The microarchitectural profile of the host CPU. 43

5.1 Comparison of Geekbench 6.1 results on the NVIDIA BlueField-2 DPU

compared to a modern AMD EPYC server with two benchmarks high-

lighted. Full results can be found at https://browser.geekbench.com/

v6/cpu/compare/1835864?baseline=1835749. 56

5.2 The wire format of DPFS-Gateway requests in DPFS++. num_output_descs

indicates how many instances of desc_len and desc_data are contained in

the request, and similarly for num_input_descs and output_desc_len. . . . 59

5.3 The wire format of DPFS-Gateway responses in DPFS++. The number of

descriptors and their lengths are not in the response, as the DPU component

stores this information when sending out the request. 59

6.1 Hardware specifications and software versions of the machines (including

the DPU) used in the evaluation of DPFS++. 66

1 Translation of DPFS++ operations to io_uring operations and which Linux

kernel version is required to use this io_uring operation. io_uring opera-

tions that are marked with X are not supported in the Linux kernel as of

September 2023 and Linux v6.6. 111

vii

https://browser.geekbench.com/v6/cpu/compare/1835864?baseline=1835749
https://browser.geekbench.com/v6/cpu/compare/1835864?baseline=1835749

LIST OF TABLES

viii

1

Introduction

Our 21st-century society is built on top of and is dependent on technology; it reaches into

every aspect of our daily lives. In the Netherlands, it is estimated that data centers and

the Information and Communications Technology (ICT) sector enable over 3.3 million jobs

and contribute to 60% of the GDP (64). Data-driven systems are becoming prevalent and

critical to our daily lives. It is estimated that by 2023, our society will annually generate

one yottabyte (one billion petabytes) (60). This data is being generated from and con-

sumed in computer systems in multimedia streaming (e.g., Netflix, Spotify), social media

(e.g., Instagram, Mastodon), IoT and edge computing (e.g., smart-home devices), scien-

tific simulations (e.g., protein folding and climate modeling), transportation (e.g., shipment

routing and smart energy grids), and collaboration tools (e.g., Microsoft Office365, Google

Drive). To handle all this vital data, modern storage systems must be in place to gather,

store, and analyze this data in an efficient, reliable, and performant manner.

As a computer service provider, satisfying the increasing needs in computing and data

is challenging. Building and maintaining infrastructure is expensive, time-consuming, and

requires specialized technical expertise. Due to these challenges, the industry has widely

adopted the Cloud computing model, where the underlying infrastructure is decoupled

from the application (11). This decoupling allows data center operators to build, main-

tain, and optimize systems that efficiently provide the application’s compute, storage, and

networking infrastructure requirements. Major Cloud providers like Amazon AWS, Mi-

crosoft Azure, and Google Cloud provide cost-effective and state-of-the-art infrastructure

for research institutions, businesses, and governments.

Building such state-of-the-art cloud systems is becoming increasingly complex due to the

increasing demands from applications and tenants (i.e., users who rent cloud resources),

and a shifting hardware landscape. Performance improvements can no longer be achieved

1

1. INTRODUCTION

by merely waiting for faster hardware. Since the mid-2000s, single-core performance im-

provements have stalled, and hardware has become increasingly heterogeneous, leading

hardware designers to introduce compute silicon that exposes different programming mod-

els (57). On the other hand, new storage technologies like flash provide orders of magnitude

lower access latencies than traditional hard disks (107), and the networking bandwidths

are still increasing year-over-year (97). These changes in the hardware landscape have

spurred a movement of rethinking existing system designs and programming interfaces in

the software ecosystem (144).

The recent boom of Artificial Intelligence (AI) has given the systems research commu-

nity a new wave of workloads that require massive amounts of resources from our cloud

infrastructure. Large Language Models such as ChatGPT and LLaMa that show sparks

of AGI (Artificial General Intelligence) cost millions of dollars in infrastructure to train

and push the limits of our current cloud systems. One of the bottlenecks identified for

AI workloads on the hardware and software stack currently deployed in the cloud is stor-

age (16, 103). Training a state-of-the-art AI model requires a massive data set to train,

which can be on the order of hundreds of gigabytes to terabytes (23, 82, 143, 162).

1.1 The state-of-the-art cloud is DPU-powered

The trend of heterogenous computing has manifested itself mainly in the form of compute

offloading to accelerators that work alongside the host CPU. Workloads are executed on

the accelerator to improve performance and increase efficiency (57, 160). Such accelerators

come in many forms, such as GPUs for graphical and matrix operations and ASICs for

fixed compute functions. This thesis and research focuses on one specific type of accelerator

called the Data Processing Unit (DPU) that combines a Networking Interface Card (NIC)

(used to connect the CPU with the network) with specialized offloading capabilities for

data center purposes.

By tightly coupling several kinds of offloading hardware with the NIC onto a single accel-

erator, several domains of data center computing that utilize the network can be offloaded

to the DPU. Current commercial DPUs like the NVIDIA BlueField can (among others)

offload network switching, network virtualization, block storage virtualization, cloud or-

chestration, and encryption/decryption. This varied set of infrastructure offloads allows

CPU to be focused on the workloads of tenants, thus generating more revenue and cen-

tralizing the data center operator’s infrastructure on the DPU (12, 47, 72).

2

1.2 DPFS - A DPU-powered file system virtualization framework

Today, all major cloud providers publicly state that they use DPUs in some form. Ama-

zon AWS has its own in-house DPU called Nitro (12), Google Cloud utilizes the Intel

IPUs (33), Microsoft Azure has its own in-house DPU called Azure Boost (148) and is

partnering with Pensando (125), IBM Cloud partners with Pensando (125), and Oracle

Cloud deploys the NVIDIA BlueField (116). In academia, DPU offloading is a "hot topic",

with published literature on offloading of data center infrastructure workloads that show

that DPUs are effective in aiding host CPU workloads to reach networking line speed and

saving host CPU cycles (31, 74, 90, 91, 142, 157).

1.2 DPFS - A DPU-powered file system virtualization frame-
work

Cloud storage is commonly exposed to tenants in three forms: block, file, and object

(i.e., key-value) (13, 32, 35). Block storage exposes raw, unformatted storage blocks,

enabling precise control over data placement and facilitating high-performance, low-latency

data access, making it well-suited for applications like databases and virtual machines.

File storage presents data in a hierarchical file system akin to traditional file servers,

serving purposes requiring structured organization and shared access, typically utilized for

documents, media files, and application data management. In contrast, object storage

abstracts data into objects with unique identifiers, storing them within a flat address

space, rendering it ideal for large-scale, unstructured data storage, such as images, videos,

backups, and logs. These three storage types cater comprehensively to diverse data storage

needs in cloud data centers, ensuring tenants can select the most fitting option based on

their specific requirements, whether necessitating high performance, structured file access,

or scalable, unstructured data retention.

In today’s cloud, file storage is typically offered via a virtualization gateway that is

exposed over the network through a standardized protocol called NFS (Networked File

System protocol) (6, 50, 61, 101), whose goal it is to abstract away the details of the cloud

operator’s internal distributed file system (DFS). The tenant uses the NFS client offered by

their operating system and connects to the gateway over the network. The cloud operator

translates the NFS file system operations in the virtualization gateway to their internal

DFS, thus transparently offering file storage to the tenant.

The gap in the literature motivates the research on file system virtualization using DPUs,

which led to the development of the DPFS framework. The research is published in a

3

1. INTRODUCTION

Virtual tenant server

VM
VM

Operator server

ContainerService

Bare metal tenant server

ContainerApp

Distributed Filesystem Cluster

DPU

DPFS

DPU

DPFS

DPU

DPFS

VM
VM

Figure 1.1: High-level architectural diagram of the DPFS framework and its proposed use
in a cloud data center.

research article at the 16th ACM International Systems and Storage Conference (SYS-

TOR’23) in Haifa, Israel (51) (see Chapter 4 for an extended version of the paper). In the

DPFS research, the authors propose to decouple the file system client from its networked

protocol by virtualizing it with a commercial DPU using the Linux virtio-fs software

stack. The decoupling allows DPFS to offload the file system client (that’s connected

to the remote storage system) execution to a DPU, which is managed and optimized by

the cloud provider while freeing the host CPU cycles. The architecture of the proposed

DPFS cloud storage system is shown at a high level in Figure 1.1. DPFS, the proposed

framework, is 4.4× more host CPU efficient per I/O and delivers comparable performance

to a tenant with zero configuration and without modification of their host software stack

while allowing workload and hardware-specific backend optimizations.

1.3 Problem statement - Evolving DPFS into a cloud-native
system

The DPFS paper proposes a novel file system storage design, showing that its efficiency

surpasses that of NFS and that its small I/O performance is comparable to NFS. However,

the paper has several weaknesses in its design, implementation, and experimentation that

4

1.4 Research questions

prevent it from proposing a solution that cloud providers utilize (a classification often

called cloud-native). These weaknesses are:

• Lacks multi-tenancy - DPFS only supports a single tenant on the host CPU. It can

only expose a single virtual file system (i.e., virtio-fs device). At the same time,

cloud environments virtualize a single CPU to support many tenants simultaneously.

• Reliance on NFS gateway - Ironically, DPFS can only expose remote storage to

the tenant through an NFS gateway. This prevents DPFS from consuming existing

cloud file storage infrastructure without the performance issues of utilizing a gateway.

• Missing multicore evaluation - The experimentation does not contain multi-core

and large I/O size experiments. Workloads that are common in the cloud today, are

massively parallel and operate on large data sets (29), so knowing the performance

characteristics of DPFS under these workloads is vital.

• Poor performance predictability - The experimental results in the paper show

that during heavy workloads, with many outstanding I/O operations, the latency

variability of a DPFS operation increases significantly. This clashes with a funda-

mental goal of predictability that cloud operators strive for and are legally required

to uphold via SLA contracts (11).

• High overheads - DPFS shows adequate performance compared to its NFS counter-

part in the paper, however, we show the performance is far from what the underlying

NVIDIA BlueField-2 hardware can provide.

• Unknown hardware landscape - The hardware landscape of DPUs is very di-

verse, with each DPU model having their own set of hardware characteristics, offload

capabilities, and programming models. There is currently no work out there that

systematically examines the DPU hardware and its capabilities for cloud data cen-

ters.

This thesis aims to fill these gaps in the design, implementation, and experimentation of

DPFS by proposing the DPFS++ framework.

1.4 Research questions

With this problem statement in mind, we formulate the following four research questions

that together aim to elevate DPFS towards a cloud-native file storage framework.

5

1. INTRODUCTION

RQ1. How can the current generation of DPU hardware facilitate file system

offloading?

This research question explores the current generation of DPU hardware and literature on

distributed file system design using DPUs. The design space of DPU-offloaded distributed

file systems is sketched by overlaying the currently explored designs and hardware. Allow-

ing us to propose novel designs that have not been explored yet. One of these new designs

will be implemented and evaluated in DPFS++.

RQ2. How can the performance of the Linux kernel be improved for DPU-

offloaded file systems?

A cloud tenant consumes the DPU-offloaded file system provided by DPFS through

the Linux kernel’s virtio-fs device driver. We are aware of several limitations in the

virtio-fs driver, that limit the multi-threading and performance capabilities of DPFS.

This research question will first expand the ACM SYSTOR’23 paper with experiments

and analysis so that the limitations of the virtio-fs driver and its effects on the DPFS

framework become known. The research question will investigate the limitations of the

virtio-fs driver, design improvements to the virtio-fs driver, and benchmark the im-

plementation.

RQ3. How can DPFS efficiently utilize existing kernel-based distributed file

systems?

DPFS currently supports two remote storage backends: NFS and Key-Value (i.e., trans-

lates file operations to a RAMCloud (120) key-value remote storage backend), which both

implement the API that DPFS exposes and fully operates in the user space of the DPU’s

Linux operating system. Running in user space instead of interacting with the kernel has

the upside of increased performance. However, this comes with the downside of needing

to perform the manual software engineering labor of implementing support for a remote

backend that a cloud data center might wish to use.

In this research question, we investigate the design, implementation, and performance

implications of a new backend in DPFS++ that allows the DPU to expose any existing

kernel-based distributed file system mounted in the DPU’s kernel.

RQ4. How can DPFS efficiently support dynamic multi-tenancy?

With modern hardware, a single dual-socket server can contain up to 256 CPU cores (7). In

a scenario where every tenant consumes only a single CPU in a virtual machine, there are

already 256 tenants packed into a single server. Even if the server contains multiple DPUs,

each DPU must still be able to provide its services to various tenants simultaneously. This

is further complicated because cloud data centers are not static deployments. Cloud tenants

6

1.5 Research methods

expect to be able to scale their consumption of cloud services to their needs dynamically.

The current design and implementation of the DPFS framework only supports exposing a

single virtio-fs device to the host (i.e., a single tenant) while entirely consuming a single

DPU core. It is, therefore, evident that the DPFS framework must evolve to support

multi-tenancy for such dynamic deployments efficiently. This research question will detail

multi-tenancy support’s design, implementation, and evaluation in DPFS++.

1.5 Research methods

The DPFS research project has been an experimental systems research project since its

inception in April 2022. To answer the research questions, we will start by surveying

the literature and hardware landscape to explore the design space of DPU-offloaded file

systems (RQ1). Then, the performance characteristics of DPFS are analyzed through

experimentation, performance engineering, and implementing improvements (RQ2). To

drive DPFS towards a cloud-native system, we design and implement three functionalities

in DPFS++: (RQ3) support for existing kernel-based distributed file systems like Ceph,

(RQ1) support for the gateway design, and (RQ4) support for dynamic multi-tenancy.

The following computer systems research methodologies were used in the DPFS research

project and this thesis. To survey the academic and industrial literature for related work on

topics such as accelerator offloading and distributed file systems within computer systems

research for RQ1 and other parts of the thesis, the quantitative research methodology (85)

was used.

The design and implementation of DPFS and DPFS (RQ1, RQ2, RQ3, RQ4) are

conducted with the iterative and circular process of abstracting, designing, and implement-

ing research ideas (53, 65, 124). By analyzing the requirements and behavior of the system,

a design for the solution can be articulated and then implemented. When this leads to

unexpected or undesired results, the cycle is repeated.

To identify bottlenecks (RQ2), measure the characteristics of the built system, and verify

hypotheses (RQ1, RQ2, RQ3, RQ4), the method of experimental research (55, 66, 119)

are used. This research method systematically conducts experiments and records system

measurements via reproducible synthetic and real-world workloads.

Lastly, to make this work of research reproducible and accessible to the broader re-

search community, the open science methodology (55, 149, 155) are applied. Everything

legally permitted to be open source (including the framework, experimentation suite, and

experimental results) is open-sourced at https://github.com/IBM/DPFS.

7

https://github.com/IBM/DPFS

1. INTRODUCTION

1.6 Thesis research contributions

This thesis makes the following seven scientific contributions:

C1: (Conceptual & survey) A deep-dive into current day cloud infrastructure (with his-

torical perspective), DPUs and cloud storage systems - Chapter 2

C2: (Conceptual) A dissection of the DPU hardware landscape and how these DPUs form

a design space for distributed file system offloading - Chapter 3

C3: (Conceptual) The design of DPFS++, an evolution of the DPFS framework including

features for hybrid cloud deployment - Chapter 5

C4: (Dissemination) Three presentations on the DPFS project and peer-reviewed SYS-

TOR’23 paper (51)

• OpenFabrics Alliance’23 workshop presentation

• ACM SYSTOR’23 conference paper presentation

• CompSysNL’23 presentation

C5: (Experimental) An in-depth set of experiments on DPFS (complementary to the pa-

per’s experiments) and DPFS++, performed on the NVIDIA BlueField-2 - Chapter 6

C6: (Artifact) The implementation of the DPFS framework in its second iteration, in-

cluding the improvements and features designed in this thesis -

source code: https://github.com/IBM/DPFS, detailed description: Chapter 5

C7: (Artifact) Reproducible experimentation suite with all the scripts and results -

https://github.com/IBM/DPFS

C8: (Conceptual & Experimental) An expanded version of the original DPFS paper that

adds several experiments and an investigation into the limitations of DPFS on the

NVIDIA BlueField-2 - Chapter 4

The paper published and presented at ACM SYSTOR’23 titled "DPFS: DPU-Powered

File System Virtualization"(51) is in itself not a contribution of this thesis, since it was

worked on for the "Industrial Internship" and "Research Project Computer Science" courses.

It is, however, included in this thesis in Chapter 4, in an extended form, as this thesis is a

direct successor to the paper. The new contributions are marked with •.

8

https://github.com/IBM/DPFS
https://github.com/IBM/DPFS

1.7 Societal relevance

1.7 Societal relevance

This research aims to design and implement a DPU-powered file system virtualization

framework for data centers. Accomplishing this alleviates the following issues in today’s

data center systems.

Firstly, our society depends on and demands our internet and data center infrastructure.

With increasing demand comes an increasing amount of data that needs to be stored, ac-

cessed, and processed in our data centers. It is estimated that the world’s data will take

up more than 200 Zetabytes by 2025 (i.e., 100 trillion gigabytes) (105) and that 20% of

the world’s electricity will be consumed by our digital infrastructure. This means that

even marginally small inefficiencies in this infrastructure result in impactful monetary and

environmental differences (64). Therefore, researching and optimizing data center infras-

tructure is vital to the goals of our society on the fronts of energy efficiency, sustainability,

and e-waste.

Secondly, this work aims to be fully transparent towards data center tenants (i.e., com-

panies who utilize data centers). Where other works of research surrounding DPU file

storage require tenants’ intervention, this research only needs to be adopted by data cen-

ter operators. This lowers the barrier to adopting these advancements and reduces the

software maintenance strain on data center tenants.

1.8 Plagiarism Declaration

I hereby confirm that this thesis is my own work, is not copied from any other source

(person, internet, or machine), and has not been submitted elsewhere for assessment. I

understand that plagiarism is a severe offense to the fundamental values of science and

should be dealt with if found.

Note that Chapter 4 contains the contents of a paper (in an extended form) published and

presented at the 16th ACM International Systems and Storage Conference (SYSTOR’23)

in Haifa, Israel (51). The authors are Peter-Jan Gootzen (IBM Research and VU Amster-

dam), Jonas Pfefferle (IBM Research), Radu Stoica (IBM Research), and Animesh Trivedi

(VU Amsterdam). The new contributions added for this thesis are marked using • in

Chapter 4.

9

1. INTRODUCTION

10

2

Background

To help guide the reader through how DPFS came to be and how it will evolve in this

thesis, this chapter will explore the motivation behind the advent of DPUs and their use

in today’s cloud systems. First, we examine the evolution of virtualization and hardware

technologies that shaped and enabled cloud computing (Section 2.1). Second, we will

explore how current hardware trends motivate a move towards offloading computing using

heterogeneous architectures. In particular, we will focus on the offloading capabilities of

networking interfaces, including DPUs (Section 2.2). Third, we introduce the new DPU-

powered cloud model and identify the benefits that this new infrastructure model brings

to a cloud data center (Section 2.3). Fourth and last, we analyze in detail the current

day cloud file system services (which are not-DPU powered) (Section 2.4), exposing the

virtualization limitations that DPFS aims to solve.

2.1 Cloud Computing

The advent of the Internet has brought about a significant increase in agile computing

demands and a strong drive for reduced operating costs. Cloud computing has played

a pivotal role in providing the necessary infrastructure (including hardware and software

stack) to support the Internet-driven era of society. One of the fundamental attributes of

cloud computing and cloud infrastructure is its ability to efficiently adapt to the dynamic

resource requirements of tenants while maintaining cost-effectiveness (11). A key compo-

nent to providing this elasticity to the cloud tenants (i.e., the users who rent resources in

a cloud data center) is the technology and concept of virtualization whereby the hardware

is abstracted and split into separate virtual pieces of hardware that tenants utilize.

11

2. BACKGROUND

2.1.1 A brief history of Virtualization technologies

In Computer Science, ideas and innovations are often revisited. Recent innovations in

hardware, software, or theory often allow old ideas to be reborn differently. The concept

of virtualization is one of these ideas. It has gone through many forms in the history of

computing and is today an essential aspect of cloud infrastructure.

In the 1960s, IBM mainframes were virtualized by multiplexing the hardware between

several users, each user having their virtual terminal (121, 136). This form of virtualization

through multiplexing fell out of favor due to the increasing hardware complexity. The

research community introduced a simpler virtualization alternative in operating systems

like UNIX that employs a multi-user kernel that can time-share the resources (130). In the

1990s, there was another leap in virtualization technology. Process-based virtual machine

approaches of virtualization emerged, which allowed users to further decouple their software

implementation from the underlying hardware. For example, the Java Virtual Machine

allows users to compile software into virtual machine byte-code, so that can be mapped

at run-time onto the hardware (43, 126, 152). In the early 2000s, the hardware had

become so increasingly powerful (Denard’s scaling was still alive) that with novel and

innovative designs, virtualization through multiplexing the underlying hardware became

viable again with hypervisors like Xen (17) and VMWare (25). A hypervisor allows users

to run their own full-fledged operating system with a kernel (a virtual machine) while

maintaining adequate performance and isolation from other users. This virtual machine

form of virtualization became the basis of modern-age cloud and data center infrastructure

as we know it today (80, 139). The most recent evolution in virtualization technology

came in the 2010s, with containers, that packages the application with its dependencies

and configuration files into a singular deployment file. Many containers are deployed onto

a single virtual machine by sharing the kernel, and virtualized by the operating system

through namespaces and cgroups, which isolate the containers and their resources inside

the kernel (122).

2.1.2 Modern Cloud Computing Infrastructure

The innovations in hypervisor-based virtualization and increasingly powerful commodity

hardware (in terms of compute and networking) allowed data centers to adopt Hyper-

Converged Infrastructure (HCI) that changed the data center’s infrastructure to be software-

defined (52). With HCI, the tenant-facing storage, networking, and security services are

12

2.1 Cloud Computing

HCI Server

CPU

VM VM VM

Storage Networking

Orchestration

Hypervisor

VM VM

Figure 2.1: Architectural diagram of the hardware residing in a cloud data center server and
the software systems running on that hardware.

software-defined and run on the same CPU as the tenant’s compute alongside the hyper-

visor. This data center architecture is shown visually in Figure 2.1. In this diagram and

others in this thesis, the yellow boxes indicate systems that are controlled by the ten-

ants of the data center, and the blue boxes indicate systems that are managed by the data

center operator. Allowing the operator to virtualize their internal services (i.e., not tenant-

facing) to the tenants via the software-defined layer running on the CPU. The operator’s

internal services (i.e., not tenant-facing) are software-defined on commodity hardware and

utilize networking hardware that supports software-defined networking. This model al-

lows the datacenter operator to build a complete datacenter from commodity hardware,

streamline the scaling of resources, and ease the management of services across the data-

center (37, 46, 80).

2.1.3 Limitations of the Hyper-Converged Cloud Infrastructure

In this work, we identify four key problems with the HCI approach for cloud computing

concerning tenant-facing services:

Resource consumption Placing cloud services (storage, networking, and orchestration)

next to the hypervisor, and thus on the host CPU, results in fewer host resources being

available for the virtual tenants. This is economically suboptimal, as cloud operators

mainly rely on selling CPU time for their revenue (47, 100).

Isolation A single point of security failure arises from the consolidation of virtual tenants

and services. Suppose one of the virtual tenants breaks out of their respective sandbox

(i.e., virtual environment). In that case, they do not only gain access to the other tenants

13

2. BACKGROUND

but also to the operator’s internal services. With an increased focus on security in today’s

world, coupled with the recent emergence of side-channel attacks that can break out of the

sandbox (75, 77, 89), the operators and tenants are not willing to accept the poor isolation

that HCI provides anymore.

Bare metal support A bare metal tenant has complete control over the host CPU,

and the operator cannot force the tenant to run any code on the host CPU. The operator

cannot run their virtualized services alongside the tenant, and thus, the tenant cannot

consume them. This leads to increased complexity for both the operator and tenant as

they have to consider two distinct sets of services, one for virtual machines and one for

bare metal machines (104, 164).

Figure 2.2: 50 years of microprocessors trend data, by Karl Rupp (132), permission obtained
via https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.
txt.

14

https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt
https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt

2.2 The great wave of heterogeneous architectures

2.2 The great wave of heterogeneous architectures

In recent years, everyone in the computing business has heard the claim "Moore’s law

is dead!". While this claim is, in essence, correct, it is technically not valid. Moore’s

observational law states that the number of transistors doubles every two years and is still

in full effect in 2023. What has died is the scaling of single-core performance, which used

to be scaling alongside Moore’s law until Denard’s scaling broke down around 2005 (57).

The fall of Denard’s scaling started the era of parallel and multi-core processing. This

can be seen in effect in Figure 2.2, where around 2005, the steady increase in clock speed

started to slow down, and the number of cores increased.

2.2.1 Offloading in heterogeneous systems

The wave of multi-core processors came in many forms, most commonly the symmetric

multiprocessor (e.g., an x86 Intel/AMD CPU) and later cache-coherent non-uniform mem-

ory access (i.e., a coherent group of CPUs with differing main memory latencies), which

became dominant in the commodity CPU market (56). But also a new proliferation in

specialized hardware targeted for offloading compute-intensive workloads, freeing up the

CPU and increasing performance per watt (22, 160).

However, this new form of parallel chip design is an entirely different beast to extract

performance from compared to the single-core chips of before. Compute tasks must be

spread around the cores to gain performance speedup, requiring specialized concurrent

programming. The picture is even further complicated when looking at CPUs and domain-

specific architectures (DSAs) that tailor the hardware to constrained forms of computation

(i.e., not general purpose). To adjust the software to these DSAs, domain-specific languages

(DSLs) have emerged alongside the new hardware (57). For example, the CUDA DSL

allows a programmer to write massively parallel computational code that runs on NVIDIA

GPUs (68), and the TensorFlow DSL allows modern neural networks to map efficiently to

Google’s TPU hardware (67, 68).

DSAs are commonly deployed alongside a CPU that gathers data and tasks from the

storage and network to execute on the DSA hardware. This system model increases the

computational performance and falls under the umbrella term of offloading (22).

2.2.2 A trajectory of increasing offloading capabilities in NICs

The networking hardware space has also seen the influence of DSAs and offloading. Net-

working Interface Cards (NICs) attached via an interconnect like PCIe have seen several

15

2. BACKGROUND

waves of offloading capabilities that increasingly offload traditional CPU tasks to the NIC.

The naming scheme that vendors have adopted for these advanced NICs has been very

inconsistent, with the terms DPU, SmartNIC, and Infrastructure Processing Unit (IPU)

often being used interchangeably (135). In this thesis, we separate the waves of increasing

offloading capabilities in NICs into four types of NIC hardware: the foundational NIC, the

offload NIC, the SmartNIC and the DPU (73).

Foundational NIC The first type is the foundational NIC, which regards a bare-bones

NIC without any offloading capabilities. These NICs are increasingly rare in the com-

mercial market but can still be found in the embedded market. As there, the networking

throughput requirements are in the order of gigabits per second compared to the hundreds

of gigabits per second in the server market.

Offload NIC The second type of NIC is the offload NIC, which contains fixed-function

offloads for popular protocols such as TCP and IP. These fixed-functions offloads aid the

CPU in achieving line-speed networking and leaving computational room on the CPU for

the workload.

SmartNIC The third type is the SmartNIC, which exposes programmable offloading

capabilities through a DSL to the CPU instead of the fixed-function offloads of offload NICs.

SmartNICs are aimed at the data center and cloud deployments, as the programmable

nature lends well to the tight integration of the data center hardware and software stack

controlled by the operator. A common offload capability of SmartNICs is the offloading

of software-defined networking and network switching via Open vSwitch and Open Virtual

Network (114, 140). By offloading these workloads off the CPU (traditionally running

alongside the hypervisor) and onto the DSA hardware in the NIC, more CPU cores are freed

up to be utilized by tenants, resulting in higher revenues for the data center operator (47,

87, 94, 164).

