
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

FrogFishDB - A Timeseries Database for

in-order timeseries using the TimeTree

datastructure on �ash SSDs

Author: Niels de Waal (2706170)

1st supervisor: dr. ir. Animesh Trivedi
2nd reader: prof dr. ir. Alexandru Iosup

A thesis submitted in ful�llment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

August 29, 2023

�Here, on the edge of what we know, in contact with the ocean of the unknown, shines the

mystery and beauty of the world. And it's breathtaking.�

from Seven Brief Lessons on Physics, by Carlo Rovelli

ii

Abstract

With the increase in large-scale IT deployments, the amount of temporal data

also grows, one instance of which is timestamped monitoring data. This data

needs to be stored in real-time. Existing timeseries databases do not adequately

utilize the performance that modern storage hardware can provide. This hard-

ware is capable of multiple gigabytes per second of bandwidth. However, ex-

isting benchmarks have shown that existing databases only utilize a fraction

of this bandwidth. Therefore we design and build FrogFishDB. A timeseries

database build from the ground up to utilize the bandwidth capabilities of

modern storage hardware.

We identify and provide a solution to two bottlenecks in timeseries databases.

The �rst bottleneck is the ingestion protocol. Existing databases use encoding

schemes that are human-readable but detrimental to performance. We solve

this by using a binary protocol to encode data. Furthermore, we split the

control and data plane. A timeseries must �rst be registered with the time-

series database, which responds with a unique token. The token is then used

during ingestion to identify which timeseries the data belongs to. The second

bottleneck is the complexity of indexing data structures. Understanding the

requirements of timeseries data have allowed us to take a B+ tree and simplify

it, creating an easy-to-implement data structure capable of a high insertion

rate.

Fixing these two bottlenecks results in a signi�cant performance improvement

compared to In�uxDB, QuestDB, and Clickhouse. A single-threaded version

of FrogFishDB outperforms existing databases in terms of ingestion bandwidth

when using a small number of timeseries, with 40% more bandwidth using eight

clients compared to QuestDB, which has the next highest ingestion bandwidth.

We also present various further optimization and feature avenues for Frog-

FishDB. The source code for FrogFishDB is available at https://github.com/

NielsdeWaal/Thesis and https://github.com/NielsdeWaal/TimeTree.

https://github.com/NielsdeWaal/Thesis
https://github.com/NielsdeWaal/Thesis
https://github.com/NielsdeWaal/TimeTree

iv

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Timeseries databases . 3

1.2 Flash storage . 4

1.3 Problem statement . 5

1.4 Research questions . 6

1.5 Research Methodology . 7

1.6 Contributions . 7

1.7 Societal relevance . 8

1.8 Thesis Structure . 8

1.9 Plagiarism Declaration . 9

2 Background 11

2.1 Flash Storage . 11

2.2 Timeseries data . 15

2.3 Timeseries databases . 16

2.3.1 Ingestion protocols: Pull vs Push . 16

2.3.2 Indexing structure . 17

2.3.3 Traditional relational databases . 18

2.3.4 Summary . 19

2.4 Asynchronous IO . 20

2.4.1 Asynchronous IO in the Linux kernel 21

2.4.2 io_uring . 22

2.4.3 FrogFishDB and io_uring . 26

2.5 B and B+ Trees . 27

i

CONTENTS

2.6 Control and data plane . 30

2.7 Data model . 31

2.8 Tags . 32

2.9 Out-of-order data . 32

2.10 Query types . 32

2.11 Inverted index . 33

3 Related Work 35

3.1 Performance of horizontal scaling . 35

3.2 Indexing structures . 37

3.3 Flash optimizations . 40

3.4 Summary . 43

4 Design of FrogFishDB 45

4.1 Overview and requirements . 45

4.1.1 Requirements . 45

4.1.2 FrogFishDB as a whole . 46

4.2 Ingestion . 47

4.2.1 Push vs Pull . 47

4.2.2 Protocol . 48

4.2.3 Summary . 53

4.3 Indexing structure . 53

4.3.1 TimeTree . 54

4.3.2 Storage . 56

4.3.3 Aggregation . 60

4.3.4 Summary . 61

4.4 Querying . 62

4.4.1 Why the need for a new query language? 62

4.4.2 Language design . 64

4.4.3 Query planner . 68

4.4.4 Summary . 68

4.5 Optimization opportunity: Multithreading 69

ii

CONTENTS

5 Evaluation of FrogFishDB 73

5.1 Evaluation plan . 73

5.1.1 Ingestion bandwidth . 74

5.1.2 Query performance . 74

5.1.3 Con�guration . 75

5.1.4 Benchmarking tools . 76

5.2 Ingestion performance . 78

5.2.1 TimeTree . 79

5.2.2 FrogFishDB . 81

5.2.3 Summary . 93

5.3 Query performance . 94

5.3.1 TimeTree . 94

5.3.2 FrogFishDB . 97

5.4 Summary . 99

6 Future Work 101

6.1 Multi-threading . 101

6.2 Bypassing the �lesystem for storage . 101

6.3 Log �le compression . 102

6.4 Usage of SIMD for the indexing structure 103

6.5 Use the aggregation function of TimeTree in FrogFishDB 106

6.6 Examine the use of a Finite State Transducer 106

7 Conclusion 109

7.1 Research questions . 110

7.2 Limitations . 111

References 113

8 Appendix 129

8.1 Experiment reproduction . 129

8.1.1 Setup . 129

8.1.2 Processing the data . 134

8.2 Clickhouse patch . 134

iii

CONTENTS

iv

List of Figures

1.1 A Formula 1 car where sensor data is sent to engineers monitoring the data. 2

1.2 Overview showing the ingestion, indexing, storage, and querying stages of a

timeseries database. 4

2.1 Overview of a IC package. 12

2.2 Internal architecture of an SSD. 13

2.3 Simpli�ed GC process. With the green blocks being free, the blue blocks

containing valid data, and the red blocks having been overwritten. 14

2.4 In�ux line protocol example. 16

2.5 Conceptual overview of the two di�erent scaling techniques. 19

2.6 Visualisation of blocking vs. asynchronous IO operations. 21

2.7 Conceptual overview of the io_uring ring structures. 23

2.8 Conceptual overview of the io_uring polling modes. 25

2.9 Example of a B tree. 28

2.10 Example of a B+ tree with all keys being stored in the tree's leafs. 28

2.11 Example of an insertion into a B+ tree causing nodes to be split and added

to the tree. 29

2.12 Conceptual overview of control and dataplane split. 30

2.13 Inverted index example. 33

3.1 Simpli�ed overview of di�erent components making up the distributed ar-

chitecture of Monarch. 36

3.2 Overview of a TSM �le. 38

3.3 Simpli�ed overview of the BTrDB indexing structure. 40

3.4 Overview of QuestDB writes and reads. We show a value inserted into the

memory-mapped region on the left. On the right, after calculating the o�set,

we show a value being read from the memory-mapped region. 41

v

LIST OF FIGURES

3.5 The di�erence in the amount of data needed for each timestamp. 42

4.1 Overview of the di�erent components and interaction of FrogFishDB. 46

4.2 Simpli�ed communication �ow between client and data. A client registers a

timeseries using the management port and receives a token used to identify

the timeseries. After the registration, it can identify batches of data using

the token. 49

4.3 Example of the two log �les used to record canonical timeseries names. . . . 50

4.4 Diagram showing registering a timeseries in FrogFishDB. 51

4.5 Database replies with token to the client. 51

4.6 Batch containing timeseries data to be inserted into the database. 52

4.7 Overview of TimeTree. Full tree stores data between timestamps 10 and

310. Nodes with the L mark are the leaf nodes with the extra �eld pointing

to the data �le. 54

4.8 Insertion into the TimeTree structure example. 55

4.9 Lookup in the a TimeTree. The upper example shows the search for starting

leaf node. The lower example shows the start having been found and the

use of the links between leaf nodes to search for the end of the range. 56

4.10 Memtable's o�set and metadata are stored in the log �le. 57

4.11 Reading the log �le and recreating the indexing structure. 58

4.12 Systems diagram showing the process of inserting a value into the database. 59

4.13 Example of three leaf nodes getting aggregated. 61

4.14 Comparison between two di�erent query languages. 63

4.15 Ingestion in multithreaded context for FrogFishDB. 70

4.16 Queries in multithreaded context for FrogFishDB. 71

5.1 Insertions per second for the TimeTree using di�erent fanout con�gurations. 79

5.2 Maximum bandwidth for 4KB, 2MB, and 4MB sequential writes. 80

5.3 Ingestion performance of di�erent timeseries databases. The y-axis repre-

sents the points per second ingested by the di�erent databases. 83

5.4 Ingestion performance compared between a no-op version and normal Frog-

FishDB. 84

5.5 Memory usage of FrogFishDB when ingesting at a scale of 32. 85

5.6 Memory usage for 320 timeseries. 86

5.7 Memory usage for 3200 timeseries. 86

5.8 Ingestion performance for di�erently sized memtables. 87

vi

LIST OF FIGURES

5.9 Ingestion performance of two clients ingesting data into a single database. . 88

5.10 No-op performance of two clients. 88

5.11 Ingestion performance of four clients ingesting data into a single database. . 88

5.12 No-op performance of four clients. 88

5.13 Ingestion performance of eight clients ingesting data into a single database. 89

5.14 No-op performance of eight clients. 89

5.15 Ingestion performance of sixteen clients ingesting data into a single database. 90

5.16 No-op performance of sixteen clients. 90

5.17 Insertion latency when using a single client. 90

5.18 Insertion latency when using two clients. 90

5.19 Cumulative distribution function of the insertion latency when using a single

client. 91

5.20 Cumulative distribution function of the insertion latency when using two

clients. 91

5.21 Insertion latency when using four clients. 92

5.22 Cumulative distribution function of the insertion latency when using four

clients. 92

5.23 Insertion latency when using eight clients. 92

5.24 Cumulative distribution function of the insertion latency when using eight

clients. 92

5.25 Insertion latency when using sixteen clients. 93

5.26 Cumulative distribution function of the insertion latency when using sixteen

clients. 93

5.27 Query performance for di�erent fanout degrees. 96

5.28 Query latency for the example �ve queries. 98

6.1 Di�erent regions �lling a �ash devices. 102

6.2 Log zone compression. 103

6.3 Lookup start of range in internal node. 104

6.4 Collect values from multiple leafs in one load instruction. 105

6.5 Example of an FST. The top example contains a single key-value pair, the

middle contains two, and the bottom has three pairs with pre�x overlap. . . 107

vii

LIST OF FIGURES

viii

List of Tables

4.1 Supported query operations. 68

5.1 Versions of software used. 78

ix

LIST OF TABLES

x

1

Introduction

Our world is more and more interconnected. We generate vast amounts of data, not just by

interacting with each other online through social media and messaging platforms, but also

by measuring the world around us. The number of connected devices, otherwise known

as the Internet of Things (IoT), is estimated to grow to 125 billion devices in 2030 (1),

all of which generate data. Combined, it is estimated that the amount of data generated,

processed, and stored by the human race will reach 200 Zettabytes (2), 30% of which is

consumed in real-time. This growth has caused a large investment in our digital infras-

tructure. The recently published CompySys Manifesto for the Netherlands (3) has shown

that the Information and Communications Technology (ICT) industry is responsible for 3.3

million jobs, and contributes to 60% of the total GDP. One class of the data generated by

the IoT is called Timeseries Data (4), which are measurements taken repeatedly over time.

Examples of timeseries data are stock prices, temperature readings, and brain signals.

An example that shows the scale of timeseries data generated and the importance of

being able to process it in real-time is Formula 1. Formula 1 is a sport where teams

attempt to build the fastest car possible and use it to compete on race tracks all over the

world. These cars carry over 300 sensors (5), 30 times more than a home weather station.

The sensors in the car are used to measure and monitor many aspects of the car. Three

components are responsible for a tightly coupled chain of monitoring all systems with the

engine control unit (ECU) at the center and responsible for processing and communication

back to the team. Other components are the power control module (PCM) and the master

control unit (MCU) (6).

As a Formula 1 car carries over 300 sensors, it generates roughly 1.1 million data points

per second (5). With 20 cars on the circuit, this means 160TB of data per race, or in

other words, 34 thousand DVDs. Sensors can be categorized into three distinct categories,

1

1. INTRODUCTION

instrumentation sensors which measure air pressure and fuel �ow, monitoring sensors that

keep track of the health of components such as tire degradation, and control sensors that

measure driver inputs such as acceleration (6). As a result, these cars require unique

databases to process and store this large amount of data. Figure 1.1 shows a Formula 1

car where the data is sent, in real-time, to a database and used by engineers who monitor

the data.

Tire sensors

Air pressure

Timeseries
database

Send data Retrieve and analyse

12:00
12:15

12:30
12:45

13:00
0.0

50.0

100.0

12:00
12:15

12:30
12:45

13:00
0.0

50.0

100.0

12:00
12:15

12:30
12:45

13:00
0.0

50.0

100.0

Figure 1.1: A Formula 1 car where sensor data is sent to engineers monitoring the data.

A new target has emerged in recent years, which generates timeseries data that we need to

measure and monitor, namely the IT infrastructure. In 2020, Google detailed its database

for monitoring its global IT infrastructure named Monarch (7). Monarch is responsible

for detecting and alerting engineers when monitored services or machines fail, displaying

health and status information to the engineers, and providing tools to investigate possible

performance or resource usage issues. These three tasks must be handled in real-time.

Otherwise, users will encounter disrupted services, such as the inability to read their email.

In their evaluation, Google shows that in 2019 Monarch was responsible for storing 750TB

of monitoring timeseries data and ingesting data at a rate of 2.5TB/s, which is equivalent

to 50 blue-ray disks every second. Another example of an extensive IT infrastructure is

AWS, which maintains an estimated 5 million servers (8). All of these must be monitored

by maintenance personnel for Amazon to uphold its guarantees regarding uptime.

2

1.1 Timeseries databases

1.1 Timeseries databases

To ingest a large amount of timeseries data in real-time, we require a specialized database

that can support the high volume of data being inserted. Timeseries Databases (TSDB) are

a type of database that is specialized for storing timeseries data (9). Timeseries databases

make use of three unique properties of timeseries data. The �rst property is that all data

is tied to a timestamp and indexed by time. The second property is that timeseries data

is write-heavy, meaning that data is more often written, than it is read. The data is also

immutable, after it has been ingested it is not altered. The third and �nal property is

that queries for timeseries data are biased towards scan operations, where the user is not

searching for a single value but examining a range of time. These users are either interested

in the raw values or in higher-level aggregated results.

While ingesting the data, databases need data structures that can be used to �nd data

again after it has been stored. This indexing structure is one of the core components

of a database, which means that it needs to be capable of ingesting data in real-time.

The indexing structure can be seen as the index for a book. The book contains all the

information, but if one wants to �nd some information without reading the entire book,

one can use the index to �nd the page on which the information is located quickly.

After ingesting the data, timeseries databases provide users with tools to retrieve and

analyze the data. Through specialized query programming languages, users cannot just

view the data stored but can also analyze the data by applying mathematical operations.

An example of such an operation would be that users can view the maximum value stored

at speci�c time intervals.

Figure 1.2 is meant to provide an overview showing a timeseries database's core compo-

nents. In blue, we present the ingestion process. The timeseries data is funneled through

the index (highlighted in red) to physical storage (highlighted in green). Finally, the user

can query the data and apply any optional processing (highlighted in yellow).

To better understand these di�erent components, we �t them onto our earlier example

of a Formula 1 car. The car generates timeseries data by taking measurements using the

onboard sensors and sends it to the database that ingests it (highlighted in blue). The

timeseries data is then stored (highlighted in green) and is monitored and analyzed by the

engineers (highlighted in yellow)

To improve the performance of timeseries databases, both in terms of ingestion per-

formance and in terms of query performance, we require a storage medium capable of

handling sequential writes and random reads. In the next section we discuss �ash based

3

1. INTRODUCTION

Index

Query

Store

Ingest
12:

00
12:

15
12:

30
12:

45
13:

00

0.0

50.0

100.0

Timeseries
Database

Querying and
 processing

Storage
back-end

Storing and retrieving
data from

Timestamp and value
Server

Timestamp and valueSensor

Timestamp and value
Telemetry

Time

Value

Figure 1.2: Overview showing the ingestion, indexing, storage, and querying stages of a

timeseries database.

storage technologies. These storage devices are capable of high read and write bandwidth,

over 350 times more than traditional storage media such as HDDs (10).

1.2 Flash storage

A storage technology that is gaining adoption in the data center is the Solid State Drive

(SSD), projected to represent 30% of the created storage media from 2017-2025 (2). SSDs

are an alternative storage medium in the data center compared to the Hard Disk Drive

(HDD). HDDs have been widely adopted for their low cost and high storage capacity,

making them an appealing storage medium for storing large amounts of data. However,

due to physical limitations, the performance of the HDD is limited, relying on mechanical

movement to read or write data. Contrary to an HDD, an SSD is capable of providing

µ-second level access latency, enabling several gigabytes per second of read and write

bandwidth, amounting to a 350 to 3,800× bandwidth performance improvement over the

HDD (10).

Using SSDs does not come without challenges. The �rst challenge is the lack of in-place

updates at the �ash chip level, requiring an explicit erasure of the existing data before

being able to overwrite it. Due to the physical properties of SSDs, overwriting data can

incur a heavy latency penalty (11) and unpredictable performance (12, 13). The second

challenge is that performance is asymmetrical, where reads are faster than writes. The

third challenge is that the physical medium SSDs use su�ers wear from repeated erasure.

4

1.3 Problem statement

This means that the whole section could become unreliable or unavailable if the workload

is not even spread across the device.

These challenges are hidden or alleviated through special �rmware running on the SSD.

The Flash Translation Layer (FTL) (14) handles operations submitted by the host through

placement policies, wear leveling, and space reclamation. Thus, SSDs show the same

functional behavior as HDDs but have very di�erent physical properties and di�erent

performance characteristics.

To unlock the potential of SSDs, people have started optimizing their workloads to

match the characteristics of SSDs (15). Multiple works have shown signi�cant performance

gains (16, 17, 18, 19, 20, 21), such as increasing throughput by 41%, and decreasing latency

59% (22) compared to a database not optimized for SSDs.

1.3 Problem statement

We note a lack of research into timeseries databases, speci�cally a lack of research into

optimizing for use with SSDs, and a lack of research into alternative ingestion methods.

Existing performance evaluations have shown timeseries databases reaching a maximum of

30MB/s of ingestion bandwidth (23, 24, 25, 26), which is only 1% of the bandwidth SSDs

have been shown to be capable of (10). To reach higher ingestion bandwidth, existing

databases have turned towards scaling across multiple machines (27). Scaling through the

use of multiple machines is an ine�cient method of scaling, which we try to avoid (28).

We note that the workload for timeseries databases is a good match for �ash storage. The

ingestion is append-only and the queries result in multiple random reads which can all be

issued in parallel.

We speci�caly identify and the following problems in this work:

1. Existing databases use �human-readable� protocols for ingesting timeseries data.

While such protocols are easy to read for humans, they do su�er a performance

penalty (29, 30).

2. The data structures used by existing timeseries databases to index stored data are

not optimized for SSDs. For example, B-Trees, during updates, generate small writes,

which are detrimental to the performance of SSDs, as discussed in section 1.2.

Tackling these problems enables us to design and implement a database that can better

utilize a single machine's performance and close the gap between the performance of SSDs

and the measured performance of timeseries databases. Closing the gap will lead to a

5

1. INTRODUCTION

more sustainable future for storage systems and enables better scaling for future storage

demands.

In an attempt to tackle these problems, we present FrogFishDB. This timeseries database

is built from the ground up to demonstrate the e�ectiveness of using a di�erent protocol for

ingesting data and to demonstrate an indexing data structure designed to take advantage

of the properties of SSDs.

1.4 Research questions

While there have been works in the past focused on timeseries databases, we consider

this area not to be fully explored. In section 3 we examine existing work and note that

there is a distinct lack of timeseries databases which are optimised for �ash storage. Thus

giving us the opportunity to provide new contributions. While we concentrate on ingestion

performance, we consider query performance an important factor. Query performance

dictates the practical usability of a timeseries database. Previous works have demonstrated

the need for low-latency queries as a mechanism for monitoring system reliability (7, 27,

31, 32). So we have devised the following main research question: How to build a timeseries

database which optimizes for �ash storage and provides high ingestion performance?.

To answer this research question, we have designed the following sub-questions:

RQ1 : How to design an ingestion protocol that trades readability away for

performance? Ingestion protocols such as the In�ux line protocol (33) are user-

friendly because they are human-readable. The downside of being human-readable

is that it requires extra computational e�ort during ingestion to convert the human-

readable data into machine-readable data, which can be stored and processed more

e�ciently. The overhead of the extra computational e�ort is becoming more no-

ticeable due to the increase in storage performance while the CPU performance has

stagnated (34, 35, 36). We investigate the overhead and present an alternative in-

gestion protocol, trading away human readability for performance.

RQ2 : How to design a �ash-friendly indexing structure that is specialized

for storing and looking up time-indexed data? Databases need an indexing

structure to retrieve data after it has been written to storage. We design a simple

datastructure allowing for fast sequential, write-once, in-order insertion and with

random lookups. We optimize these patterns for �ash SSDs.

6

1.5 Research Methodology

RQ3 : What is the quantitative impact of designing a new ingestion protocol

and a specialized indexing structure? This research question aims to identify

the impact of the new ingestion method and indexing structure. There is limited

academic literature on the performance of other timeseries databases uniquely for

�ash SSDs, meaning we have no data to fall back on for comparison.

1.5 Research Methodology

This thesis is a systems project in which we design and create a new timeseries database.

We start by exploring a new ingestion method (RQ1), followed by the design of a new

indexing structure (RQ2), and it is evaluated for performance (RQ3). We have used the

following research methodologies to structure our research and implementation.

RM1 : For RQ1 and RQ2 we employ the Design, Abstraction, and Prototyping

methodology (37). For this methodology, we construct a set of requirements to

guide the design and implementation of the ingestion protocol and the indexing

structure. Using these requirements, we use a back-and-forth approach where ideas

are abstracted, designed, and then prototypes. The prototypes were evaluated on

performance and, where necessary, were brought back to the abstraction phase, thus

forming an iterative process.

RM2 : In order to answer RQ3 we need to utilize both micro and macro benchmarks.

This is done through the Experimental research, designing appropriate micro

and workload-level benchmarks, quantifying a running system prototype

methodology (38, 39, 40). Using the benchmarks, we create a quantitative insight

into the performance of existing timeseries databases and our design.

All provided research and benchmarking is open and available to the reader, ranging

from the source code of the database to the benchmarking tools.

1.6 Contributions

This work contains the following contributions:

� Database In this work, we present the design of FrogFishDB, a new timeseries

database which is optimized for �ash storage. The timeseries database achieves

higher ingestion bandwidth than existing state-of-the-practice timeseries databases.

7

1. INTRODUCTION

� Detailed evaluation We compare the performance of FrogFishDB against existing

state-of-the-practice timeseries databases, such as In�uxDB and QuestDB, using �ash

based storage.

� Ingestion model To achieve high ingestion bandwidth, we devise a new and di�erent

ingestion strategy compared to existing timeseries databases.

� TimeTree A new data structure that allows for range queries based on time.

� Query model This work provides a new approach to query languages.

� Open source All code and data for this work is open and available. Available at

https://github.com/NielsdeWaal/Thesis.

1.7 Societal relevance

This thesis aims to design and build a database that can handle higher volumes of time-

series data compared to existing solutions. The goal is to create software that can better

accommodate the growth of IT deployments. The CompSys Manifesto (3) shows the fu-

ture challenge where we need to leverage existing storage systems better. The increasing

size of IT deployments shows the fundamental role these deployments are playing in so-

ciety. Systems running services such as electronic payments underpin a large section of

the e-commerce economy. Reports show that electronics payments contributed an addi-

tional $296 billion to consumption between 2011 and 2015, which converts to an increase

in the global GDP of 0.1% (41). These systems being down would thus result in signi�cant

economic damage.

Timeseries databases form a layer in the monitoring systems for these services. As

systems underpinning services such as electronic payments keep growing. We require that

the monitoring systems grow with them. Better utilizing existing hardware enables keeping

up with the growth and reduces energy consumption as less hardware is required.