Data Processing Unit (DPU) The fourth and most offload capable type of NIC is the

Data Processing Unit (DPU), which further increases the programmability of a SmartNIC

through more general purpose DSLs, complete CPU cores or an FPGA element. Just like

SmartNICs, DPUs are aimed at data center and cloud deployments but additionally become

a full-fledged node in the data center (135) that runs operator software to orchestrate

tenants running on the host CPU and to provide services to said tenants on the host

CPU (12, 27, 73).

16

2.3 A brave new DPU-powered cloud

DPU-powered Server

CPU

VM VM VM

Lightweight Hypervisor

VM VM

DPU
Storage Networking

Orchestration

Security isolation via PCIe

Figure 2.3: Architectural diagram of the hardware residing in a DPU-powered server and
the software systems running on that hardware. Blue boxes indicate systems that the operator
manages.

2.3 A brave new DPU-powered cloud

Previously, as seen in Figure 2.1, the cloud provider would run a significant (in terms of

overhead and security attack surface) software stack on the CPU alongside the virtual ten-

ants. This software stack includes storage services, software-defined networking services,

and orchestration services (e.g., management, monitoring, and security of the virtual ten-

ants).

Amazon AWS, the world’s largest cloud provider (129), has deployed its custom-built

AWS Nitro DPUs for all EC2 VPS instances since 2018 (12). Figure 2.3 shows an archi-

tectural diagram of how DPU-powered clouds like AWS today, are utilizing the DPU for

offloading their cloud services. The cloud provider’s services of storage, networking, and

orchestration, shown in blue, are now running on the DPU and exposed via PCIe to the

tenants running their workloads (e.g., virtual machines) on the host CPU.

The other large public cloud providers like Azure, Google Cloud, IBM Cloud, Oracle

Cloud, and Alibaba Cloud now also publicly state that they are utilizing custom-built

DPUs inside their data centers (8, 33, 47, 87, 161, 164). For data center operators that

do not have the means to develop their own DPU hardware and software-stack, hardware

vendors have started partnering with data center platforms to provide an off-the-shelf

DPU stack. For example, NVIDIA and AMD Pensando are partnering with VMWare to

17

2. BACKGROUND

integrate the NVIDIA BlueField (27) and Pensando Distributed Services Card (DSC) (97)

into the VMWare vSphere virtualization product (113, 125).

2.3.1 Alleviating the issues HCI faces using the DPU

The new DPU-powered cloud deployment model addresses the issues raised with the HCI

Cloud in Section 2.1.3.

CPU consumption By running the services on the DPU, the host CPU is freed up to

run the tenants’ workloads, leading to reduced costs (86). This is especially important

when the tenants are using software that is licensed (and paid for) on a per-core and

utilization basis (100). Thus, effective CPU utilization additionally impacts costs (on top

of the hardware and electricity costs).

Isolation Utilizing the DPU introduces an isolation barrier between the tenants running

their code on the host CPU and the operator services running on the DPU. Take, for

example, authentication keys that the operator uses to connect to their internal remote

services. When running the operator services on the host CPU, these keys will reside in the

CPU’s caches and main memory, forming an attack surface with side-channel attacks. On

the other hand, in the DPU deployment model, the keys will reside off-CPU on a PCIe-

attached device, the memory of which the host CPU cannot access without the DPU’s

intervention (27, 104, 164).

Bare metal support With HCI, the bare metal tenant generally has access to fewer

services, as the operator cannot run their services on the host CPU. With a DPU, the bare

metal tenants can utilize the same scalable services as virtual tenants. This decreases the

complexity not only for the tenant but also for the operator. The operator’s set of services

can be unified, thus reducing engineering and management complexity (104, 164).

2.4 Current state of file system services in the cloud

While much of the research literature on DPU-powered cloud storage focuses on block

storage (99, 161), file system storage also still plays a vital role in the storage offerings

of today’s cloud providers alongside block and object storage. In modern workloads like

machine learning and data analytics, the need for multi-tenancy access to data and the

usage of the POSIX file system API are still prevalent and, therefore, require modern file

system services (32).

18

2.4 Current state of file system services in the cloud

2.4.1 Adoption of distributed file system research faces challenges in the
cloud

Cloud file system services are an extension of the classical distributed file systems (DFS).

A DFS strives to satisfy two main properties: high availability and redundancy of a user’s

file data. Common techniques to achieve these properties are replication (137, 154, 163)

and erasure coding (1, 28, 39). Classical distributed file systems are not suited for cloud

deployments where the tenants (i.e., users) must be securely isolated from one another,

and tenants must be agnostic towards the cloud operator’s distributed file system (i.e., no

specialized software stack required for the tenant).

An example of state-of-the-art distributed file system research that is challenging to

adopt in a cloud data center, is the LineFS DFS (74). While it provides state-of-the-art

performance, consistency, and reliability, it is not suited for cloud deployments because it

utilizes a software/hardware co-design inside the host CPU operating system in the form of

a custom kernel module. Cloud tenants expect to be able to run their unmodified software

on top of the infrastructure. They are not keen on integrating untrusted kernel code into

their operating system because of its security implications (150).

2.4.2 Virtualizing distributed file systems

To solve the issues of directly deploying a distributed file system in a cloud data center, the

cloud operator virtualizes their DFS by deploying a gateway layer (6, 50, 61, 101). This

gateway isolates the tenant from the DFS network by translating a common networked file

system protocol such as NFS (54) to the DFS protocol while ensuring security (2).

Figure 2.4 shows how the gateway sits between the tenant and the various subsystems

of the DFS. In the case of the traditional DFS, the tenant (shown in yellow) directly

communicates with the DFS (shown in blue) using the DFS’s specialized communication

protocol and software stack. Where-as, a virtualized DFS is connected to using off-the-

shelf software stacks provided in the operating system (e.g., Linux with NFS over TCP)

via a gateway (i.e., the virtualization server).

The networked virtualization has significant downsides related to performance, avail-

ability, load balancing, and cost (51, 87). A downside that isn’t fully articulated in the

literature is the issue of standardization. Using standardized file system protocols on the

tenant side is advantageous for ease of use. However, it severely stifles innovation. The

NFS protocol, for example, is standardized through IETF’s RFC process. This process

has served the Internet and its interoperability well, but it is not optimal for self-contained

19

2. BACKGROUND

Authentication server Storage server

Metadata server

Tenant server

Authenticates tenant

Requests storage node
for a given file

Reads and writes
file data

Authentication server Storage server

Metadata server

Gateway server

Authenticates tenant

Requests storage node
for a given file

Reads and writes
file data

Tenant server

Standardized protocol
(e.g. NFS/SMB)

Figure 2.4: High-level architectural diagram of a traditional distributed file system (left)
and a cloud file system service (right)

and quickly innovating systems such as cloud data centers. There have been revisions in

the NFS protocol to add features that aim to keep up with the increasing performance

of storage and networking hardware (58, 109). One such prominent NFS protocol feature

is RDMA transport support (106), which seeks to alleviate the server CPU bottleneck by

allowing the client to directly read file data from the server without involving the server

CPU. Tenant-facing services in a cloud environment are generally not provided over the

RDMA transport as it faces many scalability and isolation challenges (15, 49, 78, 153).

Today’s leading cloud providers, therefore, do not offer support for RDMA in their file sys-

tem services at this point and are thus stuck with using outdated the NFS over TCP/IP

protocol.

20

3

The design space of offloaded
distributed file systems (Related
work)

Having established the general cloud environment in today’s computing landscape and

the challenges distributed file systems face for the cloud in Chapter 2. An opportunity

arises for integrating the DPU into the domain of file system services inside the cloud data

center. Today, many cloud services are already being successfully offloaded on a DPU (12),

and there is an opportunity for the DPU to integrate into the file system services of the

cloud data center. While several papers present specific distributed file system designs

that utilize a DPU, none of these works make a concerted effort to explore the hardware

and file system "design space".

In this chapter, we explore the current state of DPU hardware (Section 3.1) and the

currently explored design space of utilizing DPU hardware for designing a file system

service (Section 3.2). Using this overview of the studied design space, we identify gaps in

the design space and propose three novel designs (Section 3.3).

3.1 State-of-the-art DPU hardware

To systematically analyze the available design space for file system offloading using DPUs.

We first closely examine the current hardware offerings public as of August 2023. In line

with the dissection of the levels of offloading capabilities found in NIC hardware from

Chapter 2, we include all hardware that we classify as a DPU (even if the manufacturer

21

3. THE DESIGN SPACE OF OFFLOADED DISTRIBUTED FILE
SYSTEMS (RELATED WORK)

calls it a SmartNIC). To compile the complete list of DPU hardware used in this analysis,

the following three methods are used:

• The academic literature on DPUs is studied.

• The use of DPUs by the cloud providers (which we define as Amazon AWS, Microsoft

Azure, Google Cloud, Oracle Cloud, IBM Cloud, Alibaba Cloud, and Tencent Cloud)

was studied.

• The World Wide Web is searched for commercially available hardware offerings.

For this analysis, we divide the hardware into four categories based on how they allow

the operator to program the offloading capabilities, namely FPGA (Section 3.1.1), generic

CPU cores (Section 3.1.2), DSA (Section 3.1.3) and fixed-function ASIC (Section 3.1.4).

There is an overlap between these categories as most of the DPUs contain generic CPU

cores next to an FPGA, DSL, or fixed-function ASIC offloading engine(s).

ASIC DSA FPGA CPU
Programmability None Low High High
Programming complexity n/a Medium High Low
Energy efficiency & performance High Medium Medium Low

Table 3.1: Hardware specifications and software versions of the machines (including the
DPU) used in the evaluation of DPFS++.

3.1.1 FPGA

The first category of offloading capabilities found in DPUs is the Field-Programmable Gate

Array (FPGA), a particular type of integrated circuit that is reconfigurable and more

performant than a general CPU. An FPGA is programmed using the same descriptive

circuit language (called an HDL) as an ASIC (a "set-in-stone" integrated circuit). Still,

because of its physical properties, it can be reconfigured after deployment in a system.

This reprogrammability capability of FPGAs comes at the cost of lower performance and

increased power consumption compared to ASICs (20, 81, 98). Still, it allows an FPGA

to be useful for applications in scenarios where the non-reconfigurable nature of ASICs

are not viable, for example in artificial intelligence (24), industrial machinery (127) and

high-frequency trading (84).

There are currently three commercially available DPUs that contain an FPGA, namely

the Intel IPU (26, 104), the AMD (previously Xilinx) SmartNICs (9, 40), and the Achronix

22

3.1 State-of-the-art DPU hardware

VectorPath (4). On the non-commercially available side of the DPU hardware landscape,

we find that all the in-house DPUs by the cloud providers, except for Amazon AWS (i.e.,

Google Cloud, Microsoft Azure, Tencent Cloud, and Alibaba Cloud), contain an FPGA as

their main offloading engine (26, 34, 47, 94, 164). Their tight vertical integration in the

software and hardware stack, and amount of technical expertise, diminishes the downsides

of an FPGA-based approach (i.e. more complex to program than CPU or DSL offloading).

3.1.2 Generic CPU cores

A commonly used framework for dividing the tasks performed in a data center is the data

plane and control plane model. The control plane is the part of the system that executes ad-

hoc or planned management tasks like updating software, handling configuration changes

(by the operator or tenant), handling errors or special edge cases, and orchestrating the

data center in general. The other part of the system is the data plane, which is optimized

for low latency and high throughput. The data plane generally supports all the packets

and operations that applications produce or trigger, to support the high performance needs

of tenants (158).

Generally, DPUs contain generic CPU cores to run the control plane of the data center’s

infrastructure (12, 26, 40, 41, 96, 111, 112, 138, 140). Most of the current generation of

DPUs use Arm cores for this purpose, likely because they are widely supported in Linux

and higher levels of the software stack. By being able to run a Linux-based software stack

on the DPU for control plane related purposes, data centers can more easily adopt DPUs,

than when only having specialized hardware (like an FPGA or DSL offloading engines) on

their DPU.

Most DPUs let the operator offload arbitrary computational tasks off the CPU and onto

the Arm core(s) and Linux software stack. The Broadcom Stingray takes this approach to

the extreme and only has the Arm cores for programmable offloading (21).

3.1.3 DSL offloading engines

The third category of DPU hardware offloading we define is the Domain Specific Language

(DSL) offloading engine; this is not one specific type of programmable offload, but a set of

programmable offloads that each have their different properties and goals (57). In general

terms, every DSL offloading engine focuses on a specific domain of computing to improve

performance compared to a generic CPU. This comes at the cost of needing to program

for a specific type of DSL offloading engine.

23

3. THE DESIGN SPACE OF OFFLOADED DISTRIBUTED FILE
SYSTEMS (RELATED WORK)

Datapath accelerator

The most common type of DSL offloading engine is the datapath accelerator, which is

included on the NVIDIA BlueField-3 (112), Fungible DPUs (138) and Kalray DPUs (41,

71). These engines allow the operator to write offloadable code in the C programming

language and compile them against their specific instruction architecture (NVIDIA and

Kalray do not specify their architecture, and Fungible uses MIPS) using a supplied Software

Development Kit (SDK). An offload in this context is any computational function with a

trigger event and an output event. An offload triggers based on hardware events, e.g., an

incoming network packet or signal from the host CPU, and finalizes by optionally sending

a packet over the network or replying to the host CPU. Specific capabilities of the datapath

accelerator vary per DPU manufacturer and model.

P4

Two commercially available DPUs (the Pensando DPUs (97) and Netronome SmartNICs (140))

support executing programmable offloads through the P4 programming language. The P4

language is designed for processing packets at line speed on networking hardware, where

the available resources of the hardware, limit the definition of processing. The language

is Turing complete but constrained in some aspects, such as not supporting infinite loops.

At compile-time, the programmer knows whether their processing pipeline will "fit" onto

the hardware (19).

GPU

Lastly and possibly most uniquely, the NVIDIA BlueField line of DPUs also has models

with a top-of-the-line GPU onboard that NVIDIA calls Converged Accelerators (115).

These DPUs put Arm cores, a NIC, a GPU, and other offloading engines onto a single PCIe

card. The GPU is accessible from the Linux operating system running on the Arm cores and

must be programmed using NVIDIA’s GPU-specific programming language CUDA. Having

the GPU and NIC on a single PCIe card allows the GPU to be directly accessible over

the network without the intervention of a traditional x86 host CPU. NVIDIA claims this

removes the host CPU bottleneck for networking in GPU computationally heavy workloads

such as distributed artificial intelligence.

24

3.2 The current DPU-offloaded file system design space

3.1.4 Fixed-function offloading engines (ASIC)

Where the previous three offloading hardware categories were in some form and to some

extent all programmable, the fourth and last category we identify is the set of fixed-function

offload engines. As the name implies, the function (input, computation, output) is not

programmable and fixed in the chip (often as an ASIC). The specific functions differ widely

between DPU models; however, they generally represent the three service subdomains of

a data center: security, storage, and networking. Examples of fixed function offloads

commonly found in commercial DPUs are encryption/decryption (e.g. AES, RSA, or

IPsec) (26, 26, 40, 71, 111, 112, 138, 140, 140), compression/decompression (e.g. deflate

or LZ4) (26, 26, 111, 112, 138), data filtering (e.g. using regex) (111, 112, 138), NVMe to

NVMe-oF translation for remote block storage (26, 26, 40, 71, 111, 112, 138), and Open

vSwitch (i.e. configurable network switching) offloading (26, 26, 40, 71, 111, 112, 138, 140,

140).

3.2 The current DPU-offloaded file system design space

This section examines the current literature on distributed file storage offloading using

DPUs (inside and outside a data center environment). We are unaware of any publicly avail-

able industrial or commercial systems for distributed file storage offloading using DPUs.

Surveying the literature, we find that there are currently three academic papers on dis-

tributed file system offloading to DPUs (44, 74, 87). To depict the currently explored

design space, we categorize these three academic research systems into two designs: partial

offload and guided passthrough.

3.2.1 The partial offload design

Distributed file system tasks traditionally executed on the host CPU by the DFS client,

such as the replication of data across other nodes (to prevent data loss in case of a node

failure), take up significant host CPU resources and cause performance bottlenecks and

instability. In the LineFS paper (74), the authors propose a DFS client that offloads several

of the CPU-intensive DFS tasks to the DPU. Their experiments show that by tightly

integrating the host DFS client and a commercial DPU’s software stack, and executing the

noisy DFS tasks on the DPU instead of on the host CPU, application latency is improved

by up to 80%.

25

3. THE DESIGN SPACE OF OFFLOADED DISTRIBUTED FILE
SYSTEMS (RELATED WORK)

The second research system that we categorize as a partial offload design was proposed

by Di Girolamo et al. at SuperComputing’22 (44). Like LineFS, the system we refer to

as Girolamo also integrates the host DFS client and DPU software stack but takes a more

transparent angle towards the host DFS client. In Girolamo, the host DFS client only

performs the fundamental DFS operations (i.e., communicating with the metadata server

and storage nodes) on the host CPU and tasks the DPU to perform the DFS policies on

a per-operation basis. The DFS policies include noisy tasks like replication and security-

related tasks such as authentication and authorization. This removes the need for the host

CPU tenant to be aware of the DFS operator’s policies. Making it possible for the DFS

operator to modify the policies without requiring access to the tenant’s system or requiring

the tenant to upgrade their DFS client.

3.2.2 The guided passthrough design

The second design type that we find in the literature is the guided passthrough design,

deployed in production cloud data centers by Alibaba since 2020 in their Fisc system (87)

with their in-house FPGA-based X-Dragon DPU (164). In Fisc, the amount of work

performed by the DFS client on the host CPU and the DPU is minimized through tight

software and hardware co-design, and the DPU passes through the file system operations to

the remote backend in a guided manner. The DPU contacts a proxy server (every storage

node is co-located with a proxy server) to learn which storage nodes hold the data of a

chunk of a file. This data is cached inside the DPU for future requests. The choice to

minimize the work performed by the DPU is rooted in the resource constraints imposed

by an FPGA-based DPU that is also utilized for other cloud systems and services.

3.3 Opportunities in the design space

In this section, we identify the gaps in the current design space (Section 3.2) by changing

design parameters to create new designs and identify hardware (Section 3.1) that can power

these designs. We propose three designs currently left unexplored in the literature: full

offload (Section 3.3.1, gateway passthrough (Section 3.3.2), and decoupling (Section 3.3.3).

These three novel designs are used in the design of DPFS in Chapter 4 and DPFS++ in

Chapter 5.

26

3.3 Opportunities in the design space

3.3.1 The full offload design

The three research systems described in the academic literature perform all distributed file

system computations and logic either partially on the DPU and partially on the host CPU

(in the case of LineFS and Girolamo) or entirely on the remote server (in the case of Fisc).

When we take this design parameter to an unexplored extreme, we find a design where

the DFS is fully offloaded onto the DPU. In this design, all elements of the DFS client

are executed on the DPU, and the operating system running on the host CPU passes all

file system operations to the DPU and delegates the resolving of the operations entirely

to the DFS client running on the DPU. Currently, DFS clients are written as software for

generic CPUs; implementing this design could leverage the common ARM-based DPUs

(such as the NVIDIA BlueField) to run said DFS clients. FPGA-based DPUs could also

be leveraged by utilizing high-level synthesis (HLS) programming frameworks that FPGA

vendors offer that allow "high-level" C or C++ code to run on an FPGA with minimal

changes.

This design approach is implemented in DPFS by running the full DFS client on the

ARM cores of a NVIDIA BlueField-2 and is further described and advocated for in Chap-

ter 4.

3.3.2 The gateway passthrough design

The Fisc paper shows that a guided passthrough design can provide high throughput and

low latency in a cloud multi-tenancy environment. However, we identify a critical drawback

that can be alleviated by drawing inspiration from the NFS gateway architecture currently

deployed in many cloud data centers (see Section 2.4.2). Namely, the guided passthrough

design requires the remote storage backend to be tightly integrated into the software stack

that runs on the DPU. This prevents the implementation of said design from being portable

between different deployments of independent data center operators, where many different

storage backends are in use (see Section 4.4.3). This contrasts with the NFS gateway

design, whose portability between various remote storage systems has contributed to its

widespread use in today’s Cloud data centers.

The second design that we propose in the design space of DPU-offloaded DFS virtualiza-

tion systems is the gateway passthrough design, which combines the guided passthrough

design proposed by Fisc and the system design that a DFS with an NFS gateway imple-

ments (see Section 2.4.2). The gateway design is visually shown in Figure 3.1. In this

design, when the DPU receives a file system operation from the tenant’s operating system

27

3. THE DESIGN SPACE OF OFFLOADED DISTRIBUTED FILE
SYSTEMS (RELATED WORK)

File system
device

DFS cluster

Gateway
Server

CPUDFS Client

NIC

NIC

Networked interconnect

Gateway
passthrough

handler

Figure 3.1: Diagram of the gateway design

on the host CPU, it is immediately forwarded to a remote gateway server. The gateway

server is tasked with resolving the operations by running the DFS client on said server.

This allows any currently deployed DFS to be reused in a DPU-based system (i.e., no

integration in the remote side of the DFS), and compared to the NFS gateway approach,

the advantages of a DPU-centric approach like the decoupling of the network stack and

improved maintenance capabilities are retained.

DFS clients take up a considerable amount of hardware resources under demanding work-

loads (74), and the resources found in current-generation DPUs are meager compared to

those found in current-generation server CPUs (quantified in Section 5.3. An advantage

of the gateway passthrough compared to the full-offload design, which can also reuse any

existing DFS client, is that it is not limited by the resource constraints imposed by the

DPU hardware. As the DPU is only tasked with passing through the operations from the

host CPU to the remote gateway, the available bandwidth of a gateway passthrough imple-

mentation is expected to be significantly higher than that of a full-offload implementation.

The gateway passthrough design is implemented in DPFS++, and the implementation is

described in Section 5.3 and evaluated in Section 6.4.

3.3.3 Decoupling of the file system client on the host and the DPU

Tight software and hardware co-design across multiple layers of the stack has been a

widely successful system design method in academic research and industrial data center

deployments (79, 131, 145). However, as touched on in Section 2.4.1, this co-design can

28

3.3 Opportunities in the design space

make it difficult for cloud data centers to adopt these innovations for tenant facing services.

The three systems in the current design space (LineFS, Girolamo and Fisc) also face this

issue, requiring a custom DFS client integrated with the other software and hardware stack

layers.

To remedy this issue, a standardized file system over PCIe protocol like virtio-fs (147)

can be used to let the DPU expose itself as a file system to the tenant. This protocol

is already upstreamed in the Linux kernel and requires no kernel or userspace software

modification on the host’s CPU software stack. With such a standardized protocol, the

host file system client’s implementation is decoupled from the DPU. It is left up to the DPU

to decide how much of the DFS’s tasks are performed on the DPU (e.g., the full-offload

design) or a remote server (e.g., the guided passthrough design or gateway design).

Several commercial DPUs can expose arbitrary PCIe devices to the host CPU that the

operator on the DPU programs. For example, the Pensando DPU (97) offers a SDK that

can be programmed from the P4 engine or the Arm cores, which allows one to interact

with the PCIe hardware and create a PCIe device from P4 or C code. FPGA-based DPUs,

like those from AMD (previously Xilinx) (9), also have similar SDKs that can be utilized

to expose a PCIe device (and thus a virtio-fs device) to the host CPU.

The decoupling design is an essential part of the design of DPFS, which is further

detailed in Chapter 4.

29

3. THE DESIGN SPACE OF OFFLOADED DISTRIBUTED FILE
SYSTEMS (RELATED WORK)

30

4

DPFS - a DPU-Powered File System
virtualization framework

The design space explored in Chapter 3 introduced several design options for the manner

in which the host CPU, DPU, and the remote storage server interact and how they di-

vide their responsibilities. As a first effort towards evaluating parts of the design space

that previously have been unaddressed in the literature, we present the DPFS framework

that presents the design, implementation, and evaluation of a full-offload design using the

NVIDIA BlueField-2 (111). We report that using the DPFS framework, the host CPU is

4.4× more efficient per I/O, and delivers comparable performance to a tenant with zero

configuration and without modification of their host software stack while allowing work-

load and hardware-specific backend optimizations. The DPFS framework and its artifacts

are publically available at https://github.com/IBM/DPFS.

This chapter consists of an extended version of the following paper: "Peter-Jan Gootzen,

Jonas Pfefferle, Radu Stoica, and Animesh Trivedi. 2023. DPFS: DPU-Powered File Sys-

tem Virtualization. In Proceedings of the 16th ACM International Conference on Systems

and Storage (SYSTOR ’23). Association for Computing Machinery, New York, NY, USA,

1–7. https://doi.org/10.1145/3579370.3594769". The new contributions that were

added for this thesis are marked using • in this chapter.

31

https://github.com/IBM/DPFS
https://doi.org/10.1145/3579370.3594769

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

ext4 ext4 + NVMe-oF XFS Btrfs

I/O operations 5.2 13.7 3 4.6
Total Bytes (in KiB) 44.7 46.8 12 125.3

Amplification 11.2x 11.7x 3x 16x

Table 4.1: Analysis of storage (block) or network (packets with NVMoF) operations for a
single 4KiB file write.

4.1 The case for a full-offload DPU-Powered File System Vir-
tualization framework

Building a high-performance, scalable, cloud-native file system for applications is a chal-

lenging task. First, the raw performance of storage and networking devices are constantly

increasing, while the CPU performance improvements have stalled (107, 146). As a result,

delivering the full speed of I/O devices in a disaggregated storage setting takes a consider-

able amount of CPU resources (76, 145). For example, Alibaba reports that 12 CPU cores

are required to deliver 200 Gbps of block-level traffic (99). At the file system level, LineFS

reports that with Ceph, a single fully-utilized CPU only delivers ~10 Gbps bandwidth on

a 100 Gbps link (74). The question of CPU efficiency is also important for bare-metal

machines, which have become popular in clouds recently (42, 118, 161). Second, client-side

CNFS logic can be complex and bloated, as it has to implement logic for communication

and coordination with metadata and data servers, client-side buffer and connection man-

agement, caches, etc. As a result, it is not uncommon for distributed file system clients to

consume GBs of DRAM and a significant amount of CPU cycles, thus limiting how many

concurrent tenants (VMs, containers) can be packed on a server (5, 87). Lastly, the close

coupling of the file system API and its implementation makes it difficult to deploy new

extensions or optimizations. For example, a bare-metal tenant using Ceph can not easily

switch to HopsFS (108) or InfiniFS (95) without significant disruptions if it experiences

metadata scalability challenges. Furthermore, many of these CNFS come with hundreds

of performance knobs and features, which requires explicit deployment and optimizations

from the tenant side to extract the best possible performance.

To address the aforementioned challenges, we propose to virtualize the access to a file

system by offloading the file system client to a DPU to offer a tenant-transparent, light-

weight, high-performance file system service. Such a design has multiple advantages: First,

virtualization decouples the file system API from its backend implementation, which en-

ables us to optimize the backends to support multiple workload needs such as multiple

32

4.1 The case for a full-offload DPU-Powered File System Virtualization
framework

APIs (88), scalable metadata lookups with KV stores, decoupling of data from metadata

management (83). This virtualization design combines the full-offload and decoupling

designs proposed in Section 3.3.

A limited form of such decoupling is currently offered by cloud providers in the form

of an NFS gateway to the CNFS client (6, 50, 101). We argue this approach gives away

control of the file system client from the cloud provider, and demonstrate that the Linux

kernel NFS client has high overheads (Section 4.3.4). Second, by offloading (and leveraging

the hardware acceleration of the DPU) the file system implementation, we free host CPU

resources for the tenant. One can argue that offloading capabilities can also be leveraged

by the host either at the block or application level. Block-level offloading allows a fully

offloadable I/O stack (86, 102), however, it suffers from significant I/O amplifications.

We quantify this amplification (93) in Table 4.1, where we report the number of block-

level or network-level operations (packets for NVMe-oF storage disaggregation) generated

in response to a single 4 KiB file write operation. Depending on the file system, the

amplification can be as high as 3-16×, thus requiring proportional gains from hardware

offloading. Furthermore, in comparison to local block I/O, NVMe-oF also amplifies the

average number of I/O operations needed (5.2 vs. 13.7). On the other hand, with file

system-level virtualization, this will be a single offloadable file operation from the host

to the DPU and then from the DPU to the file system backend. An application-level

solution requires rewriting the application to benefit from the offloading capabilities of

the DPU, which are non-trivial and non-standardized (except for RDMA and NVMe-

oF style offloading). Lastly, a DPU-powered design does not require any fine-tuning or

configuration from the tenant side. All CNFS-related configuration and optimizations can

be consolidated on the DPU, under the cloud provider’s purview, freeing the host CPU

for tenants. The physical separation of the DPU (which runs the cloud provider logic)

from the tenant (on the host) also discourages any resource-sharing based side-channel

attacks (42), thereby improving tenant isolation and security.

In this chapter, we present DPFS, a DPU-Powered File System virtualization framework

for cloud environments, based on the full-offload design from Section 3.3.1 and the decou-

pling design from Section 3.3.3. DPFS leverages the virtio-fs protocol to communicate

between the host and the DPU. The DPU and host communicate via PCIe memory-mapped

virtio (133) queues using the FUSE file I/O command set. As virtio-fs is standard-

ized (147) and included in the Linux kernel (128) (no installation required), this design

enables DPFS to avoid the need for running a custom CNFS client on the host. The

decoupling of the front-end (a standard file system API) from its backend implementation

33

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

(i.e., the CNFS) with a bump-in-the-wire architecture on the DPU (47) allows the cloud

provider to do a variety of network and storage optimizations (scheduling, caching, quotas,

QoS), without having the tenant perform any code installation or change any configura-

tion. To prove DPFS’s flexibility, we have implemented three file system backends: (i)

DPFS-Null, a no-op DPU client useful for development and benchmarking; (ii) DPFS-NFS, a

NFS backend that runs on the DPU and translates the virtio-fs requests into equivalent

NFS commands and communicates with a remote NFS server using libnfs with NVIDIA

XLIO (partial TCP offloading) (117); (iii) DPFS-KV, a RAMCloud-based backend that

implements low-latency I/O operations on small files, a suitable fit for KV stores (120).

The contributions in this chapter include:

• We make a case for transparent file system access virtualization for cloud-native file

systems using DPUs.

• We present the design and implementation of DPFS, an open-source file system vir-

tualization framework with support for the NVIDIA BlueField-2 DPU (111) (https:

//github.com/IBM/DPFS).

• Evaluation of DPFS that demonstrates that it (i) is light-weight; (ii) delivers equal

and better performance than a host NFS client; and (iii) is customizable and modular

with multiple file system backend implementations.

4.2 The design and implementation of DPFS

To accelerate the development of DPU-powered file systems, we implemented the DPFS

framework. The framework is composed of three layers, each serving a different purpose, as

shown in orange in Figure 4.1. The first layer, (DPFS-HAL) provides a Hardware Abstraction

Layer (HAL) for the vendor-specific DPU functionality and the host-DPU optimizations.

Its role is to reduce the DPU-specific knowledge required to develop a file system backend,

to simplify code maintenance, and to allow a faster transitioning to a new type or new model

of a DPU. The second layer implements a FUSE-like API (i.e., libfuse (3)) on top of the

raw virtio-fs protocol buffers (DPFS-FUSE Section 4.2.3). The third layer contains the file

system backend implementation (i.e., the DPU logic that allows connecting to the remote

file system). Here we provide three implementations. The first client is DPFS-Null, which

implements a no-op backend that immediately replies to any request. This back-end is used

for optimizing and benchmarking of the host-DPU communication, i.e., the DPFS-HAL and

DPFS-FUSE layers. The second client is DPFS-NFS (Section 4.2.4), an optimized userspace

34

https://github.com/IBM/DPFS
https://github.com/IBM/DPFS

4.2 The design and implementation of DPFS

DPU HW accelerated
virtio-fs queues

CPU

DPFS-HAL

Userspace
polling

DPFS-FUSE

DP
U

 li
br

ar
y

Backends
NullNFS KV

NFS server RAMCloud

4

5

6

TCP offloaded sockets RDMA

NIC

Application

Kernel

Userspace

FUSE
Virtio-FS

1

3

VFS
2

virtio-fs over PCIe

Host

Application

Kernel

Userspace

NFS
TCP/IP

A

C

VFS
B

Host

NIC driver D

NFS server

NIC

Figure 4.1: The architecture of DPFS compared to a host NFS client. Green boxes are the
standard in-kernel code, and orange boxes are our contributions.

NFS client that allows connecting to existing cloud NFS-based file system services. Using

this client, a cloud provider would not have to perform any changes to existing file system

back-ends to employ DPU virtualization. The third client is a key-value client (DPFS-KV

Section 4.2.5) that connects to a RAMCloud (120) back-end and leverages RDMA to access

files stored in the KV store. Past research has demonstrated that KV stores can be a better

fit for file system implementations (79).

4.2.1 Design constraints of DPFS•

Every system is designed under certain design constraints that affect the capabilities and

characteristics of said system. The key design constraints of DPFS and the DPFS project

come from the goal of forming a cloud storage service. Cloud providers require high-

performance levels, efficiency, interoperability, and maintainability between their systems

and those of the cloud tenants. We define the following five design constraints under which

35

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

DPFS is designed and how they influence its design:

• No application changes - In this work, we constrain ourselves to support all ex-

citing file-based workloads on Linux systems, namely those going through the VFS

virtual file system of the kernel.

• No host kernel changes - Cloud tenants are not keen on changing their validated

Linux kernel to include untrusted code supplied by a third party at the kernel’s

security level. Therefore, we only use Linux kernel functionalities already included

in the stable releases, i.e., the virtio-fs device driver that can be accessed through

the VFS.

• Minimizing performance overheads - To provide file storage performance that

can keep up with increasing storage demands from modern workloads like AI (16,

103), we design the DPFS-HAL and DPFS-FUSE layers to perform minimal processing

and the backends (DPFS-NFS and DPFS-KV) to utilize high-performance computing

techniques like TCP offloading and RDMA.

• Supporting existing cloud infrastructure - To aid the transition of file system

services in cloud data centers, we design DPFS to consume existing DFS infras-

tructure using NFS via DPFS-NFS (and kernel-based file systems in DPFS++ via

DPFS-Kernel in Section 5.2).

4.2.2 The DPFS I/O Path

In the host NFS client configuration (see Figure 4.1, left side), the application submits a

file-related syscall (e.g., a read() call), that context switches to the kernel. The request

traverses the VFS A and NFS B layers, then the TCP/IP stack C , and is finally sent to

the NIC driver D . The NIC communicates with the file system backend. Upon receiving

a response, the reversed path is initiated by an interrupt.

On the other hand, the DPFS I/O path (see Figure 4.1, right side) is much more

lightweight on the host, without requiring application or kernel modifications. The request

first passes through the VFS layer 1 and is then forwarded to the lightweight FUSE layer

2 that transforms the VFS operation into a FUSE request message. The FUSE request

is then passed to the virtio-fs layer 3 . It encapsulates and transports the message over

PCIe, through virtual functions to the appropriate host tenant and virtio queue on the

DPU. On the DPU, a DPFS-HAL thread retrieves the message from the queue 4 , then

36

4.2 The design and implementation of DPFS

passes it to DPFS-FUSE 5 . DPFS-FUSE extracts the original FUSE request and forwards it

to the file system backend 6 .

The complexity of the code path can be roughly quantified through lines of code in

the Linux kernel (v6.2). Steps B - C contain 181k lines of source code (assuming IPv4),

while steps 2 - 3 contain 13k lines of source code. On the DPU, the clients operate in

userspace, thus no context switching is required. Furthermore, file system backends on the

DPU can use hardware acceleration such as RDMA and TCP offload. Overall, the code

path and the CPU overhead per operation on the host are significantly reduced, as we

show in Section 4.3.4.

We emphasize that virtio-fs uses FUSE in such a manner that its traditionally large

overheads are not incurred. The virtio-fs protocol uses FUSE for its standardized en-

coding of Linux Virtual File System (VFS) operations into the FUSE-ABI. Traditional

FUSE encodes VFS operations and sends them back to userspace to be handled by a

userspace file system implementation, incurring two extra context switches and signifi-

cant overhead (151). Where-as virtio-fs encodes the VFS operations using FUSE and

sends them to the virtio-fs PCIe device (i.e. the DPU) directly from kernel space, thus

incurring no extra context switches.

4.2.3 DPFS-HAL & DPFS-FUSE Implementation

One of the two main challenges when implementing a file system on top of the virtio-fs

functionality of the DPU is to transparently handle the DPU’s software stack. This includes

configuring the software stack, the virtio-fs queues, implementing efficient polling and

scheduling. For our DPU (the NVIDIA BlueField-2), the firmware exposes the virtio-fs

device in userspace as a RDMA device through InfiniBand verbs. NVIDIA provides a li-

brary (NVIDIA SNAP) to setup and configure virtio devices and to expose the virtio-fs

functionality. However, DPFS-HAL (Hardware Abstraction Layer) hides such complexities

by exposing only the virtio-fs relevant configuration parameters of the DPU’s soft-

ware stack. DPFS-HAL’s C-API allows the virtio-fs implementation to register a han-

dle_request callback, poll on the virtio queues (in a thread managed by DPFS-HAL or

manually) and complete virtio-fs requests in an asynchronous fashion.

Developing a file system backend using the virtio-fs protocol that DPFS-HAL exposes is

cumbersome, as the file system developer must consume the raw FUSE-ABI that the Linux

kernel exposes over the virtio-fs protocol. The FUSE-ABI has limited documentation

as it is meant to be consumed through the popular libfuse library (3), which acts as

the reference implementation and API for the ABI. DPFS-FUSE exposes a C-API that is

37

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

similar to that of the libfuse API. By exposing a well-known and commonly used API,

we report increased virtio-fs file system development speed. A file system developer

could use userspace FUSE as a first step during development and transition to a DPU

environment when available. Our DPFS-FUSE API builds on top of libfuse with added

support for asynchronous operations and optimized function calls to decrease the number

of data copies and allocations.

4.2.4 DPFS-NFS: Hardware-accelerated NFS Backend

The DPFS-NFS backend implementation leverages the accelerated socket API of NVIDIA

XLIO (117) and the libnfs library (134). NVIDIA XLIO is a shared library that over-

loads the socket C-API to leverage the network offloading capabilities in the BlueField-2

hardware with reduced data copies (not fully zero-copy). This implementation showcases

the possibility to leverage hardware acceleration through the DPU without any changes

to the host file system client and the remote file system provider. Our experiments show

the performance benefits of implementing an userspace hardware-accelerated NFS client.

The standard Linux kernel NFS client (running on the DPU), when using io_uring, incurs

100.5 µsec read and 101.9 µsec write latencies for 4 KiB accesses. The software-only lib-

nfs attains 76.0 µsec and 74.2 µsec respectively. Adding NVIDIA XLIO to libnfs further

reduces latency to 52.9 µsec and 52.2 µsec, respectively.

On the DPFS-HAL queue poller thread, the DPFS-NFS file system implementation trans-

lates the FUSE request into NFS v4.1 (109) and sends the NFS request to the remote

storage backend using libnfs and NVIDIA XLIO. A second thread polls on the NVIDIA

XLIO socket using libnfs, translates NFS v4.1 responses back into FUSE, and messages

the DPFS-HAL poller thread to complete the virtio-fs request.

4.2.5 DPFS-KV: RAMCloud KV store Backend

The file system transparency of DPFS allows one to consume a specialized file system with-

out the need to make changes to the host. We demonstrate this by implementing a DPFS

backend for RAMCloud, a distributed, in-memory KV store that provides low-latency ac-

cess by leveraging RDMA (120). DPFS-KV maps file system operations from DPFS-FUSE to

KV operations by exposing a set of key-value pairs through the file system’s root directory,

where each file represents a key-value pair. Two tables are stored in RAMCloud, the first

to store data (file contents) and the second to store metadata (attributes, name, etc.). To

index into the metadata table, the file name is hashed and used as the key. In the metadata

38

4.3 Evaluation

table, a unique inode identifier is stored, which acts as the file’s key for the data table. To

support listing the contents of the flat file system directory (i.e. readdir()), the file name

itself is stored in the metadata table.

1 2 4 8 16 32 64 128
I/O depth

0

1

2

3

4

5

6

T
h

ro
u

gh
p

u
t

(G
iB

/s
)

Read

Write

4 KiB

16 KiB

64 KiB

(a) DPFS-Null random I/O
throughput scaling with I/O
depth.

1 2 4 8 16 32 64 128
I/O depth

0

50

100

150

200

250

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Host NFS

DPFS-NFS

(b) Host NFS and DPFS-NFS
random 4 KiB I/O through-
put.

Host NFS DPFS-NFS
Configuration

0

20

40

60

80

100

120

L
at

en
cy

(µ
s)

38.6µs 43.3µs

DPFS-null

Userspace NFS
(TCP offloaded)

latency

52.9µs
52.2µs

79µs 71.2µs

91.5µs
95.5µs

Read Write

(c) Host NFS, DPFS-NFS and
DPFS-Null latency breakdown
for random 4 KiB I/O

Figure 4.2: Three DPFS performance experiments

4.3 Evaluation

In this section, we evaluate the performance and efficiency of DPFS through the DPFS-Null,

DPFS-NFS, and DPFS-KV backends. Section 6.1 and Table 6.1 detail our experimental setup,

where the Gateway server acts as our NFS server in this chapter. All workloads are

generated using fio with the io_uring I/O engine (45). The DPFS-Null and DPFS-NFS

throughput experiments that were in the original SYSTOR’23 paper (51) are reproduced

from scratch on the new experimental setup of this thesis (see Section 6.1), the others

are unchanged. The differences between the paper’s experimental setup and this thesis’s

experimental setup are three-fold: (1) only a single fio thread is used instead of two (unless

indicated otherwise), (2) single-threaded workloads are now pinned to the core on which

the DPU’s interrupt affinity is mapped, (3) multi-threaded workloads are now pinned to

the DPU’s NUMA node.

4.3.1 Virtualization Overheads (DPFS-Null)

We first measure the throughput of the DPFS-Null backend for random read and write

workloads (10 seconds warm-up, followed by a 60 seconds run). The results of this exper-

iment demonstrate the upper bound on the performance DPFS can deliver.

Figure 4.2a shows throughput of the null-DPU backend (y-axis, in GiB/s) vs. the I/O

(queue) depth. We report throughput for both read and write operations for 4 KiB,

39

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

16 KiB, and 64 KiB block sizes. Throughput scales for both read and write operations as

we increase the I/O depth. It plateaus when using a 64 KiB block size at queue depth

between 16-32 at 5.87 GiB/s for read and 4.32 GiB/s for write operations. For a 4 KiB

block size, a common I/O size in the kernel, the peak read throughput is 1,278 MiB/s

and write throughput is 938 MiB/s, equivalent to 327K and 240K random 4 KiB IOPS,

respectively. At an I/O depth of 1, we measure a read throughput of 193 MiB/s and a

write throughput of 168 MiB/s, which translates to a 38.6 µs and 43.3 µs latency baseline

DPFS overhead respectively.

Multi-threading

1 2 4 8 16 32 64 128
I/O depth

0

500

1000

1500

2000

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

(a) DPFS-Null random 4 KiB I/O throughput

1 2 4 8 16 32 64 128
I/O depth

0

1000

2000

3000

4000

5000

6000

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

P=1

P=2

P=4

P=8

(b) DPFS-Null random 64 KiB I/O throughput

Figure 4.3: DPFS-Null multi-threading experiment with 1,2,4 or 8 fio threads (P)•

In Figure 4.3, the throughput of DPFS-Null is shown under a synthetic fio workload of

4 KiB and 64 KiB random I/O, where the fio thread count is varied with P = {1, 2, 4, 8}.
The blue P = 1 line in Figure 4.3a is identical to the 4 KiB line in Figure 4.2a, and the

three other lines in the figure (P = {2, 4, 8}) show how the system behaves under a multi-

threaded workload. Note that the I/O depth of the x-axis is on a per-thread basis, so with

4 threads and an I/O depth of 32, the total system I/O depth equals 4 ∗ 32 = 128.•

With this experiment, we find that for a small block size of 4 KiB (Figure 4.3a), a single

fio thread cannot saturate the DPFS-Null device (its CPU utilization is 100%). When

moving to two threads, the device can already be saturated (at I/O depth 32, and more

threads do not result in a significant increase in performance. For the larger block size of

64 KiB (Figure 4.3b, we report that a single fio thread can saturate the DPFS-Null device

40

4.3 Evaluation

and that 1, 2, 4 and 8 fio threads all achieve the same performance for a certain total

system I/O depth.•

4.3.2 DPFS-NFS Performance

Having established the virtualization overheads (via the peak performance), we now eval-

uate the complete I/O path to a remote NFS server from the host versus from the DPU

(steps 1 - 6 vs. A - D in Figure 4.1) when using 4 KiB block sizes (10 seconds warm-up,

followed by a 60 seconds run). We select 4 KiB as it is one of the most common block sizes

and is the I/O request size that also matches the granularity of the system memory pages.

4 KiB I/O sizes further stresses the software overheads (memory allocation, scheduling

costs), highlighting any inefficiencies.

1 2 4 8 16 32 64 128
I/O depth

0

500

1000

1500

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Host-NFS

DPFS-NFS

Figure 4.4: DPFS-NFS large block size experiment•

Figure 4.2b shows the throughput (y-axis in MiB/s) vs. the I/O depth (x-axis) of 4 KiB

random I/O. A host NFS client (path A - B) delivers better (11%-21%) read and write

throughput up to an I/O depth of 3. However, above an I/O depth of 4, DPFS benefits

from having a partially offloaded networking stack and delivers better throughput (12%-

32%) than the host NFS. However, all configurations do not scale beyond an I/O depth of

16 (see limitations Section 4.4).

For a larger block size of 64 KiB, Figure 4.4 shows that the throughput of DPFS-NFS

already maxes out at an I/O depth of just 4, while the throughput of host-NFS continues

to increase until an I/O depth of 32. Resulting in the host-NFS system outperforming

DPFS-NFS by 94% and 55% with a block size of 64 KiB for random reads and random

writes, respectively.•

41

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

NFS DPFS-KV

Read 71.2µs (σ: 10µs) 62.6µs (σ: 19.4µs)
Write 79µs (σ: 12.7µs) 70.79µs (σ: 21.2µs)

Table 4.2: Host NFS vs. DPFS-KV 4 KiB file I/O latencies.

We further analyze the latency of 4 KiB I/O operations in Figure 4.2c. As discussed

above, at an I/O depth of 1, the host NFS is faster than DPFS-NFS. For DPFS-NFS, we

break down the overhead into two parts, the DPU-induced latency (shown at the bottom

bars, 38.6-43.3 µsec) and the software latency (the upper part, 52.9-52.2 µsec). We expect

the former latency to improve with the newer generation of DPUs. Furthermore, we use

libnfs with NVIDIA XLIO that emulates socket semantics. We expect a native libnfs

implementation using RDMA would be able also to lower the userspace NFS overheads.

The userspace NFS latency (the latency of NFS from the DPU, the top parts) is 26.7%-

33% lower than the host NFS latency due to the hardware offloaded network stack used

by DPFS-NFS.

4.3.3 DPFS-KV Performance

Lastly, we demonstrate that by specializing the file storage backend with RAMCloud,

DPFS can deliver performance optimizations to workload-specific deployments. Table 4.2

shows our results of accessing complete 4 KiB files stored in NFS and RAMCloud (5 seconds

warm-up, followed by a 10 second run). These files are accessed entirely (i.e., a single I/O

operation). Compared to host NFS, DPFS-KV offers 7-12% latency gains over read and

write operations.

4.3.4 Host microarchitectural analysis

To explain the efficiency gains with DPFS, we conduct a low-level microarchitectural

analysis. We measure the instructions/operations (quantifies the software overheads in the

I/O path), IPC (quantifies the code path efficiency), branch misprediction rates (quantifies

how predictable the code path is), L1 dCache miss rate (quantifies data fetch rates), and

lastly, dTLB miss rates (quantifies memory management related overheads). All events

are measured using perf with the –kernel-only flag on the host CPU, hence, comparing

the cost of in-kernel host NFS with DPFS-NFS. We first measure an idle machine for 10

minutes (5 runs, averaged), and then with a random 4 KiB read/write (50/50 distribution)

using an I/O depth of 128 workload for 10 minutes (5 runs, averaged). By subtracting the

42

4.4 Limitations

NFS DPFS-NFS +/-

Instructions/op 88,453 32,907 -62.80%
IPC 0.57 0.94 +64.21%
Branch miss rate 2.02 1.06 -47.42%
L1 dCache miss rate 8.82 3.82 -56.65%
dTLB miss rate 0.14 0.15 +7.14%

Savings in CPU cycles/op 4.4×

Table 4.3: The microarchitectural profile of the host CPU.

two, we quantify the cost of the host file system client implementations of host NFS and

DPFS (i.e., virtio-fs, DPFS-NFS on the DPU).

Table 4.3 shows that (1) DPFS-NFS is light-weight compared to the host NFS, requiring

62.80% fewer instructions to complete a random 4 KiB operation; (2) it has better IPC,

partially due to the smaller code path, but also due to the polling nature of the DPFS-NFS

request dispatching and processing; (3) DPFS-NFS has lower branch and L1 dCache miss

rate, implying a simplified execution profile. It has marginally higher dTLB miss rates,

which we attribute to the inefficient page usage of virtio-fs (see Section 4.4). Overall, by

combining the instructions per I/O and IPC, we find that the DPFS host I/O path (steps

1-6) is 4.4× more efficient than host NFS (steps A-D).

4.4 Limitations•

The current work is limited by a few restrictions, which are addressed in DPFS++ (Chap-

ter 5) and can be adressed with the advent of more powerful DPU hardware. In this section,

these limitations are explored by examining the current state of DPFS in Section 4.4.1,

Section 4.4.2 and Section 4.4.3

4.4.1 The virtio-fs driver in the Linux kernel•

We currently identify three performance-impacting implementation limitations in the virtio-fs

driver in the Linux kernel: (1) no multi-queue support, (2) excessive usage of memory pages,

and (3) poor handling of a full queue. This section will detail these three limitations of

the virtio-fs driver.

The current implementation of virtio-fs in the kernel does not support multi-queue (128),

hence, DPFS currently only supports a single virtio queue per tenant. Because of an

43

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

implementation limitation in DPFS, we can only leverage a single DPU thread to process

the single virtio queue, limiting the throughput achieved in Figure 4.2a and Figure 4.2b.

Furthermore, the FUSE headers use an excessive amount of pages (3 pages for a read

I/O, 4 pages for a write I/O) to store their headers (128). Due to a memory bottleneck

of NVIDIA XLIO (tight integration with hardware, huge pages, memory pinning) when

using large amounts of memory, DPFS-NFS can only configure the virtio queue size with

a maximum of 64 pages in the DPU. With at least four pages overhead in a virtio-fs

operation, DPFS-NFS is therefore restricted to a queue depth of only 16 (64/4).

When a new file system operation is issued to the virtio-fs driver and the (single)

virtio queue is currently full, the current driver implementation schedules a retry of the

given operation in 1 millisecond. The retry is scheduled and performed without any regard

to ordering in respect to other new file system operations, so an operation can be live

locked (i.e. indefinitely blocked because of the high load) from being put onto the virtio

queue. We identify that this is the cause of the large standard deviation in throughput

and latency with high I/O depths seen in Figure 4.2a and Figure 4.2b.

4.4.2 The DPU hardware

Since virtio-fs file system operations flow through the DPU’s SoC complex, the compa-

rably weak hardware found in the NVIDIA BlueField-2 (ARM A72 cores, single-channel

DDR3) (111) poses a significant bottleneck. This bottleneck can be seen in the throughput

difference of DPFS-Null (Figure 4.2a) and DPFS-NFS (Figure 4.2b). Where DPFS-NFS is only

able to achieve ∼ 20% of the 4 KiB throughput of DPFS-Null because of TCP processing

and the several extra data copies it incurs.

We expect that the next iterations of the hardware/software stack will help alleviate these

limitations and that tightly integrating the file system implementation with the hardware

to prevent memory copies will speed up large block size workloads.

As the DPU’s hardware poses a processing bottleneck, it could turn out beneficial

to adopt a passthrough architecture (like proposed in Section 3.2.2) that minimizes the

amount of processing needed on the DPU. This architecture can be implemented in DPFS

by means of a file system backend that sends the file system operations to a remote server

instead of processing them locally.

44

4.4 Limitations

4.4.3 Deploying DPFS in a cloud datacenter•

Currently, the DPFS framework can only expose the DPU as a single virtio-fs device

to the host operating system. In data center deployments where only a single file system

mount point is required, like containerized and bare metal deployments, this is not an

issue. However, in virtual machine deployments where each virtual machine needs its own

file system (i.e. virtio-fs device), like those common in the cloud, this limits DPFS to

a single tenant. To support the wide variety of datacenter deployment types found in a

cloud environment, DPFS needs to provide multiple virtio-fs devices to the host.

Furthermore, in this work, we implement the file system backends (i.e. DPFS-NFS and

DPFS-KV) in userspace using the DPFS-FUSE API to decrease the number of context switches

to the kernel and improve performance. However, this poses a hurdle for integrating DPFS

in real-world data center deployments, as they employ many different file systems. The first

100 deployments in the 2023 edition of the IO500 list use 37 unique file systems (48). If all

these 100 deployments would desire to move towards DPU-powered file system offloading

with DPFS, it would require 37 file systems to be ported to DPFS-FUSE. It could, therefore,

be beneficial to explore the integration of file system clients that reside in the Linux kernel

(like is common with distributed file systems). This design allows DPFS to be plug-and-

play (i.e. no code changes required) with any existing kernel-based file system and, thus,

existing cloud deployments.

45

4. DPFS - A DPU-POWERED FILE SYSTEM VIRTUALIZATION
FRAMEWORK

46

5

Evolving the DPFS framework into
DPFS++

The DPFS framework and paper present a novel and promising approach to file system

design by implementing a full-offload design using the NVIDIA BlueField-2. This work is

extended in Chapter 4 by adding missing experiments and diving deeper into the limita-

tions. This presents several opportunities for improving performance and adjusting to a

cloud data center deployment environment. In this chapter, we act on these opportunities

by implementing them in the evolved version of the DPFS framework called DPFS++.

The following extensions are designed and implemented in DPFS++ and detailed in this

chapter:

• Two patches for the virtio-fs Linux kernel driver, that (1) improves request laten-

cies during heavy workloads and (2) implements the previously missing multi-queue

functionality, allowing for single tenant parallelism on the DPU (Section 5.1).

• A DPFS++ backend that exposes a file system mounted in the Linux kernel of the

DPU, the plumbing is performed using the state-of-the-art io_uring interface (Sec-

tion 5.2.

• A gateway passthrough implementation in DPFS++ that reduces the complexity of

the data path on the DPU and introduces a gateway server into the system that

resolves file system requests and is fully under the datacenter operator’s control

(Section 5.3.

• Multi-tenancy support that allows a single DPU to expose many virtio-fs devices

and efficiently spreads the load of many tenants across the DPU cores (Section 5.4).

47

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

5.1 virtio-fs driver improvements

The research and engineering effort that has gone into DPFS has shed light on the current

state and deficiencies of the virtio-fs driver in the Linux kernel. These deficiencies were

laid out in Section 4.4.1, and we address two of these issues with Linux kernel patches.