1.8 Thesis Structure

This thesis is split into multiple chapters. In Chapter 2, we establish the required back-

ground knowledge required for the remainder of the thesis. Next, in Chapter 3, we delve

into the technical details of existing timeseries databases. We discuss the di�erent tech-

niques for reading and writing data and the possible shortcomings. We detail the design

8

https://github.com/NielsdeWaal/Thesis

1.9 Plagiarism Declaration

of FrogFishDB in Chapter 4. Here we �rst de�ne the design requirements and discuss

the di�erent design decisions taken and the potential tradeo�s. We provide an extensive

evaluation in Chapter 5. We evaluate existing databases, FrogFishDB, TimeTree, and the

ingestion model. Chapters 6 and 7 are used to discuss our conclusion and future work.

1.9 Plagiarism Declaration

I con�rm that all material present in this report, unless explicitly stated, is the result

of my own e�orts. No parts of this report are copied from other sources unless credited

and properly cited. The work has also not been submitted elsewhere for assessment. I

understand that plagiarism is a serious issue and should be dealt with if found.

9

1. INTRODUCTION

10

2

Background

Before we can properly discuss the design and implementation of FrogFishDB, we �rst

discuss the background on which this work is built. We start with an introduction to

�ash storage, we discuss the internal structure and how di�erent access patterns in�uence

performance. Next, we specify timeseries data and then discuss the internal workings of

timeseries databases. After discussing timeseries databases, we discuss di�erent interfaces

provided by the operating system for enabling asynchronous IO, with a detailed exami-

nation of the io_uring interface. After discussing IO interfaces we discuss the internals

of the B and B+ trees. Finally, we examine di�erent aspects of the data model used in

FrogFishDB. We start by giving an overview of the model, followed by a discussion of

tags and out-of-order data. Finally, we discuss queries and introduce the inverted index

structure.

2.1 Flash Storage

The �rst NAND �ash was introduced by Toshiba in 1988 as a non-volatile storage tech-

nology (42). A �ash cell stores information by holding an electrical charge. The NAND

�ash cells introduced by Toshiba could only store a single bit and are thus referred to as

Single-Level Cell (SLC). Subsequently, di�erent cell types have been brought to market,

ranging from Multi-Level cell (MLC), meaning 2 bits per cell, to Hepta-Level cell (HLC),

which stores 7 bits per cell (43). Data is written by programming and cleared by erasing

the cell.

A NAND package can be created by combining two or more NAND �ash memory chips

(dies) into the same integrated circuit (IC) package. The dies can operate independently

and accept di�erent commands concurrently, e.g., one die can be erased while another is

11

2. BACKGROUND

programmed. The dies are composed of di�erent planes, each of which is composed of

multiple blocks. A block is the smallest erasable unit in �ash storage, while pages are the

smallest programmable unit. Note here that we can write in smaller units than we can

erase. Pages also contain extra space, called the Out-of-Band (OOB) area, which has error

correction data and metadata. The manufacturer usually does not specify the size of a

page or block. However, typical value ranges are 2-16 KB and 128-512 KB, respectively.

Flash package

Die 0 Die 1 Die M

Plane 0 Plane 0 Plane 0

Plane N

Block
0

Block
x

Plane NPlane N

Block
0

Block
x

Block
0

Block
x

Block
0

Block
x

Block
0

Block
x

Block
0

Block
x

Page

Metadata

Error correction

Figure 2.1: Overview of a IC package.

Continuously programming �ash cells and then erasing them in so-called program/erase

(PE) operations exerts wear on the �ash cells (44, 45), causing them to wear out and

gradually lose the capability to hold the electrical charge. The rate lifetime of a cell

depends on the number of levels, where SLC �ash has a higher lifespan than MLC, which

in turn has a higher lifespan than HLC. The error correction space in the OOB area of a

page is thus used to provide higher reliability.

With multiple �ash packages, we can build a device that we can use to store data

without any physically moving parts. Such a Solid State Drive is built from a few, up

to tens of the IC packages. The packages are connected to a �ash controller through a

channel, a communication bus over which the controller issues commands to the packages.

Increasing the number of channels increases the bandwidth available to issue commands

to the packages as the number of commands which can be issued concurrently increases.

12

2.1 Flash Storage

H
os

t S
ys

te
m

H
os

t I
nt

er
fa

ce

Flash
package

Flash
package

Flash
package

Flash
package

Flash
package

Flash
package

DRAM Cache

SSD Controller

Figure 2.2: Internal architecture of an SSD.

In �gure 2.2, we show an overview of the internals of an SSD (46). We show six �ash

packages connected to the controller using two channels at the bottom. In the middle, we

show the controller connected to the host system using the host interface, together with

a DRAM cache. The DRAM stores metadata such as physical-to-virtual address space

mapping and temporary user data. Sometimes, the controller can use the DRAM cache

to bu�er consecutive writes to the same �ash cell. This allows the controller to increase

throughput by saving bandwidth and increase the �ash cell's lifetime by only issuing a

single PE cycle containing the result of the writes (47).

For the connection to the host, there exist multiple di�erent connection interfaces, such

as Serial Advanced Technology Attachment (SATA) and PCI Express (PCIe) bus. These

interfaces carry protocols such as Advanced Host Controller Interface (AHCI) and Non-

Volatile Memory Express (NVMe) (48). The NVMe standard has been created speci�cally

for accommodating fast SSDs. The NVMe interface also uses an increased number of I/O

queues, allowing for a higher degree of parallelism in terms of the amount of outstanding

I/O requests. All these changes amount to an 350 to 3800× performance improvement

compared to SATA (10).

In section 1.2, we discussed the existence of the Flash Translation Layer (FTL). The FTL

is a part of the �rmware running on the SSD, its main responsibilities are mapping virtual

to physical addresses, bad block management, garbage collection, and wear leveling. The

FTL has to manage writes that overwrite existing data due to the lack of in-place updates

for �ash storage. When data is supposed to be overwritten the FTL can bypass the required

erasure by writing the new data to a di�erent block and marking the old block invalid.

13

2. BACKGROUND

If no free blocks are available, the FTL has to initiate the process of Garbage Collection

(GC).

CBA
Block X

A B

Block Y

Block X

A B

A' B'

Block Y

Block X

Block Y

A'' B''

Figure 2.3: Simpli�ed GC process. With the green blocks being free, the blue blocks con-

taining valid data, and the red blocks having been overwritten.

Figure 2.3 shows a conceptual overview of garbage collection. 2 blocks are shown, each

containing two pages. In situation A (on the left), two pages of block X have been written

to, now containing A and B. Next, in B, these pages have been rewritten into A' and B'.

The pages which used to contain A and B have been marked as invalid. Finally, in situation

C, the garbage collection process has been run. Because the SSD can only erase a whole

block and not a page, A' and A' have been copied to block Y. After copying the data,

block X can be erased. Finally, the pages in block X can be reclaimed.

In summary, �ash storage provides a fast storage medium. However, in order to make

proper use of the capabilities of �ash storage, we need to take some of the underlying

properties into account. Ine�cient access patterns can cause performance degradation.

Rewriting a single page especially causes performance degradation due to the garbage

collection process. Another performance improvement is aligning our access pattern with

the underlying �ash construction. This means that writes are aligned to the size of a page.

Appending data to �les in blocks that are sized equally to the size of a page would lessen

the need for the garbage collection process to cause added latency and overhead.

14

2.2 Timeseries data

2.2 Timeseries data

Before we can start describing the results of this thesis, we must �rst introduce the concept

of timeseries data. Timeseries data can be de�ned through three key aspects (49, 50), the

�rst is that timeseries data is indexed by its corresponding timestamps, the second is that

data is only appended and not removed, and the third is that the recording workload is

write-intensive.

Going over all three aspects. Timeseries data is always tied to an accompanying times-

tamp. Imagine a server recording its CPU temperature, and data is recorded every 10

seconds. Every time a new temperature value is measured, it is sent to the database with

a timestamp indicating when this measurement was taken. This timestamp now indexes

the recorded temperature. The second aspect means that the data is only ever growing

in size. New data is appended to previously recorded data and should not overwrite ex-

isting data. The third and �nal aspect is that timeseries applications are write-intensive.

The writes will dominate the issued operations, whereas reads will happen sporadically in

comparison.

For this work, we distinguish between two di�erent types of timeseries data. Namely,

IoT and DevOps data. The di�erentiating factor here is that IoT data may arrive out-of-

order, whereas DevOps data does not have this limitation. For DevOps data, we assume

a datacenter setting with correctly functioning networking equipment. IoT data is the

result of sensors deployed in the �eld. These might be located far away from a stable

network, so much so that data might be out-of-order or missing entirely. The problem

with timeseries data which arrives out-of-order is that it requires care to handle. If data

always arrives in order, the database can take this into account, it can append data to

storage. If the timeseries data can arrive out-of-order the possibility exists that timeseries

data which has been stored, will have to be read and altered. Previous work has shown

that handling out-of-order data can impose a signi�cant performance penalty (31). There

are two ways of dealing with out-of-order data. The �rst is to drop any timeseries data

which arrives out-of-order. The second, is to employ a read-modify-write approach. In this

approach, timeseries data which has been written is read again, merged with the newly

arrived data, and then written back to storage. This approach imposes a large overhead

since it potentially involves a large number of random reads and writes.

15

2. BACKGROUND

2.3 Timeseries databases

This section will delve deeper into the core components used to build a timeseries database.

We start by examining the ingestion protocol and di�erent possible implementations of it.

Next, we will explore the concept of an indexing structure. Finally, we will discuss the

methods used for scaling timeseries databases.

2.3.1 Ingestion protocols: Pull vs Push

To insert data into the timeseries database, an ingestion protocol is needed. Ingestion

protocols can be categorized into two types, namely pull-based and push-based ingestion.

The �rst type is where the database will pull data from processes for which it is con�gured

to record data on. The second type is where processes send the data to the database,

equivalent to an SQL insert for a traditional relational database.

Pull-based ingestion is used by databases such as Prometheus (51) and VictoriaMet-

rics (52). Prometheus consists of several distinct components, of which the component re-

sponsible for ingestion is called the Scrape Manager. This service retrieves timeseries data

from other processes. This retrieval is done through HTTP GET requests to the other pro-

cess, which exposes an HTTP endpoint, for example, at: http://service:6900/metrics.

Upon receiving the request, the HTTP endpoint responds with a list containing key-value

pairs of the metric names and values.

Push-based ingestion is used by databases such as In�uxDB or QuestDB (53). This pro-

tocol can be equated to an SQL INSERT command used by traditional database management

systems such as SQLite (54). The protocol can be conceptualized as the application or

process sending the data to the timeseries database. In�uxDB uses the In�ux Line proto-

col to encode the information to be ingested (33). This format is supported by multiple

timeseries databases (52, 53, 55), but is not standardized.

weather,location=us-midwest temperature=82 1465839830100400200

Measurement Tag Set Field Set Timestamp

Figure 2.4: In�ux line protocol example.

The In�ux Line protocol consists of 4 parts. Figure 2.4 shows an example of an insertion.

The Measurement �eld is the common name for a timeseries. This is the equivalence of

16

2.3 Timeseries databases

the name of a table in a relational database. The Tag Set is a set of metadata that can

be used during queries as a �eld to �lter on. Next is the Field Set, which contains the

recorded values. This set is the same as the columns of a relational database table. The

�nal value in the line is the Timestamp at the measurement that was taken. The user

sending the data using this protocol is free to choose the contents of all �elds; tables do

not have to be explicitly created.

It is important to note that while this protocol is human-readable and �exible, it also

su�ers from the same performance issues that other encoding protocols su�er from (29, 30).

The problem is that the data has to be converted from its human-readable form to a binary

format to be used by the database (56). For example, �gure 2.4 shows the value 82 to be

ingested. The value has to be converted by taking each digit of the value, transforming

the ASCII code to the corresponding integer value, and scaling each to the correct order

of magnitude. Inserting the value directly would be computationally cheaper, skipping

the conversion step. The overhead is exacerbate by the di�erence in performance between

HDDs and �ash storage. In section 2.1 we discussed the di�erence in bandwidth between

NVMe �ash storage and HDDs. For example, imagine a timeseries database is able to

process a human-readable at 100MB/s using a single thread. With HDDs, two thread

would fully saturate the write bandwidth available. However, with �ash storage it would

require tens of threads to fully saturate the bandwidth of the storage device. If skipping

the conversion step allows the database to process the ingestion protocol at 1GB/s, then

again only a few threads would su�ce to saturate the bandwidth of �ash storage and thus

require less CPU resources, increasing both e�ciency and decreasing power requirements.

2.3.2 Indexing structure

After writing data to storage, we need an index in order to be able to �nd the data again.

A good analogy would be to consider the storage medium, a �le or a �ash based storage

device, as a book and the indexing structure as the index at the back of the book. This

problem is not just found in database systems but in many more storage applications;

one example is the FTL discussed in section 2.1. For a database, the index allows us to

e�ciently retrieve records based on the column on which the indexing has been done.

One of the most time-consuming processes in databases is searching. Using a suitable

search method over a bad one often leads to a substantial increase in speed (57). Databases

have commonly used tree structures as an index. Tree-structured indexes have been used

for a wide range of applications, such as data mining, �nancial analysis, and scienti�c

computation (58).

17

2. BACKGROUND

While binary search is the theoretical optimal algorithm for searching a sorted array, it

is not optimal in reality. The optimality proof assumes that the number of comparisons

is the only metric by which to determine performance. In reality, the latency of random

storage accesses overshadows the cost of comparing keys (59, 60). Indexing structures

like the B+ tree reduce the number of expensive random accesses to �nd a key inside the

index (61). B+ trees are used across di�erent storage workloads, such as databases (54)

and �lesystems (62, 63). Section 2.5 will go into more detail about constructing a B+ tree.

2.3.3 Traditional relational databases

While timeseries databases attempt to provide high ingestion bandwidth, there have also

been attempts to use traditional relational databases. One such attempt is where a

MySQL (64) instance was able to provide an ingestion bandwidth of 332'000 values per

second (65), or, assuming 16 bytes per value, 5MB/s. This has been accomplished by hor-

izontally scaling the database across three AWS EC2 nodes. However, the setup required

to achieve this came with several drawbacks (66). The �rst drawback is that data has to

be stored in vectors, meaning that one row contains data for more than 1 point in time.

The vectors are used to batch insertions, however, they limit �exibility during queries as

each row now contains multiple datapoints. The second drawback is the use of clustered

primary keys, which inhibit ad-hoc SQL queries. Thus a timeseries service has to be used

for querying. The third and �nal drawback is the complexity and knowledge required for

designing the cluster of nodes. Before building the cluster, it has to be manually imple-

mented how data is going to be sharded (i.e., how data is going to be partitioned over

the various nodes in the cluster), grouped, and how indexes are going to be created. This

shows that, with e�ort, it is possible to scale to high ingest rates using traditional relational

databases.

While this approach for scaling is viable in terms of the possible ingestion performance,

there is also one signi�cant disadvantage, namely that this is accomplished through hori-

zontal scaling. Two di�erent scaling techniques are found in database scaling, horizontal

and vertical (67). Figure 2.5 shows a conceptual overview of the two techniques. Horizontal

scaling means that a workload is spread across multiple machines, while vertical scaling

means that as much of the hardware performance is used. We view horizontal scaling

as a �brute force� method, where more hardware is thrown at the problem, even though

an optimized application running on a single node can perform similarly, be it in terms

of ingestion bandwidth or query performance. The costs of scaling either horizontally or

vertically have been discussed before in works such as (28).

18

2.3 Timeseries databases

Machine

Machine Machine MachineMachine

Scale
Vertical

Scale
Horizontal

Machine

Figure 2.5: Conceptual overview of the two di�erent scaling techniques.

Another major downside of horizontal scaling is the comparatively high energy, monetary

resources, and space usage. Previous work has shown that the energy use of a data center

can be lowered by optimizing a database for a single node (60). Other factors, such as

the use of monetary resources and space, can be derived from the fact that scaling across

multiple machines means that machines have to be bought and require space in server

racks.

2.3.4 Summary

Timeseries databases di�er from traditional relational databases in that they are optimized

for a speci�c workload, namely that of timeseries data. TSDBs ingest data either through

a pull or through a push con�guration, whereby the timeseries data is either retrieved from

applications by the database or is sent to the database by the application. The data is

encoded to ensure that the database can read and parse the data. However, the protocols

to do so are often human-readable and thus su�er from a large overhead as they have to

be parsed.

In order to overcome the overhead from parsing, we turn towards di�erent scaling tech-

niques. We classify two variations of scaling, namely horizontal and vertical scaling. Hor-

izontal scaling means that more resources are employed to improve performance, while

19

2. BACKGROUND

vertical scalability means that an application is optimized to better utilize the resources

available. For FrogFishDB, we aim to use vertical scaling to better utilize the available

resources of a machine and thus improve both energy and monetary e�ciency.

2.4 Asynchronous IO

In any application, one aspect of improving performance is ensuring that the code only

spends time on meaningful computation, not on Input/Output (IO) operations. IO oper-

ations are operations where we interact with the �outside� world, such as writing data to

disk or receiving data from a network socket. Linux has traditionally follows the POSIX

interface (68), thus system calls for these IO operations are read and write. These op-

erations are blocking IO operations. Which means that they wait for the operation to be

complete before continueing. This in turn means that the latency of these operations is

tied to the performnace of the underlying IO hardware and not just to the performance

of the CPU. The consequence of this is that, for example, a write operation can have a

latency which is orders of magnitude higher than commputing the sum of a list of integers.

The di�erence in latency is a problem because the system call is waiting for completion

and the application is not doing any meaningful computation.

One way of hiding the latency of IO is through the use of asynchronous IO operations.

This is where the application submits a request to the operating system, goes o� to do

other work, and returns when the request has been completed. Any operation dependent

on the request's result has to be put on hold until the request is complete. Figure 2.6

shows a conceptual overview of the di�erence between blocking and asynchronous IO.

Operating systems provide functions to the application which allow the application to

submit asynchronous IO operations. We can classify two distinct types of asynchronous IO:

polled and interrupt driven IO. The di�erence between the two is that with polled IO, the

application has to periodically call into the operation system to check if the IO operation

has �nished, whereas, with the interrupt-driven IO, the operating system will call back into

the application, letting it know that the IO operation has completed. There are several

considerations for choosing to use either of the two types. The �rst is that polling can

lead to wasted CPU cycles. This is the case when the application polls repeatedly without

there being any work to do due to requests which have been completed. Interrupt-driven

IO does not su�er from this issue. However, interrupt-driven IO su�ers from higher latency

due to the operating system having to call the application.

20

2.4 Asynchronous IO

Application Kernel

Read

Data

Idle

Application Kernel

Read

Data

Working

Blocking Non-blocking

Figure 2.6: Visualisation of blocking vs. asynchronous IO operations.

2.4.1 Asynchronous IO in the Linux kernel

In the Linux kernel, there exist multiple interfaces which provide the application with

asynchronous IO. System calls such as select, poll, and later epoll allow the application

to poll a set of �le descriptors to check if they are ready. The problem with the �rst two

system calls is that they do not scale with large numbers of �le descriptors. A comparison

shows that in kernel version 2.6.25, when monitoring 1000 �le descriptors (69, p. 1365) it

takes 35 seconds to poll all 1000 using either select or poll. epoll, on the other hand,

can poll 1000 �le descriptors in 0.53 seconds. However, epoll's readiness system only

works on sockets and pipes, not �les. Newer kernels have shown improvement however. In

2019, engineers at SUSE have shown epoll being able to poll 10,000 �le descriptors in 5.5

milliseconds, where as poll and select require 80 milliseconds (70).

File IO before Linux kernel version 2.6 was handled using thread pools (71, p. 394).

Threads were allocated to handle �le read and write system calls, letting them block in

the background. This model broke down when fast �ash storage devices became more

commonplace. We described in 2.1 how modern �ash storage allows for IO latencies in the

single-digit microsecond range. Latencies this low are on par with the latency of a context

switch (72), making thread pools ine�cient. On average polling provides 25% lower latency

21

2. BACKGROUND

compared to interrupts (72, 73, 74).

Linux 2.6 introduced the Asynchronous I/O (AIO) interface. Allowing the application

to submit IO requests using the io_submit system-call, and receive events that are ready

using the io_getevents system-call. AIO allowed for fully asynchronous IO. However, in

practice, the interface fell short of the expectations placed upon it. Linus Torvalds (the

creator of the Linux kernel) famously lambasted the interface, callings its design one which

was made for people �who seldom have any shred of taste� (75).

Outside of stylistic issues, there are technical ones as well. Three issues made it fall short

of the expectations. The �rst issue is that asynchronous �le IO only works with DIRECT

IO. This is a �le IO mode in which the page cache in the kernel is bypassed, and all requests

go directly to the block device. The problem with DIRECT IO is that it requires bu�ers to

be aligned to the block size of the underlying storage medium, thus if the storage medium

uses a block size of 512 bytes and the users wishes to issue a write of only 16 bytes, then

there is a 488 byte overhead. The second issue is that the asynchronous system-calls can

behave in a blocking manner (76). For example, if metadata is required to perform an

IO request, the submission system call will block waiting for the metadata. Another way

the call can become blocking is if all the request slots are in use. There are a limited

number of request slots for storage devices, and if none is available, the submission call

will block until one is available. The third issue is that the API is not very e�cient. Each

submission requires 72 bytes to be copied, while completion events require 32 bytes for

each IO request. The overhead of 104 bytes can be a signi�cant factor for smaller-sized

requests. Consider a write of 512 bytes to a �le; with 104 bytes of overhead, there suddenly

is an almost 20% overhead for an interface that promises to be zero-copy. These issues

make it impossible for an application to assume that the libaio interface is asynchronous

and forces the application to o�oad the requests again using a thread pool.

2.4.2 io_uring

io_uring (77) is a recent addition to the Linux kernel, introduced in kernel version 5.1,

and provides a generic interface for issuing IO requests. The name io_uring hint at the

fundamentals of the design. io_uring maps two ring structures into user space and shares

them with the kernel. The �rst ring is the submission ring which is used by the application

to submit requests to the kernel. The second ring is the completion ring, which contains the

results of the previously submitted requests. The overhead of system calls when submitting

requests is alleviated as the head and tail pointer of the ring structure can be atomically

updated without system calls. Figure 2.7 shows a conceptual overview of the io_uring

22

2.4 Asynchronous IO

ring structures. The left ring shows the submission queue, where the application submits

IO requests. The ring on the right shows the completion ring, where the IO request results

are posted.

User-space

Kernel-space

Application

Kernel

Submission
queue

Storage Networking

Completion
queue

Figure 2.7: Conceptual overview of the io_uring ring structures.

Three key features of io_uring set it apart from the existing asynchronous interfaces.

The �rst feature is that the interface is fully asynchronous by design. Submitting requests

through the submission ring does not require a system call and will thus never block. The

second feature is that io_uring supports any type of IO (77). Compared to AIO, which

requires �les to be opened in O_DIRECT mode, io_uring has no requirement for the kind

or type of IO. The third feature is that the interface is extensible. It is written to provide

an abstraction for any asynchronous IO, not just those required by database engineers.

We must examine the data structures used to understand why io_uring is more �exible

than existing interfaces. The submission and completion queues contain a power of two

number of io_uring_sqe and io_uring_cqe structures, respectively. The application

retrieves a pointer to the next free io_uring_sqe structure when submitting an IO request.

In this data structure, the application registers the type of operation, relevant �ags, a

pointer to user-supplied data, and the �le descriptor on which the operation is supposed to

be executed. While not limited to the �elds mentioned earlier, these are the fundamental

23

2. BACKGROUND

�elds in the structure. At the time of writing, the submission request structure consists

of 14 �elds, of which 6 are union structures. We want to point out that the application

has had to make no allocations for this request; the allocation for submitting the request

is done upfront when constructing the ring structures.

The data structures used in the completion queue are comparatively simple. The io_uring_cqe

consists of three �elds. The �rst is the result value of the IO operation. The second is used

to carry �ag values. As of kernel version 6.0, the following �ag values are de�ned (78).

� The IORING_CQE_F_BUFFER �ag indicates that the upper 16 bits of the �ag value

contain the ID of the bu�er chosen for this request. We will expand on the bu�er

system later in this work.

� The IORING_CQE_F_MORE �ag indicates that the application should expect more com-

pletions from this request. Used in multi-shot requests, this �ag indicates that the

request is not fully ful�lled. Multi-shot requests have been introduced in kernel ver-

sion 5.19, allowing an application to submit one request that can trigger multiple

completion events. For example, the application can submit a multi-shot request

which performs multiple accept calls without the application having to issue a new

accept.