The first patch aims to reduce the latencies under heavy workloads (Section 5.1.1), and

the second patch implements multi-queue functionality that aims to increase the available

parallelism on the host and DPU (Section 5.1.2).

The two patches are based on the Linux kernel 6.5-rc1 release and can be found in the

GitHub repository of the DPFS project 1. The latency patch is currently under review in

its fourth iteration (after back and forths with the maintainers) on the Linux Virtualization

kernel mailing list 2. The multi-queue patch is currently stalled as it cannot be properly

tested due to an issue in the firmware of our NVIDIA BlueField-2.

5.1.1 Improving latencies under heavy workloads

A storage system’s raw performance is only worth as much as the consistency at which

it can deliver this performance. The issue of high tail latencies and high latencies under

certain workloads is therefore considered an issue worth resolving.

In its current form, the virtio-fs driver in the Linux kernel retries a file system op-

eration after 1 ms if it finds the virtio queue to be full. We regard this delay as large,

considering that DPFS provides latencies an order of magnitude lower (∼ 90 µsec us-

ing DPFS-NFS). There is, therefore, the need for a more performant approach to retrying

operations.

A small patch for alleviating the latency issues in the virtio-fs driver

As a first effort towards alleviating the latency issue in the virtio-fs driver, we imple-

mented a small patch for the driver (32 lines changed). With this patch, the driver does

not retry queuing the request after a given timeout; the driver executes the two following

steps:

• If the queue is full when a new request comes in, place the request on a dynamically

allocated linked list inside the driver.
1https://github.com/IBM/DPFS/tree/master/linux_patches
2https://lists.linuxfoundation.org/pipermail/virtualization/2023-July/067450.html

48

https://github.com/IBM/DPFS/tree/master/linux_patches
https://lists.linuxfoundation.org/pipermail/virtualization/2023-July/067450.html

5.1 virtio-fs driver improvements

• When other requests complete, take these completed requests off the queue. Imme-

diately after removing the completed requests, attempt to fill the queue again with

earlier requests from the linked list.

• On device remove (i.e., the file system is unmounted), the linked list is flushed to the

device.

By immediately filling up the queue again with old requests before newer requests can

be queued, requests cannot jump ahead anymore. Leading to the latencies being more

predictable. Additionally, the hard-coded timeout value is removed as the retrying rate is

directly tied to the speed at which the virtio-fs device operates.

5.1.2 Multi-threading a single tenant using multiple queues

For a single tenant, DPFS is only able to utilize a single DPU core for polling on the

single virtio queue and resolving them to remote file system requests (e.g., NFS or RAM-

Cloud). The NVIDIA BlueField-2 has eight cores (111), and newer DPUs like the NVIDIA

BlueField-3 already double this with 16 cores (112). This leaves a lot of resources on the

table for deployments with few tenants, like bare-metal servers with only a single tenant

on the host CPU.

A possible approach for introducing multi-threading into DPFS would be to poll the sin-

gle virtio queue on a thread and distribute the incoming requests onto N other threads.

This work-dealing approach to multi-threading is used in the userspace FUSE library (3)

as FUSE itself also only has one queue (i.e., the FUSE character device /dev/fuse). This

approach significantly increases performance under load compared to a single-threaded

approach, however, the single queue and work dealing thread becomes a bottleneck un-

der load (151). A bottleneck that increases in size alongside our core count. For this

reason, a multi-queue approach has recently been pushed for FUSE (59). Many other

high-performance systems efforts have also been toward multi-queue, notably block stor-

age with NAND-flash devices (18) and networking with RDMA (70).

With these findings and the current trend of increasing core counts on DPUs in mind,

it becomes apparent that multi-queue is the way forward for high performance on modern

hardware. The virtio-fs protocol specification supports multi-queue (147). The multi-

queue feature of the virtio-fs protocol is visually shown in Figure 5.1. The virtio-fs

device has multiple queues and the capability to process the requests from these queues in

parallel. Every CPU core on the host CPU, is assigned a virtio queue, and every request

generated on core X is sent to queue X.

49

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

Virtio-fs device

Virtio-fs over PCIe

Queue 0 Queue 1 Queue 2

Host CPU

Core 0 Core 1 Core 2

App thread
Userspace

Kernel

App thread

VFS
FUSE

Virtio-fs

App thread

Operation
handler 0

Operation
handler 1

Operation
handler 2

Figure 5.1: Diagram of the added multi-queue support in the virtio-fs Linux kernel device
driver.

However, the virtio-fs driver implementation in the Linux kernel does not support

multi-queue. It is noted in the source code as "TODO multiqueue" (128). To add multi-

threading for a single virtio-fs device (i.e., a single tenant), a patch is implemented

that adds the multi-queue functionality to the virtio-fs driver in the Linux kernel, and

the DPFS++ framework is adapted to support polling on multiple virtio queues per

virtio-fs device.

This patch and implementation were not completed because of issues with the NVIDIA

BlueField-2 that occurred when using multiple virtio queues in combination with virtio-fs.

When testing the feature, the DPU library would find an inconsistent state provided by

the DPU’s firmware. This issue was discussed with engineers from the storage virtualiza-

tion team at NVIDIA. However, they cannot provide us with support or investigate the

issue, as it is not a publically supported feature. But the next section will discuss the

implementation details of the patch.

50

5.2 Supporting kernel-based distributed file systems

A patch for adding multi-queue support in the virtio-fs driver

To implement the multi-queue functionality into the driver, we draw inspiration from

the virtio-net driver that also uses the same underlying virtio infrastructure of the

Linux kernel and implements multi-queue support. The virtio-net driver maximizes

core locality by creating a 1:1 mapping of cores and queues. The virtio-net driver with

our multi-queue patch performs the following procedures related to multi-queue:

• On device probe (i.e., when the device is registered in the driver), create as many

queues as there are cores.

• On device probe, the interrupt affinity of each virtio queue is set to its corresponding

core.

• On device probe, the core-to-queue affinity of the networking layer is set up. This

ensures that when the networking layer queues a new packet to the device, it can

select the right queue depending on the current core.

• On device probe, callbacks are registered in the CPU hotplug subsystem that trigger

when cores come online or go down (cores are dynamically turned on and off for

energy saving). The callbacks renew queue affinities for interrupts and renew core-

to-queue affinities in the networking layer. This can result in multiple queues being

mapped to a single core when not all cores are online.

• On device remove, the queues are flushed, and affinities are cleaned up.

These procedures are trivially recreated in the virtio-fs driver, except for setting up

the core to queue affinity for new requests. This is less trivial because, for virtio-fs, there

is no higher layer (like the networking layer in virtio-net) that owns this responsibility.

The patch solves this by keeping track of a multi-queue mapping inside the virtio-fs

driver that maps core IDs to queue indices using an array, which is updated when a core

comes online or goes down. When a new request needs to be sent to the device, the current

core ID is used to index into the array and select the right queue.

5.2 Supporting kernel-based distributed file systems

A key issue that a data center operator currently faces when adopting DPFS is the issue

of file system backend support. DPFS only supports NFS remote servers through the

DPFS-NFS backend and RAMCloud remote servers through the DPFS-KV backend. NFS is

51

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

commonly deployed in today’s data centers to virtualization the distributed file system

backend (see Section 2.4.2); these deployments could utilize DPFS by connecting it to

their existing NFS infrastructure. This is, however, undesirable as the DPU is already a

virtualization layer under the purview of the data center operator; thus, keeping the NFS

virtualization layer only increases cost and performance overhead. To remove the obsolete

NFS virtualization layer from these deployments, DPFS must be able to connect to the

internal distributed file system. Connecting DPFS to a distributed file system requires

porting the file system client to the DPFS-FUSE API and programming model, a large task

given that it needs to be performed for each distributed file system individually, of which

there are currently many in deployment (48).

To solve this remote distributed file system support issue, DPFS++ implements the

DPFS-Kernel file system backend that translates the virtio-fs operations down to the

kernel-based file system operations, exposing a DFS mount-point of the kernel’s virtual file

system to the tenant on the host.

5.2.1 Accessing a file system efficiently in the modern Linux kernel

Traditionally, accessing the file system on a POSIX-compliant operating system was per-

formed fully synchronously. All operations, such as opening a file, reading a file, or re-

naming a file, block the current thread until the operation has been completed. To achieve

parallelism with file system operations, a program must utilize many threads that each

issue a blocking operation. Today’s workloads are massively parallel, and operating sys-

tems must be able to provide fast storage access to not bottleneck the workload. So the

burden on file system I/O intensive applications to manage these I/O blocking threads has

become a growing burden, especially as context switches between threads and the kernel

has become an increasing bottleneck in modern systems (10, 159). Thus, there has been a

push toward asynchronous APIs that do not require creating and managing many threads.

One of these APIs is the io_uring API of the Linux kernel (introduced in 5.1, released

on May 6th 2019), which provides a generic interface for submitting operations to the

kernel and retrieving operation completions from the kernel (36). The io_uring API is

currently regarded as the state-of-the-art for interfacing with the Linux kernel and is the

best-performing file system API that the Linux kernel supports (45). For the context of

file system operations, one of the advantages over previous asynchronous interfaces of the

Linux kernel (e.g., libaio) is the fact that it not only supports read and write operations

but also metadata operations like open and getattr (36). This prevents the often high

latency (95, 108, 154, 163) metadata operations from blocking the performance crucial

52

5.2 Supporting kernel-based distributed file systems

DPU HW accelerated
virtio-fs queues

CPU

DPFS-HAL

DFS cluster

Userspace
polling

DPFS-FUSE

DP
U

 li
br

ar
y

DPFS-Kernel
Userspace

Kernel

DFS Client
VFS

io_uring

NIC

SQ CQ

Figure 5.2: Diagram of the added multi-queue support in the virtio-fs Linux kernel device
driver.

read and write operations in a single-threaded context (like that of a single tenant in

DPFS++).

5.2.2 The design and implementation of the DPFS-Kernel backend in
DPFS++

In Figure 5.2, the addition of the DPFS-Kernel backend is shown with regard to the other

layers of the software stack residing on the DPU. The DPFS-Kernel backend implements

the FUSE-like API that the DPFS-FUSE layer exposes and then translates each file sys-

tem operation into a file system operation using either blocking POSIX function calls or

asynchronous io_uring function calls.

Not all metadata operations can be translated using io_uring as many are not (yet)

supported in io_uring. Table 1 in the appendix shows which operations are translated

using blocking POSIX or asynchronous io_uring and which Linux kernel version is required

for the asynchronous io_uring translation. The main takeaway from this table is that most

of the file-based metadata operations (e.g., renaming or creating a symbolic link) are only

fully supported from Linux kernel version 5.15 onward, and that most of the directory-based

metadata operations (e.g., listing the files in a directory) are not supported in io_uring

53

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

as of this time. Since the programming model of DPFS-FUSE in DPFS++ is single-threaded

per virtio-fs device, the file system operations that use blocking POSIX will block the

complete virtio-fs device from the host perspective. In contrast, file system operations

that are implemented using asynchronous io_uring operations are issued to the Linux

kernel sequentially but executed in parallel by the Linux kernel and kernelspace file system

client.

To reap completed file system operations off the io_uring completion queue, a second

thread is spun up by DPFS-Kernel next to the virtio-fs device poller. The second

completion reaper thread can operate in two modes: (1) busy polling on the completion

queue (i.e., consuming a full core) or (2) waiting for new completions to arrive (i.e.,

blocks and suspends the thread until woken on a new completion). While busy polling will

achieve higher performance, it will consume many resources, even during light workloads.

Therefore, the choice of completion reaping mode relies on the deployment’s performance

requirements and available resources. In Section 6.3.1, the performance difference between

busy polling and waiting is examined.

5.2.3 Advanced io_uring features

The io_uring API currently has three advanced features that aim to further increase the

performance of communication between user and kernel space. These are (1) fixed buffers,

(2) fixed files, and (3) kernel-side busy polling. With the fixed buffers feature, the appli-

cation registers all the I/O buffers they will use in subsequent io_uring operations. By

registering the buffers with the kernel, the kernel can pin and map these into kernelspace,

reducing the number of data copies needed when issuing operations. With the fixed files

feature, the application does not use POSIX file descriptors but uses opaque io_uring file

descriptors that require less bookkeeping and optimization restrictions through not being

POSIX compliant. With the kernel-side busy polling feature, the kernel will start up a

kernel task that busy polls on the io_uring submission queue, removing the need for the

application to use a system call to notify the kernel of a new operation submission.

The implementation of DPFS-Kernel in DPFS++ does not utilize these features for sev-

eral reasons related to implementation complexity. The fixed buffers feature was not used

as it requires registering the DPU library’s underlying buffers for the virtio-fs requests.

This task requires significant code changes to the proprietary NVIDIA SNAP source code

in the case of the NVIDIA BlueField-2, as this DPU library has an internal code archi-

tecture (many layers of abstraction) that makes it difficult to extract these underlying

buffers. The kernel-side busy polling feature was not utilized as it requires fixed buffers.

54

5.3 Escaping the DPU with gateway passthrough

Without fixed buffers, the kernel cannot assume that the buffers will always be present and

correctly mapped. Finally, the fixed files feature was not utilized as the opaque io_uring

file descriptors cannot be passed to blocking POSIX file system function calls, which is

a problem as io_uring currently does not (yet) support all file systems operations. A

workaround for this issue would be the following approach: when the host opens a file on

the virtio-fs device, open the file using both io_uring and POSIX and bookkeep both

file descriptors for later use with both APIs. This is, however, not currently implemented

in DPFS++, and thus, fixed files are not utilized.

5.3 Escaping the DPU with gateway passthrough

In Section 4.4, the bottlenecks of DPFS are laid out, a significant portion of which can

be attributed to the inherently intensive file system processing (translating operations,

bookkeeping inodes, network processing, etc.) performed on the NVIDIA BlueField-2’s

hardware. This shows the hardware limitations of the BlueField-2’s hardware in effect

with the DPFS framework. Given these hardware limitations, it becomes a logical step in

the DPFS project to explore the passthrough design options proposed in Section 3.2.2 to

escape the relatively slow DPU hardware as quickly as possible.

The BlueField-2 hardware is significantly underpowered compared to a modern data

center-class server. To quantify this claim, we perform a small experiment using the Geek-

bench 6.1 benchmark (62) CPU benchmarking tool that compares the BlueField-2 against

a modern AMD EPYC server (a Ceph node from Table 6.1). The results of this experi-

ment can be found in Table 5.1. This experiment shows that a modern data center-class

server contains 8.4× more compute power than the NVIDIA BlueField-2 DPU. Here, it

is interesting to note that depending on the benchmark, the difference in performance

can vary widely. When looking at benchmarks that are more FLOPs heavy (i.e., number

crunching), like applying photo filters, instead of a more graph processing heavy workload

like code compilation, the difference in performance increases from 4× to 22.6×.

To limit the scope of this research and engineering on DPFS++, we limited the design

and implementation of gateway passthrough in DPFS++ to not support nor account for

multi-tenancy.

5.3.1 The design of gateway passthrough in DPFS++

The gateway passthrough design detailed in Section 3.3.2 is, in short, when the DPU

receives a file system operation from the host, the DPU will send, without processing the

55

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

Benchmark NVIDIA BlueField-2 DPU Modern AMD EPYC server
Single-core suite 420 points 1648 points 3.9×
Multi-core suite 1969 points 16529 points 8.4×

Clang 547 points 2171 points 4×
Photo filter 4410 points 99715 points 22.6×

Table 5.1: Comparison of Geekbench 6.1 results on the NVIDIA BlueField-2 DPU compared
to a modern AMD EPYC server with two benchmarks highlighted. Full results can be found
at https://browser.geekbench.com/v6/cpu/compare/1835864?baseline=1835749.

operation, to a remote gateway that processes the operation and resolves the result using

a remote distributed file system.

The gateway passthrough design requires two software components: a DPU client that

sends the requests to the gateway and a gateway that receives them and resolves them to

the remote distributed file system. These two components fit neatly into the architecture

of DPFS, as both can build on top of the existing DPFS-HAL and DPFS-FUSE infrastructure

that DPFS already has. In Figure 5.3, this design is shown with respect to the other

layers of the DPFS software stack. The DPU client consumes the DPFS-HAL layer of the

framework to use the DPU hardware and gathers virtio-fs requests to send to the gate-

way without doing any of the requests processing. The gateway implements the DPFS-HAL

interface, where instead of using a DPU library to gather virtio-fs requests, it receives

the requests from the DPU client. By implementing the DPFS-HAL interface, the existing

DPFS-FUSE layer and its backends are able to run on the gateway without requiring code

changes.

5.3.2 Implementation of gateway passthrough in DPFS++

One of the key advantages of the DPU-powered gateway passthrough design over the NFS

gateway design is that the data center operator has full control over the networking stack

through the abstraction that the DPU and virtio-fs protocol provide. Therefore, we can

create a high-performance implementation that does not rely on previous standardization

efforts.

The key consideration in implementing the gateway passthrough in DPFS++ lies in the

communication between the DPU and gateway components. The communication pattern

putting virtio-fs over the network can be characterized as RPC, as each file system

request is, in essence, a remote procedure call (with a request and response). Our DPU

(the NVIDIA BlueField-2) supports 100Gbs InfiniBand RDMA that can be accessed from

56

https://browser.geekbench.com/v6/cpu/compare/1835864?baseline=1835749

5.3 Escaping the DPU with gateway passthrough

DPU HW accelerated
virtio-fs queues

CPU

DPFS-HAL

DFS cluster

Userspace
polling

DP
U

 li
br

ar
y

DPFS-Gateway
eRPC

Gateway

CPUUserspace
polling

DPFS-FUSE

eRPC
DPFS-Gateway

Backend

NIC

NIC

eRPC over UDP

Figure 5.3: Diagram of the gateway passthrough design and implementation in DPFS++.

userspace on the DPU. RDMA is regarded as the state-of-the-art method for transfer-

ring data across the network. However, it faces several scalability and implementation

issues (15, 49, 78). We, therefore, choose to implement the gateway passthrough using the

state-of-the-art userspace RPC library eRPC that works on top of lossy Ethernet (69).

Figure 5.3 shows how the DPU and gateway components use the eRPC library to send

the virtio-fs requests and responses over the wire. The DPU component can operate in

either single-threaded or two-threaded polling modes. The single-threaded polling mode

alternates between virtio-fs and eRPC polling. virtio-fs polling is performed using

DPFS-HAL, and in case a virtio-fs request was successfully received by the DPU, it is

translated into the wire protocol and placed on a queue for eRPC to handle. The eRPC

polling runs the eRPC event loop, which sends queued virtio-fs request packets and polls

on the network interface for virtio-fs completion from the gateway. The alternation is

1:1, so for every virtio-fs device poll, an eRPC event loop is run. The second mode,

two-threaded polling, uses one thread to poll the virtio-fs device using DPFS-HAL and

one thread for running eRPC event loops in parallel. By assigning a thread to each of

the two tasks, the system’s throughput is expected to increase. Still, the communication

57

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

between the two threads (which eRPC handles via locking the networking queues) might

hamper performance. This hypothesis could not be tested due to time constraints in our

evaluation suite (Chapter 6).

5.3.3 Layout of the wire-protocol

To keep the complexity and scope of the implementation in check, the wire protocol foregoes

advanced features found in standardized remote storage and file system protocols, like

automatic fail-over (156) or load balancing (109). The goal of the protocol is to be closely

coupled to the request format of DPFS-HAL to minimize the complexity of the data path (i.e.,

minimize the number of data copies and transformations). When a virtio-fs request is

received by DPFS-HAL, it is handed to the consuming layer (in this case, the DPU component

of DPFS-Gateway) via the callback handler shown in Listing 1.

typedef int (*dpfs_hal_handler_t) (void *user_data,

struct iovec *fuse_in_iov, int in_iovcnt,

struct iovec *fuse_out_iov, int out_iovcnt,

void *completion_context, uint16_t device_id);

Listing 1: Function signature of the callback handler exposed by DPFS-HAL in DPFS++. The
device_id argument is introduced by the multi-tenancy support of DPFS++.

The relevant arguments for constructing the wire protocol of RVFS are second to fourth.

These four variables contain the input and output buffers that translate to virtio descrip-

tors in the DPU library. When sending a new incoming virtio-fs request to the gateway,

the input buffers need to be sent to the gateway by the DPU, and inversely, when sending

a virtio-fs response from the gateway to the DPU, the output buffers need to be sent

from the gateway to the DPU. The gateway does need to be explicitly told about the out-

put buffers, as this determines how much data can be read in a file-read operation. With

these considerations in mind, a minimal and direct translation wire format is constructed.

Table 5.2 and Table 5.3 show the wire formats for the RVFS protocol sent over eRPC in

DPFS++ and describe the contents of the eRPC request and the eRPC reply.

5.4 Multi-tenancy in a dynamic cloud environment

A fundamental property of a cloud data center is the sharing of resources between multiple

tenants. The sharing of resources is not set up in a static configuration; the cloud data

58

5.4 Multi-tenancy in a dynamic cloud environment

Bytes Data type Name Description
4 int32 num_input_descs The number of input descriptors in this request
8 uint64 input_desc_len The number of bytes in the descriptor following this uint64
... raw data input_desc_data Input descriptor data bytes
4 int32 num_output_descs The number of output descriptors available for the reply
8 uint64 output_desc_len The length of an output descriptor

Table 5.2: The wire format of DPFS-Gateway requests in DPFS++. num_output_descs
indicates how many instances of desc_len and desc_data are contained in the request, and
similarly for num_input_descs and output_desc_len.

Bytes Data type Name Description
... raw data desc_data Descriptor data bytes

Table 5.3: The wire format of DPFS-Gateway responses in DPFS++. The number of descrip-
tors and their lengths are not in the response, as the DPU component stores this information
when sending out the request.

center is a dynamic environment with tenants requesting and deallocating resources at

any time. To support cloud data center deployments, multi-tenancy support is crucial to

DPFS++. This section will explain the multi-tenancy facilities of the virtio-fs protocol

and a design for the polling scheduler in DPFS++.

5.4.1 Design of multi-tenancy support in DPFS++

Multi-tenancy requires two major design considerations: how the DPU exposes itself as

multiple file systems to the host CPU and how the DPU schedules and performs the work

required for these file systems. This subsection will detail the DPFS++ design for multi-

tenancy support.

Connecting a single DPU to multiple tenants

The DPFS framework uses the virtio-fs over PCIe protocol to expose itself as a file

system to the host. The PCIe interconnect standard has two solutions for dynamically

adding and removing devices from the host CPU, namely PCIe hot-plug and Single Root

I/O Virtualization (SR-IOV). PCIe hot-plug needs to be explicitly supported by the kernel

and the device driver, and it is currently not supported in the Linux virtio-fs device

driver. SR-IOV allows a single root (i.e., a single device) to virtualize itself into multiple

virtual devices through the SR-IOV extension to the PCIe standard (123). The SR-IOV

59

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

DPU

CPU

DPFS-HAL

DFS cluster

virtio-fs + SR-IOV over PCIe

DPFS-FUSE DP
U

 li
br

ar
y

Backend

NIC

virtio-fs dev virtio-fs dev virtio-fs dev

HAL Poller A HAL Poller B

Tenant VM A

App

VFS
FUSE

Virtio-fs

Userspace
Kernel

App

VFS
FUSE

Virtio-fs

App

VFS
FUSE

Virtio-fs

Userspace
polling

Tenant VM B Tenant VM C

Figure 5.4: Diagram of the design and implementation of multi-tenancy support in DPFS++.

extension allows a PCIe device to expose physical functions and virtual functions, where

many virtual functions are associated with a single physical function. A physical function

is presented at the reset (i.e., boot) of the device and allows the host to manage the device

and create a certain number of virtual functions during runtime. These virtual functions

can then be passed through to a virtual machine to allow the virtual machine to consume

the device. This allows the device to virtualize and share its resources between the virtual

functions internally. It removes the need for the hypervisor (the virtualization layer on the

host) to virtualize the device through software, thus efficiently virtualizing its resources

with hardware assistance in a multi-tenancy environment.

The SR-IOV extension is explicitly supported in the virtio standard (147), is supported

in the Linux kernel, and is supported in commercially available DPUs like the NVIDIA

BlueField-2 (26, 97, 111). Thus, it is the (only) way to offer dynamic multi-tenancy support

for virtio-fs in DPFS++.

60

5.4 Multi-tenancy in a dynamic cloud environment

Challenges for adding multi-tenancy support to DPFS, and learning from
SPDK

In DPFS, a single core is consumed on the DPU to poll on the virtio queue for virtio-fs

requests. When extending this model to support multiple virtio-fs devices, we find the

following challenges:

1. During low-load scenarios, the core is excessively consumed without doing meaningful

work.

2. When extending this design to multiple virtio-fs devices, N devices would con-

sume N cores. This is problematic when scaling to many tenants when the current

generation of commercial DPUs generally have 16 cores (26, 97, 111), especially when

considering that the DPU cores are commonly also tasked with other workloads like

datacenter orchestration (12, 113, 125, 164) and other custom offloads (91).

The problem of efficient userspace storage device polling with multi-tenancy is not new,

as other frameworks exist that aim to solve the problem. Most notably, the Storage Per-

formance Development Kit (SPDK) framework (159) allows users to consume a storage

NVMe device entirely from userspace through polling. However, this is, in essence, the

reverse point of view from DPFS, where DPFS polls to expose itself as the actual stor-

age device (i.e., acting as a device implementation), SPDK polls to consume the storage

device (i.e., working as a device driver). To poll multiple storage devices efficiently, even

during low-load scenarios, SPDK contains a dynamic scheduler designed to increase power

efficiency and reduce CPU utilization (63).

The dynamic scheduler of SPDK centers around the idea of busy ticks and idle ticks,

which allows the scheduler to calculate the busy time of a poller (i.e., what percentage of

time a poller was handling requests). When a poller’s busy time drops below a configurable

rate, then it is marked as idle and is moved off the set of cores (called reactors) that handle

busy pollers and onto a single core that is designated for idle pollers. A reactor suspends

itself when it has no pollers assigned anymore. When an idle poller’s busy time rises above

that configurable percentage again, it is moved back to one of the reactors to poll. By

dynamically spreading the busy pollers across a set of cores and possibly suspending cores

when there is a low load on the system, it increases the energy efficiency without sacrificing

performance and solves the same problems that DPFS faces with multi-tenancy.

61

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

5.4.2 Implementation of multi-tenancy support in DPFS++

For the implementation of multi-tenancy support, we opt to use a simpler static version of

the dynamic scheduler design; it is left up to future work to implement and evaluate the

complete scheduler design. The scheduler implemented in the system statically distributes

the N devices evenly across the P cores. This design and its implementation are visually

represented in Figure 5.4. For instance, consider a scenario where DPFS++ is configured

with three devices and two cores, like in Figure 5.4. In such a case, each core will be

assigned a poller thread: poller A will perform busy polling on one device, and poller B

will perform busy polling on two devices. As a result, each device will receive 50It’s worth

noting that just like in DPFS, a single tenant (which is represented by a virtio-fs device)

can only be served by a single DPU core at a time if multi-queue is not enabled in the

virtio-fs driver, which is currently not enabled (as stated in Section 5.1.2). Therefore,

although DPFS++ is designed to be multi-threaded with its multi-tenancy feature and

dynamic scheduler, this can only be achieved through multiple virtio-fs devices.