� The IORING_CQE_F_SOCK_NONEMPTY �ag indicates that a receiving socket still con-

tains more data. This �ag is set after not all data from a receiving socket is read. In

this case, a new completion event is generated with this �ag set.

� The IORING_CQE_F_NOTIF �ag is set for noti�cation completion events, which are

used for zero-copy networking send and receive support. The completion event's �nal

�eld is the user-supplied data pointer. This �eld is the same as in the aforementioned

IO request. This is a pointer to data that the user has constructed. The pointer value

or the corresponding data is not altered by io_uring and is copied directly to the

completion event. The data can, for example, be used by the application to determine

which operation the completion belongs to or to notify other parts of the application

of the completion.

When applications need the lowest possible latency, an application can opt to utilize

one of the two polling modes provided by io_uring (77). By default, the kernel threads

handling the IO requests coming from userspace rely on interrupts in order to be noti�ed

of requests which been completed before notifying the application through the completion

24

2.4 Asynchronous IO

ring. The �rst polling mode changes this behavior. Referred to as completion polling, the

kernel threads are instructed to poll the IO devices for request completion. The second

polling mode instructs the kernel to poll the submission ring for new submissions. By

default, the application uses a system call to indicate to the kernel that new requests have

been posted to the submission ring. Note that, by default, one system call invocation can

be used to submit or receive multiple requests. In the second polling mode, referred to as

submission polling. Consequently, when using submission polling, the system call invoca-

tions for both submitting requests and processing completion events can be eliminated. As

the kernel polls the submission ring, it is no longer needed to inform the kernel of the newly

submitted requests, while the application can poll the completion ring by simply checking

the head of the queue. The overhead of system calls cannot be overstated. Previous works

have shown that user-mode instructions-per-cycle degrades exponentially when increasing

the frequency with which system-calls are used (79, 80).

Kernel

User-space

Kernel-space

Application

Kernel

Submission
queue

Storage Networking

Polled

User-space

Kernel-space

Application

Submission
queue

Storage Networking

User-space

Kernel-space

Application

Kernel

Submission
queue

Storage Networking

Default mode Completion
polling

Submission
polling

Sy
st

em
-c

al
l

Sy
st

em
-c

al
l

Polled Polled

Polled

Completion
queue

Completion
queue

Completion
queue

Figure 2.8: Conceptual overview of the io_uring polling modes.

Figure 2.8 shows a conceptual overview of the default and two polling modes. On the

left, we show the default mode, where an application uses a system call to inform the kernel

of newly submitted requests or to poll for completion events. In the middle, we show the

use of completion polling. Note how the storage layer is now polled by the kernel, instead

of relying on interrupts for when a request has been completed. On the right, we show

the second polling mode, namely submission polling. In addition to the kernel polling the

devices for completion, it now also polls the submission ring for newly submitted requests.

The �nal aspect of io_uring we need to discuss is the possibility of registering bu�ers.

We alluded to earlier that a completion event can carry a �ag that indicates the use of,

and ID of, a bu�er registered earlier by the application. Using the earlier epoll polling

25

2. BACKGROUND

method, whenever a socket has received data, the �le descriptor is considered to be in

a ready state. This model has the advantage that a suitable bu�er can be sought when

the �le descriptor is ready before reading the newly received data from the socket. This

model breaks in a completion model. Using io_uring, the data is read from the socket

by submitting a read request to the submission queue. The application can pick a bu�er

when this read request is submitted. However, this can lead to problems with scaling when

handling hundreds of thousands of requests at a time.

In kernel version 5.7, the option was introduced to register a set of bu�ers with io_uring.

Using these bu�ers, the kernel can pick a suitable bu�er instead of one having to be provided

by the application. The completion event will hold the necessary information about which

bu�er of the set has been chosen for the received event. Bu�ers are identi�ed by a group

ID and within that group by a bu�er ID. Bu�er groups allow the application to provide

multiple sets of bu�ers. For example, multiple groups can be provided where each group

contains bu�ers of a di�erent size. When the application is done with a bu�er, it hands

control of the bu�er back to the kernel such that it can be reused for a future receive

event. In kernel version 5.17, the interface for providing bu�ers was replaced by so-called

ring mapped bu�ers. While identical in functionality, ring-mapped bu�ers provide a more

e�cient method for providing bu�ers (81).

The performance of io_uring has been studied in the past. Research has shown that

using io_uring provides the best performance for storage devices (both in terms of latency

and in terms of throughput) out of the di�erent interfaces provided (82, 83, 84, 85).

The recorded performance demonstrated that io_uring should be used for performance-

sensitive code dealing with IO in FrogFishDB.

2.4.3 FrogFishDB and io_uring

For FrogFishDB, we are interested in several of the aforementioned features and capa-

bilities. The �rst is the overall e�cient model for submitting and handling IO requests.

The workload for timeseries databases is, in essence, dominated by the overhead of IO.

Data is read from the network socket and written to storage. Ingesting timeseries data

does not require transforming the data itself. If the overhead described in section 2.3.1

can be alleviated, then the workload is reduced to only the process of reading and storing

data. The second is the option of several polling modes. Previous work has shown that

using polling modes, the performance of io_uring can approach that of the underlying

device (82). While in this thesis we were not able to properly investigate and test all of the

possible features, such as ring-mapped bu�ers, we are still con�dent that these features

26

2.5 B and B+ Trees

allow for better performance of FrogFishDB, i.e. higher ingestion bandwidth and lower

query latency.

We did manage to use io_uring for both networking and storage. For storage we use

asychronous �le IO and networking we use standard socket interface managed through

io_uring. We also make use of the multishot accept feature, however, due to kernel

incompatability, we do not use this feature for the performance evaluation in chapter 5.

2.5 B and B+ Trees

The B tree (86) is a self-balancing tree data structure that maintains sorted data. Opera-

tions such as searches, sequential accesses, insertions, and deletions happen in logarithmic

time. The main feature distinguishing the B tree from a traditional binary tree is the fact

that the B tree can store more than two children per node.

According to the formal description, the following properties will always hold:

� Every node has at most m children

� Every internal node has at least two children

� Every internal node has at least ⌈m/2⌉ children

� All leafs are on the same level

� An internal node with k children contains k - 1 keys

With internal nodes, we refer to nodes that are neither leaf nodes nor the root node.

Such an internal node contains a maximum of m children and a minimum of L children,

where L = 2. The rule is that m must be either 2L or 2L-1, or in other words, there is

always 1 less element than the number of child pointers. The maximum number of children

for a node is referred to as the order of the tree. Because of this number of children rule,

internal nodes are always at least half full. A full node can be split into two nodes on the

same level when there is room to push one element up to the parent level. The root node

di�ers from internal nodes as, while the upper limit still holds, there is no minimum limit.

We provide a visual overview of a B tree to understand the data structure better. Fig-

ure 2.9 shows an example B tree of order 4. To search for the value 18, we only need to

follow two pointers instead of the possible �ve if we had used a binary tree.

Now let us look at a B+ tree (61). The main di�erence is that all data is stored in

the leafs, so the internal nodes only contain the �rst keys of the child nodes. The main

27

2. BACKGROUND

5

10

15 20

1 3 4 6 12 16 18 25

Figure 2.9: Example of a B tree.

advantage of this di�erence is that this enables us to reduce the memory usage of internal

nodes and thus store more nodes per memory page for fast lookups. Another key di�erence

is that the leaf nodes are linked, allowing us to do scan operations over the key space. An

example where this is very useful is in timeseries databases. Consider a situation where a

B+ tree holds keys that denote a range of time. If we then want to do range queries where

we take a starting timestamp and an ending timestamp, we would only have to search for

the start and can �nd the end by way of a linear scan using the links between leaf nodes.

5

6

1 3 4 5 6 10 12 15 16 18 20 25

15 18

Figure 2.10: Example of a B+ tree with all keys being stored in the tree's leafs.

Figure 2.10 shows the di�erence between the B and B+ tree. Now if we wanted to do a

range query between 5 and 15, we only need to traverse down to the leaf containing 5 and

follow the links between leafs until we �nd the leaf containing the value 15.

As we alluded to earlier, both the B and B+ tree must rebalance during insertion when

one of the nodes is full. Figure 2.11 shows the process of inserting values into a B+ tree.

Here, A shows the tree before insertion, B shows the middle leaf node changing after

inserting the value 6, and �nally, in C, we show how the tree has to be rearranged to

28

2.5 B and B+ Trees

2 4

5 14

5 14 15

A

2 4

5 14

5 6 14 15

B

2 4

5 7

5 6 14

C

7

14

15

15

Figure 2.11: Example of an insertion into a B+ tree causing nodes to be split and added to

the tree.

accommodate the value 7. An opposite operation happens when values are deleted from

the tree. This splitting and merging makes implementing a B or B+ tree more complex

than a binary tree.

The complexity of both the B and B+ tree di�ers from a binary tree in terms of the

stability. For the B and B+ tree, the complexity of searching and insertion is O(log n)

in both the average as well as the worst case scenario. For a binary tree the worst case

increases to O(n) for both searching and insertion. What this means is that the performance

of a B and B+ tree is more predicatable than the performance a binary tree.

The number of children per node, otherwise known as the order, is con�gurable and

often con�gured to be large, i.e., multiple hundred. Used in the context of block storage,

the number is chosen such that a single node �lls an entire block, which leads to high read

e�ciency. For example, consider a block size of 4KB, keys of 4 bytes, and 6 byte references.

Then the number of children per node d, is chosen such that 4(d− 1)+6d ≤ 4096. Solving

the equation leads to a value d of 410.

29

2. BACKGROUND

In FrogFishDB we use the design for the B+ tree as the basis for a datastructure which is

optimized for indexing time indexed data. In section 4.3 we discuss how we build TimeTree.

2.6 Control and data plane

When running large-scale networks, it becomes more and more time-consuming to manage

and con�gure the network. Therefore, we require methods to con�gure networks that can

be organized from a central position and are visible to the engineers. In the networking

world, there exist two planes on which di�erent parts of the network run. The data plane is

the plane where all the data tra�c lives, protocols such as TCP (87) live on this plane. The

control plane is the plane where the routing con�guration lives. Protocols that determine

routes and are used to exchange reachability information, such as BGP (88) live on the

control plane.

We can illustrate the di�erence between the planes with the following analogy. Imagine

a road network with a lot of highways connecting various locations. The data plane can

be viewed as this road network. The vehicles use the road network to travel from point A

to point B and use the road network as their transport medium. The problem however is

that the vehicles need to know which roads to use to move to their destination. In order

to �gure out the route, the vehicles might employ the use of satellite navigation systems.

These give directions to follow the most optimal route. The control plane can be viewed as

this navigation system. It not only gives routing directions, but it can also communicate

and alter the route based on congestion.

BGP
TCP

Control plane

Data plane

Control plane

Data plane

P4

TCP

Figure 2.12: Conceptual overview of control and dataplane split.

Recently, there has been a shift in terms of how the data plane is con�gured. Protocols

such as BGP, while classi�ed as control protocols, still run on the data plane to exchange

information. Creating a better split between control and data allows for better control and

more consistency. Software de�ned networking (SDN) allows users to use a generalized

30

2.7 Data model

control language such as P4 (89) to de�ne networks. It allows for a physically separate

control and data plane. Existing surveys show the large amount of research conducted in

this area (90, 91, 92). A conceptual overview is given in �gure 2.12. On the left, we show

the traditional model in which control tra�c is routed through the data plane. On the

right, we show a separate setup. There, we show that the control tra�c is routed through

a separate channel.

While separating the data and control plane has been studied often in networking-related

scenarios, we can also apply the logic in software development. For example, imagine an

application that retrieves con�guration from a remote location. In this application, the

control has also been separated from the data logic, allowing for a more centralized control

layer. The con�guration which is used by the application can be stored and altered from

a central position.

2.7 Data model

Before discussing the design and implementation of FrogFishDB, we �rst have to de�ne

our data model. The data model has taken inspiration from the In�uxDB Line Protocol,

discussed in section 2.3.1. The data model is de�ned using the following concepts:

� Timeseries: a timeseries is the formal name for a set of values sorted and indexed

by time.

� Metric: the name of a datapoint, for example, temperature or query_rate.

� Metricset: a collection of metrics. An example could be a database that records a

multitude of di�erent metrics such as query_rate, query_latency, and buffer_size.

� Tag: an extra piece of metadata attached to a metricset. This can be information

such as version or hostname.

� Tagset: a grouping of tags. This is used in both the series name and the query

model.

� Series name: a canonical name used internally to identify a timeseries uniquely.

This name is created as a combination of the tagset and the metric name. For

example: hostname=host_01,version=4.4,temperature.

31

2. BACKGROUND

2.8 Tags

Tags are an essential feature of timeseries databases that warrants further introduction.

Tags can ful�ll many use cases; one example is identifying a timeseries through metadata.

For example, a tag identifying which host the timeseries originates from.

Such a host could be a server in a data center using the tags to indicate information

such as the hostname and IP address, but it might also be used to indicate a physical

location, information which is very useful to engineers who need to respond to a failure,

either physical or digital, and can thus immediately see which node has failed and where

it is located.

2.9 Out-of-order data

One crucial network characteristic we need to discuss before continuing is the possibility of

out-of-order arrivals. Data can arrive in an out-of-order pattern, for example, when there

is no ordering guarantee from the transport protocol. This is a common problem for IoT

data, where networks can be unreliable and unpredictable, and where the sensors make use

of the UDP transport protocol (93). This means that one sensor data packet can overtake

another one sent earlier. The main problem with supporting out-of-order insertions is

that this requires an undetermined amount of bu�ering or an indexing structure that can

support unordered insertions.

In this work, we assume that we are running in a data center network and have guaranteed

ordering of data transmissions (94). The argument is that we are running in a data center

network where the packet loss probability is negligible, i.e., ≤ 0.1%. Ordering can be

guaranteed through the use of TCP as our transport layer.

2.10 Query types

In our data model, we discussed the existence of tags and tagsets. These are helpful tools

for engineers to provide metadata along with the metrics in the timeseries. One example

use case is to use them to identify a machine's physical location. Another example is to

record the IP address of the machine.

Metadata tags containing information such as IP addresses can be valuable for engineers

solving connection problems. This troubleshooting is aided by queries that support select-

ing based on tags and tag values. Imagine we have �ve machines where each records its IP

address in the tagset. Then engineers wish to investigate abnormal latency behavior from

32

2.11 Inverted index

3 of those machines. They can do this by querying the timeseries database and using a

selector option which allows them to query any timeseries as long as the value of the IP

address tag is one from a list.

2.11 Inverted index

An inverted index is a data structure in software such as o�ce document editors. For

example, inverted indexes allow us to �nd which documents contain a speci�c word (95, 96).

Thus when we query the index for a speci�c word, we get the documents we seek. Extending

this operation, we can query which documents contain a set of words. By querying for

each word and taking the intersection of all resulting sets, we can �nd which document

contains all queried words.

In FrogFishDB, we use an inverted index to �nd all timeseries which carry a certain

tag. For example, if the database stores 100 timeseries, of which �ve are tagged with

hostname=host_1, the then inverted index enables the database to quickly �nd all �ve.

This is useful when handling queries that search all timeseries which adhere to some pred-

icate pertaining to their tagsets.

Inverted Index

The 1, 2, 3

bright 1

blue 2, 3

butterfly 1

hangs 1

in 1

wind 1, 2

thing 3

he 3

drink 3

present 3

The bright
blue butterfly
hangs in the

wind

Under the
blue sky, the

wind is always
present

The thing he
likes to drink

is the ink

1

2

3

Figure 2.13: Inverted index example.

To show how the inverted index works, we use an example. Figure 2.13 shows an example

33

2. BACKGROUND

inverted index. Documents 1, 2, and 3 have been merged into one index, which we can

query to �nd the documents containing a speci�c word. For example, when we wish to

�nd documents containing the word �wind�, we search the index and �nd that documents

1 and 2 have this word.

A more complex example would be the query for the words �wind� and �blue�. We search

for each of the words in the index and end up with 2 sets of indexes, namely {1,2} and

{2,3}. From these two sets, we take the intersection, which is document 2.

34

3

Related Work

The design of e�cent timeseries databases are not a new concept and have been researched

in the past. Several open-source and commercial examples exist. In this chapter, we will

discuss several examples and compare key design decisions.

3.1 Performance of horizontal scaling

To accommodate the increasing bandwidth requirements for monitoring data, multiple

e�orts have been made to scale timeseries databases such that they are capable of high

ingestion bandwidth.

Google designed Monarch (7) to serve as a planet-scale in-memory timeseries database,

meaning that it is distributed and highly available. Data is ingested at a regional level

to achieve higher scalability and reliability. Monarch is thus scaled through horizontal

scaling, the workload is distributed globally. Queries are run through a federated layer that

partitions queries across di�erent geographical locations. Monarch is shown to be able to

write over 2.5TB/s of timeseries data and complete over 6 million queries per second. The

main contribution by Adams et al. (7) is the architecture with which timeseries data and

queries are distributed across di�erent nodes and data centers. Data is stored at a regional

level to increase reliability and scalability. Data is replicated across multiple regional zones

to attain reliability. A global query federation layer further indexes the data. This query

layer can direct queries to the regions which contain the data. Furthermore, the query

layer can direct queries to regions that might be further away from the issuer of the query,

increasing latency but which is processing less tra�c, meaning that the query can be

resolved with less delay. In �gure 3.1, we show an overview of the components working

together to route both timeseries data and queries to di�erent regions and regional zones. In

35

3. RELATED WORK

this �gure, we show three regional zones, namely zones 0, 1, and 2. These three zones each

contain components for timeseries data storage, query processing, and timeseries indexing.

The ingestion router at the top directs data to multiple regional zones to increase reliability.

Finally, the query router distributes queries across the di�erent regional zones in order to

balance the load.

Geographical region

Regional zone 0 Regional zone 1 Regional zone 2

Global

Data
storage

Query
processor

Timeseries
index

Query router Ingestion router

Figure 3.1: Simpli�ed overview of di�erent components making up the distributed architec-

ture of Monarch.

Another contribution from Adams et al. (7) is the type-rich relational model. Using this

model, they build a query language that can perform various operations and statistical

analysis on timeseries data. One example is the distribution type. This type stores time-

series data as a binned histogram instead of as a collection of separate data points. The

main upside of storing data in this format allows engineers to issue queries that analyze

data in terms of percentiles without �rst calculating the distributions. For example, in

Figure 4 of the paper, Adams et al. (7) show a heat map of the latency of an RPC server.

Users can quickly identify outliers and tail latencies using such a heat map.

The next timeseries database we need to discuss is BTrDB (27). BTrDB was created to

handle the data from a large number of microsynchophasors (97), which measure the load

on the electrical grid. The requirement for this database was that data had to be ingested

at a high frequency and using timestamps accurate to 100 nanoseconds. It has been shown

that BTrDB can ingest ≈ 15 million timeseries data points per second per timeseries, or

36

3.2 Indexing structures

240MB/s assuming 8 byte time and 8 byte value pairs. However, this is only achieved

when processing a smaller number of connections, about 100. To accomplish this ingestion

performance, Andersen et al. (27) introduced a time-partitioned, version-annotated, copy-

on-write tree data structure. In the paper, Anderson et al. show that the database can

scale to the maximum bandwidth of the Ceph (98) cluster used for storing data. However,

they can only achieve this by scaling horizontally across four nodes.

3.2 Indexing structures

In section 2.3.2, we discussed the necessity of indexing structures for traditional databases

and timeseries databases. Previous works have presented di�erent solutions to this require-

ment.

One of the most deployed timeseries databases, according to the database engine rank-

ing (99), is In�uxDB (55). In�uxDB is a timeseries database supporting integers, �oating

point values, and strings. Data is organized in measurements, comparable to tables in

relational database management systems such as MySQL (64). In In�uxDB, data is stored

as points, similar to rows in relational databases. Points are combined with �elds and tags,

similar to rows in relational systems. Tags are always indexed, making the number of tags

used a performance factor. Measurements can be added on the �y and do not need to be

explicitly created, as we discussed in section 2.3.1. Being able to add the measurements on

the �y is di�erent from traditional relational databases, where tables need to be explicitly

created.

In�uxDB has based its storage engine on an LSM tree, at �rst In�uxDB used Lev-

elDB (100) for its storage API, later a custom storage engine was implemented. Upon

receiving batches of data, In�uxDB will �rst persist the data by writing it sequentially

to a write-ahead-log (WAL). The authors of In�uxDB consider the WAL to be unsuitable

for serving random queries. As such, they employ a cache in randomly accessible memory

that holds the same content as the WAL but is used for serving queries. The WAL �le

compresses the data using the snappy compression algorithm (101), making reading very

ine�cient due to the overhead of decompression. Thus the need arises for a permanent

storage format. WAL �les thus cannot be used inde�nitely for storing data, so In�uxDB

periodically �ushes the WAL �les to TSM �les. TSM �les are read-only �les that are

memory-mapped. These �les are structured similarly to Sorted Strings Table (SSTable)

�les found in LSM trees (102). SSTable �les are �les which contain immutable collections

of key-value pairs, sorted by keys.

37

3. RELATED WORK

Header Blocks Index Footer

Magic bytes and
version number

CRC Data

Block 1

CRC Data

Block 2

CRC Data

Block N

TSM File

Key
length Key Type Count Min

time
Max
time Offset Size

Index

....

Figure 3.2: Overview of a TSM �le.

In �gure 3.2, we show an overview of the di�erent sections of a TSM �le. TSM �les

store the timeseries data in blocks. Each block contains a CRC32 checksum to verify data

integrity and a variable amount of timestamp-value pairs. The size of the blocks is stored

in the index section of the TSM �les. This section is located at the end and serves to record

information regarding the keys (the measurement name, the tagset, and the name of the

�eld), the types of the values (e.g. bool, string, �oat, or integer), the size of the block, and

the range of time the block represents. Each block is de�ned by the index section, meaning

that the TSM �les can contain mixed data.

A Log-Structured Merge (LSM) tree (102) is a tree data structure used by multiple time-

series databases, such as OpenTSDB (103) and IoTDB (104). LSM trees are noted for

their high write performance and support for range-based queries. The structure main-

tains multiple data structures, each optimized for its underlying storage medium. The

original paper describes the use of two structures, one in memory and one on disk. Data

is stored by their keys and in sorted memtables. Data is periodically grouped, sorted, and

moved to a �lower� ranking storage medium. For example, in the example proposed by

O'Neil et al. (102), data is moved from memory to disk, i.e., a medium that resides lower

in the storage stack. All data is stored in sorted structures, so range queries are more

straightforward, similar to how we handle range queries in TimeTree. A query only needs

to �nd the start of the range by searching through the tree, and seeking the end of the

range is a linear search.

38

3.2 Indexing structures

Another timeseries database that uses LSM trees is Timon (31). It has to handle many

insertions per second, developed and used by Alibaba for its cloud environment. The

indexing structure is a tree structure which creates a link between time ranges and data

sections stored in �les. The key di�erence lies in how these �les are constructed and the

structure of the tree. Before writing to storage, data gets grouped into blocks which are

written to SSTable �les. These �les are then indexed by a Time-partitioning Tree Index.

This index has a similar approach regarding how data is addressed to the one used in

FrogFishDB. The tree structure starts at the root node representing the entire range of

time stored in the SSTable �le, and this is then further partitioned using some fanout

factor K, where each level represents a higher resolution but a smaller subset of time. The

leaf nodes at the bottom of the tree contain pointers to blocks stored in the SSTable �le,

which contains the data.

The �nal indexing structure we need to discuss is the one used in BTrDB (27). Build

for recording measurements using highly accurate timestamps (≈ 100ns), the indexing

structure needs to support highly accurate timestamps. Described as a time-partitioning

copy-on-write version-annotated k-ary tree, the tree is built such that the root level de-

scribes a range of time, and the level below represents the same range of time but is

partitioned across the fanout factor. When data is inserted, it is stored in the leaf. How-

ever, in contrast to how TimeTree is built, these leaf nodes are not all on the same level.

Leaf nodes are split and moved to a lower level when a leaf is full. This means that when

the tree uses, for example, a fanout factor of 10, if a leaf node is full, the tree will allocate

ten new leaf nodes and reinsert the values initially stored in the leaf node. The tree used

in BTrDB thus can be visualized as growing downwards instead of upwards.