SR-IOV support on the BlueField-2

The NVIDIA BlueField-2 DPU supports the SR-IOV (111), and there is documentation

on how to employ it with the virtio-net network virtualization stack that NVIDIA of-

fers (110). However, since virtio-fs is not a publically supported feature, there is no doc-

umentation on using SR-IOV with virtio-fs. When following the virtio-net firmware

configuration instructions and replicating them on the virtio-fs firmware configuration,

we find that the NVIDIA SNAP library returns an undocumented error from the firmware

when trying to create virtio-fs devices. Similarly to the multi-queue issue discussed in

Section 5.1.2, this issue was also addressed with engineers from the storage virtualization

team at NVIDIA, and they were unable to help us, as it is not a publically supported

feature.

For this thesis and research scope, we conclude that the BlueField-2 does not support

SR-IOV for virtio-fs in the firmware.

Employing physical functions and mock physical functions for multi-tenancy

As the BlueField-2 does not support SR-IOV and is the only DPU we have access to,

the multi-tenancy implementation of DPFS++ can only employ physical functions. When

evaluating the performance of the multi-tenancy support, this limitation does not affect

the results because in the virtio-fs protocol, physical and virtual functions have the

62

5.4 Multi-tenancy in a dynamic cloud environment

same functionality. The BlueField-2’s firmware configuration allows us to configure up to

10 physical virtio-fs devices.

The only issue caused by not supporting virtual functions in our evaluation is that we

cannot dynamically create and destroy virtio-fs devices and, therefore, have to configure

the number of devices at boot. This is problematic as a reboot takes around ∼ 5 minutes,

and rebooting the system is hard to automate in an evaluation suite. Performing all

performance evaluations with the full ten virtio-fs devices configured is problematic,

as all devices would be polled regardless of whether they are used in the experiment,

thus consuming excessive resources. To work around the excessive resource utilization

in this scenario, the multi-tenancy implementation in DPFS++ supports so-called mock

virtio-fs physical functions. The devices for these physical functions are created like

non-mock devices. However, they are only polled once a second (1 IOPS). This allows the

device to be correctly initialized on the DPU and host kernel without consuming extra

resources. In the worst case, where ten devices are configured, and nine are mock devices,

the DPU wastes 9 IOPS on these devices while a single DPU core can sustain upwards of

300k IOPS. The overhead can, therefore, be entirely disregarded.

The impact of multi-tenancy support on the file system backend

Multi-tenancy is a functionality that cannot be left transparent towards the file system

backend, as with multiple tenants, new considerations come into play, such as quality of

service and security. In the multi-tenancy support of DPFS++, these considerations are

left entirely to the file system backend implementation. It is left for future work to add

infrastructure to DPFS for providing a certain quality of service and security guarantees.

This section will go into detail on how the multi-tenancy functionality is exposed to the

file system backend and how the DPFS-NFS and DPFS-Kernel backends integrate this (the

other backends do not support multi-tenancy in DPFS++).

With multi-tenancy, DPFS++ can be configured to run with N devices that are polled

on P cores, effectively introducing multi-threading into the file system programming model

of the backends. The requests are all passed to the file system backend using the func-

tion handler shown in Listing 1, with the void *user_data pointing to a singular data

structure provided by the file system backend. The file system backend is, therefore, re-

sponsible for correctly handling the parallelism present in the system. To find out the

parallel environment in which the backend is currently running, it can use the uint16_t

dpfs_fuse_nthreads(struct dpfs_fuse *fuse) function for retrieving P (static value)

and uint16_t dpfs_hal_thread_id(void) function for retrieving the thread ID (starting

63

5. EVOLVING THE DPFS FRAMEWORK INTO DPFS++

at zero) of the current request handler context. The DPFS-NFS and DPFS-Kernel backends

create P connections to their respective API (NFS over TCP connections, and io_uring

rings) on startup. When the request handler is called, it uses the current thread ID to

select a connection. To handle the request completions on these connections, the backends

create threads for reaping the completions.

DPFS-NFS creates N threads that wait (blocking and suspending the thread after a small

timeout) for completions on their connection, and DPFS-Kernel has a configurable amount

of completion reaping threads and a configurable reaping method (see Section 5.2.2) This

file system programming pattern allows a single file system instance to minimize the con-

tention between the threads.

typedef void (*dpfs_hal_register_device_t) (void *user_data, uint16_t device_id);

typedef void (*dpfs_hal_unregister_device_t) (void *user_data, uint16_t device_id);

Listing 2: Function signatures of the device register and unregister callback handlers exposed
by DPFS-HAL in DPFS++

Even though the current multi-tenancy implementation does not support dynamically

bringing devices up and down, the API that DPFS-HAL exposes to the file system back-

ends is created with dynamicity in mind. When a device is created or destroyed by

DPFS-HAL, the register or unregister callbacks of the file system backend are called; these

callbacks are shown in Listing 2. Using the void *user_data argument, the function

can access the backend’s state and register a device with the device identifier provided in

uint16_t device_id. When the host issues a file system operation on this device, the

backend can identify the request’s origin during the device ID provided in the request

handler callback (shown in Listing 1). This allows the file system backend to isolate the

different devices (which can be assigned to other tenants on the host by the operator

through the hypervisor) by, for example, providing them with their subtree of the remote

file system. DPFS-NFS and DPFS-Kernel do not perform device isolation and offer a single

remote file system tree to all configured devices.

Without Single Root I/O Virtualization (SR-IOV), it is not possible to dynamically bring

devices up and down as PCIe hot-plug is not supported. The current implementation in

DPFS++ initiates the device register and unregister callbacks on startup after the backend

has been initialized but before polling any of the devices.

64

6

Evaluating the DPFS++ framework

More often than not, the art of computer systems lies in experimentation. A computer

system contains many complex layers, spanning both software and hardware. The com-

plexity of a system and its interactions only become apparent during experiments, whether

running real-world or synthetic workloads. A thorough evaluation of a computer system is

therefore crucial to furthering our field of research.

In this chapter, we evaluate the extensions presented in DPFS++ using multiple ex-

periments that compromise synthetic and real-world workloads. Section 6.1 describes the

experimental setup for reproducing the results presented reliably. Our evaluation contains

the following four sets of experiments (each corresponding to a section in Chapter 5):

• In Section 6.2, we evaluate the virtio-fs driver latency patch, which was previously

introduced in Section 5.1.1.

• In Section 6.3, we benchmark the DPFS-Kernel file system backend, designed and

implemented in Section 5.2, using a RAM-based file system and a Ceph distributed

file system client (154).

• In Section 6.4, we evaluate the DPFS-Gateway file system backend, detailed in Sec-

tion 5.3, when using a gateway and guided passthrough design (these two designs are

introduced in Section 3.2.2 and Section 3.3.2).

• In Section 6.5, we measure the impact of the multi-tenancy support in DPFS++,

described in Section 5.4, when using up to 8 tenants.

65

6. EVALUATING THE DPFS++ FRAMEWORK

6.1 Experimental setup and reproducibility

This section presents the details of our experimental setup to ensure reproducibility and

give experimental confidence. Our setup consists of four hardware systems: (1) the host

server, (2) the DPU attached to the host server, (3) the gateway server (NFS for RAM-

backed experiments and RVFS), and (4) the Ceph cluster (also running an NFS gateway).

These machines’ hardware specifications and software versions are specified in Table 6.1.

We use the following four workloads in the experiments: a synthetic file system I/O gen-

erator fio (14), two real-world key-value databases Redis (92) and Rocksdb (30), and a file

system workload simulator Filebench (141).

Host DPU
NVIDIA BlueField-2

Gateway server Ceph nodes (4x)

CPU 2x Intel Xeon E5-
2630 v3, 2.4GHz, 8
cores/socket

8x ARMv8 A72 64-bit
cores at 2.75 GHz

2x Intel Xeon CPU
E5-2690, 2.9GHz, 8
cores/socket

2x AMD EPYC 7453,
3.5GHz, 28 cores/-
socket

Memory 128 GiB, DDR4 1,866
MT/s

16 GiB, DDR4 3200
MT/s (18 GiB/s)

128 GiB, DDR4 1,333
MT/s

256 GiB, DDR4 3200
MT/s

Network 100Gbps Ethernet
via DPU, connected
via PCIe 3.0 x16
(14.7 GiB/s)

Integrated Mellanox
ConnectX-6 Dx
100Gbps Ethernet

Mellanox ConnectX-5
100Gbps Ethernet

Mellanox ConnectX-6
Dx 100Gbps Ethernet

Storage n/a n/a n/a 3x Micron 7400 PRO
3D TLC, NVMe over
PCIe 4.0, 3.5 TiB,
head node has no
storage

Software Ubuntu 22.04.3
LTS, linux: 6.2.0,
libcephfs2: 17.2.6-
0ubuntu0.22.04.1,
fio: v3.35, rocksdb:
v8.3.2, redis: v7.0.12,
filebench: commit
22620e60

BSP: 3.9.3, Ubuntu
20.04.6 LTS, linux:
6.2.16, Mellanox
OFED Linux drivers:
23.04-1.1.3.0, lib-
cephfs2: 15.2.17-
0ubuntu0.20.04.4, libur-
ing 2.3

Ubuntu 22.04.3
LTS, linux: 6.2.0,
libcephfs2: 17.2.6-
0ubuntu0.22.04.1

Ubuntu 22.04.3 LTS,
linux: 5.15.0-83-
generic, ceph: 17.2.6
(quincy)

Table 6.1: Hardware specifications and software versions of the machines (including the
DPU) used in the evaluation of DPFS++.

66

6.1 Experimental setup and reproducibility

The following list consists of several experimental details that we have found to influence

the performance measurements:

• Workloads that use a single thread (i.e., fio) are pinned to the host CPU core where

the DPU’s interrupts are mapped.

• Multi-threaded workloads (i.e., filebench, redis, and rocksdb) are pinned to the host

CPU NUMA node local to the DPU’s PCIe connection.

• C-states are disabled during latency experiments on the host.

• C-states are always disabled on the gateway server and the Ceph nodes.

• Direct I/O is always used in fio workloads on the host and in DPFS-Kernel when

accessing the locally mounted file system.

• File metadata caching is always turned on the host and DPU.

• The filebench workloads are default except for the I/O size; this is 128 KiB instead

of 1 MiB. This change accommodates the lack of true >128 KiB I/O size support in

DPFS++.

• Unless specified otherwise, DPFS-Kernel is used in polling mode.

• The NFS server on the gateway server is configured with: "async, no_subtree_check",

and the NFS client parameters used on the host are: "async").

• In Section 6.3, Section 6.4 and Section 6.5 the host’s Linux kernel is patched with

the virtio-fs device driver latency patch from Section 5.1.1.

The NVIDIA BlueField-2 DPU used in our experimental setup runs the BlueField DPU

BSP 3.9.3 software, but the Linux kernel is updated to v6.2.16 (custom compiled using the

BlueField configuration), and Mellanox OFED is updated to 23.04-1.1.3.0 for the Linux

6.2 compatible drivers. By default, BSP 3.9.3 ships with Linux kernel v5.4, which, as dis-

cussed in Section 5.2.2, does not support all the latest file system operations in io_uring.

Therefore, the kernel was updated to v6.2 (the latest kernel version supported by Mel-

lanox OFED as of September 2023). To be able to access virtio-fs functionality on the

NVIDIA BlueField-2 DPU, a prototype firmware is required that was generously provided

by NVIDIA through a research collaboration with IBM Research.

All the code of DPFS++, the scripts that run the experiments, the results of said

experiments, and instructions on setting up the experimental setup can be found at

https://github.com/IBM/DPFS.

67

https://github.com/IBM/DPFS

6. EVALUATING THE DPFS++ FRAMEWORK

6.2 virtio-fs latency driver patch

We start this evaluation chapter by evaluating the virtio-fs patch detailed in Section 5.1.1

and is currently in the process of being upstreamed to the Linux kernel. The goal of this

patch is to decrease the variation in operation latency that occurs when the system is

under heavy load, specifically when the number of outstanding requests is larger than

the depth of the virtio-fs device’s queue. We use the DPFS-NFS file system backend

with a tmpfs file system on the remote NFS server to evaluate this patch. Like the

experiments in Section 4.3, the tmpfs file system allows us to eliminate the storage medium

on the remote server as source of performance variability. The userspace NFS backend

utilizes the NVIDIA XLIO TCP offloading library, which (because of currently unresolvable

software issues) limits the queue depth of the virtio-fs device to just 64 descriptors, which

translates to a queue depth of only 16 operations.

The evaluation of the latency driver consists of a single experiment using DPFS-NFS,

where the gateway server (i.e., the NFS server) exposes a RAM-based tmpfs over the NFS

protocol. The host performs random 4 KiB I/O (read and write) using fio at various I/O

depths on the virtio-fs device. Figure 6.1a shows the throughput in MiB/s on the y-axis

and the I/O depth on the x-axis of the virtio-fs driver in its pre- and post- patch forms.

We find that for low I/O depths, the throughput with the latency patch is lower by less

than 5 MiB/s, however, at higher I/O depths, we find no performance difference.

Figure 6.1b shows the results from this same experiment, but only at I/O depth 128, in

a cumulative distribution function (CDF) graph. At the I/O depth of 128, there are 8×
more outstanding operations than can fit in the virtio-fs queue. The y-axis represents

the fraction of operations below the latency shown in milliseconds on the x-axis. The dots

represent the average latency of the pre and post-patch driver. Using this projection of

the experiment’s results, we find that while almost all of the latencies observed with the

patched driver are higher than without the patch because the order in which requests are

put into the queue and resolved is now fair (i.e., no overtaking). The average latency is

3% and 5.2% lower with the patch for reads and writes, respectively, because the latency

tail is significantly cut short. The 99.99th percentile latency is reduced from 1.8 seconds

to 14 ms for reads, and from 2 seconds to 16.8 ms for writes.

Thus, we conclude that, while the patch does not significantly affect the overall through-

put performance of DPFS-NFS, it does reduce the average latency by 3-5% and tail latencies

by more than two orders of magnitude, thus achieving its goal of reducing the latency vari-

ability.

68

6.3 DPFS-Kernel with a distributed Ceph storage cluster

1 2 4 8 16 32 64 128
I/O depth

0

50

100

150

200

250

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

DPFS-NFS pre-patch

DPFS-NFS post-patch

(a) Random 4 KiB I/O throughput of
DPFS-NFS pre and post virtio-fs latency
patch

2−2 21 24 27 210 213

Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

Read

Write

DPFS-NFS pre-patch

DPFS-NFS post-patch

(b) Random 4 KiB I/O with an I/O depth of
128, CDF of DPFS-NFS pre and post virtio-fs
latency patch, the dots represent average la-
tency

Figure 6.1: virtio-fs driver latency patch experiments

6.3 DPFS-Kernel with a distributed Ceph storage cluster

The DPFS-Kernel backend can mirror any file system mounted in the DPU’s Linux ker-

nel to the host CPU over a virtio-fs device. To evaluate this backend, we use two file

systems: a RAM-backed tmpfs file system to evaluate the communication overhead intro-

duced (Section 6.3.1 and a file system client for Ceph (Section 6.3.3 and Section 6.3.4).

Ceph (154) is a widely used distributed storage system (48) that supports block, object,

and file storage, and is an official Linux foundation project. For the purposes of this thesis

and evaluation, it serves as a best effort of replicating a distributed file system that could

be deployed in a cloud data center, at the small (in vitro) scale of our experimentation.

In these experiments, the virtio queue depth of DPFS++ is configured at 512 descrip-

tors, which translates to roughly 128 operations.

6.3.1 Tmpfs - DPFS-Kernel virtualization overhead

To evaluate the kernel-based file system mirroring capabilities of DPFS-Kernel using io_uring,

independently of the remote storage backend, we use the RAM-backed file system tmpfs

that runs in the DPU’s Linux kernel. We evaluate both the waiting and polling io_uring

modes (Section 5.2.2). The waiting mode consumes less power but has to incur the over-

head of returning from power-saving and context switching, generally resulting in lower

performance than the polling mode.

69

6. EVALUATING THE DPFS++ FRAMEWORK

Figure 6.2 shows the results of the random I/O throughput experiment performed using

fio by the host CPU on the virtio-fs device that the DPU exposes. For random reads,

we find that the difference between waiting and polling is around 116 MiB/s for the 4 KiB

block size and 109 MiB/s for the 64 KiB block size, at an I/O depth of 128. For random

writes, the difference is 36 MiB/s and 40 MiB/s for 4 KiB and 64 KiB, respectively, at I/O

depth 128. The standard deviations of the throughput (shown using whiskers on every data

point), show that the throughput does vary significantly more when using waiting than

when polling. For 4 KiB reads, the standard deviation of the throughput when waiting is

as large as 11.7 MiB/s (I/O depth of 16) compared to 4.2 MiB/s when polling.

Overall we report that DPFS-Kernel using io_uring with a RAM-backed file system

can support a throughput upwards of 1 GiB/s for the larger block size of 64 KiB, 133k

random 4 KiB read IOPS and 66k random 4 KiB write IOPS. Overall, the polling mode

of io_uring increases throughput by 18% on average.

1 2 4 8 16 32 64 128
I/O depth

0

100

200

300

400

500

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Waiting

Polling

(a) Random 4 KiB I/O throughput of
DPFS-Kernel with tmpfs

1 2 4 8 16 32 64 128
I/O depth

0

250

500

750

1000

1250

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Waiting

Polling

(b) Random 64 KiB I/O throughput of
DPFS-Kernel with tmpfs

Figure 6.2: Virtualization overhead experiments of DPFS-Kernel, comparing the
waiting and polling completion methods of io_uring

6.3.2 The Ceph Cluster

The Ceph distributed storage system has many configuration options which makes finding

the optimal configuration challenging. Also, is not feasible to replicate the performance

characteristics of a large-scale cloud deployment using a small deployment (like our exper-

imental setup). We, therefore, choose to create a simple deployment based on the default

Ceph configuration. The Ceph cluster comprises four modern AMD EPYC servers, whose

specifications are shown in Table 6.1. Three of these servers are storage nodes, each con-

70

6.3 DPFS-Kernel with a distributed Ceph storage cluster

sisting of three enterprise Micron NVMe drives configured with a single OSD in Ceph. In

Ceph, an OSD (Object Storage Daemon) is a process that manages the drive and handles

reads and writes to that drive. The fourth server does not contain any storage drives

used in the cluster. It acts as the head node of the cluster, running the CephFS (file

system) server, the NFS gateway server, manages the file system metadata, and runs other

management-related processes.

To connect to the remote Ceph cluster, we use the NFS client on the host (as our

baseline for a cloud-like Ceph deployment) or virtio-fs on the host with DPFS-Kernel

on the DPU. The DPFS-Kernel backend is configured to mirror a CephFS mount point (in

the Linux kernel) to the tenant(s) on the host.

6.3.3 Ceph - Synthetic workloads

In Figure 6.3, the DPFS-Kernel with Ceph synthetic workload experiment results are shown

for the 4 KiB, 16 KiB, and 64 KiB block sizes, comparing to the host NFS setup (connected

to the NFS gateway exposed by the Ceph cluster). Similarly to the findings in the DPFS-NFS

evaluation of Section 4.3.2, we find that, for the smaller block sizes of 4 KiB and 16 KiB in

Figure 6.3a and Figure 6.3b, DPFS-Kernel achieves significantly higher throughput than

host NFS at deep I/O depths. For random 4 KiB I/O at 128 I/O depth, the DPFS-Kernel

throughput is 2.1× and 10.8× higher for reads and writes, respectively. However, this is

caused by a sudden drop in throughput at I/O depth 16 of up to 70% for 16 KiB writes

when using the host NFS setup.

The experiment with a larger block size of 64 KiB in Figure 6.3c shows that, even with

a large block size, DPFS-Kernel provides significantly higher write throughput than host

NFS, 2.4× at I/O depth 16 and 8.5× at I/O depth 128. For 64 KiB random reads, however,

host NFS does not exhibit the drop in performance when the I/O depth exceeds 16 as it

did for 4 KiB and 16 KiB random reads. At the same time, DPFS-Kernel’s throughput

starts flatlining at I/O depth 8, resulting in host NFS providing 2× higher throughput

than DPFS-Kernel when running a 64 KiB random reads workload.

6.3.4 Ceph - Real-world workloads

Figure 6.4 shows the real-world experiments conducted on DPFS-Kernel connected to the

remote Ceph storage, compared to the traditional cloud host NFS setup used in earlier

experiments. DPFS-Kernel is used in both polling and waiting mode to investigate the

71

6. EVALUATING THE DPFS++ FRAMEWORK

1 2 4 8 16 32 64 128
I/O depth

0

25

50

75

100

125

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Host-NFS

DPFS-Kernel

(a) Random 4 KiB I/O

1 2 4 8 16 32 64 128
I/O depth

0

100

200

300

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Host-NFS

DPFS-Kernel

(b) Random 16 KiB I/O

1 2 4 8 16 32 64 128
I/O depth

0

200

400

600

800

1000

1200

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Host-NFS

DPFS-Kernel

(c) Random 64 KiB I/O

Figure 6.3: Synthetic throughput (fio) experiments of DPFS-Kernel with Ceph

effect of the io_uring mode for real-world and file metadata workloads. The standard

deviation in these graphs is the variance from run to run.

Comparing the host NFS setup and DPFS-Kernel, we find that their performance is

comparable irrespective of the workload, except for Filebench webserver. The Filebench

webserver workload performs 3× better using DPFS-Kernel with polling mode compared to

host NFS. The Filebench webserver workload repeatedly performs three actions on random

files: open, read the whole file, and close. The previous experiment of Figure 6.3c showed

that for large block size reads (64 KiB in that experiment, Filebench uses 128 KiB), host

NFS provides 2× higher throughput than DPFS-Kernel (also polling), opposite of what we

find in this experiment. Furthermore, the two other Filebench workloads (fileserver and

varmail) also open and close files at the same rate. We are therefore currently unable to

explain the difference in performance between host NFS and DPFS-Kernel for the Filebench

webserver workload.

Summarizing the overall impact of using polling versus waiting in DPFS-Kernel for the

real-world workloads, we see that when the difference is significant, polling is always faster

than waiting (6.8% on average overall), and polling has a lower standard deviation than

waiting. However, the difference is negligible for most workloads (i.e., Filebench fileserver,

Filebench varmail, Redis set, and Rocksdb fillrandom). The Filebench webserver and

Rocksdb readrandom stand out as they show significantly significant differences in per-

formance between the two io_uring modes. These two workloads are read-heavy, so it

reaffirms the finding of Section 6.3.1 that the polling mode impacts the read I/O operations

more than write I/O operations.

72

6.4 The gateway implementation of DPFS-Gateway

fileserver varmail webserver
0

20

40

60

K
op

s/
s

Host-NFS

DPFS-Kernel (polling)

DPFS-Kernel (waiting)

(a) Filebench

get set
0

25

50

75

100

125

150

M
B

/s

Host-NFS

DPFS-Kernel (polling)

DPFS-Kernel (waiting)

(b) Redis

fillrandom readrandom
0

250

500

750

1000

1250

1500

K
op

s/
s

Host-NFS

DPFS-Kernel (polling)

DPFS-Kernel (waiting)

(c) Rocksdb

Figure 6.4: Real-world workload experiments of DPFS-Kernel with Ceph (in
polling and waiting mode) compared to host-NFS with Ceph

6.4 The gateway implementation of DPFS-Gateway

The gateway implementation of DPFS-Gateway introduces a new system design into the

DPFS++ framework. It incorporates a gateway server that does all the processing and

resolving of the file system operations; the DPU only functions as a naïve passthrough

device of the virtio-fs requests. Given the hardware resource limitations of the Nvidia

BlueField-2 DPU used in our experimental setup, we hypothesize that resolving the oper-

ations on modern server-class hardware (i.e., the gateway) will improve throughput com-

pared to the full-offload deployment type of DPFS++ (e.g., running DPFS-Kernel on the

DPU).

In this section, we perform synthetic and real-world workload experiments on DPFS-Gateway

and compare it against the host NFS and DPFS-Kernel configurations. First, in Sec-

tion 6.4.1, we run the DPFS-Null file system backend on the gateway to evaluate the

maximum throughput that our gateway can provide. Last, in Section 6.4.2, we run the

DPFS-Kernel file system backend on the gateway connected to our Ceph cluster (the cluster

is described in Section 6.3.2).

In these experiments, DPFS-Gateway is always running in single-threaded mode (see

Section 5.3), and the virtio queue depth of DPFS++ is configured at 512 descriptors,

which translates to roughly 128 operations.

6.4.1 Finding the upper limits of DPFS-Gateway

By running DPFS-Null on the gateway, we can determine the amount of bandwidth avail-

able in the system, from the host CPU issuing file system operations to the virtio-fs

device to the DPFS-Gateway and back. These results indicate the maximum performance

of any file system backend when deployed DPFS-Gateway.

73

6. EVALUATING THE DPFS++ FRAMEWORK

Figure 6.5 shows the results of this synthetic experiment. For the larger block size of

64 KiB, the throughput of DPFS-Gateway tops out at ∼1 GiB/s with an I/O depth of 8.

At I/O depths deeper than 8 with the 16 KiB and 64 KiB block sizes, the throughput of

reads and writes converge at around 800 MiB/s. For 4 KiB/s random I/O, we find that

DPFS-Gateway can provide 114k read IOPS and 122k write IOPS.

These throughput numbers are 5× to 6× lower than the throughput numbers reported

in Section 4.3.1, where DPFS-Null can achieve up to 5.87 GiB/s for reads and 4.32 GiB/s

for writes (at I/O depth 16-32) when running on the DPU (i.e., measuring the bandwidth

between the host CPU and the DPU). The 4 KiB IOPS that DPFS-Gateway provides is

2.9× and 2× lower than that of DPFS-Null on the DPU for reads and writes, respectively.

1 2 4 8 16 32 64 128
I/O depth

0

200

400

600

800

1000

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

4 KiB

16 KiB

64 KiB

Figure 6.5: Synthetic random I/O workload (fio) of DPFS-Gateway with the
DPFS-Null backend and one thread on the DPU, throughput for block sizes 4 KiB,

16 KiB and 64 KiB.

6.4.2 Evaluating gateway passthrough in DPFS++ using Ceph

The second set of experiments we run to evaluate the performance of DPFS-Gateway is

DPFS-Gateway with the DPFS-Kernel backend connected (via the CephFS client in the

Linux kernel) to our Ceph cluster. In this section, we refer to the DPFS-Gateway with

DPFS-Kernel setup as simply DPFS-Gateway. We perform random I/O using fio with a

block size of 4 KiB and 64 KiB. The results of these experiments are shown in Figure 6.6.

The two graphs show that writes DPFS-Gateway performs 5.5× and 3.9× worse than

reads for 4 KiB and 64 KiB block sizes, respectively. This performance pattern does not

appear when DPFS-Kernel runs on the DPU. Doing performance analysis using perf on the

gateway server of DPFS-Gateway, we find that 2/3 of the wall clock time is being spent by

copying virtio-fs request data around between buffers due to DPFS-Gateway and eRPC

74

6.5 Multi-tenancy in DPFS++

requiring several data copies on the write file operation path. The read throughput of

DPFS-Gateway is 30% lower than that of DPFS-Kernel for the 4 KiB block size and 6%

higher for the 64 KiB block size.

Overall, we conclude that DPFS-Gateway, with its current implementation, is too in-

efficient to gain performance improvements over a full-offload deployment (e.g., running

DPFS-Kernel directly on the DPU). We expect that with the extra cost and energy usage

of a gateway deployment with DPFS-Gateway, the best option for deploying DPFS++ with

Ceph is to run DPFS-Kernel and the CephFS client directly on the DPU.

1 2 4 8 16 32 64 128
I/O depth

0

25

50

75

100

125

T
h

ro
u

gh
p

u
t

(M
iB

/s
)

Read

Write

Host-NFS

DPFS-Kernel

DPFS-Gateway

(a) Random 4 KiB I/O throughput

1 2 4 8 16 32 64 128
I/O depth

0

200

400

600

800

1000

1200
T

h
ro

u
gh

p
u

t
(M

iB
/s

)
Read

Write

Host-NFS

DPFS-Kernel

DPFS-Gateway

(b) Random 64 KiB I/O throughput

Figure 6.6: Synthetic workload (fio) throughput experiments with Ceph of
DPFS-Gateway and the DPFS-Kernel backend, compared against host-NFS and

DPFS-Kernel on the DPU.

6.5 Multi-tenancy in DPFS++

The last set of experiments in this chapter is aimed at evaluating the multi-tenancy sup-

port of DPFS++. For the purpose of this evaluation, three extra experimental variables are

introduced: the number of tenants (i.e., number of fio clients), the number of virtio-fs

device poller threads (see Section 5.4) and the number of io_uring completion polling

threads (see Section 5.4.2). It is important to note that in all the multi-tenancy experi-

ments, every virtio-fs device (i.e., every tenant) has a queue depth of 256, instead of

the 512 queue depth used in Section 4.3. We made this change because, when experi-

menting with eight tenants, the memory consumption of the NVIDIA SNAP library (see

Section 4.2.3) with eight virtio-fs devices and 512 descriptors is greater than the 8 GiB

memory capacity of the NVIDIA BlueField-2 DPU.

75

6. EVALUATING THE DPFS++ FRAMEWORK

2 4 8 16 32 64 128
I/O depth

0

2

4

6

8

10

T
h

ro
u

gh
p

u
t

(G
iB

/s
)

(a) Combined 4 KiB, 16 KiB and 64 KiB
random I/O throughput of DPFS-Null with
8 tenants and 4 virtio-fs device poller
threads.

1 2 4 8
Number of tenants

0

2

4

6

8

10

T
h

ro
u

gh
p

u
t

(G
iB

/s
)

Read

Write

4 KiB

16 KiB

64 KiB

(b) Combined 4 KiB, 16 KiB and 64 KiB ran-
dom I/O (fixed I/O depth at 128) throughput of
DPFS-Null with 1,2,4,8 tenants and 2 virtio-fs
device poller threads.

Figure 6.7: Synthetic workload (fio) throughput experiments of DPFS-Null with
multi-tenancy.

In Section 6.5.1, the DPFS-Null backend is used to measure the best performance the

NVIDIA BlueField-2 can provide regarding throughput and latency. To evaluate the per-

formance of multi-tenancy under in vitro cloud data center conditions, we measure the

throughput of DPFS-Kernel when connected to the Ceph cluster described in Section 6.5.2.

6.5.1 Finding the limit of the NVIDIA BlueField-2’s hardware

To test the NVIDIA BlueField-2’s limits in a multi-tenancy deployment, we perform several

experiments on DPFS-Null with differing numbers of virtio-fs poller threads and tenants.

Figure 6.7 summarizes the results that best showcase the performance characteristics of

the NVIDIA BlueField-2 DPU. The standard deviation shown in these two graphs, is

the standard deviation of the list of average throughput per tenant. Thus showing the

difference in performance between tenants.

We find that with four virtio-fs device poller threads and eight tenants (i.e., fio in-

stances), shown in Figure 6.7a, we can achieve the highest random I/O throughput at 1.4

million read and 1.2 million write 4 KiB IOPS at I/O depth 128. Whereas eight virtio-fs

poller threads, achieve 1.36 million read and 1.1 million write IOPS. Even though with eight

poller threads, every virtio-fs has its own dedicated poller thread, the 8-core ARM CPU

of the NVIDIA BlueField-2 is overwhelmed by the eight busy polling threads. With the

16 KiB and 64 KiB block sizes, the total throughput that the DPU can deliver tops out at

11.1 GiB/s (for reads at I/O depth 16 and writes at I/O depth 8). The theoretical total

76

6.5 Multi-tenancy in DPFS++

throughput that the DPU can deliver to the host CPU is 14.7 GiB/s through its PCIe

3.0 x16 connection. The virtio-fs throughput we measure is roughly 3/4 of the DPU’s

maximum PCIe throughput.

6.5.2 Ceph multi-tenancy storage using DPFS-Kernel

The last experiment of this chapter evaluates the behavior of DPFS-Kernel when connected

to the Ceph cluster (Section 6.3.2) in a multi-tenancy cloud-like deployment of DPFS++.

Its results do not warrant figures, as the multi-tenancy performance is virtually the same

as the single-tenant performance. Using four virtio-fs poller threads, three io_uring

completion polling threads, and eight virtio-fs devices / tenants, 4 KiB random reads

give a combined throughput (across all eight tenants) of 147.5 MiB/s at an I/O depth of

128. In our previous single-tenant experiment, we measured 129 MiB/s of read throughput

for the same workload. A 14% increase in throughput while the parallelism increases by

roughly 400% indicates that there is a large bottleneck somewhere in DPFS-Kernel or in

the connection to the remote Ceph storage cluster. Investigating the bottleneck, we find

the bottleneck to be the single CephFS mount in the Linux kernel that is mirrored to

all the tenants. This is indicated by the observation that we see the same performance

characteristics when running fio on the DPU’s Linux operating system (no DPFS++ or

host involved) with the CephFS file system client. The inability of the CephFS file system

client to handle parallelism is a known performance issue that can be remedied by creating

multiple CephFS mounts (38). For optimal performance, DPFS-Kernel implementation

should therefore be modified to give every tenant their own file system mount that resides

in the Linux kernel.

77

6. EVALUATING THE DPFS++ FRAMEWORK

78

7

Concluding remarks

The impact of data-driven systems running in cloud data centers reaches into virtually

every aspect of our daily lives. The massive amounts of energy required to power these cloud

data centers present the research community with two critical objectives: performance

and efficiency. Novel hardware architectures with heterogeneous computing and offloading

capabilities, like DPUs (programmable offload capable networking cards), have become

ubiquitous in our cloud data centers. In this thesis, we expanded the current body of

research on distributed file system storage powered by DPUs. We break down the currently

explored design space and propose new system designs that can be implemented with

current DPU hardware. Using the findings of the previously published research prototype

DPFS (51), we design, implement, and evaluate (1) performance improvements to the

virtio-fs driver, (2) support for kernel-based distributed file systems using io_uring,

(3) implement the newly proposed gateway design and (4) support for multi-tenancy.

In this chapter, we summarize and conclude our findings by answering the research

questions that motivated this research in Section 7.1, summarize the current limitations of

DPFS++ in Section 7.2, and establish research directions that future research works can

take in Section 7.3.

7.1 Conclusion

In Chapter 1, we described the problem statement and defined research questions to allevi-

ate the issues that DPFS faces. Using the results found through design, implementation,

and evaluation methods in Chapter 4, Chapter 5, and Chapter 6, we will draw conclusions

and answer the research questions.

79

7. CONCLUDING REMARKS

With these findings, we conclude that our proposed DPFS++ framework shows that

DPU-powered file system offloading through our framework is cloud-capable. We are able

to connect multiple tenants on the host to a remote Ceph cluster via the Nvidia BlueField-

2, and we report that its performance is on par with the systems currently deployed in the

cloud. However, a cloud-native solution with state-of-the-art performance and dynamic

multi-tenancy requires significant further efforts in research and engineering.

RQ1: How can the current generation of DPU hardware facilitate file system of-

floading? In Chapter 3, we categorize the existing DPU-offloaded DFS literature into two

designs: partial offload (LineFS (74) and Di Girolamo et al. (44)) and guided passthrough

(Fisc (51)). On top of those, we define three new designs: (1) full offload, (2) gateway

passthrough, and (3) decoupling, and further identify the possibilities of implementing

these designs using the hardware offloading capabilities available in the current generation

of DPUs (e.g., FPGA and DSL offloading engines). The full offload and decoupling designs

are utilized in the design of DPFS (Chapter 4).

We implement the gateway passthrough design in DPFS++ using eRPC, and our eval-

uation finds that it can only support 114k 4 KiB IOPS that terminate at the gateway

compared to 327k 4 KiB IOPS that end at the DPU. When running DPFS-Kernel on the

gateway, mirroring a Ceph storage cluster, we report that it performs equal (within 6%) or

significantly worse (up to 5.5×) than running the DPFS-Kernel mirror on the DPU itself.

RQ2: How can the performance of the Linux kernel be improved for DPU-

offloaded file systems? We find that the virtio-fs device driver in the Linux kernel

poorly handles deep I/O depths (resulting in high tail latencies) and is not well adjusted

to multi-core CPUs and DPUs. To remedy these issues, we design and implement two

patches for the virtio-fs device driver. We evaluate the first patch that alleviates the

deep I/O depth latency issue and find that it reduces average latencies by 3-5% and tail

latencies by more than two orders of magnitude in Section 6.2.

RQ3: How can DPFS efficiently utilize existing kernel-based distributed file

systems? To support existing kernel-based (distributed) file systems that are currently

widely deployed in many data centers, in DPFS++. We propose to leverage the io_uring

Linux API as it is the best candidate for accessing the file systems from userspace. DPFS++

includes the new file system backend DPFS-Kernel that mirrors (using io_uring) a file

system mounted in the DPU’s Linux kernel to the host CPU. Our evaluation reports that

DPFS-Kernel can support up to 154k 4 KiB IOPS to a RAM-backed file system in the

kernel. When DPFS-Kernel mirrors a Ceph remote storage cluster, and running synthetic

80

7.2 Limitations

and metadata workloads on the host, we find that overall, it performs on par with the host

NFS approach used in current cloud data centers.

RQ4: How can DPFS efficiently support dynamic multi-tenancy? For dynamic

data centers like cloud data centers, dynamically scaling a storage service is crucial. We

identify that to support dynamic multi-tenancy in DPFS++, support for SR-IOV by the

DPU is required. However, while the NVIDIA BlueField-2 technically supports SR-IOV,

it does not function correctly with virtio-fs. So we implement multi-tenancy support in

the DPFS++ framework using physical functions that are defined at hardware boot and

only support up to ten virtio-fs devices (i.e., tenants). It is resulting in DPFS++ not

being able to dynamically scale the number of tenants.

To efficiently support the polling on multiple virtio-fs devices, we identify that the

scheduler of SPDK can be re-used in DPFS++. However, we only implement a simpler

static scheduler in DPFS++ that does not scale the DPUs resources depending on the work-

load hitting the virtio-fs devices. Our evaluation shows that the NVIDIA BlueField-2

can support up to 1.4 million 4 KiB IOPS and more than 10GiB/s of throughput. Using

the DPFS-Kernel backend in a multi-tenancy deployment, we report that its implemen-

tation can only provide 14% more throughput in total for Eight tenants, compared to a

single-tenant setup. Thus, we conclude that the implementation poorly suits multi-tenancy

workloads and performs significantly worse than the host NFS approach.

7.2 Limitations

As a result of the implementation and evaluation of DPFS++, we identify two major

limitations to the work that are described in this section.

DPFS-Kernel multi-tenancy optimizations

Our evaluation finds that when utilizing the DPFS-Kernel backend in a multi-tenancy

deployment, mirroring a single Ceph file system folder to the many tenants on the host

results in poor performance. Accessing a single Ceph file system from multiple cores on

the DPU creates a bottleneck because of locking tension in the Ceph file system client. We

expect this bottleneck can be alleviated by mounting a file system per tenant, giving every

tenant their DFS client running on the DPU.

81

7. CONCLUDING REMARKS

Dynamic multi-tenancy (scheduler and SR-IOV) not implemented and evalu-
ated

The multi-tenancy design in DPFS++ encompasses a dynamic scheduler for polling the

virtio-fs devices, aiming to save energy by putting the CPU in low-power mode when

the system is under low load. It also contains a method for dynamically changing the

virtio-fs devices the DPU exposes through the SR-IOV PCIe protocol. These two de-

sign elements were not implemented nor evaluated to limit the scope of the thesis (dynamic

scheduler) and because of hardware/software instability issues (SR-IOV). Because of this,

the experiments in this thesis could only evaluate DPFS++ in a static cloud-like environ-

ment (in vitro), as opposed to the dynamic environment in real-world cloud data centers.

7.3 Future work

To pave the way for further advancements in this area of research, we propose two research

directions that future work can take to build upon the findings of this thesis:

Exploiting the DPU’s hardware offloading capabilities

DPUs contain various offloading engines specialized to multiple application domains such

as security, networking, and storage. We think these engines could be utilized for im-

plementing a DFS client, for example, employing the encryption and decryption engines

commonly found in DPUs to secure the contents of file system reads and writes. This

could improve performance over a software-based encryption mechanism and enhance data

security by encrypting the data that later gets stored by the remote storage backend.

DPU-native distributed file system - alleviating the memory bottleneck

A recurring theme throughout the conclusion of this thesis is the bottleneck that data copies

on the DPU create. In every backend of DPFS++ (e.g., DPFS-Gateway, DPFS-Kernel,

DPFS-NFS), we identify that data copies significantly reduce the performance of the back-

ends. We think a promising approach for removing these data copies is direct RDMA from

the host memory to the remote storage backend. DPUs like the NVIDIA BlueField-2 are

capable of RDMA-ing host memory to a remote server without the data being copied into

the DPU’s memory, evading the DPU’s low memory bandwidth. To implement this, the

DFS must be tightly integrated into the complete software stack on the DPU, requiring

significant software engineering effort. However, we expect such an implementation to

82

7.3 Future work

perform much closer to the maximum bandwidth of a DPU-based virtio-fs device than

DPFS++ is.

83

7. CONCLUDING REMARKS

84

References

[1] Erasure Code — Ceph Documentation. Available from: https://docs.ceph.

com/en/latest/rados/operations/erasure-code/. 19

[2] NFS-Ganesha - Userspace NFS Server. Available from: https://github.com/

nfs-ganesha/nfs-ganesha. 19

[3] Libfuse: The Reference Implementation of the Linux FUSE (Filesystem

in Userspace) Interface, 2023. Available from: https://github.com/libfuse/

libfuse. 34, 37, 49

[4] Achronix. VectorPath S7t-VG6 Accelerator Card, April 2023. Avail-

able from: https://www.achronix.com/sites/default/files/docs/Vectorpath_

S7t-VG6_Accelerator_Card_Bittware_PB999_V4.pdf. 23

[5] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-

cracker: Lightweight Virtualization for Serverless Applications. In 17th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

20), pages 419–434, 2020. Available from: https://www.usenix.org/conference/

nsdi20/presentation/agache. 32

[6] Amazon AWS. What Is Amazon Elastic File System? - Amazon Elastic

File System, 2023. Available from: https://docs.aws.amazon.com/efs/latest/

ug/whatisefs.html. 3, 19, 33

[7] AMD. AMD EPYC™ 9754 Specifications. Available from: https://www.amd.

com/en/product/13371. 6

[8] AMD. AMD Expands Data Center Solutions Ca-

pabilities with Acquisition of Pensando, April 2022.

85

https://docs.ceph.com/en/latest/rados/operations/erasure-code/
https://docs.ceph.com/en/latest/rados/operations/erasure-code/
https://github.com/nfs-ganesha/nfs-ganesha
https://github.com/nfs-ganesha/nfs-ganesha
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://www.achronix.com/sites/default/files/docs/Vectorpath_S7t-VG6_Accelerator_Card_Bittware_PB999_V4.pdf
https://www.achronix.com/sites/default/files/docs/Vectorpath_S7t-VG6_Accelerator_Card_Bittware_PB999_V4.pdf
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://docs.aws.amazon.com/efs/latest/ug/whatisefs.html
https://www.amd.com/en/product/13371
https://www.amd.com/en/product/13371

REFERENCES

Available from: https://www.amd.com/en/press-releases/

2022-04-04-amd-expands-data-center-solutions-capabilities-acquisition-pensando.

17

[9] AMD. Data Center Networking, 2023. Available from: https://www.xilinx.

com/applications/data-center/network-acceleration.html. 22, 29

[10] Nadav Amit, Michael Wei, and Dan Tsafrir. Dealing with (Some of) the

Fallout from Meltdown. In Proceedings of the 14th ACM International Conference

on Systems and Storage, SYSTOR ’21, pages 1–6, New York, NY, USA, June 2021.

Association for Computing Machinery. Available from: https://dl.acm.org/doi/

10.1145/3456727.3463776. 52

[11] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,

Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the Clouds: A

Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28,

EECS Department, University of California, Berkeley, February 2009. Available from:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html. 1,

5, 11

[12] Amazon AWS. The Security Design of the AWS Nitro System - AWS

Whitepaper, November 2022. Available from: https://docs.aws.amazon.

com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/

security-design-of-aws-nitro-system.pdf. 2, 3, 16, 17, 21, 23, 61

[13] Amazon AWS. Block vs File vs Object Storage - Difference Between

Data Storage Services - AWS, 2023. Available from: https://aws.amazon.

com/compare/the-difference-between-block-file-object-storage/. 3

[14] Jens Axboe. Flexible I/O Tester, 2022. Available from: https://github.com/

axboe/fio. 66

[15] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Krishan Kumar At-

tre, Paramvir Bahl, Ameya Bhagat, Gowri Bhaskara, Tanya Brokhman,

Lei Cao, Ahmad Cheema, Rebecca Chow, Jeff Cohen, Mahmoud El-

haddad, Vivek Ette, Igal Figlin, Daniel Firestone, Mathew George,

Ilya German, Lakhmeet Ghai, Eric Green, Albert Greenberg, Manish

86

https://www.amd.com/en/press-releases/2022-04-04-amd-expands-data-center-solutions-capabilities-acquisition-pensando
https://www.amd.com/en/press-releases/2022-04-04-amd-expands-data-center-solutions-capabilities-acquisition-pensando
https://www.xilinx.com/applications/data-center/network-acceleration.html
https://www.xilinx.com/applications/data-center/network-acceleration.html
https://dl.acm.org/doi/10.1145/3456727.3463776
https://dl.acm.org/doi/10.1145/3456727.3463776
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.pdf
https://aws.amazon.com/compare/the-difference-between-block-file-object-storage/
https://aws.amazon.com/compare/the-difference-between-block-file-object-storage/
https://github.com/axboe/fio
https://github.com/axboe/fio

REFERENCES

Gupta, Randy Haagens, Matthew Hendel, Ridwan Howlader, Neetha

John, Julia Johnstone, Tom Jolly, Greg Kramer, David Kruse, Ankit

Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina Lipshteyn, Xin Liu,

Chen Liu, Guohan Lu, Yuemin Lu, Xiakun Lu, Vadim Makhervaks,

Ulad Malashanka, David A. Maltz, Ilias Marinos, Rohan Mehta,

Sharda Murthi, Anup Namdhari, Aaron Ogus, Jitendra Padhye, Mad-

hav Pandya, Douglas Phillips, Adrian Power, Suraj Puri, Shachar

Raindel, Jordan Rhee, Anthony Russo, Maneesh Sah, Ali Sheriff,

Chris Sparacino, Ashutosh Srivastava, Weixiang Sun, Nick Swanson,

Fuhou Tian, Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman, Ying

Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, and Brian Zill. Em-

powering Azure Storage with RDMA. In 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23), pages 49–67, Boston,

MA, April 2023. USENIX Association. Available from: https://www.usenix.org/

conference/nsdi23/presentation/bai. 20, 57

[16] Oana Balmau. Characterizing I/O in Machine Learning with MLPerf

Storage. ACM SIGMOD Record, 51(3):47–48, November 2022. Available from:

https://dl.acm.org/doi/10.1145/3572751.3572765. 2, 36

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and

the Art of Virtualization. In Proceedings of the Nineteenth ACM Symposium

on Operating Systems Principles, SOSP ’03, pages 164–177, New York, NY, USA,

October 2003. Association for Computing Machinery. Available from: http://doi.

org/10.1145/945445.945462. 12

[18] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet.

Linux Block IO: Introducing Multi-Queue SSD Access on Multi-Core Sys-

tems. In Proceedings of the 6th International Systems and Storage Conference, SYS-

TOR ’13, pages 1–10, New York, NY, USA, June 2013. Association for Computing

Machinery. Available from: https://doi.org/10.1145/2485732.2485740. 49

[19] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-

own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vah-

dat, George Varghese, and David Walker. P4: Programming Protocol-

Independent Packet Processors. ACM SIGCOMM Computer Communication

87

https://www.usenix.org/conference/nsdi23/presentation/bai
https://www.usenix.org/conference/nsdi23/presentation/bai
https://dl.acm.org/doi/10.1145/3572751.3572765
http://doi.org/10.1145/945445.945462
http://doi.org/10.1145/945445.945462
https://doi.org/10.1145/2485732.2485740

REFERENCES

Review, 44(3):87–95, July 2014. Available from: https://dl.acm.org/doi/10.

1145/2656877.2656890. 24

[20] Andrew Boutros and Vaughn Betz. FPGA Architecture: Principles and

Progression. IEEE Circuits and Systems Magazine, 21(2):4–29, 2021. Available

from: https://ieeexplore.ieee.org/document/9439568. 22

[21] Broadcom. Product Brief: Stingray PS225, 2018. Available

from: https://web.archive.org/web/20221222194957/https://docs.broadcom.

com/doc/PS225-PB. 23

[22] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M.

Hjelmervik, and Olaf O. Storaasli. State-of-the-Art in Heterogeneous

Computing. Scientific Programming, 18(1):1–33, January 2010. Available from:

https://content.iospress.com/articles/scientific-programming/spr296. 15

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language Models Are Few-Shot Learners,

July 2020. Available from: http://arxiv.org/abs/2005.14165. 2

[24] Emilio J. Bueno, Alvaro Hernandez, Francisco J. Rodriguez, Carlos

Giron, RaÚl Mateos, and Santiago Cobreces. A DSP- and FPGA-

Based Industrial Control With High-Speed Communication Interfaces for

Grid Converters Applied to Distributed Power Generation Systems. IEEE

Transactions on Industrial Electronics, 56(3):654–669, March 2009. Available from:

https://ieeexplore.ieee.org/document/4663812. 22

[25] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Suger-

man, and Edward Y. Wang. Bringing Virtualization to the X86 Ar-

chitecture with the Original VMware Workstation. ACM Transactions on

Computer Systems, 30(4):12:1–12:51, November 2012. Available from: https:

//dl.acm.org/doi/10.1145/2382553.2382554. 12

88

https://dl.acm.org/doi/10.1145/2656877.2656890
https://dl.acm.org/doi/10.1145/2656877.2656890
https://ieeexplore.ieee.org/document/9439568
https://web.archive.org/web/20221222194957/https://docs.broadcom.com/doc/PS225-PB
https://web.archive.org/web/20221222194957/https://docs.broadcom.com/doc/PS225-PB
https://content.iospress.com/articles/scientific-programming/spr296
http://arxiv.org/abs/2005.14165
https://ieeexplore.ieee.org/document/4663812
https://dl.acm.org/doi/10.1145/2382553.2382554
https://dl.acm.org/doi/10.1145/2382553.2382554

REFERENCES

[26] Brad Burres, Dan Daly, Mark Debbage, Eliel Louzoun, Christine

Severns-Williams, Naru Sundar, Nadav Turbovich, Barry Wolford,

and Yadong Li. Intel’s Hyperscale-Ready Infrastructure Processing Unit

(IPU). In 2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–16, Palo Alto,

CA, USA, August 2021. IEEE. Available from: https://ieeexplore.ieee.org/

document/9567455/. 22, 23, 25, 60, 61

[27] Idan Burstein. Nvidia Data Center Processing Unit (DPU) Architecture.

In 2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–20, Palo Alto, CA, USA,

August 2021. IEEE. Available from: https://ieeexplore.ieee.org/document/

9567066/. 16, 18

[28] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild

Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng

Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal

Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Ab-

basi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul Haq,

Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin Mc-

Nett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. Win-

dows Azure Storage: A Highly Available Cloud Storage Service with

Strong Consistency. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, SOSP ’11, pages 143–157, New York, NY, USA, Octo-

ber 2011. Association for Computing Machinery. Available from: http://doi.org/

10.1145/2043556.2043571. 19

[29] Maria Carla Calzarossa, Luisa Massari, and Daniele Tessera. Work-

load Characterization: A Survey Revisited. ACM Computing Surveys,

48(3):48:1–48:43, February 2016. Available from: https://dl.acm.org/doi/10.

1145/2856127. 5

[30] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. Char-

acterizing, Modeling, and Benchmarking {RocksDB} {Key-Value} Work-

loads at Facebook. In 18th USENIX Conference on File and Storage Technolo-

gies (FAST 20), pages 209–223, 2020. Available from: https://www.usenix.org/

conference/fast20/presentation/cao-zhichao. 66

89

https://ieeexplore.ieee.org/document/9567455/
https://ieeexplore.ieee.org/document/9567455/
https://ieeexplore.ieee.org/document/9567066/
https://ieeexplore.ieee.org/document/9567066/
http://doi.org/10.1145/2043556.2043571
http://doi.org/10.1145/2043556.2043571
https://dl.acm.org/doi/10.1145/2856127
https://dl.acm.org/doi/10.1145/2856127
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao

REFERENCES

[31] Hung-Hsin Chen, Chih-Hao Chang, and Shih-Hao Hung. hKVS: A Frame-

work for Designing a High Throughput Heterogeneous Key-Value Store

with SmartNIC and RDMA. In Proceedings of the Conference on Research in

Adaptive and Convergent Systems, pages 99–106, Virtual Event Japan, October 2022.

ACM. Available from: https://dl.acm.org/doi/10.1145/3538641.3561495. 3

[32] Google Cloud. Object Storage vs Block Storage vs File Storage: Which

Should You Choose?, May 2021. Available from: https://cloud.google.com/

blog/topics/developers-practitioners/map-storage-options-google-cloud.

3, 18

[33] Google Cloud. Introducing C3 Machines with Google’s Custom Intel

IPU, October 2023. Available from: https://cloud.google.com/blog/products/

compute/introducing-c3-machines-with-googles-custom-intel-ipu. 3, 17

[34] Google Cloud. Titanium Underpins Google’s

Workload-Optimized Infrastructure, August 2023. Avail-

able from: https://cloud.google.com/blog/products/compute/

titanium-underpins-googles-workload-optimized-infrastructure. 23

[35] IBM Cloud. Object vs. File vs. Block Storage: What’s the

Difference?, October 2021. Available from: https://www.ibm.com/blog/

object-vs-file-vs-block-storage/. 3

[36] Jonathan Corbet. The Rapid Growth of Io_uring, January 2020. Available

from: https://lwn.net/Articles/810414/. 52

[37] Steve Crago, Kyle Dunn, Patrick Eads, Lorin Hochstein, Dong-In

Kang, Mikyung Kang, Devendra Modium, Karandeep Singh, Jinwoo Suh,

and John Paul Walters. Heterogeneous Cloud Computing. In 2011 IEEE

International Conference on Cluster Computing, pages 378–385, September 2011.

Available from: https://dl.acm.org/doi/10.1109/CLUSTER.2011.49. 13

[38] croit GmbH. Achieving maximum performance

from a fixed size Ceph object storage cluster, May

2021. Available from: https://www.redhat.com/en/blog/

achieving-maximum-performance-fixed-size-ceph-object-storage-cluster.

77

90

https://dl.acm.org/doi/10.1145/3538641.3561495
https://cloud.google.com/blog/topics/developers-practitioners/map-storage-options-google-cloud
https://cloud.google.com/blog/topics/developers-practitioners/map-storage-options-google-cloud
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/titanium-underpins-googles-workload-optimized-infrastructure
https://cloud.google.com/blog/products/compute/titanium-underpins-googles-workload-optimized-infrastructure
https://www.ibm.com/blog/object-vs-file-vs-block-storage/
https://www.ibm.com/blog/object-vs-file-vs-block-storage/
https://lwn.net/Articles/810414/
https://dl.acm.org/doi/10.1109/CLUSTER.2011.49
https://www.redhat.com/en/blog/achieving-maximum-performance-fixed-size-ceph-object-storage-cluster
https://www.redhat.com/en/blog/achieving-maximum-performance-fixed-size-ceph-object-storage-cluster

REFERENCES

[39] Jad Darrous and Shadi Ibrahim. Understanding the Performance of Era-

sure Codes in Hadoop Distributed File System. In Proceedings of the Work-

shop on Challenges and Opportunities of Efficient and Performant Storage Systems,

CHEOPS ’22, pages 24–32, New York, NY, USA, April 2022. Association for Com-

puting Machinery. Available from: https://dl.acm.org/doi/10.1145/3503646.