Figure 3.3 shows a simpli�ed overview of the BTrDB indexing structure. As mentioned

earlier, the timeseries data is stored in the leaf nodes. Another point that warrants con-

sideration is that the indexing structure for BTrDB allows for gaps, as each point in time

is assigned to a location in the tree. Consider �gure 3.3. Here the values for timestamps

9, 10, and 11 could be missing (they could have gotten lost due to packet loss). Missing

these timestamp value pairs would not change the layout of the structure as described in

�gure 3.3, the leaf node assigned to the range [8, 12) would still exist, the only di�erence

being that it would only contain the data for T = 8 and T = 12.

39

3. RELATED WORK

Leaf nodes

Tree nodes
K = 2

Time = [0, 16)

Time = [0, 8) Time = [8, 16)

[(T,V)]
Time =
[0, 4)

[(T,V)]
Time =
[4, 8)

[(T,V)]
Time =
[8, 12)

[(T,V)]
Time =
[12, 16)

Figure 3.3: Simpli�ed overview of the BTrDB indexing structure.

3.3 Flash optimizations

Section 2.1 discusses the inner workings of �ash based storage. We discussed the impor-

tance of �ash favorable access patterns and how the garbage collection process can induce

unwanted overhead. We found little existing work optimizing timeseries databases for �ash

based storage.

One example we did �nd was Akumuli (105). However, while Akumuli advertises to

be optimized for �ash, the only optimization it employs is that block accesses are aligned

to 4KB. The e�ectiveness of this optimization is not explored however, for example, sec-

tion 5.2.1, we test the bandwidth of three di�erent block sizes, namely 4KB, 2MB, and

4MB. We �nd that 2MB block accesses are more e�cient than 4KB block accesses.

While not directly advertised as optimized for �ash, QuestDB's access pattern is fa-

vorable to �ash. QuestDB is a reasonably new work that aims to provide high ingestion

performance through the use of memory-mapped (106) (mmap) �les. The performance stems

from the fact that all writes to the �les are sequential and are thus friendly to the under-

lying storage. Each metric is stored in its own �le. As the �le are mapped into memory,

and the database sees the �le through a memory window, insertion can be done using a

single MOV instruction. The memory window provided by mmap is moved once the database

reaches the end. This gives the database a consistent memory pro�le during ingestion, as

the window size is constant. While QuestDB advertises a higher ingestion bandwidth, the

40

3.3 Flash optimizations

performance is also poorly understood, as mmap is considered not a good �t for database

storage engines (107).

Data column file

Sliding window
through memorySingle timestamp

value pair

Data column file

Read by
calculating offset

Figure 3.4: Overview of QuestDB writes and reads. We show a value inserted into the

memory-mapped region on the left. On the right, after calculating the o�set, we show a value

being read from the memory-mapped region.

Figure 3.4 provides a simpli�ed overview of how mmap o�ers windows into the data column

�les. On the left, we show how writes are entered into the memory window. The red box

shows the memory window, while the blue line indicates the entry. We show the same on

the right, but now we are reading the data. In this case, we only need to read the raw data

through the window provided by mmap. The use of the sliding memory window means that

writes are sequential but reads are still random. This access pattern is favorable to �ash

as it is sequential in terms of writes and allows for random reads.

Another optimization for �ash storage is the use of compression (108). Compression

of timeseries data allows a timeseries database to �t more timeseries data into the same

amount of space compared to no compression. The use of compression allows a database to

issue fewer IO operations to store or access the same amount of data while also incurring

less wear as fewer blocks have to be written. However, there is a performance trade-o�.

With the increase in bandwidth provided by �ash storage, if the (de)compression algorithm

is too slow, then the overhead of issuing more IO operations is reduced in comparison. For

example, if a compression algorithm would allow a database to half the storage require-

ments, it would also half the required storage bandwidth, however, if the compression

algorithm also requires double the CPU resources, then the bandwidth savings might not

be worth the computational e�ort.

41

3. RELATED WORK

For timeseries data, there exist speci�c compression techniques. An example of this is

Gorilla (32). Gorilla is built by Meta to handle large amounts of operational data and is

referred to as an Operational Data Store (ODS). Gorilla is designed as a fast in-memory

database. The main contributions of Gorilla are the compression techniques for both

timestamps and �oating point data values. Pelkonen et al. (32) show that for Meta, 96%

of timestamps can be compressed into a single bit, and 59% of the �oating point values

can be compressed into a single bit.

The timeseries compression works by taking the delta-of-delta of subsequent timestamps.

The idea here is that timeseries often record at a �xed rate, for example, once every 10

seconds. If we only register the di�erence between two timestamps, we can reduce the data

stored per timestamp. Pelkonen et al. (32) took this further and introduced delta-of-delta

encoding. This is di�erent from storing the delta between two timestamps in that it records

the di�erence of the di�erence. This accomplishes that the only data recorded is the jitter

of the interval at which the data is recorded. For example, imagine a machine recording

its CPU temperature every 10 seconds. With delta encoding, we would store the value 10

together with every recording. However, if the jitter between these recordings is low, we

can store this delta's di�erence.

15:00 30

15:10 33

15:21 32

15:00 30

10 33

11 32

15:00 30

10 33

1 32

No timestamp
encoding Delta encoding Delta-of-Delta

encoding

Figure 3.5: The di�erence in the amount of data needed for each timestamp.

Figure 3.5 shows the di�erence between the di�erent timestamp encoding methods. No-

tice that for delta-of-delta encoding a lot less data needs to be stored for later timestamps.

For FrogFishDB, we do not use any form of compression, however, this could be explored

in the future.

42

3.4 Summary

3.4 Summary

In this chapter, we discussed various related works. First, we examined di�erent implemen-

tations of timeseries databases that achieve high ingestion performance through horizontal

scaling. Monarch and BTrDB advertise high ingestion bandwidth, however, they do so

through the use of multiple nodes. For example, BTrDB required four nodes to reach the

maximum bandwidth provided by the storage used.

Next, we discussed di�erent indexing structures. We observed the trend of using tree-

based structures to index timeseries data. We observed the use of LSM trees for managing

stored timeseries data. Other techniques involved storing the timeseries data in the data

structure itself.

Lastly, we discussed the optimizations applied to timeseries databases in order to better

utilize the bandwidth provided by �ash storage. We note a lack of work surrounding

optimizations for �ash storage. We found that one timeseries database advertises being

�ash optimized, but also noted the lack of a formal investigation into the e�ects of this

optimization. We also observed the possible use of compression as a form of optimization

but also make note of the required tradeo�s.

43

3. RELATED WORK

44

4

Design of FrogFishDB

In this chapter, we discuss the design of TimeTree and FrogFishDB. We start with a

discussion of the various modules and how they interact with each other. While discussing

the various modules, we also discuss the design requirements as per RM1. This is followed

by an in-depth examination of the new ingestion model. After the ingestion model, we

detail the design of our indexing structure. Finally, we discuss the query language we

designed.

4.1 Overview and requirements

Before we discuss the design of FrogFishDB, we �rst discuss some of the design requirements

we formulated before starting.

4.1.1 Requirements

As we use the Design, Abstraction, and Prototyping research methodology, we have to

create a set of design requirements. We formulate the following requirements:

DR1 : No out-of-order support. As the database is designed to be run in a data center

environment, we assume that no data arrives out of order.

DR2 : Storage access patterns should be favorable to �ash. Like traditional spinning stor-

age, Flash storage favors sequential accesses and block-aligned accesses for perfor-

mance (15, 109).

45

4. DESIGN OF FROGFISHDB

4.1.2 FrogFishDB as a whole

Before we delve into the details of FrogFishDB, we start by giving an overview of the main

modules.

Full memtables

Writer

Query management
and planning

Metadata

Memtables
Storage

Query

Ingestion Port

Management Port

Data file Log file

Series name
log

Series name
offset log

TagSet Registration

Timeseries data

Data from
client

FrogFishDB
module

OS
abstraction

Files in
storage

Query
Management Port

Series index

Storage

1
2 3

4 5

Figure 4.1: Overview of the di�erent components and interaction of FrogFishDB.

Figure 4.1 shows an overview of di�erent components interacting to build FrogFishDB.

Three distinct components form FrogFishDB. The �rst is the metadata component, 2 .

Though the management port, this component is responsible for registering new timeseries

1 and providing a mapping between registered timeseries and internal index values, this

will be further discussed in section 4.2.2. After registering a new timeseries, the metadata

module sends the client a token. This token is used to identify the timeseries, this is also

further discussed in section 4.2.2.

The second component is the writer 3 . This component is responsible for ingesting data

through the ingestion port, using the token, in conjunction with the metadata module, to

�nd the relevant data structures for the timeseries data which is being ingested, writing the

46

4.2 Ingestion

data to the per-timeseries memtable, and �nally, for �ushing full memtables to persistent

storage 5 . This component interacts with the storage layer through the io_uring kernel

interface, as discussed in section 2.4.2. Compared to the writer module, the metadata

module uses blocking IO during startup, as the metadata module has to be rebuilt from

storage. Timeseries data is written sequentially in an attempt to provide the best possible

access pattern for �ash storage, as previously discussed in section 2.1, and demanded

by DR2. The indexing structure is discussed in section 4.3.

The third and �nal module is the query module 4 . This module receives queries through

the management port. Queries are parsed and broken down into; which timeseries need

to be read and which operations need to be performed on the data after it has been read.

The query module is further expanded upon in section 4.4.

For performance, FrogFishDB is built using an eventloop. This eventloop will submitted

requests through to io_uring and process completion events. Upon receiving a completion

event, it will forward the completion to the component which initially submitted it.

4.2 Ingestion

To optimize the amount of data the database can ingest, we need to design the entire

ingestion process such that it allows us to minimize overheads. This section will answer

research question RQ1 (How to design an ingestion protocol that trades readability away

for performance?).

4.2.1 Push vs Pull

For FrogFishDB, we decided on push-based ingestion. With push-based ingestion, the

writer module only has to process the incoming data the moment it is received and does

not have to concern itself whether the application is reachable. A push-based model is also

simpler for clients to implement as sending timeseries data to the database does not require

con�guring the database. Clients do not have to implement an endpoint from which the

database can read the timeseries data, as is the case with Prometheus (51).

There are several options for connecting with a timeseries database. Examples such as

In�uxDB use an HTTP endpoint. There, an HTTP POST request is send to the endpoint

which contains the batch of data which is to be inserted. For FrogFishDB we use a socket

based TCP server. We use a binary protocol encoding scheme to encode all data transfered

between clients and the database. In order to simplify the implementation we choose Cap'n

proto (110). This libary allows us to de�ne a messages in a special de�nition language,

47

4. DESIGN OF FROGFISHDB

from which we can generate implementation for multiple di�erent programming languages,

again making it easier for future clients to be written.

4.2.2 Protocol

In section 2.3.1 we discussed a problem with existing ingestion protocols. The problem we

discussed was that the use of human-readable protocols introduced unnecessary overhead

for the database. During the implementation of FrogFishDB, we �nd that the database

spends around 80% of execution time parsing and converting the data to binary data.

The overhead is this large because, for every timeseries, we construct a separate memtable

and indexing structure, and to �nd these structures, we converted the incoming tags and

metric names into a series name. A series name is a canonical name that is unique for

each timeseries. For example, in section 2.3.1, we showed an example of the In�ux line

protocol containing one distinct timeseries. Converting this to our canonical names would

result in the following name: location=us-midwest,temperature. This name is created

through string manipulation of the incoming protocol. Creating these canonical names

and then matching them in a hashmap to the data structures (i.e., the indexing structure

and memtable) is what ends up taking 80% of the execution time. To lessen the impact

of the matching in the hashmap, we also test with di�erent hashing algorithms and a trie.

These alternatives did not improve the actual runtime performance, resulting in the same

overhead as the hashmap.

Because of this considerable slowdown, we designed a di�erent ingestion protocol. We

observed that the tagsets and metricsets used by clients would very often be static and

might only occasionally change. For example, an application could note its version number

in the tagset, which is a value that is unlikely to change over the application's runtime.

Using this insight, we take a similar approach to how RDMA handles connections (111).

In RDMA, clients wishing to establish a connection must register with the other endpoint.

When registered, they receive a token from the other endpoint, which the client initiating

the connection uses to identify itself. In FrogFishDB, we have the client register a set of

tags together with a group of metrics, upon which the database responds by sending back

a token that the client uses to identify which timeseries a value belongs to. This can be

seen as a separation of the control and data plane. Separating the data plane and the

control plane is not a new idea. Apart from RDMA, in network con�guration, splitting

the control and data plane has been shown to be an essential factor in achieving large and

scalable networking deployments (112, 113).

48

4.2 Ingestion

FrogFishDB

Client

Data, identified by token

Management
port

Data
port

Data, identified by token

Confirmation

Register series

Identifying token

Confirmation

Figure 4.2: Simpli�ed communication �ow between client and data. A client registers a

timeseries using the management port and receives a token used to identify the timeseries.

After the registration, it can identify batches of data using the token.

Figure 4.2 shows a simpli�ed overview of the interaction between a client and the

database. The client registers a timeseries with the management port, which replies with

a token containing the index value assigned to this timeseries. After receiving the token,

the client sends timeseries data to the database over the data port.

When ingesting data, the database must �nd which memtable and indexing structure

the data must be inserted into. Following what we discussed earlier in this section, we use

the token to identify the timeseries and as a link to �nd the correct memtable and indexing

structure. In other words, the index value in the token can be viewed as a canonical name.

However, in this case, the name is no longer human-readable. We will discuss the memtable

and indexing structure further in section 4.3.

For managing the tags we use an inverted index. This datastructure allows us to insert

tags as key-value pairs and then enables us to �nd timeseries according to one or more tags.

For example, in the aforementioned canonical name we saw two tags, namely hostname

and version. Then, using the inverted index, we can �nd each of the timeseries where one

of the tags matches in value. In this example, this allows us to search for each timeseries

where hostname equals host_1.

The tokens are made persistent through two log �les, as exampli�ed in �gure 4.3. In

49

4. DESIGN OF FROGFISHDB

Timeseries log file Timeseries names
file

Index

Position

Name
length location=us-midwest,

temperature

Offset:
0x1500

0x1500

32

1

Figure 4.3: Example of the two log �les used to record canonical timeseries names.

the Timeseries log, the tokens, together with the index values, are stored together with an

o�set value into the Timeseries names �le. The timeseries name contains the canonical

names of the timeseries which have been registered. The timeseries log, and timeseries

name �le are separate to allow for possibly lazy evaluation of the canonical names. The

names are not required at startup and are only needed when doing speci�c lookups based

on the tags.

Figure 4.4 shows the complete process of registering a timeseries in FrogFishDB. Step 0 is

the client initiating the process by registering the timeseries for metric cpu_usage together

with tag hostname=host_1. The management port receives the request and forwards it

to the metadata module. A canonical name is created for the timeseries and checked

against the index. If the index does not contain the canonical name, we start the process

of registering the new timeseries, as seen in step 2. Otherwise, we immediately return

a token with the index value. Steps 3a and 3b show how the timeseries is made to be

persistent by registering the index value into the timeseries log, and the canonical name

into the timeseries names log. Step 4 returns the index value to the metadata module. We

register the tags into the inverted index in step 5. Finally, in steps 6 and 7, the metadata

module packages the index value into the token, which is returned to the client.

50

4.2 Ingestion

0. Register timeseries
"hostname=host_1" and "cpu_usage"

7. Token reply
token = A

Client

Metadata module

1. Convert to canonical name

Management
port

4. Return index value

3a. Log index
and offset

into name log

3b. Log
canonical name

Index

Inverted index

2. If series is not registered,
register series in index

5. Register tags in inverted index

6. Package index value into token

Metadata
module

Timeseries
log

Timeseries
names

Storage

Figure 4.4: Diagram showing registering a timeseries in FrogFishDB.

Index value

Token

FrogFishDB

Metadata
module

Client

Figure 4.5: Database replies with token to the client.

51

4. DESIGN OF FROGFISHDB

To further illustrate steps 6 and 7 of �gure 4.4, see �gure 4.5. The database sends a token

in reply to a request to register a new timeseries. The token contains an index value which

is used by the database during subsequent ingestion process, as discussed in section 4.3.2.

The trade-o� is that this new method requires an extra communication round-trip where

the application will �rst have to register the tagset and metricset, however we �nd that

the cost of this round-trip is fully amortized over the runtime of the application, especially

considering the long run times of applications running in a data center.

Token TImestamp Value

1

2

15:00

15:01

15:02

20

25

22

15:00

15:01

15:02

33

39

42

Batch

Figure 4.6: Batch containing timeseries data to be inserted into the database.

Another method for increasing ingestion bandwidth is through the use of batch insertion.

Here we insert a large batch of timeseries data in one transaction. The current implemen-

tation of FrogFishDB uses synchronous insertion. The client submits a batch of timeseries

data and waits for a reply con�rming that all timeseries data has been inserted. The

batch size has previously been shown to impact insertion bandwidth (31). For increased

e�ciency, we designed the wire protocol such that a batch can contain multiple datapoints

per token and that a batch can contain multiple tokens. Figure 4.6 shows how such a batch

is layed out. This batch contains data for two timeseries, denoted by the tokens 1 and 2.

52

4.3 Indexing structure

For each token, the batch contains three timestamp-value pairs.

4.2.3 Summary

In summary, we present the following design decisions for the ingestion protocol. The �rst

decision is that we use push-based ingestion. Next, we decided that we shift part of the

ingestion workload back to the client. A client is responsible for registering a set of tags for

which it obtains a token to identify a batch of timeseries data. The client sends batches of

timeseries data identi�ed by the token to the database and waits for a response con�rming

all data has been inserted.

With this design, we can answer RQ1. We trade away readability for performance by

registering sets of tags before sending the timeseries data. Data is further encoded using

a binary protocol (only machine-readable) to avoid the need to decode human-readable

text into machine-readable values. Future work would consist of making the protocol

asynchronous. In that case, multiple batches can be sent in quick succession without the

need to wait for con�rmation.

4.3 Indexing structure

In this section, we will discuss the indexing structure built for FrogFishDB. We designed

the data structure to take advantage of the fact that we assume all data arrives in order.

Using the assumption, we can create a data structure with the search and insertion time

complexity of a B+ tree but without the possible complexity of the splitting and merging

operations, leading to more predictable performance. A B+ tree will have to split internal

nodes in order to accomodate new entries, as we discussed in section 2.5. To retain balance

the tree will rebalance internal nodes on the right side of the tree when we insert ordered

data. We refer to our data structure as the TimeTree, a tree structure that fans out based

on time. With the indexing structure we aim to provide an answer to RQ2.

One of the key problems with databases is �nding the data again after committing it to

storage. Di�erent databases have shown di�erent solutions, which we will discuss further

in section 3.2. The key di�erence between standard relational database operations and

those encountered by timeseries databases is that timeseries data is write heavy, but linear

in the sense that timestamps are only ever increasing. Using this di�erence, we designed

an indexing structure to exploit this fact. Indexing structures used in existing timeseries

databases have used this same fact to di�erent degrees of success (27, 31).

53

4. DESIGN OF FROGFISHDB

4.3.1 TimeTree

For the indexing structure of FrogFishDB, we take the B+ tree for its e�cient search and

insertion properties. We simplify its operations to better �t our assumptions and insights

into how timeseries data will be processed by FrogFishDB. The �rst important factor is

that we assume all timeseries data will arrive in order. This assumption makes it easy

for us to reason about how the data can be laid out on �ash SSD, as with in-order data,

the writer module can write to a memtable in memory and �ush this memtable directly to

storage. The second is that timeseries data which has been written to storage is immutable.

Once data is written to storage, it can only be read, but not altered.

From these two factors, we derive a B+ tree which is much simpler in terms of design

and implementation. TimeTree is the data structure that we have developed. In a basic

sense, the TimeTree can be seen as a B+ tree that grows upwards instead of downwards.

The main idea is that all leafs contain pointers to memtables that have been written to

storage. The internal nodes contain the range of time their children represent.

Data file

Root

[10, 310]

L L L L L L L L L

Memtable Memtable Memtable Memtable Memtable Memtable Memtable Memtable Memtable

Time start 10

Time end 45

File offset 1200 bytes

Old New

Time start 10

Time end 110

Figure 4.7: Overview of TimeTree. Full tree stores data between timestamps 10 and 310.

Nodes with the L mark are the leaf nodes with the extra �eld pointing to the data �le.

Figure 4.7 shows and overview of a TimeTree instance. This tree is con�gured to have

a fanout degree of three. This means that each internal node in the tree has at most

three children. The tree represents a range of time, starting at timestamp 10 and ending

at timestamp 310. The left most internal node is shown to represent a range between 10

54

4.3 Indexing structure

and 110. The range of this internal node is further partitioned in three children. These

children are leaf nodes, where the �rst leaf node represents a range starting at 10 and ends

45. The leaf nodes di�er from the internal nodes in that they contain a value which points

to a memtable where the timeseries data is stored. The value represents the number of

bytes from the start of the �le where the memtable is located. The memtables are stored

in memory and are written to by the writer module. When a memtable is full, it is �ushed

to storage by appending it to the data �le. The o�set, or number of bytes from the start

of the �le, is stored in the TimeTree. This is why data on the right side of the tree is

newer than data on the left. As more memtables are �ushed to storage, the number of leaf

nodes also grows. In order to accomodate more leaf nodes, the tree needs to grow, thus

the height of the tree is proportional to the fanout degree and the number of leaf nodes.

L L L

Root

L L L LL L L

Root

L L L

Level: 0

Level: 1

Level: 2

Figure 4.8: Insertion into the TimeTree structure example.

Figure 4.8 gives an overview of how the insertion works in the TimeTree structure. The

blue nodes have been inserted into the tree. When inserting the blue leaf node, we had

to create the blue internal node as there was no room left in the newest internal node at

level 1. The cost of insertion thus depends on the space available in the internal nodes at

levels above the leaf node. In the worst case, the number of internal nodes that need to be

created is equal to the tree's height, meaning a new root and a new internal node on each

of the existing levels. Also note that there are links between leaf nodes. These links aid

with lookups where we need to scan over multiple leafs nodes.

We wish to make it very clear that in the context of FrogFishDB, we store do not store

pointers but the o�set into a �le. However, this is not a hard requirement. If an application

wishes to do so, the application can store a pointer to an object in memory or to an object

stored in an object store such as S3. Another situation would be to store some aggregate

value, for example, a median value. This median value can represent a median for a range

55

4. DESIGN OF FROGFISHDB

of time. Reconstructing the tree from the log �le would also recover these median values.

We discuss this concept further in section 4.3.3.

Root

[10, 310]

L L L L L L L L L

Lookup starts
 at root

Found start
of range

Root

[10, 310]

L L L L L L L L L

Found end
of range

Search end
of range

using links

Figure 4.9: Lookup in the a TimeTree. The upper example shows the search for starting leaf

node. The lower example shows the start having been found and the use of the links between

leaf nodes to search for the end of the range.

Figure 4.9 shows a conceptual version of a lookup in the TimeTree. Doing a lookup is

very similar to doing one with a B+ tree. The user supplies a start and end timestamp

for which to search. We start by searching for the start of the range of time. We follow

the tree nodes until we �nd the leaf node representing the range's start. After �nding the

start, we collect the o�set values by walking the leafs using the links between leafs until

we encounter the end timestamp.

4.3.2 Storage

The underlying storage mechanism is purposefully kept as simple as possible. This is done

both to ful�ll DR2 and to keep future implementations free of the burden of an existing

56

4.3 Indexing structure

storage solution. In the latter case, this allows future users to alter the storage layer and,

for example, build an implementation that runs directly on �ash through SPDK (114). We

discuss this option further in section 6.2. Currently, we use io_uring for the storage IO.

Together with the DIRECT IO mode for �les, we route all storage related IO tra�c through

io_uring. While not investigated in this thesis, this would also enable us to use features

such as di�erent polling levels, as has been discussed in section 2.4.2.

Timeseries data is stored in memtables. These are blocks of memory that are con�gured

to be a speci�c size. In section 5.2 we experiment with di�erently sized memtables. As

these memtables are nothing more than just a block of memory, they allow us to potentially

implement compression algorithms on top of them such as those discussed in chapter 3.

However, that is outside the scope of this work.

Flushing a memtable to storage involves appending the memtable to the data �le and

recording the o�set of where it was written. The o�set is then stored in the TimeTree.

The insertion into TimeTree is logged to the log �le by the writer module when the �ush

of the memtable has completed. This log �le is what ends up being used to recreate the

indexing structures for all the timeseries.