3524296. 19

[40] Jaideep Dastidar, David Riddoch, Jason Moore, Steven Pope, and Jim

Wesselkamper. The AMD 400-G Adaptive SmartNIC System on Chip:

A Technology Preview. IEEE Micro, 43(3):40–49, May 2023. Available from:

https://ieeexplore.ieee.org/document/10078398. 22, 23, 25

[41] Benoît Dupont de Dinechin. Consolidating High-Integrity, High-

Performance, and Cyber-Security Functions on a Manycore Processor.

In Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19,

pages 1–4, New York, NY, USA, June 2019. Association for Computing Machinery.

Available from: https://dl.acm.org/doi/10.1145/3316781.3323473. 23, 24

[42] Christina Delimitrou and Christos Kozyrakis. Bolt: I Know What You

Did Last Summer... In The Cloud. ACM SIGARCH Computer Architecture

News, 45(1):599–613, April 2017. Available from: https://dl.acm.org/doi/10.

1145/3093337.3037703. 32, 33

[43] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of

the Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, POPL ’84, pages 297–302,

New York, NY, USA, January 1984. Association for Computing Machinery. Available

from: https://dl.acm.org/doi/10.1145/800017.800542. 12

[44] Salvatore Di Girolamo, Daniele De Sensi, Konstantin Taranov, Mi-

los Malesevic, Maciej Besta, Timo Schneider, Severin Kistler, and

Torsten Hoefler. Building Blocks for Network-Accelerated Distributed

File Systems. In Proceedings of the International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC ’22, pages 1–14, Dallas,

Texas, November 2022. IEEE Press. Available from: https://ieeexplore.ieee.

org/abstract/document/10046100. 25, 26, 80

91

https://dl.acm.org/doi/10.1145/3503646.3524296
https://dl.acm.org/doi/10.1145/3503646.3524296
https://ieeexplore.ieee.org/document/10078398
https://dl.acm.org/doi/10.1145/3316781.3323473
https://dl.acm.org/doi/10.1145/3093337.3037703
https://dl.acm.org/doi/10.1145/3093337.3037703
https://dl.acm.org/doi/10.1145/800017.800542
https://ieeexplore.ieee.org/abstract/document/10046100
https://ieeexplore.ieee.org/abstract/document/10046100

REFERENCES

[45] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler,

and Animesh Trivedi. Understanding Modern Storage APIs: A System-

atic Study of Libaio, SPDK, and Io_uring. In Proceedings of the 15th ACM

International Conference on Systems and Storage, SYSTOR ’22, pages 120–127, New

York, NY, USA, June 2022. Association for Computing Machinery. Available from:

https://doi.org/10.1145/3534056.3534945. 39, 52

[46] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The Road to

SDN: An Intellectual History of Programmable Networks. ACM SIGCOMM

Computer Communication Review, 44(2):87–98, April 2014. Available from: http:

//doi.org/10.1145/2602204.2602219. 13

[47] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,

Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu,

Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Te-

jas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Sri-

vastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,

Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure Accel-

erated Networking: SmartNICs in the Public Cloud. In Proceedings of

the 15th USENIX Conference on Networked Systems Design and Implementation,

NSDI’18, pages 51–64, USA, April 2018. USENIX Association. Available from:

https://www.usenix.org/conference/nsdi18/presentation/firestone. 2, 13,

16, 17, 23, 34

[48] IO500 Foundation. IO500 - ISC23 - Full List, 2023. Available from: https:

//io500.org/list/isc23/full. 45, 52, 69

[49] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang,

Wenwen Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng,

Yan Zhuang, Fan Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu,

Zheng Cao, Chen Tian, Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai,

and Jiesheng Wu. When Cloud Storage Meets {RDMA}. In 18th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 21), pages

519–533, 2021. Available from: https://www.usenix.org/conference/nsdi21/

presentation/gao. 20, 57

92

https://doi.org/10.1145/3534056.3534945
http://doi.org/10.1145/2602204.2602219
http://doi.org/10.1145/2602204.2602219
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://io500.org/list/isc23/full
https://io500.org/list/isc23/full
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao

REFERENCES

[50] Google Cloud. Technical Overview - Google Cloud Filestore, 2023. Avail-

able from: https://cloud.google.com/filestore/docs/overview. 3, 19, 33

[51] Peter-Jan Gootzen, Jonas Pfefferle, Radu Stoica, and Animesh

Trivedi. DPFS: DPU-Powered File System Virtualization. In Proceedings

of the 16th ACM International Conference on Systems and Storage, SYSTOR ’23,

pages 1–7, New York, NY, USA, June 2023. Association for Computing Machinery.

Available from: https://dl.acm.org/doi/10.1145/3579370.3594769. iii, 4, 8, 9,

19, 39, 79, 80

[52] Karan Gupta. From Hyper Converged Infrastructure to Hybrid Cloud

Infrastructure, 2020-Jul. Available from: https://www.usenix.org/conference/

hotstorage20/presentation/keynote-gupta. 12

[53] Richard R Hamming. Art of Doing Science and Engineering: Learning to Learn.

CRC Press, 1997. 7

[54] Thomas Haynes. Network File System (NFS) Version 4 Minor Version

2 Protocol. Request for Comments RFC 7862, Internet Engineering Task Force,

November 2016. Available from: https://datatracker.ietf.org/doc/rfc7862. 19

[55] Gernot Heiser. Gernot’s List of Systems Benchmarking Crimes, 2023.

Available from: https://gernot-heiser.org/benchmarking-crimes.html. 7

[56] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach. Elsevier, October 2011. 15

[57] John L. Hennessy and David A. Patterson. A New Golden Age for Com-

puter Architecture. Communications of the ACM, 62(2):48–60, January 2019.

Available from: https://dl.acm.org/doi/10.1145/3282307. 2, 15, 23

[58] Dean Hildebrand, Arifa Nisar, and Roger Haskin. pNFS, POSIX, and

MPI-IO: A Tale of Three Semantics. In Proceedings of the 4th Annual Workshop

on Petascale Data Storage, PDSW ’09, pages 32–36, New York, NY, USA, November

2009. Association for Computing Machinery. Available from: https://dl.acm.org/

doi/10.1145/1713072.1713082. 20

[59] Qianbo Huai, Windsor Hsu, Jiwei Lu, Hao Liang, Haobo Xu, and Wei

Chen. XFUSE: An Infrastructure for Running Filesystem Services in

93

https://cloud.google.com/filestore/docs/overview
https://dl.acm.org/doi/10.1145/3579370.3594769
https://www.usenix.org/conference/hotstorage20/presentation/keynote-gupta
https://www.usenix.org/conference/hotstorage20/presentation/keynote-gupta
https://datatracker.ietf.org/doc/rfc7862
https://gernot-heiser.org/benchmarking-crimes.html
https://dl.acm.org/doi/10.1145/3282307
https://dl.acm.org/doi/10.1145/1713072.1713082
https://dl.acm.org/doi/10.1145/1713072.1713082

REFERENCES

User Space. In 2021 USENIX Annual Technical Conference (USENIX ATC

21), pages 863–875, 2021. Available from: https://www.usenix.org/conference/

atc21/presentation/hsu. 49

[60] Huawei. Computing 2030, 2021. Available from: https://www-file.huawei.

com/-/media/corp2020/pdf/giv/industry-reports/computing_2030_en.pdf. 1

[61] IBM Cloud. IBM Cloud File Storage - Overview, July 2022. Available from:

https://www.ibm.com/cloud/file-storage. 3, 19

[62] Primate Labs Inc. Geekbench 6 - Cross-Platform Benchmark, 2023. Avail-

able from: https://www.geekbench.com/. 55

[63] Intel. SPDK: Scheduler, October 2022. Available from: https://spdk.io/doc/

scheduler.html. 61

[64] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan Rellermeyer, Lin Wang, Alexandru Uta,

and Francesco Regazzoni. Future Computer Systems and Network-

ing Research in the Netherlands: A Manifesto, May 2022. Available from:

http://arxiv.org/abs/2206.03259. 1, 9

[65] Alexandru Iosup, Laurens Versluis, Animesh Trivedi, Erwin van Eyk,

Lucian Toader, Vincent van Beek, Giulia Frascaria, Ahmed Musaafir,

and Sacheendra Talluri. The AtLarge Vision on the Design of Dis-

tributed Systems and Ecosystems. In 2019 IEEE 39th International Conference

on Distributed Computing Systems (ICDCS), pages 1765–1776, July 2019. 7

[66] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Measurement, Simulation, and Modeling. john wiley & sons, 2008. 7

[67] Norman P. Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Na-

garajan, Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing,

Brian Towles, Cliff Young, Xiang Zhou, Zongwei Zhou, and David Pat-

terson. TPU v4: An Optically Reconfigurable Supercomputer for Ma-

chine Learning with Hardware Support for Embeddings, April 2023. Avail-

able from: http://arxiv.org/abs/2304.01433. 15

94

https://www.usenix.org/conference/atc21/presentation/hsu
https://www.usenix.org/conference/atc21/presentation/hsu
https://www-file.huawei.com/-/media/corp2020/pdf/giv/industry-reports/computing_2030_en.pdf
https://www-file.huawei.com/-/media/corp2020/pdf/giv/industry-reports/computing_2030_en.pdf
https://www.ibm.com/cloud/file-storage
https://www.geekbench.com/
https://spdk.io/doc/scheduler.html
https://spdk.io/doc/scheduler.html
http://arxiv.org/abs/2206.03259
http://arxiv.org/abs/2304.01433

REFERENCES

[68] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao,

Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean,

Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William

Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,

Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,

Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le,

Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,

Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan,

Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-

nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew

Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-

gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,

Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-

Datacenter Performance Analysis of a Tensor Processing Unit. In Proceed-

ings of the 44th Annual International Symposium on Computer Architecture, ISCA

’17, pages 1–12, New York, NY, USA, June 2017. Association for Computing Ma-

chinery. Available from: https://dl.acm.org/doi/10.1145/3079856.3080246. 15

[69] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter

{RPCs} Can Be General and Fast. In 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 19), pages 1–16, 2019. Available from:

https://www.usenix.org/conference/nsdi19/presentation/kalia. 57

[70] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guide-

lines for High Performance {RDMA} Systems. In 2016 USENIX An-

nual Technical Conference (USENIX ATC 16), pages 437–450, 2016. Avail-

able from: https://www.usenix.org/conference/atc16/technical-sessions/

presentation/kalia. 49

[71] Kalray. Kalray’s MPPA® DPU Processor (Data Processing

Unit), August 2023. Available from: https://www.kalrayinc.com/products/

processors-many-core/. 24, 25

95

https://dl.acm.org/doi/10.1145/3079856.3080246
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.kalrayinc.com/products/processors-many-core/
https://www.kalrayinc.com/products/processors-many-core/

REFERENCES

[72] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy

Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Pro-

filing a Warehouse-Scale Computer. In Proceedings of the 42nd Annual In-

ternational Symposium on Computer Architecture, ISCA ’15, pages 158–169, New

York, NY, USA, June 2015. Association for Computing Machinery. Available from:

https://dl.acm.org/doi/10.1145/2749469.2750392. 2

[73] Patrick Kennedy. DPU vs SmartNIC and the STH NIC Continuum

Framework, May 2021. Available from: https://www.servethehome.com/

dpu-vs-smartnic-sth-nic-continuum-framework-for-discussing-nic-types/.

16

[74] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,

Dejan Kostić, Youngjin Kwon, Simon Peter, and Emmett Witchel.

LineFS: Efficient SmartNIC Offload of a Distributed File System with

Pipeline Parallelism. In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, pages 756–771, New York, NY, USA,

October 2021. Association for Computing Machinery. Available from: https:

//doi.org/10.1145/3477132.3483565. 3, 19, 25, 28, 32, 80

[75] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-

ping Bits in Memory without Accessing Them: An Experimental Study

of DRAM Disturbance Errors. In 2014 ACM/IEEE 41st International Sympo-

sium on Computer Architecture (ISCA), pages 361–372, June 2014. Available from:

https://ieeexplore.ieee.org/document/6853210. 14

[76] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. ReFlex: Remote

Flash ≈ Local Flash. In Proceedings of the Twenty-Second International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’17, pages 345–359, New York, NY, USA, April 2017. Association for Com-

puting Machinery. Available from: https://dl.acm.org/doi/10.1145/3037697.

3037732. 32

[77] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

96

https://dl.acm.org/doi/10.1145/2749469.2750392
https://www.servethehome.com/dpu-vs-smartnic-sth-nic-continuum-framework-for-discussing-nic-types/
https://www.servethehome.com/dpu-vs-smartnic-sth-nic-continuum-framework-for-discussing-nic-types/
https://doi.org/10.1145/3477132.3483565
https://doi.org/10.1145/3477132.3483565
https://ieeexplore.ieee.org/document/6853210
https://dl.acm.org/doi/10.1145/3037697.3037732
https://dl.acm.org/doi/10.1145/3037697.3037732

REFERENCES

Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-

ploiting Speculative Execution. In 2019 IEEE Symposium on Security and Pri-

vacy (SP), pages 1–19, May 2019. Available from: https://ieeexplore.ieee.org/

document/8835233. 14

[78] Xinhao Kong, Jingrong Chen, Wei Bai, Yechen Xu, Mahmoud El-

haddad, Shachar Raindel, Jitendra Padhye, Alvin R. Lebeck, and

Danyang Zhuo. Understanding RDMA Microarchitecture Resources for

Performance Isolation. In 20th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 23), pages 31–48, Boston, MA, April 2023.

USENIX Association. Available from: https://www.usenix.org/conference/

nsdi23/presentation/kong. 20, 57

[79] Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee,

Bryan S. Kim, and Sungjin Lee. Modernizing File System through In-

Storage Indexing. In 15th {USENIX} Symposium on Operating Systems De-

sign and Implementation ({OSDI} 21), pages 75–92, 2021. Available from: https:

//www.usenix.org/conference/osdi21/presentation/koo. 28, 35

[80] Nectarios Koziris. Fifty Years of Evolution in Virtualization Technolo-

gies: From the First IBM Machines to Modern Hyperconverged Infras-

tructures. In Proceedings of the 19th Panhellenic Conference on Informatics, PCI

’15, pages 3–4, New York, NY, USA, October 2015. Association for Computing Ma-

chinery. Available from: http://doi.org/10.1145/2801948.2802039. 12, 13

[81] Ian Kuon and Jonathan Rose. Measuring the Gap between FPGAs and

ASICs. In Proceedings of the 2006 ACM/SIGDA 14th International Symposium on

Field Programmable Gate Arrays, FPGA ’06, pages 21–30, New York, NY, USA,

February 2006. Association for Computing Machinery. Available from: https://dl.

acm.org/doi/10.1145/1117201.1117205. 22

[82] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan

Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Mal-

loci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. The

Open Images Dataset V4: Unified Image Classification, Object Detection,

and Visual Relationship Detection at Scale. IJCV, 2020. 2

97

https://ieeexplore.ieee.org/document/8835233
https://ieeexplore.ieee.org/document/8835233
https://www.usenix.org/conference/nsdi23/presentation/kong
https://www.usenix.org/conference/nsdi23/presentation/kong
https://www.usenix.org/conference/osdi21/presentation/koo
https://www.usenix.org/conference/osdi21/presentation/koo
http://doi.org/10.1145/2801948.2802039
https://dl.acm.org/doi/10.1145/1117201.1117205
https://dl.acm.org/doi/10.1145/1117201.1117205

REFERENCES

[83] Chunbo Lai, Song Jiang, Liqiong Yang, Shiding Lin, Guangyu Sun,

Zhenyu Hou, Can Cui, and Jason Cong. Atlas: Baidu’s Key-Value Stor-

age System for Cloud Data. In 2015 31st Symposium on Mass Storage Systems

and Technologies (MSST), pages 1–14, May 2015. 33

[84] Christian Leber, Benjamin Geib, and Heiner Litz. High Frequency Trad-

ing Acceleration Using FPGAs. In 2011 21st International Conference on Field

Programmable Logic and Applications, pages 317–322, September 2011. 22

[85] Yair Levy and Timothy J Ellis. A Systems Approach to Conduct an

Effective Literature Review in Support of Information Systems Research.

Informing Science, 9, 2006. 7

[86] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram

Govindan, Dan R. K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S.

Gunawi, and Anirudh Badam. LeapIO: Efficient and Portable Virtual

NVMe Storage on ARM SoCs. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS ’20, pages 591–605, New York, NY, USA, March 2020. Association

for Computing Machinery. Available from: https://doi.org/10.1145/3373376.

3378531. 18, 33

[87] Qiang Li, Lulu Chen, Xiaoliang Wang, Shuo Huang, Qiao Xiang,

Yuanyuan Dong, Wenhui Yao, Minfei Huang, Puyuan Yang, Shanyang

Liu, Zhaosheng Zhu, Huayong Wang, Haonan Qiu, Derui Liu, Shaozong

Liu, Yujie Zhou, Yaohui Wu, Zhiwu Wu, Shang Gao, Chao Han, Zicheng

Luo, Yuchao Shao, Gexiao Tian, Zhongjie Wu, Zheng Cao, Jinbo Wu,

Jiwu Shu, Jie Wu, and Jiesheng Wu. Fisc: A Large-scale Cloud-native-

oriented File System. In 21st USENIX Conference on File and Storage Technolo-

gies (FAST 23), pages 231–246, 2023. Available from: https://www.usenix.org/

conference/fast23/presentation/li-qiang-fisc. 16, 17, 19, 25, 26, 32

[88] Kunal Lillaney, Vasily Tarasov, David Pease, and Randal Burns. Agni:

An Efficient Dual-access File System over Object Storage. In Proceedings

of the ACM Symposium on Cloud Computing, SoCC ’19, pages 390–402, New York,

NY, USA, November 2019. Association for Computing Machinery. Available from:

https://dl.acm.org/doi/10.1145/3357223.3362703. 33

98

https://doi.org/10.1145/3373376.3378531
https://doi.org/10.1145/3373376.3378531
https://www.usenix.org/conference/fast23/presentation/li-qiang-fisc
https://www.usenix.org/conference/fast23/presentation/li-qiang-fisc
https://dl.acm.org/doi/10.1145/3357223.3362703

REFERENCES

[89] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,

Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,

Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Read-

ing Kernel Memory from User Space. In 27th USENIX Security Symposium

(USENIX Security 18), pages 973–990, 2018. Available from: https://www.usenix.

org/conference/usenixsecurity18/presentation/lipp. 14

[90] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Pe-

ter, and Karan Gupta. Offloading Distributed Applications onto smart-

NICs Using iPipe. In Proceedings of the ACM Special Interest Group on Data

Communication, SIGCOMM ’19, pages 318–333, New York, NY, USA, August 2019.

Association for Computing Machinery. Available from: https://dl.acm.org/doi/

10.1145/3341302.3342079. 3

[91] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo

Phothilimthana. E3: Energy-Efficient Microservices on SmartNIC-

Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19), pages 363–378, 2019. Available from: https://www.usenix.org/

conference/atc19/presentation/liu-ming. 3, 61

[92] Redis Ltd. Redis, 2023. Available from: https://github.com/redis/redis. 66

[93] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending the Lifetime of

Flash-Based Storage through Reducing Write Amplification from File Sys-

tems. In Proceedings of the 11th USENIX Conference on File and Storage Technolo-

gies, FAST’13, pages 257–270, USA, February 2013. USENIX Association. Avail-

able from: https://www.usenix.org/conference/fast13/technical-sessions/

presentation/lu_youyou. 33

[94] Layong (Larry) Luo. Towards Converged SmartNIC Architecture for

Bare Metal & Public Clouds, August 2018. Available from: https://

conferences.sigcomm.org/events/apnet2018/slides/larry.pdf. 16, 23

[95] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan, and Jiwu Shu. In-

finiFS: An Efficient Metadata Service for Large-Scale Distributed Filesys-

tems. In 20th USENIX Conference on File and Storage Technologies (FAST

22), pages 313–328, 2022. Available from: https://www.usenix.org/conference/

fast22/presentation/lv. 32, 52

99

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://dl.acm.org/doi/10.1145/3341302.3342079
https://dl.acm.org/doi/10.1145/3341302.3342079
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://github.com/redis/redis
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://www.usenix.org/conference/fast13/technical-sessions/presentation/lu_youyou
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://www.usenix.org/conference/fast22/presentation/lv
https://www.usenix.org/conference/fast22/presentation/lv

REFERENCES

[96] Marvell. Marvell® OCTEON 10 DPU Platform, 2021. Available

from: https://www.marvell.com/content/dam/marvell/en/public-collateral/

embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf.

23

[97] Francis Matus. Distributed Services Architecture. In 2020 IEEE Hot Chips

32 Symposium (HCS), pages 1–17, Palo Alto, CA, USA, August 2020. IEEE. Avail-

able from: https://ieeexplore.ieee.org/document/9220629/. 2, 18, 24, 29, 60,

61

[98] Max Maxfield. ASIC vs. ASSP vs. SoC vs. FPGA – What’s

the Difference?, June 2014. Available from: https://www.eetimes.com/

asic-assp-soc-fpga-whats-the-difference/. 22

[99] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shujun Zhuang, Bo Li,

Shuguang Cheng, Jiaqi Gao, Yan Zhuang, Pengcheng Zhang, Rong

Liu, Chao Shi, Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and

Hongqiang Harry Liu. From Luna to Solar: The Evolutions of the

Compute-to-Storage Networks in Alibaba Cloud. In Proceedings of the

ACM SIGCOMM 2022 Conference, SIGCOMM ’22, pages 753–766, New York,

NY, USA, August 2022. Association for Computing Machinery. Available from:

https://dl.acm.org/doi/10.1145/3544216.3544238. 18, 32

[100] Microsoft. Windows Server 2022 Licensing & Pricing | Microsoft. Available

from: https://www.microsoft.com/en-us/windows-server/pricing. 13, 18

[101] Microsoft Azure. Azure Files - Managed File Shares and Storage |

Microsoft Azure, 2022. Available from: https://azure.microsoft.com/en-us/

services/storage/files/. 3, 19, 33

[102] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew Wei,

In Hwan Doh, and Arvind Krishnamurthy. Gimbal: Enabling Multi-

Tenant Storage Disaggregation on SmartNIC JBOFs. In Proceedings of

the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, pages 106–122, New

York, NY, USA, August 2021. Association for Computing Machinery. Available from:

http://doi.org/10.1145/3452296.3472940. 33

100

https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://www.marvell.com/content/dam/marvell/en/public-collateral/embedded-processors/marvell-octeon-10-dpu-platform-product-brief.pdf
https://ieeexplore.ieee.org/document/9220629/
https://www.eetimes.com/asic-assp-soc-fpga-whats-the-difference/
https://www.eetimes.com/asic-assp-soc-fpga-whats-the-difference/
https://dl.acm.org/doi/10.1145/3544216.3544238
https://www.microsoft.com/en-us/windows-server/pricing
https://azure.microsoft.com/en-us/services/storage/files/
https://azure.microsoft.com/en-us/services/storage/files/
http://doi.org/10.1145/3452296.3472940

REFERENCES

[103] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chi-

dambaram. Analyzing and Mitigating Data Stalls in DNN Training. Pro-

ceedings of the VLDB Endowment, 14(5):771–784, January 2021. Available from:

https://dl.acm.org/doi/10.14778/3446095.3446100. 2, 36

[104] Andrew Moore and Jim Henrys. IPU Based Cloud Infrastruc-

ture: The Fulcrum for Digital Business. Technical report, Intel,

2021. Available from: https://www.intel.com/content/www/us/en/products/

docs/programmable/ipu-based-cloud-infrastructure-white-paper.html. 14,

18, 22

[105] Steve Morgan. The 2020 Data Attack Surface Report, 2020. Available from:

https://goto.arcserve.com/Global-Ongoing-eBookdataattacksurfacereport_

eBookLP.html. 9

[106] Beck Motti. Doubling Network File System Per-

formance with RDMA-Enabled Networking, March

2021. Available from: https://developer.nvidia.com/blog/

doubling-network-file-system-performance-with-rdma-enabled-networking/.

20

[107] Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew

Warfield. Non-Volatile Storage: Implications of the Datacenter’s Shift-

ing Center. Queue, 13(9):33–56, November 2015. Available from: https://dl.

acm.org/doi/10.1145/2857274.2874238. 2, 32

[108] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen

Grohsschmiedt, and Mikael Ronström. HopsFS: Scaling Hierarchical

File System Metadata Using NewSQL Databases. In 15th USENIX Con-

ference on File and Storage Technologies (FAST 17), pages 89–104, 2017. Avail-

able from: https://www.usenix.org/conference/fast17/technical-sessions/

presentation/niazi. 32, 52

[109] David Noveck and Chuck Lever. Network File System (NFS) Version

4 Minor Version 1 Protocol. Request for Comments RFC 8881, Internet En-

gineering Task Force, August 2020. Available from: https://datatracker.ietf.

org/doc/rfc8881. 20, 38, 58

101

https://dl.acm.org/doi/10.14778/3446095.3446100
https://www.intel.com/content/www/us/en/products/docs/programmable/ipu-based-cloud-infrastructure-white-paper.html
https://www.intel.com/content/www/us/en/products/docs/programmable/ipu-based-cloud-infrastructure-white-paper.html
https://goto.arcserve.com/Global-Ongoing-eBookdataattacksurfacereport_eBookLP.html
https://goto.arcserve.com/Global-Ongoing-eBookdataattacksurfacereport_eBookLP.html
https://developer.nvidia.com/blog/doubling-network-file-system-performance-with-rdma-enabled-networking/
https://developer.nvidia.com/blog/doubling-network-file-system-performance-with-rdma-enabled-networking/
https://dl.acm.org/doi/10.1145/2857274.2874238
https://dl.acm.org/doi/10.1145/2857274.2874238
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://datatracker.ietf.org/doc/rfc8881
https://datatracker.ietf.org/doc/rfc8881

REFERENCES

[110] Nvidia. VirtIO-net Emulated Devices - BlueField DPU BSP 4.0.3 -

NVIDIA Networking Docs. Available from: https://docs.nvidia.com/

networking/display/BlueFieldDPUOSLatest/VirtIO-net+Emulated+Devices#

heading-Virtio-netSR-IOVVFDevices. 62

[111] Nvidia. NVIDIA BlueField-2 DPU Datasheet, 2021. Available

from: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

documents/datasheet-nvidia-bluefield-2-dpu.pdf. 23, 25, 31, 34, 44, 49, 60,

61, 62

[112] Nvidia. NVIDIA BlueField-3 DPU Datasheet, 2021. Available

from: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

documents/datasheet-nvidia-bluefield-3-dpu.pdf. 23, 24, 25, 49

[113] Nvidia. Hands-on Access to VMware vSphere on

NVIDIA BlueField DPUs with NVIDIA LaunchPad, Decem-

ber 2022. Available from: https://developer.nvidia.com/blog/

hands-on-access-to-vmwares-vsphere-on-nvidia-bluefield-dpus-with-nvidia-launchpad/.

18, 61

[114] Nvidia. NVIDIA CONNECTX-7 | Datasheet, 2023. Available

from: https://www.nvidia.com/content/dam/en-zz/Solutions/networking/

infiniband-adapters/infiniband-connectx7-data-sheet.pdf. 16

[115] Nvidia. NVIDIA Converged Accelerators | Datasheet,

2023. Available from: https://resources.nvidia.com/

en-us-accelerated-networking-resource-library/converged-accelerators.