Data file Log file

Memtable

Offset

Start 100
End 200

Offset 2048

Recorded offset,
start, and end

Start
Offset: 0

Figure 4.10: Memtable's o�set and metadata are stored in the log �le.

Figure 4.10 details the storage setup. This �gure shows the two �les, namely the data

�le and the log �le. The blue box in the data �le represents a memtable that has been

�ushed and is stored at o�set 2048 bytes into the data �le. After the write to the data

�le, the o�set and metadata, such as start and end timestamps, are written to the log �le.

Upon restarting, the database reads the log �le and can recreate the indexing structures

57

4. DESIGN OF FROGFISHDB

in memory. The log �le is also read from start to �nish, making it so the invariant holds

that all data arrives in order.

Log file

Start 110
End 200

Offset 2048

Storage Memory

Start 210
End 300

Offset 4096

Start 310
End 400

Offset 6144

110-200 210-300 310-400

110-300

110-400

310-400

Figure 4.11: Reading the log �le and recreating the indexing structure.

Recreating the indexing structure from storage is further visualized in �gure 4.11. Here

we attempt to make a clear distinction that the indexing structure lives in memory but is

built by reading the log �le. In this �gure we show a tree which represents a range of time,

spanning from timestamp 110 to 400. Each internal node has a fanout of two, where the

left subtree (110-300) is complete, and the right subtree (310-400) is not complete. The

three blue blocks in the log �le on the left of the �gure show the nodes after they have

been made persistent. Note that the internal nodes of the tree are not in the log �le, these

are recreated during when the log �le is replayed on startup. The log �le is replayed in

order to recreate the tree structure. As the internal nodes do not contain any actual data

and are only a summary of the children of the node.

In the current implementation, we persist the TimeTree entries by writing them to a

log �le. However, this implementation is not the most e�cient. The memory usage of

TimeTree is a function of the degree of fanout that has been con�gured. Increasing the

fanout degree will decrease the number of inner nodes as one node can represent more

children. When we log insertions into the TimeTree, we use direct IO, meaning that each

write is rounded up to 512 bytes. Assuming that each insertion can be represented using

58

4.3 Indexing structure

24 bytes (16 for the two timestamps, and 8 for the value), we observe an overhead of 488

bytes (512− 24). In section 6.3 we detail a possible solution to this problem.

Storage

Writer module

Index to tree mapping

1

2

3

0. Insert: value 30 for token A

Client

2a. Flush table when full

2b. Write offset in data
file to indexing tree

3. Write memtable
metadata to log file

Memtable

Offset value

4. Return notification
indicating insertion

1. Find memtable
based on token

Ingestion port

Data fileLog file

Figure 4.12: Systems diagram showing the process of inserting a value into the database.

Figure 4.12 shows the insertion process. Step 0 is the client sending the value to the

database. The values are received by the ingestion port and written to the memtable in

step 1. The index value stored inside the token is used to �nd the memtable. Steps 2a

and 2b show the memtable being written to storage if the memtable is full and its location

in the indexing structure. If the memtable is not full the writer module skips to step 4.

In step 3, the memtable's o�set into the data �le is stored together with its start and end

timestamp in the log �le. Finally in step 4, the ingestion port returns a con�rmation to

the client indicating that the write was successful.

In section 2.4.2, we discussed using registered bu�ers to improve performance. Due to

time constraints, we were unable to experiment with this feature. Using registered bu�ers

would have allowed us to forgo multiple data copying steps. For example, a multishot

receive operation using io_uring would have allowed us to ingest batches of data more

e�ciently. The current version receives messages by reading the data from the socket �le

descriptor into a temporary bu�er. This bu�er is necessary to process messages bigger

than the receive bu�er. When batches contain more than 10,000 data points, the size is

over 160KiB, far larger than what TCP can carry in a single message (i.e., 1,440 bytes).

In this thesis we do not consider fault tolerance. Timeseries data is only persistent

after the memtable is �ushed to storage and the TimeTree leaf node is logged to log �le.

59

4. DESIGN OF FROGFISHDB

Both of the writes to storage use DIRECT_IO, meaning that when the completion for the

writes is received through io_uring, we know that the write is persistent. Improving fault

tolerance is considered to be future work. One option is through the use of a Write-Ahead

Log (WAL) (115). All timeseries data we receive through the data port, we write to the

WAL. Upon restarting the database, we can detect a fault by reading the log and checking

if the latest values in the log are present in the indexing structures. However, using a

WAL comes at a cost (116). For example, if we were to log each timestamp-value pair,

this would result in many small writes to the log, reducing our total bandwidth.

4.3.3 Aggregation

Another advantage of assuming in-order insertion into the indexing structure is that it

allows us to �fold� older data. When storing large amounts of timeseries data, employing

a retention system can be bene�cial. In this case, data older than some retention value,

for example, one month, is deleted. The idea is that older timeseries data is less likely to

be relevant in the future. Think of this in the context of monitoring system health. When

the timeseries data is older than one month, it is unlikely to be relevant for monitoring

tasks running in the present.

However, even though older timeseries data might not be relevant for current tasks, it

can aid in identifying trends and investigating performance problems. There is a clear

trade-o� here. Older data might be relevant, but if it is not, it will still occupy storage

space, and with high ingestion bandwidth, this storage space comes at a premium. When

free storage space decreases, one will want to free up space by removing older data to be

able to ingest the new data.

We present the aggregation process for this scenario in the TimeTree. Here we �fold�

older nodes into nodes at a higher level. Figure 4.13 shows an example of this process.

Here we o�er a before and after visualization of the TimeTree. On the left we show a

tree with seven leafs, and on the right, we show how the three oldest leaf nodes have been

aggregated into the tree node one level higher.

We can only aggregate nodes into a higher internal node when the higher node is con-

sidered complete. This is only when there is no room left in the node, in other words,

when all child slots have been �lled. In the case of the example shown in �gure 4.13, only

the six oldest nodes are eligible for aggregation into their respective parent nodes, as the

parent for the 7th node is not yet complete. Note that only the oldest three leaf nodes have

been aggregated. This is a con�gurable setting, where the user which nodes are selected

for aggregation. For example, consider our earlier example of a retention system. With

60

4.3 Indexing structure

L L L

Root

L L L L

Level: 0

Level: 1

Level: 2

Before
aggregation

C1

Root

L L L L

After
aggregation

Figure 4.13: Example of three leaf nodes getting aggregated.

aggregation the user could opt to only aggregate nodes which are beyond a certain age.

Another option would be to simply aggregate all complete nodes.

The aggregate node (C1) shown on the right in �gure 4.13 contains a summary of the

information stored in the leaf nodes. The application can extend this summary information

and could contain information such as the maximum, minimum, and average values. For

this, we can also image applications storing more complex information, such as a distri-

bution, similar to what Adams et al. (7) have shown in Monarch, which we discussed in

chapter 3.

Due to time constraints, we have been unable to implement this feature in FrogFishDB.

We do show the functionality working for TimeTree. However, this is only o�ered in

memory. The aggregation process will also need to be recorded by storage. For this, we

suggest the use of special log entries. These entries should indicate which nodes have been

aggregated and the summary values. When the log �le is replayed, this aggregation process

is repeated, however, without the need to calculate the summary values.

4.3.4 Summary

In this section, we presented the TimeTree. A variant on the B+ tree with the aim to

provide a simple indexing structure for storing timeseries data. This allows us to give

an answer RQ2. A data structure for timeseries data can be designed through careful

consideration of the domain in which it is employed. For timeseries data, this means that

through the assumption that data is ingested read-only and arrives in-order, we designed a

variation on the B+ tree which forgoes the process of splitting and merging nodes, forgoes

the option to delete entries, and assumes add data arrives in-order. This variation allows

for both fast insertion and e�cient range queries.

61

4. DESIGN OF FROGFISHDB

4.4 Querying

This section will focus on the query aspect of FrogFishDB. In FrogFishDB, we provide

a simple but specialized query language. Other works also present their own language

implementations, as the authors found that the traditional SQL language did not provide

the features to have e�ective and expressive queries on timeseries data.

4.4.1 Why the need for a new query language?

Traditional relational databases have traditionally employed the use of the SQL language.

Through this language, one is able to describe a query to a database. It allows the user to,

for example, specify the columns which need to be returned, in which table the query should

be executed, and allows for specifying post-processing operations that may combine queries

from multiple tables into a single result. While this language has worked for relational

databases, its limitations become clear when used in di�erent settings.

For example, consider a database with the following table. The table contains a log of

a set of products, all of which are sold by �ve di�erent vendors. One column speci�es the

price, the second column speci�es the product to which the price belongs, another column

speci�es the retrieval date for the price, and the �nal column speci�es from which vendor

this price value has been retrieved. Now consider the following query, we which to �nd all

the latest prices from all vendors for one speci�c product. To execute this query, we have

to create two nested queries which use an inner join to get the result. The �rst query is a

basic one that retrieves the basic information from the table, i.e., the price, the retrieval

date, and the vendor to which this price belongs. The second query has to query the

same table as the �rst. However, this time it has to retrieve the vendor and the maximum

retrieval date, together with a �lter that selects the product for which the prices must be

retrieved. Finally, this query has to group the data based on the di�erent vendors. Finally,

after executing the second query, can the �rst query be completed through an inner join

that matches the retrieval date and vendors with the results from the second query.

Note how we are only interested in the most recent price for all of the vendors. This

workload is very similar to what is requested of timeseries databases in terms of workload.

As a comparison consider a scenario where we query the database for the current temper-

ature of multiple servers. In that case we are also only interested in the latest value. If we

were to convert the log of product price data to In�uxDB, then we would ingest the prices

together with the retrieval time as the timeseries data. The speci�c product and vendor

would then be recorded as tags.

62

4.4 Querying

We compare SQL and Flux, the query language In�uxDB uses, to demonstrate the

di�erence between query languages. Listing 4.14 shows the same query in two di�erent

query languages. On the left, we show the SQL equivalent of the query we described earlier.

On the right, we show the equivalent query using In�uxDB.

SELECT price, product, vendor,

retrieval_date

FROM price_table p

INNER JOIN (

SELECT vendor,

MAX(retrieval_date)

AS ret_date

FROM price_table

WHERE product = product_1

GROUP BY vendor) pm

ON p.vendor = pm.vendor

AND p.retrieval_date =

pm.retrieval_date

Listing 1: SQL example.

from(bucket:"prices")

|> filter(fn: (r) =>

r.product = product_1)

|> last()

|> yield()

Listing 2: In�uxDB's Flux language.

Figure 4.14: Comparison between two di�erent query languages.

Listing 1 is di�cult for the reader to process and understand compared to listing 2.

First, the reader will have to process the fact that there are two queries at play here,

and then they will have to realize that they pertain to the same table. Listing 2 shows a

comparatively simple query that consists of only four statements. The �rst statement acts

as the select statement from SQL, selecting the di�erent columns from the �prices� table

(otherwise referred to as bucket in In�uxDB). The second statement �lters the queried

data to only contain product_1. The third statement selects the latest data inserted into

the table. The fourth and �nal statement denotes the end of the query and yields the

processed data back to the issuer of the query. All statements are connected using the pipe

operator (|>). This operator forwards the result from the previous statement to the next.

There exist multiple examples of timeseries databases in literature in which the authors

opted to either design their own language or create extensions to SQL. Timon (31) uses a

query language dubbed TQL. This language is intended as an extension of SQL with two

key di�erences. The �rst is that queries and functions can be changed using a pipe operator

(|), similar to how in Flux multiple statements can be chained. The second di�erence is

63

4. DESIGN OF FROGFISHDB

the introduction of extensions to the SQL language, allowing users to match data according

to tags used to identify timeseries. In Monarch (7), the query language is designed from

the ground up. Described as a �pipeline of relational-algebra-like table operations�, the

language allows the user to chain queries similarly to TQL. Data is retrieved using a fetch

operation, the results of which are piped to functions such as filter or group_by. When

more than one query needs to be forwarded, they can be joined. Multiple queries are �rst

described in a �block�, denoted by a brace pair ({}). The main downside of these two

languages (TQL and Monarch) is that both are used for proprietary systems and thus are

only visible to us by what the authors have shared in their papers.

4.4.2 Language design

Due to time constraints, we opt to keep our language design as simple as possible. We could

have opted to copy or otherwise imitate one of the languages mentioned earlier, however,

we opted not to do this as this would have required the development of a signi�cant parser

and interpreter, while this work focuses on the ingestion pipeline. For the language, we

identify the following requirements:

LR1 : Select timeseries based on tag

LR2 : Select timeseries based on index value

LR3 : Indicate the range of time from which to retrieve the speci�ed timeseries

LR4 : Specify a GROUP BY operation which can operate on di�erently sized bins of time

These requirements were chosen such that they provide the minimum viable query lan-

guage and provide all the operations necessary to execute the benchmarks discussed in

section 5. Requirements LR1 and LR2 enable us to make a basic selection for a given

timeseries. These queries are comparable to an SELECT * FROM statement in SQL. Re-

quirement LR3 is used for narrowing the timeframe which the query selects. The usecase

for such a time �lter would be that a user wishes to view the last six hours of timeseries

data and not all available. Requirement LR4 speci�es a post-processing operation. This

operation is used to create summary statistics of timeseries data. For example, a group-by

operation can be used to the average values of timeseries data which has been binned in

blocks of �fteen minutes.

To keep the implementation as simple as possible, we looked towards one of the most

fundamental languages, namely LISP (117). While we show a language that can ful�ll all

64

4.4 Querying

the requirements we have set, it lacks any form of formal proof. Even though this work

will not present a complete design document for a language, we can still delve into some

of the underlying ideas of LISP which are relevant to a query language.

The syntax for LISP is characterized by the fact that all operations are written through

symbolic expressions (otherwise referred to as s-expressions or sexpr's). Used initially for

calculators in the 1970s, in�x operators make for a stack-based model. In this stack-

based model, operations are �rst put on the stack, followed by the arguments. The main

advantage of the stack model for this work is that this makes writing a parser very easy.

The idea of using LISP inside another application is not new. One such example is

Game Oriented Object Lisp (GOOL) (118). Created for the videogame Crash Bandicoot,

the language provided several features usefull to game development. The core idea of the

language was to enable developers to quickly iterate on code which was not performance

sensitive enough that it required hand-written assembly. GOOL is implemented as an

interpreted language and uses a Read Eval Print Loop (REPL) system for interacting with

the language. This REPL enable developers to alter the code of an application at runtime

and observe the e�ects without restarting the application. This means that the entire

process of compiling and restarting the appliation is skipped.

Before we can discuss our query language, we �rst show a formal de�nition of the LISP

lanaguage:

expression = atom | list

atom = number | symbol

number = [+-]?['0'-'9']+

symbol = ['A'-'Z']['A'-'Z''0'-'9'].*

list = '(', expression*, ')'

Listing 3: EBNF form of the LISP language.

Listing 3 shows the formal de�nition of the LISP language in EBNF (119) form. From

this we can see that expressions are made up of either an atom or a list. An atom is the

smallest functional unit in LISP, it is either a symbol or a number. A number consists

of one or more number characters in an unbroken string, optionaly pre�xed by a symbol

indicating wether or not the number is a negative. The same holds for a symbol. A symbol

is an unbroken string of alphanumeric characters. A list is a matched pair of parentheses

containing zero or more expressions.

65

4. DESIGN OF FROGFISHDB

As an example, the expression (+ 1 2) calculates the sum of 1 and 2. Note that due to

the expression grammer, the mathematical notation follows the polish notation (120).

For FrogFishDB we also created an embedded LISP interpreter. Due to time constraints

we were not able to create a full �edged interpreter, however, we were able to create a

simple parser which is able to full�ll all of our previously de�ned requirements. What

follows are a few examples queries to show the di�erent features of the language.

(->>

(metric "cpu_usage")

(tag "hostname" '("host_0")))

Listing 4: Simple example collecting all measurements for given metric and tag.

Example 4 shows a straightforward example where we query the database for all values

of cpu_usage where the tag hostname equals host_0, equaling the requirement from LR1.

Going from top to bottom, the -� literal indicates the start of a new query, the metric we

target is speci�ed through the metric keyword, and the tag combination can be indicated

with tag. The tag command has two overloads. The �rst is for selecting a single value,

and the second is used to select multiple values, which is done by passing a list. Note that

the ' indicates a list literal, keeping in line with the common-lisp language. Otherwise,

the tag value would have indicated a function.

(->>

(index 50))

Listing 5: Simple example collecting all measurements for a given id.

Example 5 is a straightforward example showing LR2. If the user is aware of which

index value corresponds to metric cpu_usage and hostname=host_0, then they can use

this index value to issue a query.

(->>

(metric "cpu_usage")

(tag "hostname" '("host_0"))

(range 1464710340000000000 1464720460000000000))

Listing 6: Simple example collecting from range of time.

66

4.4 Querying

Example 6 shows the same query as example 4, however this time, we indicate the

window from which we wish to select the data, as required by LR3. The range keyword

indicates that timestamps should be between the two arguments. The arguments shown

here are two nanosecond precision UNIX timestamps.

(->>

(metric "cpu_usage")

(tag "hostname" '("host_0"))

(groupby 1h max))

Listing 7: Simple example grouping data in bins of 1 hour.

Example 7 is again an alteration on example 4, however here we group the results into

bins of 1 hour and apply the maximum operator on each of the bins, ful�lling LR4. While

processing this query, we wait for the system to have loaded in all the data and then move

to group them into the bins. During the move, we apply the operator speci�ed as the

second argument to the groupby operator. The supported operators for this work are:

min, max, avg, and count.

(->>

(metric "cpu_usage")

(tag "hostname" '("host_0"))

(where (and (< #TS 1451621760000000000) (> #V 95))))

Listing 8: Simple example using where clause.

The �nal example 8 shows the FrogFishDB equivalence of the traditional SQL WHERE

clause. The where operator on the last line creates a �lter where the timestamp has to

be lower than 1451621760000000000 (Fri Jan 01 2016 04:16:00 GMT+0000) and the value

has to be higher than 95. The two keywords shown here are #TS and #V for timestamp and

value, respectively.

In summary, FrogFishDB supports the following operations:

Table 4.1 shows the di�erent operations supported by FrogFishDB. Future work would be

to support nested queries and to be able to use join operations between those queries. Join

operations would enable users to, for example, do causality analysis on multiple machines.

Imagine a user is investigating an issue where the 99th percentile latency of an RPC

endpoint higher than expected. A cause for this could be that the machine is overloaded

67

4. DESIGN OF FROGFISHDB

Name Code Parameters

Query start ->> Other expressions describing the query.

Metric selector metric Name of the metric which is to be selected.

Tag selector tag Tag name and list of values for a given tag.

Range selector range Start and end timestamp of the range of time

which is to be selected using the query.

Group by operator groupby Size in time of the bins and an operation to ex-

ecute on each of those bins.

Filter where Function with two parameters which acts as a

�lter on a per-datapoint basis.

Table 4.1: Supported query operations.

and is not able to respond to requests within an expected range of time. Being able to

execute a query which combines the times at which the latency is very high, together with

a metric detailing the load on a machine, could signal a causal relationship.

4.4.3 Query planner

The query planner is kept as simple as possible. When the user submits a query, the

planner searches for the corresponding indexing structures. One limitation of the current

implementation is that we only support a lookup for a single timeseries, meaning that no

join operations are available. When the corresponding indexing structure is found, it is

queried for the range of time speci�ed by the user. This lookup in the indexing structure

results in a list of o�sets in the data �le where the relevant memtables are stored.

4.4.4 Summary

In this section we discussed the query language we designed for FrogFishDB. We �rst

discussed the problem with existing query languages and why timeseries databases have

previously opted to create their own. We found that the traditional SQL query language

did not su�ce in providing the expressive tools necesarry for engineers to create timeseries

queries. SQL often required nested queries in order to create �lters which are suited towards

a timeseries workload. An example we provided detailed how two queries are required in

order to �lter for a set of values where we wish to select the latest ones.

We followed this discussion by detailing our own query language. Created out of a

necesity for something small and simple to implement, but with adequate expressive ca-

68

4.5 Optimization opportunity: Multithreading

pabilities. We chose to base it of of the LISP language. We create queries by selecting a

timeseries and follow this up by �lter or group by statements.

Finally we detailed the query planner. This planner does not employ any further op-

timizations, and is kept as simple as possible. First the query is matched to the correct

timeseries, followed by a lookup into the indexing structure, searching for which memtables

have to be read. After reading the memtables to memory, we execute any post processing

operations if they are de�ned.

4.5 Optimization opportunity: Multithreading

To extract more performance out of our machine, we turn towards multithreading. The

key factor enabling multithreading is that timeseries on their own are isolated. Compared

to traditional databases where multiple clients can issue writes to the same table or row,

we consider timeseries data to come from a single source per timeseries. For example, when

recording CPU temperatures, there is no reason for two distinct nodes to ingest data into

the same timeseries.

To this end, we can draw inspiration from MICA (121). Here Lim et al. present a key-

value database, where one of the contributions is using partitions across di�erent cores.

Each core hosts a separate partition of the key space, and applications that interact with

the database determine the core with which to communicate by hashing the key value.

Each core listens to a di�erent port, each set to a base value + core number, i.e., assuming

base port value 8000, core 0 would host port 8000, core 1 would host 8001, etc.

For FrogFishDB, we propose a similar setup. Using the tokens we de�ned in section 4.2.2,

a client can determine the correct port o�set by calculating the remainder between the

index value stored in the token and the number of cores. The aim of this method is also to

spread the load equally across the di�erent cores. In section 2.4, we discussed how context

switches are detrimental to performance when using �ash storage, as the runtime costs for

a context switch are similar to the latency of a read or write operation. To this end, the

database would employ a thread-per-core model (122). ScyllaDB (123) is another example

of a database using the shared-nothing-architecture of a thread-per-core threading model

to achieve both better throughput (2x-5x) and 99th percentile latency (124).

Figure 4.15 shows four clients sending timeseries data to FrogFishDB, which runs on

four cores. The index value in the token is mapped to the index value used internally for

referencing the di�erent timeseries structures (i.e., the indexing structure and memtable).

As each core handles its subset of the di�erent timeseries, they also need their own �les.

69

4. DESIGN OF FROGFISHDB

CPU core 0

CPU core 1

CPU core 2

CPU core 3

Client

Client

Client

Client

Index: 0, 4, 9, ...

Index: 1, 5, 10, ...

Index: 2, 6, 11, ...

Index: 3, 7, 12, ...

NIC

Figure 4.15: Ingestion in multithreaded context for FrogFishDB.

This allows cores to issue appends to the log �les without having to use locks which can

hamper performance.

The management port is hosted on only core 0. Upon receiving requests to register a

tagset, it is checked against the local cache on core 0. If no matching tagset is found, a

new index is created by passing a message to the next available core, and the index value

is then wrapped into a token, which is sent back to the application. We again assume that

there is little tra�c on the management compared to the ingestion ports.

For queries, we need a di�erent method for accessing the di�erent timeseries. If a query

combines multiple timeseries, for example, during a join operation, we cannot simply ref-

erence a single core that contains the data. In this case, we submit the query through the

management port. Upon receiving the query, core 0 will issue reads to the other cores,

which contain the timeseries associated with the tag values requests. When the other cores

receive these read requests, they read the data into memory and reply to core 0 with a

pointer which points to the data.

Figure 4.16 shows how a query is handled using a thread-per-core multithreading model.

A query is submitted through the management port to core 0. Core 0 processes the query

and determines which cores need to be issued a read request as they handle timeseries

data relevant to the query. All cores that receive the read request start by reading the

queried data to memory and, when �nished, notify core 0 by sending a message containing

a pointer to the data that has been read.

For this thesis, we have not been able to implement this. However, this model will be

used in future work.

70

4.5 Optimization opportunity: Multithreading

CPU core 0

CPU core 1

CPU core 2

CPU core 3

Client

CPU core 0

Management
port

Issue search and
read

Index: 0, 4, 9, ...

Index: 1, 5, 10, ...

Index: 2, 6, 11, ...

Index: 3, 7, 12, ...

Figure 4.16: Queries in multithreaded context for FrogFishDB.

71

4. DESIGN OF FROGFISHDB

72

5

Evaluation of FrogFishDB

This section will evaluate FrogFishDB and compare it to existing timeseries databases.