24

[116] Nvidia. Oracle Cloud Infrastructure Chooses NVIDIA

BlueField Data Center Acceleration Platform, March

2023. Available from: http://nvidianews.nvidia.com/news/

oracle-cloud-infrastructure-chooses-nvidia-bluefield-data-center-acceleration-platform.

3

[117] Nvidia. XLIO Library Architecture - NVIDIA Accelerated IO (XLIO)

Documentation v1.1.8 - NVIDIA Networking Docs, 2023. Available from:

https://docs.nvidia.com/networking/display/XLIOv214. 34, 38

102

https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/VirtIO-net+Emulated+Devices#heading-Virtio-netSR-IOVVFDevices
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/VirtIO-net+Emulated+Devices#heading-Virtio-netSR-IOVVFDevices
https://docs.nvidia.com/networking/display/BlueFieldDPUOSLatest/VirtIO-net+Emulated+Devices#heading-Virtio-netSR-IOVVFDevices
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-3-dpu.pdf
https://developer.nvidia.com/blog/hands-on-access-to-vmwares-vsphere-on-nvidia-bluefield-dpus-with-nvidia-launchpad/
https://developer.nvidia.com/blog/hands-on-access-to-vmwares-vsphere-on-nvidia-bluefield-dpus-with-nvidia-launchpad/
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/converged-accelerators
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/converged-accelerators
http://nvidianews.nvidia.com/news/oracle-cloud-infrastructure-chooses-nvidia-bluefield-data-center-acceleration-platform
http://nvidianews.nvidia.com/news/oracle-cloud-infrastructure-chooses-nvidia-bluefield-data-center-acceleration-platform
https://docs.nvidia.com/networking/display/XLIOv214

REFERENCES

[118] Yushi Omote, Takahiro Shinagawa, and Kazuhiko Kato. Improving

Agility and Elasticity in Bare-metal Clouds. ACM SIGPLAN Notices,

50(4):145–159, March 2015. Available from: https://dl.acm.org/doi/10.1145/

2775054.2694349. 32

[119] John Ousterhout. Always Measure One Level Deeper. Communications of

the ACM, 61(7):74–83, June 2018. Available from: https://dl.acm.org/doi/10.

1145/3213770. 7

[120] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,

Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry

Qin, Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen

Yang. The RAMCloud Storage System. ACM Transactions on Computer

Systems, 33(3):7:1–7:55, August 2015. Available from: http://doi.org/10.1145/

2806887. 6, 34, 35, 38

[121] A. Padegs. System/360 and Beyond. IBM Journal of Research and Develop-

ment, 25(5):377–390, September 1981. Available from: https://doi.org/10.1147/

rd.255.0377. 12

[122] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi.

Cloud Container Technologies: A State-of-the-Art Review. IEEE Trans-

actions on Cloud Computing, 7(3):677–692, July 2019. Available from: https:

//ieeexplore.ieee.org/document/7922500. 12

[123] PCI-SIG. PCI Express Base Specification Rev. 4.0 Version 1.0, Septem-

ber 2017. Available from: https://members.pcisig.com/wg/PCI-SIG/document/

10912?downloadRevision=active. 59

[124] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir

Chatterjee. A Design Science Research Methodology for Information

Systems Research. Journal of management information systems, 24(3):45–77,

2007. 7

[125] AMD Pensando. Project Monterey and the Future of Data Cen-

ter Modernization, August 2022. Available from: https://www.amd.com/en/

data-center-blogs/Project-Monterey. 3, 18, 61

103

https://dl.acm.org/doi/10.1145/2775054.2694349
https://dl.acm.org/doi/10.1145/2775054.2694349
https://dl.acm.org/doi/10.1145/3213770
https://dl.acm.org/doi/10.1145/3213770
http://doi.org/10.1145/2806887
http://doi.org/10.1145/2806887
https://doi.org/10.1147/rd.255.0377
https://doi.org/10.1147/rd.255.0377
https://ieeexplore.ieee.org/document/7922500
https://ieeexplore.ieee.org/document/7922500
https://members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active
https://members.pcisig.com/wg/PCI-SIG/document/10912?downloadRevision=active
https://www.amd.com/en/data-center-blogs/Project-Monterey
https://www.amd.com/en/data-center-blogs/Project-Monterey

REFERENCES

[126] Daniel R. Perkins and Richard L. Sites. Machine-Independent PASCAL

Code Optimization. In Proceedings of the 1979 SIGPLAN Symposium on Compiler

Construction, SIGPLAN ’79, pages 201–207, New York, NY, USA, August 1979.

Association for Computing Machinery. Available from: https://dl.acm.org/doi/

10.1145/800229.806970. 12

[127] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin

Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and

Huazhong Yang. Going Deeper with Embedded FPGA Platform for Con-

volutional Neural Network. In Proceedings of the 2016 ACM/SIGDA Interna-

tional Symposium on Field-Programmable Gate Arrays, FPGA ’16, pages 26–35, New

York, NY, USA, February 2016. Association for Computing Machinery. Available

from: https://dl.acm.org/doi/10.1145/2847263.2847265. 22

[128] Inc. Red Hat. Virtio-Fs Linux Kernel Implementation - Linux Kernel

Source Tree v6.4, 2022. Available from: https://git.kernel.org/pub/scm/

linux/kernel/git/torvalds/linux.git/tree/fs/fuse/virtio_fs.c?h=v6.2. 33,

43, 44, 50

[129] Felix Richter. Infographic: Amazon Maintains Lead in the Cloud

Market, August 2023. Available from: https://www.statista.com/chart/18819/

worldwide-market-share-of-leading-cloud-infrastructure-service-providers.

17

[130] Dennis M. Ritchie and Ken Thompson. The UNIX Time-Sharing System.

Communications of the ACM, 17(7):365–375, July 1974. Available from: http:

//doi.org/10.1145/361011.361061. 12

[131] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER: Designing in-

Storage Computing System for Emerging High-Performance Drive. In

Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference,

USENIX ATC ’19, pages 379–394, USA, July 2019. USENIX Association. Available

from: https://www.usenix.org/conference/atc19/presentation/ruan. 28

[132] Karl Rupp. Microprocessor Trend Data, February 2022. Available from:

https://github.com/karlrupp/microprocessor-trend-data. v, 14

104

https://dl.acm.org/doi/10.1145/800229.806970
https://dl.acm.org/doi/10.1145/800229.806970
https://dl.acm.org/doi/10.1145/2847263.2847265
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/fuse/virtio_fs.c?h=v6.2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/fuse/virtio_fs.c?h=v6.2
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers
http://doi.org/10.1145/361011.361061
http://doi.org/10.1145/361011.361061
https://www.usenix.org/conference/atc19/presentation/ruan
https://github.com/karlrupp/microprocessor-trend-data

REFERENCES

[133] Rusty Russell. Virtio: Towards a de-Facto Standard for Virtual I/O De-

vices. ACM SIGOPS Operating Systems Review, 42(5):95–103, July 2008. Available

from: https://doi.org/10.1145/1400097.1400108. 33

[134] Ronnie Sahlberg. Libnfs: NFS Client Library, June 2023. Available from:

https://github.com/sahlberg/libnfs. 38

[135] Scott Schweitzer. Panel: SmartNIC or DPU, Who Wins? In 2020 IEEE

Symposium on High-Performance Interconnects (HOTI), August 2020. Available

from: https://technologyevangelist.co/2020/08/25/smartnics-vs-dpus/. 16

[136] L. H. Seawright and R. A. MacKinnon. VM/370: A Study of Multiplicity

and Usefulness. IBM Systems Journal, 18(1):4–17, March 1979. Available from:

https://doi.org/10.1147/sj.181.0004. 12

[137] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. The Hadoop Distributed File System. In 2010 IEEE 26th Sym-

posium on Mass Storage Systems and Technologies (MSST), pages 1–10, May 2010.

Available from: https://ieeexplore.ieee.org/document/5496972. 19

[138] Pradeep Sindhu. The Fungible DPU™: A New Category of Microproces-

sor for the Data-Centric Era : Hot Chips 2020. In 2020 IEEE Hot Chips 32

Symposium (HCS), pages 1–25, Los Alamitos, CA, USA, August 2020. IEEE Com-

puter Society. Available from: https://doi.ieeecomputersociety.org/10.1109/

HCS49909.2020.9220423. 23, 24, 25

[139] J.E. Smith and Ravi Nair. The Architecture of Virtual Machines. Computer,

38(5):32–38, May 2005. Available from: https://ieeexplore.ieee.org/abstract/

document/1430629. 12

[140] Netronome Systems. Netronome NFP-4000 Flow Processor - Product

Brief, 2020. Available from: https://www.netronome.com/media/documents/PB_

NFP-4000-7-20.pdf. 16, 23, 24, 25

[141] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A

Flexible Framework for File System Benchmarking. USENIX; login,

41(1):6–12, 2016. Available from: https://www.usenix.org/publications/login/

spring2016/tarasov. 66

105

https://doi.org/10.1145/1400097.1400108
https://github.com/sahlberg/libnfs
https://technologyevangelist.co/2020/08/25/smartnics-vs-dpus/
https://doi.org/10.1147/sj.181.0004
https://ieeexplore.ieee.org/document/5496972
https://doi.ieeecomputersociety.org/10.1109/HCS49909.2020.9220423
https://doi.ieeecomputersociety.org/10.1109/HCS49909.2020.9220423
https://ieeexplore.ieee.org/abstract/document/1430629
https://ieeexplore.ieee.org/abstract/document/1430629
https://www.netronome.com/media/documents/PB_NFP-4000-7-20.pdf
https://www.netronome.com/media/documents/PB_NFP-4000-7-20.pdf
https://www.usenix.org/publications/login/spring2016/tarasov
https://www.usenix.org/publications/login/spring2016/tarasov

REFERENCES

[142] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx: A

SmartNIC-driven Accelerator-centric Architecture for Network Servers.

In Proceedings of the Twenty-Fifth International Conference on Architectural Support

for Programming Languages and Operating Systems, ASPLOS ’20, pages 117–131,

New York, NY, USA, March 2020. Association for Computing Machinery. Available

from: http://doi.org/10.1145/3373376.3378528. 3

[143] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-

hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal

Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-

ton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fer-

nandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj

Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou,

Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,

Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,

Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog,

Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan

Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subra-

manian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams,

Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,

Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,

Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open

Foundation and Fine-Tuned Chat Models, July 2023. Available from: http:

//arxiv.org/abs/2307.09288. 2

[144] Animesh Trivedi and Marco Spaziani Brunella. CPU-free Computing:

A Vision with a Blueprint. In Proceedings of the 19th Workshop on Hot Topics

in Operating Systems, HOTOS ’23, pages 1–14, New York, NY, USA, June 2023.

Association for Computing Machinery. Available from: https://dl.acm.org/doi/

10.1145/3593856.3595906. 2

[145] Animesh Trivedi, Nikolas Ioannou, Bernard Metzler, Patrick Stuedi,

Jonas Pfefferle, Kornilios Kourtis, Ioannis Koltsidas, and Thomas R.

Gross. FlashNet: Flash/Network Stack Co-Design. ACM Transactions on

106

http://doi.org/10.1145/3373376.3378528
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://dl.acm.org/doi/10.1145/3593856.3595906
https://dl.acm.org/doi/10.1145/3593856.3595906

REFERENCES

Storage, 14(4):30:1–30:29, December 2018. Available from: https://dl.acm.org/

doi/10.1145/3239562. 28, 32

[146] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach,

and Bernard Metzler. Albis: {High-Performance} File Format for Big

Data Systems. In 2018 USENIX Annual Technical Conference (USENIX ATC

18), pages 615–630, 2018. Available from: https://www.usenix.org/conference/

atc18/presentation/trivedi. 32

[147] Michael S. Tsirkin and Cornelia Huck. Virtual I/O Device (VIRTIO)

Version 1.2, September 2022. Available from: https://docs.oasis-open.org/

virtio/virtio/v1.2/virtio-v1.2.html. 29, 33, 49, 60

[148] Max Uritsky, Perry Leong, and Andy Reichard. Introducing Microsoft

Azure Boost Preview, July 2023. Available from: https://aka.ms/azureboost.

3

[149] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,

Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Io-

sup. Is Big Data Performance Reproducible in Modern Cloud Net-

works? In 17th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 20), pages 513–527, 2020. Available from: https://www.usenix.

org/conference/nsdi20/presentation/uta. 7

[150] Jeff Vander Stoep. Android: Protecting the Kernel, August 2016.

Available from: https://events.static.linuxfound.org/sites/events/files/

slides/Android-%20protecting%20the%20kernel.pdf. 19

[151] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok.

To FUSE or Not to FUSE: Performance of User-Space File Systems.

In 15th USENIX Conference on File and Storage Technologies (FAST 17), pages

59–72, 2017. Available from: https://www.usenix.org/conference/fast17/

technical-sessions/presentation/vangoor. 37, 49

[152] Bill Venners. The Java Virtual Machine. Java and the Java virtual machine:

definition, verification, validation, 1998. 12

[153] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue

Li, Xinchen Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng,

107

https://dl.acm.org/doi/10.1145/3239562
https://dl.acm.org/doi/10.1145/3239562
https://www.usenix.org/conference/atc18/presentation/trivedi
https://www.usenix.org/conference/atc18/presentation/trivedi
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html
https://aka.ms/azureboost
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.usenix.org/conference/nsdi20/presentation/uta
https://events.static.linuxfound.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Android-%20protecting%20the%20kernel.pdf
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor

REFERENCES

Tianhao Wang, Weicheng Ling, Kejia Huo, Pingbo An, Kui Ji, Shi-

deng Zhang, Bin Xu, Ruiqing Feng, Tao Ding, Kai Chen, and Chuanx-

iong Guo. SRNIC: A Scalable Architecture for RDMA NICs. In 20th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

23), pages 1–14, Boston, MA, April 2023. USENIX Association. Available from:

https://www.usenix.org/conference/nsdi23/presentation/wang-zilong. 20

[154] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,

and Carlos Maltzahn. Ceph: A Scalable, High-Performance Distributed

File System. In Proceedings of the 7th Symposium on Operating Systems Design

and Implementation, OSDI ’06, pages 307–320, USA, November 2006. USENIX Asso-

ciation. Available from: https://dl.acm.org/doi/10.5555/1298455.1298485. 19,

52, 65, 69

[155] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,

Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-

Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau

Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo,

Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Ale-

jandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Car-

ole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen,

Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher,

Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson,

Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta

Sansone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn,

Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van Mulli-

gen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine

Wolstencroft, Jun Zhao, and Barend Mons. The FAIR Guiding Prin-

ciples for Scientific Data Management and Stewardship. Scientific Data,

3(1):160018, March 2016. Available from: https://www.nature.com/articles/

sdata201618. 7

[156] NVM Express Workgroup. NVM Express® Base Specification, Revi-

sion 2.0c, October 2022. Available from: https://nvmexpress.org/wp-content/

uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf. 58

108

https://www.usenix.org/conference/nsdi23/presentation/wang-zilong
https://dl.acm.org/doi/10.5555/1298455.1298485
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2.0c-2022.10.04-Ratified.pdf

REFERENCES

[157] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Songyuan Sui, Khalid Manaa,

Omer Shabtai, Yonatan Piasetzky, Matty Kadosh, Arvind Krishna-

murthy, T. S. Eugene Ng, and Ang Chen. Unleashing SmartNIC Packet

Processing Performance in P4. In Proceedings of the ACM SIGCOMM 2023

Conference, ACM SIGCOMM ’23, pages 1028–1042, New York, NY, USA, Septem-

ber 2023. Association for Computing Machinery. Available from: https://dl.acm.

org/doi/10.1145/3603269.3604882. 3

[158] Lily Yang, Todd A. Anderson, Ram Gopal, and Ram Dantu. Forward-

ing and Control Element Separation (ForCES) Framework. Request for

Comments RFC 3746, Internet Engineering Task Force, April 2004. Available from:

https://datatracker.ietf.org/doc/rfc3746. 23

[159] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Chang-

peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma,

and Luse E. Paul. SPDK: A Development Kit to Build High Performance

Storage Applications. In 2017 IEEE International Conference on Cloud Comput-

ing Technology and Science (CloudCom), pages 154–161, December 2017. Available

from: https://ieeexplore.ieee.org/document/8241103. 52, 61

[160] Mohamed Zahran. Heterogeneous Computing: Here to Stay. Com-

munications of the ACM, 60(3):42–45, February 2017. Available from: https:

//dl.acm.org/doi/10.1145/3024918. 2, 15

[161] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang, Yibin Shen, and Xin

Long. High-Density Multi-tenant Bare-metal Cloud. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’20, pages 483–495, New York, NY,

USA, March 2020. Association for Computing Machinery. Available from: https:

//doi.org/10.1145/3373376.3378507. 17, 18, 32

[162] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,

Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei

Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha Ras-

togi, Carole-Jean Wu, Christos Kozyrakis, and Parik Pol. Understand-

ing Data Storage and Ingestion for Large-Scale Deep Recommendation

109

https://dl.acm.org/doi/10.1145/3603269.3604882
https://dl.acm.org/doi/10.1145/3603269.3604882
https://datatracker.ietf.org/doc/rfc3746
https://ieeexplore.ieee.org/document/8241103
https://dl.acm.org/doi/10.1145/3024918
https://dl.acm.org/doi/10.1145/3024918
https://doi.org/10.1145/3373376.3378507
https://doi.org/10.1145/3373376.3378507

REFERENCES

Model Training: Industrial Product. In Proceedings of the 49th Annual In-

ternational Symposium on Computer Architecture, ISCA ’22, pages 1042–1057, New

York, NY, USA, June 2022. Association for Computing Machinery. Available from:

https://dl.acm.org/doi/10.1145/3470496.3533044. 2

[163] Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu. Oc-

topus+: An RDMA-Enabled Distributed Persistent Memory File Sys-

tem. ACM Transactions on Storage, 17(3):19:1–19:25, August 2021. Available from:

https://dl.acm.org/doi/10.1145/3448418. 19, 52

[164] Xiantao Zxt, Zhengxiao Zx, and Justin Song. High-Density Multi-tenant

Bare-metal Cloud with Memory Expansion SoC and Power Management.

In 2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–18, August 2020. Available

from: https://ieeexplore.ieee.org/document/9220447. 14, 16, 17, 18, 23, 26, 61

110

https://dl.acm.org/doi/10.1145/3470496.3533044
https://dl.acm.org/doi/10.1145/3448418
https://ieeexplore.ieee.org/document/9220447

Appendices

A Support for file system operations in io_uring

DPFS++ operation io_uring operation Kernel version
create openat 5.6
fallocate fallocate 5.6
flush fsync 5.1
fsyncdir fsync 5.1
fsync fsync 5.1
getattr statx 5.6
mkdir mkdirat 5.15
open openat 5.6
read read 5.1
release closeat 5.6
rename renameat 5.11
rmdir unlinkat 5.11
symlink symlinkat 5.15
unlink unlinkat 5.11
write write 5.1
lookup n/a n/a
closedir X n/a
flock X n/a
mknod X n/a
opendir X n/a
readdir X n/a
releasedir X n/a
setattr X n/a
statfs X n/a

Table 1: Translation of DPFS++ operations to io_uring operations and which Linux kernel
version is required to use this io_uring operation. io_uring operations that are marked with
X are not supported in the Linux kernel as of September 2023 and Linux v6.6.

The DPFS++ operation lookup is not applicable to a direct translation to io_uring because

it is a higher level metadata operation that consists of multiple POSIX file operations

(namely open, stat, and close). Because of this complexity, it is implemented using the

synchronous POSIX API in DPFS-Kernel.

111

REFERENCES

B Artifact Appendix

B.1 Abstract

This artifact description describes how to set up DPFS++ and reproduce the results as

seen in the thesis. We explain how to obtain the software, set up the same benchmarking

environment, and do the benchmarking. The software consists of multiple parts: the

DPFS++ framework (including its external libraries), the NVIDIA SNAP library (for

NVIDIA BlueField-2 support), a patched Linux kernel, Ceph, a set of benchmarking tools,

benchmarking automation scripts, and scripts to generate the plots used in this thesis.

The name DPFS++ is used as a milestone name for the current iteration of DPFS,

which includes additional features in the framework. These names can, therefore, be used

interchangeably in the context of this artifact appendix.

B.2 Artifact check-list (meta-information)

• Program: DPFS++ (https://github.com/IBM/DPFS/)

• Compilation: GCC version 9.4.0, CMake version 3.16.3, GNU automake 1.16.1 and

Python3 (Python is only used for generating the plots)

• Experiments: Experiments for DPFS++ are part of the main DPFS code repository

https://github.com/IBM/DPFS/tree/master/experiments.

• Publicly available?: The source code of DPFS++ is publicly available at https://

github.com/IBM/DPFS. However, the NVIDIA SNAP library and prototype firmware

required to use virtio-fs on the NVIDIA BlueField-2 DPU are not publicly available

as they are under NDA.

• Code licenses: DPFS++ and its experimentation suite (excluding external dependen-

cies) are currently fully licensed under the GNU Lesser General Public License v2.1.

There are plans to change this licensing structure of the hardware abstraction layer

(DPFS-HAL) and the file systems backends (e.g., DPFS-Kernel) to a more permissive

license like MIT to aid cloud data center adoption.

B.3 Description

How to access

The Github DPFS repository contains the code and experimental suite of DPFS++. The

repository is configured to include all the necessary software dependencies except for the

112

https://github.com/IBM/DPFS/
https://github.com/IBM/DPFS/tree/master/experiments
https://github.com/IBM/DPFS
https://github.com/IBM/DPFS

B Artifact Appendix

NVIDIA SNAP library (as this library is proprietary and under NDA).

$ git clone https://github.com/IBM/DPFS

$ git submodule update --init --recursive

B.4 Installation

The DPFS project does currently not contain its own self-contained build system, as it is

meant to be integrated into the build system of the NVIDIA SNAP library. The repository

contains several Automake files (in each of the dpfs_* directories) that each compile a part

of the DPFS software stack. These Automake files need to be integrated into the Automake

build system of NVIDIA SNAP (mlnx_snap to be precise).

The NVIDIA SNAP library consists of two layers, mlnx-libsnap and mlnx-snap, that

need to be built in that order. The library contains build instructions.

To build the external eRPC dependency:

$ cmake . -DPERF=on -DTRANSPORT=infiniband -DROCE=on

$ make -j

To build the external libnfs dependency:

$./bootstrap

$ CFLAGS=-O3 ./configure --enable-pthread

$ make -j

$ sudo make install

$ sudo rm /etc/ld.so.cache

$ sudo ldconfig

The DPFS code contains the following four conditions that can be configured using the

Automake build system:

1. DPFS_RVFS - Enables the eRPC implementation of the DPFS-HAL interface, resulting

in all compiled backends not to use the NVIDIA SNAP virtio-fs layer, but the

eRPC library to function as a gateway (see Section 5.3.

2. VNFS_NULLDEV - Changes the DPFS-NFS backend to function as DPFS-Null (see Sec-

tion 4.2).

3. LATENCY_MEASURING_ENABLED - Enables the measuring of NFS operation latencies

(round-trip) to the NFS server. This only functions when running a single virtio-fs

device and with a single virtio queue (i.e., single-threaded mode).

113

REFERENCES

4. IORING_DISABLE_METADATA - Disables the io_uring metadata operations in DPFS-Kernel,

thus forcing all metadata operations to use the synchronous POSIX API. This is use-

ful when running an older Linux kernel (see Appendix A) on the system that runs

DPFS-Kernel (i.e., a DPU or a gateway).

Hardware and software dependencies

The DPFS++ version of the DPFS framework only supports the NVIDIA BlueField-2 DPU

and a prototype firmware is required that enables virtio-fs functionality in the firmware

of the DPU. Besides the DPU requirement, the other parts of the DPFS++ stack (i.e., the

host consuming the virtio-fs device, and remote servers running DPFS-Gateway, Ceph

or an NFS server) do not require "special access" hardware nor firmware.

The DPFS framework, as of DPFS++ depends upon NVIDIA SNAP, specifically mlnx-libsnap

version 1.3.2 and mlnx-snap version 3.5.0. DPFS and NVIDIA SNAP are not plug-and-

play; some changes need to be made to the source code of the SNAP library to support

virtio-fs device emulation via DPFS and accommodate asynchronous functionality in

DPFS. We cannot publish these changes or instructions. If one were to get access to

the NVIDIA SNAP library and the prototype firmware, the author can be contacted for

further details.

The other hardware and software dependencies are specified in Table 6.1 found in the

Chapter 6 of the Evaluation.

B.5 Experiment Workflow

Before starting the experiments, the machines used in the experiment must be cleaned of

performance anomalies introducing programs running in the background. The experiments

folder of the DPFS repository contains the dpu_clean.sh and server_clean.sh scripts

that rid the operating system of such processes (of which we are aware, other deployments

may have additional processes running that can introduce anomalies). All servers (gateway

and Ceph nodes) have their c-states disabled using setcpulatency.c program found in

experiments.

To perform the single tenant host NFS experiments, the dpu_networking.sh script must

be executed on the DPU, and host_dpu_networking.sh on the host. Doing this allows

the host to connect the remote NFS gateway server using the following mount command:

$ sudo mount -t nfs -o wsize=1048576,rsize=1048576,async $NFS_URI $MNT

114

B Artifact Appendix

To perform the single tenant DPFS and DPFS++ experiments, the DPFS framework

must be configured using the conf_example.toml found in the root of the repository and

then started on the DPU with the wanted backend (e.g., DPFS-Kernel) as follows:

$ sudo ./dpfs_kernel/dpfs_kernel -c ./conf_example.toml

Then the host must mount the virtio-fs device as follows:

$ sudo mount -t virtiofs dpfs-0 $MNT

The experiments/workloads folder in the DPFS repository contains scripts that run

the workloads used in this thesis, namely, fio, rocksdb, redis and filebench. These can

be manually run from the host operating system on the virtio-fs file system. The

experiments/runners contains automation scripts that run the workloads for multi-tenancy

(that do automatic mounting and unmounting of the NFS and virtio-fs file systems),

synthetic, metadata (i.e., real-world), and micro-architectural analysis.

115

	List of Figures
	List of Tables
	1 Introduction
	1.1 The state-of-the-art cloud is DPU-powered
	1.2 DPFS - A DPU-powered file system virtualization framework
	1.3 Problem statement - Evolving DPFS into a cloud-native system
	1.4 Research questions
	1.5 Research methods
	1.6 Thesis research contributions
	1.7 Societal relevance
	1.8 Plagiarism Declaration

	2 Background
	2.1 Cloud Computing
	2.2 The great wave of heterogeneous architectures
	2.3 A brave new DPU-powered cloud
	2.4 Current state of file system services in the cloud

	3 The design space of offloaded distributed file systems (Related work)
	3.1 State-of-the-art DPU hardware
	3.2 The current DPU-offloaded file system design space
	3.3 Opportunities in the design space

	4 DPFS - a DPU-Powered File System virtualization framework
	4.1 The case for a full-offload DPU-Powered File System Virtualization framework
	4.2 The design and implementation of DPFS
	4.3 Evaluation
	4.4 Limitations

	5 Evolving the DPFS framework into DPFS++
	5.1 virtio-fs driver improvements
	5.2 Supporting kernel-based distributed file systems
	5.3 Escaping the DPU with gateway passthrough
	5.4 Multi-tenancy in a dynamic cloud environment

	6 Evaluating the DPFS++ framework
	6.1 Experimental setup and reproducibility
	6.2 virtio-fs latency driver patch
	6.3 DPFS-Kernel with a distributed Ceph storage cluster
	6.4 The gateway implementation of DPFS-Gateway
	6.5 Multi-tenancy in DPFS++

	7 Concluding remarks
	7.1 Conclusion
	7.2 Limitations
	7.3 Future work

	References
	Appendices
	A Support for file system operations in io_uring
	B Artifact Appendix