This is done to provide an answer to RQ3. To answer this question, we will evaluate

FrogFishDB in two stages. First, we will examine the ingestion bandwidth. Secondly, we

will analyze the query performance. We compare FrogFishDB against multiple state-of-

the-practice timeseries databases. Before discussing the performance of FrogFishDB, we

start with our evaluation plan, followed by a discussion of the benchmarking tools used.

5.1 Evaluation plan

This section will discuss the setup and background for the presented benchmarks. As we

intend to test the various components of FrogFishDB, we require a detailed evaluation

plan to isolate and test the various components. We split the evaluation into two distinct

sections. First, we examine the ingestion bandwidth, which, as established earlier, is the

main focus of this thesis. Second, we examine the query performance of FrogFishDB.

When picking timeseries databases to compare against, we attempted to select based

on the state-of-the-practice and the state-of-the-art. The state-of-the-practice we can de-

termine using the DB-Engine ranking (99). From this list, we selected In�uxDB as the

state-of-the-practice. Not only does it carry the highest score by a signi�cant margin, but it

has also previously been cited across di�erent academic works (31, 125, 126). For the state-

of-the-art, we select QuestDB and ClickhouseDB. In chapter 3, we discussed QuestDB and

how it achieves ingestion bandwidth by writing directly through an MMAP'ed �le. Click-

house is a relatively new timeseries database. However, previous work has shown signi�cant

ingestion bandwidth when compared to existing timeseries databases (23, 24, 26). We use

the same timeseries databases for our query benchmarks.

73

5. EVALUATION OF FROGFISHDB

5.1.1 Ingestion bandwidth

The ingestion bandwidth is the primary concern of this thesis. First, we have to establish

that our indexing structure can no longer form a bottleneck for the ingestion bandwidth

of FrogFishDB. We test this by examining the insertion performance of TimeTree under

di�erent fanout con�gurations. When pursuing vertical scalability, we need to ensure that

we are bottlenecked not by software but by hardware. Testing TimeTree is the �rst step in

determining this. As TimeTree contains o�set values, each insertion represents a memtable

being written to storage.

After determining if the indexing structure forms a bottleneck to the ingestion bandwidth

of FrogFishDB, we need to determine the upper bound in terms of storage bandwidth. We

need to determine the storage performance to understand what we can expect as an upper

bound. We measure the performance of write operations issues through the io_uring

kernel interface. All measurements are made using direct IO.

With the upper limits in terms of bandwidth in hand, we determine the di�erence be-

tween the performance of the In�uxDB and the ingestion protocol we described in sec-

tion 4.2.2. Finally, we move to the ingestion performance of FrogFishDB. We use bench-

marking tools discussed in section 5.1.4 to determine the overall ingestion performance of

FrogFishDB and the three TSDBs mentioned earlier. We are interested in the total points

per second ingestion performance.

We compare the bandwidth across two di�erent setups. First, we examine the perfor-

mance when using a single client. We compare the performance of using a single client

against the aforementioned timeseries databases. After determining the ingestion per-

formance in a broader context, we will zoom in on the performance of FrogFishDB. We

examine the networking overhead by measuring a no-op scenario where we do not ingest

any timeseries data but return immediately. After which, we determine the e�ects of using

di�erently sized memtables. Increasing the memtable size should reduce the amount of

write operations to storage. Finally, we examine the memory usage of FrogFishDB.

The second setup involves more than one client. We examine the ingestion bandwidth of

multiple clients and attempt to uncover if increasing the number of clients also increases

our performance. We start with two clients and work our way up to sixteen clients.

5.1.2 Query performance

As query performance is not this thesis's main focus, we will keep our evaluation brief.

First, we evaluate the query performance of TimeTree to determine the impact of di�erently-

74

5.1 Evaluation plan

sized range queries.

Secondly, We evaluate �ve di�erent queries, each testing a di�erent aspect of the query

language. We start with a simple query that selects all points available for a given time-

series. This query is meant to retrieve all data from a speci�c timeseries. The second query

retrieves data for a range of time. The third query demonstrates a �lter expression. The

fourth query selects all data from a timeseries and executes a group by expression. The

�fth and �nal query again executes a group by expression, but now on a range of time.

These �ve queries are meant to demonstrate the di�erent features o�ered by the query

language we created. The �lter and group by expressions allow users to solve practical

problems using the query language. The �lter clause allows for �nding speci�c entries,

while the group by expression allows one to summarize data quickly.

5.1.3 Con�guration

All FrogFishDB benchmarks reported in this thesis were conducted using the same physical

machine.

� A 20-core 2.40GHz Intel Xeon Silver 4210R CPU (127). The physical machine pro-

vides two sockets, each socket is populated by a CPU of this type, and the sockets

are connected in a NUMA mode.

� 256GB of DDR4 DRAM

� 960GB NVMe SSD, model Western Digital UltraStar DC SN540

All benchmarks are run on a virtual machine. This virtual machine is con�gured to only

run in a single NUMA domain, making the benchmarks more reliable as we do not su�er

from the overhead of crossing NUMA domains. The con�guration is thus:

� 10-core 2.40BHz Intel Xeon Silver 4210R. One socket and thus one NUMA domain.

� 64GB of DDR4 DRAM

� 960GB NVMe SSD, formatted to the EXT4 �lesystem (128)

The benchmarks are run using QEMU 6.0.0 (129) with KVM enabled. The image run

is NixOS running kernel version 5.15.90. The image was run from the NVMe drive. The

VM was con�gured to only run on a single NUMA node using numactl, a Linux tool for

specifying speci�c NUMA scheduling or memory placement policies. These policies are

subsequently inherited by child processes.

75

5. EVALUATION OF FROGFISHDB

We pin each process to a core to provide the best performance for FrogFishDB. Frog-

FishDB and the clients are all single-threaded applications. This allows us to pin the

database to core 2 and all clients on the upper cores. We keep cores 0 and 1 isolated for

the kernel.

5.1.4 Benchmarking tools

To perform our benchmarks, we need tools that will allow us to measure and repeat exper-

iments. The �rst tool we use is one with which we can benchmark small pieces of code. We

use Nanobench (130) to benchmark the performance of our indexing structure. Nanobench

allows us to write repeatable experiments for small pieces of code. This library comes with

integrated reporting functionality, which gives us insight into micro-architectural level in-

formation such as the instructions-per-cycle (IPC).

The second tool is one which we use to measure the ingestion performance of the

database. This tool is called Time Series Benchmark Suite (131), henceforth referred

to as TSBS. Originally developed by the engineers of TimescaleDB (132), it supports a

large number of existing databases and provides tools for both data generation as well

as data ingestion. The data generation tool allows us to generate data using a set of

parameters. These parameters include the following:

� The RNG seed for the generation function

� The number of simulated devices

� The start and end timestamps of the data

� The amount of time between each simulated reading

The data generator can operate in three di�erent modes, cpu-only, devops, and iot. In

the �rst mode, the generator generates a homogeneous list of metric values, namely the

ten usage statistics of a simulated cpu such as usage_user and usage_nice. This data

is generated together with ten tags which indicate from which simulated device the data

originates. Ten statistical values per device mean that the number of timeseries is equal

to 10 times the number of simulated devices. The second mode is used to generate a

mixed group of data. Meaning that the number of tags and metrics per reading changes.

Furthermore, the cpu-only dataset only contains integer values, while the devops dataset

also contains �oating point values. The third and �nal mode, iot, simulates a set of trucks

from a �ctional logistics company. The simulated data pertains to diagnostic data and

76

5.1 Evaluation plan

metric data of the trucks. The main di�erence between the iot and devops is that the

trucks are simulated to lose connection at random intervals. This means that data arrives

possibly in batches or out-of-order.

For FrogFishDB, we assume that data arrives in order, and we only support integer

values. This means that for benchmarking the ingestion performance, we can only use

the cpu-only mode of the data generator. As our ingestion pipeline di�ers signi�cantly

from the existing model, such as the one presented by In�uxDB, we must prepare the data

before starting our benchmarks. To prepare our data, we use a Python script to read the

In�uxDB line protocol �les generated by TSBS, register the timeseries, and create batches.

Our testing clients then use these batches to benchmark the performance of FrogFishDB.

We chose to use In�uxDB line protocol data as the base for our testing because those

�les can also be used by QuestDB and In�uxDB. Clickhouse uses a di�erent �le format,

however, having to store the data in only three di�erent formats (In�ux, Clickhouse, and

FrogFishDB), lessens the burden on the storage medium we use to store the raw data.

Otherwise, we would have to store the testing data four times.

For this thesis, we create three di�erently-sized collections of timeseries data. All param-

eters are kept the same between the three con�gurations except for the scale parameter

and the start and end timestamps. The scale parameter represents the number of simu-

lated devices. We generate data with scales of 32, 320, and 3200, because these scales are

divisible by 2, 4, 8, and 16, which is the number of di�erent nodes we test and we need to

make sure to balance the load across the di�erent nodes. We want to observe the e�ects

of increasing the number of timeseries. We change the start and end timestamp between

the three di�erent con�gurations to limit the amount of storage required. For the 32 scale

version we generate 6 months of data, for the 320 scale version we generate 3 months of

data, and �nally for the 3200 scale version we generate 1 month of data. We decrease the

number of months for which we generate data in order to decrease the storage requirements

during benchmarking. As the scale parameter indicates the amount of nodes represented

by the data and that recording represents 10 datapoints, we can calculate the size of each

of the scales. The o�set between recordings is kept at 10 seconds, meaning 6 measurements

per minute, 360 per hour, 8640 measurements per node per day. Assuming a scale of 32,

this means that we ingest 180 days worth of data, or 1.555.200 measurements which is

equal to 15.552.000 data points as each measurement records 10 data points.

To measure memory usage, we use Valgrind (133). This tool will intercept any allocations

and deallocations of memory in our code, allowing us to gain insight into the memory usage

77

5. EVALUATION OF FROGFISHDB

patterns. We test di�erent scales of incoming timeseries. We hypothesize that increasing

the number of timeseries will increase memory usage.

Storage is measured using fio (134). fio allows us to de�ne di�erent workloads to

be tested against storage. Created as a swiss-army knife for storage benchmarks, fio

generates IO workloads according to the con�gurations we provide. We require di�erent

workload de�nitions to determine the upper bound for di�erently sized memtables.

To increase the validity of our tests, we use the Nix package manager (135) to con�gure

our environment. Nix is described as a purely functional package manager, meaning that

packages are treated like variables in a functional programming language. Packages are

built by functions that have no side e�ects and are immutable after creation. This allows us

to reproduce exact versions of packages as we use the same language to describe our build

environment and dependencies. Nix stores packages in a so-called nix store. Packages are

identi�ed using their hash values to avoid con�icts and allow for multiple versions. When

a package is requested, a symbolic link is made between the store and the environment.

Aside from package management, we can take Nix a step further. Nix allows us to de�ne

entire images of operating systems, meaning we can de�ne an environment in which to

conduct our experiments, which is then completely reproducible.

Name Version Notes

QEMU 6.0.0 -

�o 3.33 -

valgrind 3.20.0 -

Nix 2.13.2 -

TSBS commit: bcc00137d Appendix contains patch to �x clickhouse testing

In�uxDB 1.10 -

QuestDB 7.2.1 -

Clickhouse 23.3.5.9 -

Table 5.1: Versions of software used.

Table 5.1 lists all versions used of external software in this thesis.

5.2 Ingestion performance

We will start by examining the insertion performance of the indexing structure. We isolate

the indexing structure to determine if it forms a bottleneck for the rest of FrogFishDB.

We test it in isolation using micro benchmarks and we test it indirectly by measuring

78

5.2 Ingestion performance

FrogFishDB as a whole. After measuring TimeTree we investigate the upper bound per-

formance of our storage through fio. Measuring FrogFishDB will be done in two stages.

The �rst will measure the TimeTree and the overhead of processing the tokens. The sec-

ond stage will be measuring FrogFishDB. We will compare the performance of FrogFishDB

against existing databases and a no-op version of FrogFishDB.

5.2.1 TimeTree

In this section, we will examine the insertion performance of TimeTree. Starting with an

examination of di�erent fanout degrees. Starting a fanout of 2, we increment in steps of 20

up to a degree of 1022 and measure the number of insertions per second. We start at 2 a

fanout of 2 as results in a TimeTree which funtions like a balanced binary search tree. We

chose the upper limit of 1022 as this would make each internal node span several memory

pages and we wish to observe the e�ects of crossing memory page boundaries.

0 200 400 600 800 1000
Fanout

0.0

20.0

40.0

60.0

80.0

100.0

120.0

M
illi

on
 in

se
rti

on
s p

er
 se

co
nd

fanout=202

Insertion performance for different fanout configurations

Figure 5.1: Insertions per second for the TimeTree using di�erent fanout con�gurations.

Figure 5.1 shows the insertion performance for di�erent fanout con�gurations of the

TimeTree. Remember that each insertion represents the insertion of a start timestamp,

end timestamp, and o�set value, thus three 64bit integers. Here we show fanouts increasing

79

5. EVALUATION OF FROGFISHDB

in size on the x-axis and the number of insertions per second on the y-axis. What is

interesting to note is that the performance increases rapidly towards a maximum and then

slowly tapers o� while also increasing in variance. The maximum we recorded we found

using a fanout of 202. Using the size of the data points we store, i.e., the start time, end

time, and o�set value, we �nd that this is slightly less than the size of a single memory

page (4096 bytes). This indicates that performance is bound to the performance of a linear

search for the child pointer. We hypothesize that this performance tapers o� as we have to

do address translations when searching bu�ers that are larger than a single memory page.

We can calculate the theoretical maximum ingestion bandwidth for a single timeseries.

Consider a TimeTree with a fanout of 202 and a memtable of 2MB. In �gure 5.1 we can

observe that with a TimeTree with fanout 202 we can insert 120 million entries per second.

Remeber that each insertion into the TimeTree represents �ushing a memtable to storage.

If we multiple the rate of 120 million entries per second with the size of the memtable we

obtain the theoretical rate. 120 × 106 × 2MB = 240TBs−1. This rate holds for a single

timeseries, however, this rate exceeds the memory bandwidth of the system (127), thus we

will never observe this in practice.

4KB 2MB 4MB
0.0 bytes/s

100.0 MB/s

200.0 MB/s

300.0 MB/s

400.0 MB/s

Ba
nd

wi
dt

h
(B

yt
e

pe
r s

ec
on

d)

Figure 5.2: Maximum bandwidth for 4KB, 2MB, and 4MB sequential writes.

80

5.2 Ingestion performance

To determine the maximum achievable write bandwidth of the underlying storage, we

used fio. Figure 5.2 shows the maximum bandwidth we can achieve. This performance

was recorded using a queue depth of 1 and the io_uring kernel interface. We chose

to investigate a queue depth of 1 in order to simulate the write bandwidth for a single

timeseries when the rest of the queue is used by other timeseries. For example, imagine a

queue with depth 64 and other timeseries take up 63 slots, then the bandwith remaining

will be a worst case. As FrogFishDB uses direct IO, so does our test. We chose these three

block sizes as they are the same experiment in section 5.2.2.4, where we test di�erently

sized memtables. As each memtable counts as a single write, we test the various sizes. On

the y-axis, we show the measured bandwidth in megabytes per second. While 2MB and

4MB size writes perform identically, 4KB writes are severely lacking in performance.

The previous two benchmarks have shown us the following: the indexing structure can-

not form a realistic bottleneck for the timeseries database and a larger memtable will have

better performance when �ushed to storage. In the �rst benchmark we showed that Time-

Tree is capable of 120 million insertions per second, which is enough to fully saturate the

memory bandwidth of the system if those insertions were accompanied by actual memta-

bles being �ushed to storage. In the second benchmark we showed that chosing a larger

memtable improves performance when �ushing to storage. As the memtable is written as

one unit, we tested by writing blocks of di�erent sizes to storage, thus a block of 4KB

represents a memtable of 4KB.

5.2.2 FrogFishDB

In this section, we measure the performance of FrogFishDB. We start by quantifying the

overhead of the In�uxDB line protocol compared to the ingestion protocol described in sec-

tion 4.2.2. We then move to an evaluation of the ingestion performance of the database. We

compare FrogFishDB's ingestion bandwidth with three other databases' ingestion band-

width. We also evaluate the memory usage, di�erent sizes for the memtable, and the upper

bound performance using a no-op version of the database.

5.2.2.1 Token overhead

We compare the overhead between parsing the In�uxDB line protocol and mapping directly

between the index value stored in a token. In this microbenchmark, we run two tests. In

the �rst test, we generate an In�uxDB line protocol example, which we then parse and

map to the pointer meant to point to the memtable and indexing data structure. In the

81

5. EVALUATION OF FROGFISHDB

second test, we forgo parsing the line protocol and map directly between the index value

stored in a token and the pointer. This experiment is meant to isolate the overhead we

avoid using the protocol described in section 4.2.2.

We found that when parsing the In�uxDB line protocol, we achieved a rate of 7,600

operations per second while parsing the index value from the token allowed for 5.6 million

operations per second. This means that if we encoded a single timestamp-value pair per

operation, we would be able to ingest 7,600 pairs per second using the In�uxDB line

protocol, and 5.6 million pairs per second using our protocol. The bottleneck for parsing

the In�ux line protocol comes from parsing the string and converting the resulting data

into the canonical name. The big di�erence between the two protocols, is that with our

protocol design, we can directly use the index value stored in the token.

The only bottleneck remaining in our design is the performance of the hashmap. For

this experiment we used the hashmap provided by the C++ language.

5.2.2.2 General ingestion performance

In this section, we will compare the ingestion performance of FrogFishDB with exist-

ing timeseries databases. Unless stated otherwise, all data collected for this section uses

insertion batches of 10,000 values. In section 5.2.1, we showed that the best ingestion

performance for the TimeTree occurs when using a fanout degree of 202. This is why,

unless stated otherwise, we use 202 as the fanout degree for all subsequent FrogFishDB

experiments. The size of the memtable is con�gured to be 2MB as a balance between

memory usage and performance. The other databases are used with default con�guration.

In this section we are interested in the number of timeseries datapoints we can ingest per

second. Thus, each datapoint refers to a timestamp-value pair.

Figure 5.3 compares FrogFishDB against three other timeseries databases: In�uxDB,

QuestDB, and Clickhouse. On the y-axis, we show the points per second ingestion per-

formance. For each database, we show three di�erent scales of ingestion. This indicates

the number of timeseries ingested. The results shown in �gure 5.3 are all gathered using

a single client. This �gure shows a boxplot per database and per scale value described

in section 5.1.4, where we show the number of points per second ingested on the y-axis,

higher is better. From this �gure, we notice two facts. The �rst fact is that FrogFishDB

has a low variance for ingestion performance. The second fact is that Clickhouse shows

the most stable performance when increasing the number scale.

To determine the e�ciency of our ingestion method, we also examine a version of our

database where we only measure the network performance. This no-op version shows the

82

5.2 Ingestion performance

32 320 3200
scale

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

FrogFishDB

32 320 3200
scale

InfluxDB

32 320 3200
scale

QuestDB

32 320 3200
scale

Clickhouse

Figure 5.3: Ingestion performance of di�erent timeseries databases. The y-axis represents

the points per second ingested by the di�erent databases.

83

5. EVALUATION OF FROGFISHDB

theoretical upper bound of the ingestion performance. In this version, the database imme-

diately replies with a con�rmation of the ingestion, instead of writing to the memtable.

NO-OP Single client
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

Figure 5.4: Ingestion performance compared between a no-op version and normal Frog-

FishDB.

Figure 5.4 shows a boxplot comparing the no-op version and the normal version of Frog-

FishDB. We compare the ingestion performance using 32 timeseries. On the y-axis, we

again show the ingestion performance in points per second. From this �gure, we can deter-

mine that we are not at the upper bound of performance. The single-client performance

maintains an average ingestion bandwidth of 2.5 million points per second, while the no-op

version achieves an average of 3.2 million. This means there is an overhead of 600 thousand

points per second during the ingestion phase, or 25.5%.

5.2.2.3 Memory usage

In section 4.3.2, we covered the memory usage of the indexing structure. For ingestion, the

database itself also allocates memory for things like the memtable. FrogFishDB allocates

two memtables for each timeseries, one for ingestion and one as a bu�er for �ushing to

storage. This means that our memory usage is directly proportional to the number of

timeseries we are ingesting, i.e., 2 × N × B, where N is the number of timeseries being

84

5.2 Ingestion performance

ingested. B represents the size of the memtable in bytes. For this section, we measured

the memory usage with memtables of size 2MB.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Elapsed Time (seconds)

0.0 bytes

200.0 MB

400.0 MB

600.0 MB

800.0 MB

M
em

or
y

us
ag

e
(b

yt
es

)

Figure 5.5: Memory usage of FrogFishDB when ingesting at a scale of 32.

Figure 5.5 shows the memory usage when running the ingestion benchmark at a scale of

32. On the x-axis, we show the runtime of the program, starting on the left and ending

on the right. The y-axis denotes the memory usage. Note that this �gure is the amount

of allocated virtual memory and does not re�ect the amount of bytes stored on the heap.

From this �gure, we observe two distinct sections, The startup phase, ranging from 0 to

4.8 seconds, and the ingestion phase, starting at 5 seconds and running until the end. The

memory usage grows during the startup phase as all timeseries metadata is reloaded from

the log �les. During the ingestion phase, the allocated amount spikes as the data structures

are created and used during ingestion, i.e., the indexing structure and memtable.

Figures 5.6 and 5.7 show the memory usage for the scales 320 and 3200, respectively.

Note that the scale of the y-axis of �gure 5.7 is higher than in �gure 5.6. In these �gures,

we note the same memory pattern as we observed in �gure 5.5. A startup phase where the

metadata is reloaded from the log �les and an ingestion phase where memory usage spikes.

From all of the memory usage graphs above, we note that memory usage is constant

85

5. EVALUATION OF FROGFISHDB

0.0 2.0 4.0 6.0 8.0 10.0
Elapsed Time (seconds)

0.0 bytes

1.0 GB

2.0 GB

3.0 GB

4.0 GB

5.0 GB

6.0 GB

M
em

or
y

us
ag

e
(b

yt
es

)

Figure 5.6: Memory usage for 320

timeseries.

0.0 10.0 20.0 30.0 40.0
Elapsed Time (seconds)

0.0 bytes

10.0 GB

20.0 GB

30.0 GB

40.0 GB

50.0 GB

M
em

or
y

us
ag

e
(b

yt
es

)

Figure 5.7: Memory usage for 3200

timeseries.

during ingestion. This is because we allocate a memtable for each of the timeseries when

the �rst timeseries data arrives, after which we do not need to allocate any more. We do

observe very high memory usage for the 3200 scale ingestion, namely 54GB.

5.2.2.4 Memtable size

Increasing the size of the memtable will decrease the frequency at which we need to �ush

data to storage. A larger memtable will be able to hold more data points. Thus we

hypothesize that increasing the size of the memtables will increase the ingestion bandwidth.

Figure 5.8 shows three di�erent con�gurations for the memtable size. We chose 4KB,

2MB, and 4MB as testing values. The �rst two represent the size of one normal memory

page and one huge memory page. The third size represents multiple memory pages and

is chosen to show the possible e�ect of pooling multiple pages. We again show a box plot

where the y-axis represents the points per second ingested in millions. Figure 5.8 shows

that 4KB memtables have decreased ingestion performance compared to 2MB and 4MB.

However, the di�erence between 2MB and 4MB is negligible. From this we can conclude

that using memtables of 2MB will provide a better tradeo� in terms of ingestion bandwidth

and memory usage. The memtables will be �ushed less frequently compared to memtables

which are of size 4KB, as the �ll up less quickly. Using memtables of size 2MB decreases

memory usage compared to using memtables of size 4MB, as each timeseries allocates its

own memtable, thus increasing the size of the memtable increases the overhead of each

timeseries.

86

5.2 Ingestion performance

4KB 2MB 4MB
0.0

0.5

1.0

1.5

2.0

2.5

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

Figure 5.8: Ingestion performance for di�erently sized memtables.

5.2.2.5 Multiple clients

In this section, we will test the use of multiple clients. We hypothesize that utilizing

multiple clients hamper performance as we only use a single thread to process each incoming

batch. For each of the databases, we test the use of multiple clients. We start by examining

two clients and work our way up to sixteen clients. We compare the performance against

In�uxDB, QuestDB, and Clickhouse. We use the same dataset and con�guration we used

in section 5.2.2.2, for all databases tested in this section. First, we examine the performance

of two clients. Two clients read the preprocessed data and send it to the database.

Figure 5.9 shows two clients ingesting data into FrogFishDB, In�uxDB, QuestDB, and

Clickhouse. We observe a similar pattern compared to �gure 5.3. FrogFishDB shows lower

variance. However, performance degrades when increasing the number of timeseries. We

show the number of data points ingested per second on the y-axis. FrogFishDB reaches

an average of 5.8 million data points per second for a scale of 32 and 4.5 million points

per second for scale 320, an increase of 123% and 200% respectively compared to a single

client. When dealing with a scale of 3200, the ingestion bandwidth of QuestDB is 119%

higher than that of FrogFishDB. However, we observe a high variance in rate compared to

87

5. EVALUATION OF FROGFISHDB

32 320 3200
scale

0

1

2

3

4

5

6

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

FrogFishDB

32 320 3200
scale

InfluxDB

32 320 3200
scale

QuestDB

32 320 3200
scale

Clickhouse

Figure 5.9: Ingestion performance of

two clients ingesting data into a single

database.

32 320 3200
Scale

0

2

4

6

8

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

Figure 5.10: No-op performance of

two clients.

FrogFishDB. In �gure 5.10, we show the no-op performance of two clients. From �gure 5.10,

we can determine that there is a signi�cant overhead involved when using two clients, as

the performance observed from two clients using the 32 scale dataset di�ers by 45%.

32 320 3200
scale

0

2

4

6

8

10

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

FrogFishDB

32 320 3200
scale

InfluxDB

32 320 3200
scale

QuestDB

32 320 3200
scale

Clickhouse

Figure 5.11: Ingestion performance of

four clients ingesting data into a single

database.

32 320 3200
Scale

0

2

4

6

8

10

12

14

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

Figure 5.12: No-op performance of

four clients.

Figure 5.11 shows the performance of using four clients. Compared to �gure 5.9, the

performance of scales 32 and 320 increase with 123% and 200% respectively, while the

performance for scale 3200 only increases 113%. For FrogFishDB, we do observe that

the variance remains consistent. In �gure 5.12 we again observe a signi�cant overhead,

where the ingestion performance di�ers by 38% and 63% for scales 32 and 320, whereas

88

5.2 Ingestion performance

the performance for scale 3200 di�ers by 150%. We can also compare the performance

of QuestDB between �gures 5.9 and 5.11. We observe that QuestDB slightly improves in

performance, from an average of 5 million points per second to 6 million points per second,

or 20%.

32 320 3200
scale

0

2

4

6

8

10

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

FrogFishDB

32 320 3200
scale

InfluxDB

32 320 3200
scale

QuestDB

32 320 3200
scale

Clickhouse

Figure 5.13: Ingestion performance of

eight clients ingesting data into a single

database.

32 320 3200
Scale

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

Figure 5.14: No-op performance of

eight clients.

Figures 5.13 and 5.14 show the ingestion performance of eight clients. For FrogFishDB,

ingestion performance is very similar to what we observed when using four clients for scales

32 and 320, di�ering -2% and 2%. Scale 3200 however, di�ers by 42%. This indicates that

FrogFishDB requires more clients when ingesting a larger number of timeseries. The other

databases only see a marginal improvement in bandwidth. However, the no-op performance

shows an even greater disparity in performance, the di�erences increasing to 80%, 110%,

and 257% for scales 32, 320, and 3200.

Finally, we observe the use of sixteen clients. Figures 5.15 and 5.16 show the perfor-

mance of sixteen clients. From these �gures, we observe a decrease in ingestion performance

compared to �gure 5.13 for FrogFishDB with regard to scales 32 (-18%) and 320 (-6%).

However, this decrease is not observed for the 3200 scale benchmark, the bandwidth in-

creases by 43%. The no-op performance demonstrated in �gures 5.16 shows a similar

pattern, where it is lower than in �gure 5.14, but only for scales 32 (-5%) and 320 (-4%),

scale 3200 di�ers by 40%. We hypothesize that the overhead of maintaining the network

connections outweighs the performance bene�ts of employing multiple clients. Another

hypothesis is that if FrogFishDB used multiple threads, this overhead could be alleviated,

and we could observe greater scalability.

89

5. EVALUATION OF FROGFISHDB

32 320 3200
scale

0

2

4

6

8

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

FrogFishDB

32 320 3200
scale

InfluxDB

32 320 3200
scale

QuestDB

32 320 3200
scale

Clickhouse

Figure 5.15: Ingestion performance of

sixteen clients ingesting data into a sin-

gle database.

32 320 3200
Scale

0

2

4

6

8

10

12

14

16

Po
in

ts
 p

er
 se

co
nd

 (m
illi

on
)

Figure 5.16: No-op performance of

sixteen clients.

To better understand the load factor introduced by increasing the number of timeseries,

we examine the latency of insertions. The clients record the latency between the moment

they send the timeseries data to the database and the moment they receive a con�rmation

from the database about the insertion having been completed.

32 320 3200
Scale

10.0 s

100.0 s

1.0 ms

10.0 ms

100.0 ms

La
te

nc
y

Figure 5.17: Insertion latency when

using a single client.

32 320 3200
Scale

10.0 s

100.0 s

1.0 ms

10.0 ms

100.0 ms

La
te

nc
y

Figure 5.18: Insertion latency when

using two clients.

Figures 5.17 and 5.18 show the insertion latency for one and two clients, respectively. We

show boxplots for the three di�erent scales. The y-axis denotes the latency in seconds and is

displayed in log scale. These �gures demonstrate that latency increases when increasing the

number of timeseries, i.e., the scale factor. The latency remains constant when increasing

90

5.2 Ingestion performance

the number of clients from one to two. We observe a more signi�cant amount of outliers

when going from a single client to two clients.

10 5 10 4 10 3 10 2 10 1

Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

32 series
320 series
3200 series

Figure 5.19: Cumulative distribution

function of the insertion latency when

using a single client.

10 5 10 4 10 3 10 2 10 1

Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

32 series
320 series
3200 series

Figure 5.20: Cumulative distribution

function of the insertion latency when

using two clients.

To further demonstrate the insertion latency's tails, see �gures 5.19 and 5.20. These are

cumulative distribution function (CDF) graphs. These functions of x plot the probability of

a latency �gure occurring with a value lower than or equal to x. On the y-axis, we plot the

probability, and on the x-axis, we plot the latency in seconds. Note that the x-axis is plotted

in a logarithmic scale. From these �gures, it is clear that increasing the number of timeseries

will have a detrimental e�ect on the ingestion bandwidth of FrogFishDB. Between scales

32 and 3200 the latency increases by an order of magnitude. The average increases even

though increasing the number of timeseries decreases the number of �ushes to storage.

Increasing the number of timeseries increases the number of allocated memtables and

indexing structures, but as the amount of data points per batch remains stable, increasing

the number of timeseries reduces the number of �ushes.

Figures 5.21, 5.22, 5.23, and 5.24 show the latencies for four and eight clients. We

observed similar performance to what we observed when using one or two clients. We

observe that the latency increases when moving from 320 to 3200 is less when using eight

clients. We hypothesize that this is due to the single-threaded nature of FrogFishDB.

Each client is handled individually and sequentially. This means that the latency penalty

of increasing the scale is hidden because a client might be later in line to be processed. We

can also see that between four and eight clients, the variance in latency increases.

91

5. EVALUATION OF FROGFISHDB

32 320 3200
Scale

100.0 s

1.0 ms

10.0 ms

100.0 ms

La
te

nc
y

Figure 5.21: Insertion latency when

using four clients.

10 4 10 3 10 2 10 1

Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

32 series
320 series
3200 series

Figure 5.22: Cumulative distribution

function of the insertion latency when

using four clients.

32 320 3200
Scale

10.0 s

100.0 s

1.0 ms

10.0 ms

100.0 ms

La
te

nc
y

Figure 5.23: Insertion latency when

using eight clients.

10 5 10 4 10 3 10 2 10 1

Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

32 series
320 series
3200 series

Figure 5.24: Cumulative distribution

function of the insertion latency when

using eight clients.

92

5.2 Ingestion performance

32 320 3200
Scale

10.0 s

100.0 s

1.0 ms

10.0 ms

100.0 ms

La
te

nc
y

Figure 5.25: Insertion latency when

using sixteen clients.

10 5 10 4 10 3 10 2 10 1

Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

32 series
320 series
3200 series

Figure 5.26: Cumulative distribution

function of the insertion latency when

using sixteen clients.

Finally, we observe the latency of sixteen clients in �gures 5.25 and 5.26. We observe

an increased variance in latencies. For scales 32 and 320, the variance spans 1.5 orders of

magnitude.

5.2.2.6 Storage size

In the current implementation of FrogFishDB, we use a log to record insertions into the

indexing structure. This log contains each entry inserted and is replayed on startup to

recreate the indexing structures. This allows us to calculate the overhead of a single

insertion into the indexing structure by taking the size of an entry in the log �le. In the

current implementation, we use log bu�ers of 512 bytes. The log statements consist of 3

values, the start timestamp, the end timestamp, and the o�set into the data �le. All three

are 64 bits in size, or 8 bytes, totaling 192 bits, or 24 bytes. The log statement is 512

bytes, meaning that for each byte we write to the indexing structure, we write 22.3 bytes

to storage.

5.2.3 Summary

In this section, we examined the ingestion performance of FrogFishDB. We �rst observed

that the TimeTree can handle enough insertions to represent 240TB/s in write bandwidth.

We found an optimal fanout con�guration at a fanout of 202, for which TimeTree provided

the best insertion performance. Next, we examined the bandwidth of the underlying

storage layer in a worst-case scenario. We found that the �ash SSD we used is capable

93

5. EVALUATION OF FROGFISHDB

of 380MB/s of bandwidth with sequential writes. This was followed by an examination

of the ingestion bandwidth of FrogFishDB. We compared the performance of FrogFishDB

against three other timeseries databases. We found that FrogFishDB does not o�er the

same ingestion bandwidth as QuestDB for a single client but provides better performance

than In�uxDB and Clickhouse. When comparing against a no-op version of the database,

we report a 25.5% overhead.

When ingesting data from multiple clients, we found that FrogFishDB was able to scale

better in terms of points per second ingested. FrogFishDB increased in bandwidth with

123%, 200%, and 87% for scales 32, 320, and 3200 respectively when using two clients

instead of one. With two clients, the performance was on par with that of QuestDB for

scales 32 and 320. When ingesting from four clients, we observed 30% better ingestion

bandwidth for 32 and 320 scale timeseries. A similar pattern was observed for eight and

sixteen clients. We also observed that the no-op version demonstrated the existence of

signi�cant overhead for all of these multi-client tests.

Finally, we observed that a large number of timeseries entails a signi�cant performance

overhead. The latency �gures show a large increase in latency when increasing the number

of timeseries.

5.3 Query performance

We evaluate the performance using microbenchmarks to determine if the indexing data

structure could become a bottleneck for scan operations. This is followed by an end-to-end

examination where we investigate the performance of the database and attempt to quantify

the impact of di�erent query operations.

5.3.1 TimeTree

Before examining the full query performance, we �rst examine the lookup performance

of the indexing structure. We take a variety of fanout con�gurations and determine the

performance. The hypothesis is that increasing the fanout will improve our performance as

we have to do less pointer chasing during lookups. For example, when we have a fanout of

64, we perform 64 comparisons before following a pointer to a lower level. In comparison,

with a fanout of 8, we only do eight comparisons before following a pointer to a lower level.

The hypothesis follows the idea that performing several sequential comparisons is more

e�cient than following a new pointer because of the e�ects of the branch predictor and

the prefetching found in modern CPUs.

94

5.3 Query performance

5.3.1.1 Query Performance

We start by examining the query performance of TimeTree. We measure �ve di�erently

sized queries, ranging in size from 10 to 1 million. Note that this is meant to represent

queries that range from 10 memtables to 1 million memtables. We test each query under

di�erent fanout con�gurations in an attempt to understand the performance characteristics

and whether or not the indexing structure could form a bottleneck for query performance.

To setup this experiment we �rst inserted 1 million entries, then we executed the queries

where the start is at random points.

Figure 5.27 shows the query performance for di�erent fanout con�gurations. On the x-

axis, we show di�erent fanout con�gurations, starting with a fanout of 8 and ending with a

fanout of 1024. We test 5 di�erent query sizes, increasing in size, per fanout con�guration,

starting at 10 and ending at 1 million. On the y-axis, we show the queries per second

�gure for each of the fanout degrees, more is better. We observe that choosing a higher

fanout degree does not result in an immediate increase in performance for smaller queries.

For queries of size 100k and higher, increasing the fanout increases performance. This can

be explained by the fact that increasing the size of the query will increase the amount of

execution time spend on collecting the values stored in the TimeTree. With lower fanout

degrees, the trees also grow larger in height, leading to more pointer chasing.

95

5. EVALUATION OF FROGFISHDB

8 16 32 64 128 256 512 1024
Fanout degree

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Qu
er

ie
s p

er
 se

co
nd

1e7 Queries per second for size: 10

8 16 32 64 128 256 512 1024
Fanout degree

0

100000

200000

300000

400000

500000

600000

Qu
er

ie
s p

er
 se

co
nd

Queries per second for size: 1K

(a)

8 16 32 64 128 256 512 1024
Fanout degree

0

10000

20000

30000

40000

50000

Qu
er

ie
s p

er
 se

co
nd

Queries per second for size: 10K

8 16 32 64 128 256 512 1024
Fanout degree

0

1000

2000

3000

4000

Qu
er

ie
s p

er
 se

co
nd

Queries per second for size: 100K

(b)

8 16 32 64 128 256 512 1024
Fanout degree

0

10

20

30

40

50

60

70

80

Qu
er

ie
s p

er
 se

co
nd

Queries per second for size: 1M

(c)

Figure 5.27: Query performance for di�erent fanout degrees.

96

5.3 Query performance

5.3.2 FrogFishDB

In this section, we investigate the performance of queries submitted to FrogFishDB. The

dataset we use for this experiment is again generated using TSBS. We generate data

representing seven days, where each recording occurs at an interval of ten seconds, with a

scale factor of 320. Each query is executed ten times to uncover any possible variance.

We test the following queries:

Q1 :

(->>

(metric "usage_user")

(tag "hostname" '("host_0")))

We select the usage_user timeseries where the hostname is host_0. This query will

select all data available for this timeseries. This query is the most general of the �ve.

Q2 :

(->>

(index 39747)

(range 1452120960000000000 1452123510000000000))

In this query, we select timeseries data from a range of time where we know the

index value. Remember that this index value is stored in the tokens returned by the

management port upon registering a timeseries.

Q3 :

(->>

(metric "usage_user")

(tag "hostname" '("host_0"))

(where (> #V 50)))

This query is similar to the �rst query. However, this time, we execute a �lter. This

�lter will �lter out any timeseries data which is not more than 50.

Q4 :

(->>

(metric "usage_user")

(tag "hostname" '("host_0"))

(groupby 1h avg))

97

5. EVALUATION OF FROGFISHDB

Similar to the �rst query. We create groups of data, each of which is a bin of data

representing one hour. From each bin, we calculate the average value. This query is

used to create a summary of the entire timeseries or for a time range.

Q5 :

(->>

(index 39747)

(range 1452120960000000000 1452123510000000000)

(groupby 15m max))

The �nal query will group by �fteen minutes. This query combines the second and

fourth queries by selecting from a known index value and �ltering for a range of time.

Q1

0.30

0.35

0.40

0.45

0.50

0.55

La
te

nc
y

(s
ec

on
ds

)

Q2
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

La
te

nc
y

(s
ec

on
ds

)

Q3

0.30

0.32

0.34

0.36

0.38

La
te

nc
y

(s
ec

on
ds

)

Q4

0.025

0.050

0.075

0.100

0.125

0.150

0.175

La
te

nc
y

(s
ec

on
ds

)

Q5

0.00700

0.00725

0.00750

0.00775

0.00800

0.00825

0.00850

0.00875

La
te

nc
y

(s
ec

on
ds

)

Figure 5.28: Query latency for the example �ve queries.

Figure 5.28 shows a boxplot of the latencies of the �ve queries. The boxplots show the

latencies of the queries in milliseconds. This �gure shows that the number of timeseries

datapoints retrieved signi�cantly impacts the query's latency. Queries two and �ve only

retrieve a single memtable, while the other queries retrieve all timeseries data, which

amounts to 120 memtables. We also observe that there is low variance for the �rst four

queries. The variance is higher for the �fth, but the range is 1.75 milliseconds.

98

5.4 Summary

5.4 Summary

Now that we have evaluated the performance of FrogFishDB, we can provide an answer

to RQ3. The impact of the ingestion protocol is that we went from being able to parse

and ingest 7600 In�uxDB lines per second to 5.6 million when using a token. We found

that this ingestion pipeline resulted in FrogFishDB being able to ingest 0.75 million to 2.5

million timeseries datapoints on average, depending on the number of timeseries ingested.

When increasing the number of clients, this �gure only grows until eight clients can push

3 to 10 million data points per second.

The impact of the indexing structure is more di�cult to express quantitatively. When

using microbenchmarks, we found that our indexing structure can handle insertions at a

rate of 120 million entries per second, with a fanout of 202. When using a memtable of

size 2MB, this converts to an ingestion bandwidth of 240 TB/s. The query performance

of TimeTree is also dependent on the fanout con�guration. In this case, increasing the

fanout does improve performance. We measured �ve query sizes, ranging from small (ten

items) to large (one million items). For FrogFishDB, we tested �ve example queries, each

of which tests an aspect of our query language. Here we found that the size of a query

signi�cantly impacts performance, but the performance is stable and has low variance.

99

5. EVALUATION OF FROGFISHDB

100

6

Future Work

6.1 Multi-threading

In section 4.5, we discussed a design for the threading model for FrogFishDB. We hypoth-

esize that there is a signi�cant performance increase to be gained by employing multiple

threads. For example, we are currently not hitting the bandwidth limits of �ash storage.

In section 2.1, we discuss the parallel nature of SSDs. On a hardware level, SSDs use

multiple �ash chips to which we can write concurrently.

6.2 Bypassing the �lesystem for storage

Previous research has shown that the Linux storage stack imposes a signi�cant over-

head (82, 136). This research shows that bypassing the kernel and interacting with the

raw block device can completely saturate the bandwidth of an SSD. In combination with

section 6.1, we wish to use SPDK (114) to access the raw block device, bypass the kernel,

and do so without the need to copy data.

We think that timeseries data is uniquely suited for �ash storage due to its sequential

nature. We discussed in section 2.1 that sequential writes bene�t SSDs as this avoids

triggering the GC process unnecessarily.

We can divide the SSDs into a collection of regions. Each region can be written sequen-

tially, optimizing for the characteristics of �ash storage. A few of the regions should be

reserved for the log of the indexing structure. In section 4.3.2, we discussed using a log

�le to record insertions into the indexing structure. These log writes are also sequential,

making it easy to use one or more regions for storing them.

101

6. FUTURE WORK

Logging region Data region Data region Data region Logging region

Address space

Region
start

L1 L2 L3

Log
statement

Write direction

M M M

Memtable

Write direction

Figure 6.1: Di�erent regions �lling a �ash devices.

Figure 6.1 shows a conceptual overview of such a system. We divide the address space of

the block device into �ve regions, two of which are logging regions. In the logging regions,

we store log entries, and in the data regions, we would store the memtables.

Combined with what we discussed in section 4.3.3, we can ensure we do not run out of

storage space on the SSD. By aggregating old data, we can free up regions and make them

available again for new data or log entries.

6.3 Log �le compression

In section 4.3, we discussed the overhead of writing data to the indexing structure compared

to the number of bytes written to storage for logging that insertion, i.e., the overhead for

writing 1 byte to TimeTree equals writing 23 bytes to storage. One way to reduce this

overhead is through the use of log compaction.

The log entries are currently rounded up to 512 bytes because we use DIRECT_IO for �le

access, meaning that all writes have to be 512 bytes. We envision a periodic process that

will go through the log �le and rewrite it by taking multiple log entries, combining them

into 512-byte blocks, and writing those blocks to storage. Assuming 24 bytes (8 bytes for

the start timestamp, 8 for the end timestamp, and 8 for the o�set value) for each log entry,

we can �t 21 log entries into a single 512-byte block. A process such as this, running in

the background and periodically cleaning up log statements such as these, is akin to the

one found in the LSM (102) tree.

102

6.4 Usage of SIMD for the indexing structure

Block
Leaf node

0x0000 0x0000

(A) (B)

Block
Block
Block
Block
Block
Block
Block

Block
Block
Block
Block

Leaf node

Leaf node

Leaf node

Leaf node

Figure 6.2: Log zone compression.

Figure 6.2 shows a conceptual overview of this log cleanup. On the left, we show the

uncompressed state; on the right, we show the compressed form. The blue blocks represent

the log data written to the log �le. In (A), the uncompressed state shows a single leaf node

stored in a block, while in (B), we show what happens when we compress multiple of those

leaf nodes into a single block.

6.4 Usage of SIMD for the indexing structure

Searching in the TimeTree is not optimal. When executing a query, we �rst search for the

leaf node containing the range's starting timestamp. Starting at the root and traversing

downwards means that we have to do several comparison operations, the number of which

is bounded by the fanout con�gured, e.g., for a tree with a fanout of 4, we need to do

four comparisons per tree node. This process of comparing each node entry to the queried

range's starting timestamp can be improved through the use of Single Instruction Multiple

Data (SIMD) instructions. These instructions allow one to use a single instruction on

multiple pieces of data. Modern processors, such as the Intel Core i9, contain registers

that are 256 bits wide, allowing operations to execute four 64-bit data elements. For

example, when using 256-bit SIMD instructions, we can simultaneously do a �less than�

comparison on four entries. This idea is not new; it has been demonstrated in literature

103

6. FUTURE WORK

before (58, 137). Here the authors show a binary tree that has been optimized to work

e�ciently together with SIMD instructions.

Start:
100
End:
200

Start:
200
End:
300

Start:
300
End:
400

Start:
400
End:
500

200Mask

Internal
node

In range In rangeResult

200 200 200

In range

Follow
pointer

Figure 6.3: Lookup start of range in internal node.

Figure 6.3 illustrates comparing multiple entries in an internal node. This �gure com-

pares four starting timestamps using a single instruction, looking for a time range starting

at timestamp 200. From this, we can determine that we should follow the second of the

child links to the next internal node or leaf node. The mask is denoted in blue and contains

the variable we are comparing the timestamps against. This mask is stored in a SIMD

register and is overlayed on top of the starting timestamps stored in the internal node.

Timestamps bigger than or equal to will be marked in the result register. Finally, we pick

the index of the �rst matching entry and then follow the pointer to the node lower in the

tree.

104

6.4 Usage of SIMD for the indexing structure

We can take the use of SIMD further than just looking for a speci�c timestamp; we can

also use it to collect the stored values. As discussed in section 4.3.1, after �nding the node

which contains the starting timestamp, we collect all the stored values, which are then

used to search for the data in storage. The collection of each of the stored values is done

one by one. For this, we can also use SIMD instructions. We can use special gather-load

instructions to collect multiple pieces of data stored in independent locations. The memory

layout of the data in the leaf nodes would mean that we require the use of gather operations

as the values are stored together with the start and end timestamp of the memtable. We

would loop through the leaf nodes inside the queried range and collect all the stored values

using these instructions. Another option would be to alter the memory layout of the leaf

nodes. Such a layout would forgo storing the timestamps together with the values and

keep the two separate. This would allow all non-timestamp values to be stored together

and simplify the load instructions as we would resort to standard SIMD load instructions.

SIMD register

Start
110

End
160

Offset
2000

Start
60

End
110

Offset
1000

Start
160

End
210

Offset
3000

Start
160

End
210

Offset
3000

Figure 6.4: Collect values from multiple leafs in one load instruction.

Figure 6.4 shows an abstract view of the process of collecting values from the TimeTree

using SIMD instructions. A register is loaded from four leaves. In the implementation

used in this thesis, we would have to traverse the leaf nodes from left to right and collect

each o�set value individually.

Outside of TimeTree, we can use SIMD for ingestion as well. When ingesting a batch

of data, we process each timeseries data point individually. Using SIMD instructions, we

could ingest multiple data points simultaneously. The memtable is built from a single

105

6. FUTURE WORK

memory block containing pairs of timestamps and values. Using SIMD instructions, we

could collect multiple data points into a single vector and copy the vector to the memtable.

6.5 Use the aggregation function of TimeTree in FrogFishDB

Section 4.3.3 discussed the possibility of aggregating older leaf nodes into non-leaf nodes

to reduce storage costs. We mentioned that we have been unable to implement this due to

time constraints, so we wish to examine this process in future work more thoroughly.

Depending on the size of the memtable, the storage savings could be signi�cant. Imagine

a TimeTree with a fanout of 4 and a memtable size of 2MB. Aggregating four nodes into

a single node would reduce storage costs by 4× the memtable size. Using 3 summary

operators (i.e. min, max, and avg), we would reduce 8MB to 24 bytes (assuming 8 bytes

for each operator).

6.6 Examine the use of a Finite State Transducer

One of the more signi�cant challenges during this work is converting the canonical name

to an indexing structure. We have solved this through the use of the tokens. These are

used to identify a timeseries and are a direct link to the memtable and indexing structure.

This approach's main downside is that it makes it more di�cult to �nd which tags are

related to which structures. This downside has been partially mitigated through the use

of an inverted index. However, it is still challenging to issue queries where we wish to do

complex queries on multiple tags and metrics.

A possible solution could be the Finite State Transducer (FST) (138, 139, 140). An

FST can be summarized as a pre�x tree and a su�x tree. Before building an example, we

assume the reader can read �nite-state machine diagrams.

Figure 6.5 shows an example of an FST. We map three words to integer values. From

top to bottom, we start with a single key-value pair, namely jul, mapped to the value 7.

The middle FST shows that a new key-value pair has been added. The key is mar, which

is mapped to value 3. Observe that there is no overlap in characters between jul and mar.

The bottom example shows that the key jun has been added. Note that there have been

some changes in how the values have been mapped. The �rst di�erence is that the value

of the edge between nodes 0 and 4 has changed from 7 to 6. The second di�erence is the

addition of an edge between nodes 5 and 3 and that the edge containing l now also maps

a value.

106

6.6 Examine the use of a Finite State Transducer

j/70 u1 l2 3

j/7

m/3

0

u4 l5

3

a2
r

3

j/6

m/3

0

u4 l/1

n

5

3

a2 r3

Figure 6.5: Example of an FST. The top example contains a single key-value pair, the middle

contains two, and the bottom has three pairs with pre�x overlap.

107

6. FUTURE WORK

The FST should be read such that if a value is denoted in the edge, then this value is

added. For example, the key jul is mapped to the value 7 in the top example. In the

bottom example, this is still the case. However, the �rst value we encounter when reading

the diagram is 6. If we then follow the �nal edge from 5 to 3, we add the value 1, resulting

in again the value 7.

The main power comes from the overlap between jun and jul, i.e., the �rst two characters

are removed, like a pre�x tree. However, in contrast to a pre�x tree, this e�ect does not

only apply to pre�xes; it also applies to post�xes. Consider what would happen when we

map the key kun to the value 8; there is overlap in the �nal two characters, which can

easily be encoded by creating another edge between nodes 0 and 4 containing the letter k

combined with the value 8. This makes FSTs very space e�cient.

One implementation (141) has shown that an FST, while not as space e�cient as either

gzip (142) or xz (143), the performance of both lookups and creating is better. Compared

to gzip and xz, the time it takes to construct an FST is 2.04 seconds while taking 2.50

seconds and 14.66 seconds for gzip and xz, respectively.

The major downside of an FST is that it requires all data to be inserted in lexicographical

order. This problem is that we cannot know the entire set of series names when starting

the database. One solution to this problem is to collect series names into separate and

smaller FSTs, and merge them later. What needs to be investigated is if an FST can be

used without a signi�cant performance regression and if there is a better way to handle

the insertion into the FST.

108

7

Conclusion

In this thesis, we have presented a new timeseries database, FrogFishDB. This database

is built from the ground up to address two perceived limitations that limit the ingestion

bandwidth of existing timeseries databases. The �rst limitation addressed is the overhead

of existing ingestion protocols. We designed a new pipeline where clients �rst register a

timeseries and then receive a token. This token is then used during ingestion to identify

which timeseries batches of timeseries data belong. The second issue is the complexity of

indexing data structures. These data structures are used to �nd timeseries data after it

has been written to storage. We have presented TimeTree. This data structure simpli�es

the B+ tree, where we assume data arrives in order. The assumption has allowed us to

forgo the splitting and merging of internal nodes in the tree and has allowed us to execute

queries based on a range of time.

The design of the ingestion pipeline and TimeTree have been shown in chapter 4. We

evaluated the design in chapter 5. We found that TimeTree is theoretically capable of

ingesting 240TB/s, far exceeding the bandwidth of modern NVMe �ash storage. When

benchmarking FrogFishDB for ingestion bandwidth, we found that it could ingest 0.75 to

2.5 million data points on average from a single client. When increasing the parallelism by

increasing the number of clients, we found that the ingestion bandwidth increased to 3 to 10

million data points per second. Five example queries determined the query performance

of FrogFishDB. We found that the performance depends on the number of data points

retrieved. When querying for a week of data, we found that we could retrieve, �lter, and

process the data within 175 milliseconds. We found that the queries exhibited low variance.

This leads us to our main research question, How to build a timeseries database which

optimizes for �ash storage and provides high ingestion performance?. By redesigning the

ingestion pipeline, we built a timeseries database that provides high ingestion performance.

109

7. CONCLUSION

This pipeline shifts part of the workload to the client, namely the part of the workload

which is responsible for matching data to the timeseries. We can optimize the database for

�ash storage by taking advantage of access patterns that are favorable for �ash storage.

Flash storage favors sequential accesses. This is why we designed the storage for timeseries

data and the log to write sequentially through appends.

7.1 Research questions

RQ1: How to design an ingestion protocol which trades readability away for

performance?

In section 4.2.2, we demonstrated how such a protocol can be built. We trade away read-

ability through the use of a binary protocol and by using an identi�cation token. We shift

part of the ingestion workload to the client. The client is responsible for registering a

timeseries. The database responds with a token which the client then uses to identify a

timeseries. This increases performance because the �nding datastructures for a timeseries

is faster when the database does not have to do any string manipulation.

RQ2: How to design a �ash-friendly indexing structure that is specialized for

storing and looking up time-indexed data?

In section 4.3, we described the design of an indexing structure for indexing timeseries

data. The design makes use of two observations. The �rst observation is that all time-

series data arrive in order. The second is that timeseries data is immutable after ingesting

it. Considering these observations allows us to take a B+ tree and simplify its functionality

to improve performance and ease implementation.

RQ3: What is the quantitative impact of designing a new ingestion protocol

and a specialized indexing structure?

In chapter 5, we showed a quantitative evaluation of both TimeTree and FrogFishDB.

Benchmarking FrogFishDB showed that when using a single client, it achieved an inges-

tion bandwidth of 0.75 to 2.5 million points per second. Increasing the number of clients to

eight improves bandwidth to 3 to 10 million points per second. When using eight clients,

the ingestion bandwidth of FrogFishDB is 1.8 to 5 times higher compared to existing time-

series databases.

110

7.2 Limitations

7.2 Limitations

There are several limitations to the work presented in this thesis. Partly these are limita-

tions in functionality, and partly these are limitations in what has been explored in this

work. In chapter 6, we discuss ideas that will take FrogFishDB further than demonstrated

in this work. In this section, we will re�ect on what �ndings we do not clearly understand.

The �rst is the negative e�ect that increasing the number of timeseries has on the per-

formance of FrogFishDB. In chapter 5, we observed that the ingestion bandwidth dropped

signi�cantly when increasing the scale from 32 to 320 and further to 3200. At a scale of

3200, we observed that the multiclient ingestion bandwidth dropped by more than 50%.

Another limitation is the lack of examination into the e�ects of changing the batch size

when ingesting data. For all experiments in section 5, we used a batch size of 1,000. Cao et

al. have shown in the Timon paper that changing the size of the batches can signi�cantly

alter the ingestion performance of a timeseries database. Figure 15 of the paper shows the

e�ects when comparing Timon to BTrDB. BTrDB outperforms Timon regarding ingestion

bandwidth when the batch size is increased beyond 50,000 points, assuming 16 bytes (8

for the timestamp and 8 for the value). This results in a batch size of 800KB.

The �nal limitation we have to discuss is the limited examination of the query perfor-

mance. At the start of this work, we acknowledged that this work is focused on ingestion

performance, not query performance. However, we also recognize that query performance

is critical to the overall package. If we were to use FrogFishDB in the context of monitor-

ing a large number of services and servers, then we would also want to have the ability to

execute precon�gured queries that monitor the health of said services and servers. When

queries have a latency of over half a second, as we observed in �gure 5.28, this becomes

unmaintainable. Imagine monitoring 300 servers with ten queries for each server, where

each query is executed every second. Then this amounts to 3000 queries per second. While

we have shown in �gure 5.27 that TimeTree should be capable of this �gure, a latency of

half a second per query would require careful design to ensure there is no back pressure.

111

7. CONCLUSION

112

References

[1] Dave Wilson. IoT Is Creating Massive Growth Opportuni-

ties. https://blogs.cisco.com/internet-of-things/iot-is-creating-massive-growth-

opportunities, October 2020.

[2] David Reinsel, John Gantz, and John Rydning. The Digitization of the

World from Edge to Core. Framingham: International Data Corporation, 16:1�

28, 2018.

[3] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan S. Rellermeyer, Lin Wang, Alexandru

Uta, and Francesco Regazzoni. Future Computer Systems and Network-

ing Research in the Netherlands: A Manifesto. CoRR, abs/2206.03259,

2022.

[4] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A Sym-

bolic Representation of Time Series, with Implications for Streaming Al-

gorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues

in Data Mining and Knowledge Discovery, DMKD '03, pages 2�11, New York, NY,

USA, June 2003. Association for Computing Machinery.

[5] Anshul Sharma. How to Analyze F1 Data in Real Time with ADX

and Grafana. https://grafana.com/blog/2022/12/09/how-to-build-a-formula-

1-real-time-analytics-stack-with-azure-data-explorer-and-grafana-cloud/, December

2022.

[6] Carey Wodehouse. How Formula 1 Car Sensors Create Data at Ev-

ery Turn. https://blog.purestorage.com/perspectives/how-formula-1-car-sensors-

create-data-at-every-turn/, December 2021.

113

REFERENCES

[7] Colin Adams, Luis Alonso, Benjamin Atkin, John Banning, Sumeer

Bhola, Rick Buskens, Ming Chen, Xi Chen, Yoo Chung, Qin Jia, Nick

Sakharov, George Talbot, Adam Tart, and Nick Taylor. Monarch:

Google's Planet-Scale in-Memory Time Series Database. Proceedings of the

VLDB Endowment, 13(12):3181�3194, August 2020.

[8] Timothy Prickett Morgan. A Rare Peek Into The Massive Scale

of AWS. https://www.enterpriseai.news/2014/11/14/rare-peek-massive-scale-aws/,

November 2014.

[9] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Bran-

don Westover. Exact Discovery of Time Series Motifs. In Proceedings of the

2009 SIAM International Conference on Data Mining (SDM), Proceedings, pages

473�484. Society for Industrial and Applied Mathematics, April 2009.

[10] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu

Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. Per-

formance Analysis of NVMe SSDs and Their Implication on Real World

Databases. In Proceedings of the 8th ACM International Systems and Storage Con-

ference, SYSTOR '15, pages 1�11, New York, NY, USA, May 2015. Association for

Computing Machinery.

[11] Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communications

of the ACM, 56(2):74�80, February 2013.

[12] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swami-

nathan Sundararaman. Don't Stack Your Log on My Log. 2nd Workshop

on Interactions of NVM/Flash with Operating Systems and Workloads (INFLOW

14), 2014.

[13] Jaeho Kim, Donghee Lee, and Sam H Noh. Towards SLO Complying

SSDs Through OPS Isolation. 13th USENIX Conference on File and Storage

Technologies (FAST 15), 2015.

[14] Se Jin Kwon, Arun Ranjitkar, Young-Bae Ko, and Tae-Sun Chung. FTL

Algorithms for NAND-type Flash Memories. Design Automation for Embed-

ded Systems, 15(3):191�224, December 2011.

114

REFERENCES

[15] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. The Unwritten Contract of Solid State Drives. In Pro-

ceedings of the Twelfth European Conference on Computer Systems, pages 127�144,

Belgrade Serbia, April 2017. ACM.

[16] Jiulei Jiang, Jiajin Le, and Yan Wang. A Column-Oriented Storage Query

Optimization for Flash-Based Database. In 2010 International Conference on

Future Information Technology and Management Engineering, 3, pages 512�516,

October 2010.

[17] Martin V. Jørgensen, René B. Rasmussen, Simonas �altenis, and

Carsten Schjønning. FB-tree: A B+-Tree for Flash-Based SSDs. In Pro-

ceedings of the 15th Symposium on International Database Engineering & Applica-

tions, IDEAS '11, pages 34�42, New York, NY, USA, September 2011. Association

for Computing Machinery.

[18] Yoshinori Matsunobu. {InnoDB} to {MyRocks} Mi-

gration in Main {MySQL} Database at Facebook.

https://www.usenix.org/conference/srecon17asia/program/presentation/matsunobu,

2017.

[19] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro Buch-

mann. NoFTL for Real: Databases on Real Native Flash Storage, 2015.

[20] Keren Ouaknine, Oran Agra, and Zvika Guz. Optimization of RocksDB

for Redis on Flash. In Proceedings of the International Conference on Compute

and Data Analysis, pages 155�161, Lakeland FL USA, May 2017. ACM.

[21] Mohit Saxena and Michael M Swift. Revisiting Database Storage Op-

timizations on Flash. University of Wisconsin-Madison Department of Computer

Sciences, 2010.

[22] Fei Yang, Kun Dou, Siyu Chen, Mengwei Hou, Jeong-Uk Kang, and

Sangyeun Cho. Optimizing NoSQL DB on Flash: A Case Study of

RocksDB. In 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Comput-

ing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015

IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated

Workshops (UIC-ATC-ScalCom), pages 1062�1069, August 2015.

115

REFERENCES

[23] Jalal Mostafa, Sara Wehbi, Suren Chilingaryan, and Andreas Kop-

mann. SciTS: A Benchmark for Time-Series Databases in Scienti�c Ex-

periments and Industrial Internet of Things, June 2022.

[24] Muntazir Fadhel, Emil Sekerinski, and Shucai Yao. A Comparison of

Time Series Databases for Storing Water Quality Data. In Michael E.

Auer and Thrasyvoulos Tsiatsos, editors, Mobile Technologies and Applica-

tions for the Internet of Things, 909, pages 302�313. Springer International Pub-

lishing, Cham, 2019.

[25] Matei-Eugen Vasile, Giuseppe Avolio, and Igor Soloviev. Eval-

uating In�uxDB and ClickHouse Database Technologies for Im-

provements of the ATLAS Operational Monitoring Data Archiving.

https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012027/pdf, 2020.

[26] Adrian Göransson and Oskar Wändesjö. Evaluating ClickHouse as a Big

Data Processing Solution for IoT-Telemetry. Master's thesis, Lund University, April

2022.

[27] Michael P Andersen and David E Culler. BTrDB: Optimizing Storage

System Design for Timeseries Processing. 14th USENIX Conference on File

and Storage Technologies (FAST 16), page 15, 2016.

[28] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability!

But at What {COST}? In 15th Workshop on Hot Topics in Operating Systems

(HotOS XV), 2015.

[29] Kazuaki Maeda. Performance Evaluation of Object Serialization Libraries

in XML, JSON and Binary Formats. In 2012 Second International Conference

on Digital Information and Communication Technology and It's Applications (DIC-

TAP), pages 177�182, May 2012.

[30] Daniel Persson Proos and Niklas Carlsson. Performance Comparison of

Messaging Protocols and Serialization Formats for Digital Twins in IoV.

2020 IFIP networking conference (networking), 2020 IFIP networking confer-

ence:10/18, 2020.

[31] Wei Cao, Yusong Gao, Feifei Li, Sheng Wang, Bingchen Lin, Ke Xu,

Xiaojie Feng, Yucong Wang, Zhenjun Liu, and Gejin Zhang. Timon:

116

REFERENCES

A Timestamped Event Database for E�cient Telemetry Data Processing

and Analytics. In Proceedings of the 2020 ACM SIGMOD International Conference

on Management of Data, pages 739�753, Portland OR USA, June 2020. ACM.

[32] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro,

Qi Huang, Justin Meza, and Kaushik Veeraraghavan. Gorilla: A Fast,

Scalable, in-Memory Time Series Database. Proceedings of the VLDB Endow-

ment, 8(12):1816�1827, August 2015.

[33] InfluxDB. In�uxDB Line Protocol Refer-

ence | In�uxDB OSS 1.8 Documentation.

https://docs.in�uxdata.com/in�uxdb/v1.8/write_protocols/line_protocol_reference/.

[34] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica,

Bernard Metzler, Ioannis Koltsidas, and Nikolas Ioannou. On The

[Ir]Relevance of Network Performance for Data Processing. 8th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 16), June 2014.

[35] Mihir Nanavati, Malte Schwarzkopf, Jake Wires, and Andrew

Warfield. Non-Volatile Storage: Implications of the Datacenter's Shifting

Center. Queue, 13(9):33�56, November 2015.

[36] Simon Peter, Jialin Li, Doug Woos, Irene Zhang, Dan R K Ports,

Thomas Anderson, Arvind Krishnamurthy, and Mark Zbikowski. To-

wards High-Performance Application-Level Storage Management. Hot-

Cloud'16: Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Com-

puting, June 2016.

[37] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir

Chatterjee. A Design Science Research Methodology for Information

Systems Research. Journal of Management Information Systems, 24(3):45�77,

December 2007.

[38] Richard W Hamming. Art of Doing Science and Engineering. CRC Press, 1997.

[39] Gernot Helser. Gernot's List of Systems Benchmarking Crimes.

https://gernot-heiser.org/benchmarking-crimes.html.

117

REFERENCES

[40] John Ousterhout. Always Measure One Level Deeper. Communications of

the ACM, 61(7):74�83, June 2018.

[41] Mark Zandi, Sophia Koropeckyj, Virendra Singh, and Paul Matsiras.

The Impact of Electronic Payments on Economic Growth. Technical report,

Moody's Analytics: Economic and Consumer Credit Analytics, February 2016.

[42] IEEE Spectrum. Chip Hall of Fame: Toshiba NAND Flash Memory -

IEEE Spectrum. https://spectrum.ieee.org/chip-hall-of-fame-toshiba-nand-�ash-

memory.

[43] Hitomi Tanaka, Yuta Aiba, Takashi Maeda, Kensuke Ota, Yusuke Hi-

gashi, Keiichi Sawa, Fumie Kikushima, Masayuki Miura, and Tomoya

Sanuki. Toward 7 Bits per Cell: Synergistic Improvement of 3D Flash

Memory by Combination of Single-crystal Channel and Cryogenic Op-

eration. In 2022 IEEE International Memory Workshop (IMW), pages 1�4, May

2022.

[44] Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi, and

Mircea R Stan. How I Learned to Stop Worrying and Love Flash En-

durance. HotStorage, 2010.

[45] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Reli-

ability in Production: The Expected and the Unexpected. 14th USENIX

Conference on File and Storage Technologies (FAST 16), pages 67�80, 2016.

[46] Rino Micheloni, editor. 3D Flash Memories. Springer Netherlands, Dordrecht,

2016.

[47] Rino Micheloni, editor. Solid-State-Drives (SSDs) Modeling: Simulation Tools &

Strategies, 58 of Springer Series in Advanced Microelectronics. Springer Interna-

tional Publishing, Cham, 2017.

[48] Dave Landsman and Don Walker. AHCI and NVMe as Interfaces for

SATA Express� Devices. SATA-IO, 2013.

[49] PennState Eberly College of Science. 1.1 Overview of Time Series Char-

acteristics | STAT 510. https://online.stat.psu.edu/stat510/lesson/1/1.1.

118

REFERENCES

[50] Robert H. Shumway and David S. Stoffer. Characteristics of Time Series.

In Robert H. Shumway and David S. Stoffer, editors, Time Series Analysis

and Its Applications: With R Examples, Springer Texts in Statistics, pages 1�44.

Springer International Publishing, Cham, 2017.

[51] Prometheus. Prometheus. https://github.com/prometheus/prometheus/blob/8553a98267a56acfafc56ba69ab8946b71655304/documentation/internal_architecture.md,

November 2022.

[52] VictoriaMetrics. VictoriaMetrics. https://github.com/VictoriaMetrics/VictoriaMetrics,

August 2023.

[53] QuestDB. QuestDB | Fast SQL for Time-Series. https://questdb.io/.

[54] SQLite. SQLite Home Page. https://www.sqlite.org/index.html, May 2023.

[55] InfluxDB. In�uxDB | Real-time Insights at Any Scale.

https://www.in�uxdata.com/home/, Sat, 15 Jan 2022 15:32:09 +0000.

[56] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach,

and Bernard Metzler. Albis: High-Performance File Format for Big

Data Systems. 2018 USENIX Annual Technical Conference (USENIX ATC 18),

2018.

[57] Donald E. Knuth. The Art of Computer Programming: Volume 3: Sorting and

Searching. Addison-Wesley Professional, April 1998.

[58] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-

thony D. Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt,

and Pradeep Dubey. FAST: Fast Architecture Sensitive Tree Search on

Modern CPUs and GPUs. In Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of Data, pages 339�350, Indianapolis Indiana

USA, June 2010. ACM.

[59] Agner Fog. 4. Instruction Tables. https://www.agner.org/optimize/instruction_tables.pdf,

April 22.

[60] Allan Omondi, Ismail Ateya, and Gregory Wanyembi. Sustainable En-

ergy Consumption in Data Centres. 17th ICT Conference, March 2019.

[61] Douglas Comer. Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121�137,

June 1979.

119

REFERENCES

[62] Edward Shishkin. Reiser4 FSWiki. https://reiser4.wiki.kernel.org/index.php/Main_Page,

August 2020.

[63] Silicon Graphics, Inc, Ryan Lerch, Eric Sandeen, Dave Chin-

ner, and Darrick Wong. XFS Algorithms & Data Structures.

https://mirror.math.princeton.edu/pub/kernel/linux/utils/fs/xfs/docs/xfs_�lesystem_structure.pdf,

2006.

[64] MySQL. MySQL :: Download MySQL Community Server.

https://dev.mysql.com/downloads/mysql/.

[65] Baron Schwartz. How We Scale VividCortex's Backend Systems -

High Scalability -. http://highscalability.com/blog/2015/3/30/how-we-scale-

vividcortexs-backend-systems.html, March 2015.

[66] Baron Schwartz. Building A Time-Series Database on MySQL | SCALE

13x, February 2015.

[67] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer Architec-

ture and Parallel Processing. John Wiley & Sons, April 2005.

[68] IEEE. The Open Group Base Speci�cations Issue 7, 2018 Edition.

https://pubs.opengroup.org/onlinepubs/9699919799/, 2018.

[69] Michael Kerrisk. The Linux Programming Interface: A Linux and UNIX System

Programming Handbook. No Starch Press, October 2010.

[70] Davidlohr Bueso and SUSE Labs. Epoll Kernel Performance Improve-

ments. Open Source Summit, July 2019.

[71] Rajat P. Garg and Ilya Sharapov. Techniques for Optimizing Applications:

High Performance Computing. Prentice Hall Professional Technical Reference, 2002.

[72] Damien Le Moal. I/O Latency Optimization with Polling. Vault Linux

Storage and Filesystems Conference, March 2017.

[73] Gyusun Lee, Seokha Shin, and Jinkyu Jeong. E�cient Hybrid Polling

for Ultra-Low Latency Storage Devices. Journal of Systems Architecture,

122:102338, January 2022.

[74] Jens Axboe. Io_uring and Optane2, August 2020.

120

REFERENCES

[75] Linus Torvalds. Re: [PATCH 09/13] Aio: Add Support for Async Ope-

nat() [LWN.Net], Mon, 11 Jan 2016 16:22:28 -0800.

[76] Jonathan Corbet. Toward Non-Blocking Asynchronous I/O [LWN.Net].

https://lwn.net/Articles/724198/, May 2017.

[77] Jens Axboe. E�cient IO with Io_uring, 2019.

[78] Jens Axboe. Io_uring(7) � Arch Manual Pages.

https://man.archlinux.org/man/io_uring.7, July 2020.

[79] Livio Soares and Michael Stumm. {FlexSC}: Flexible System Call

Scheduling with {Exception-Less} System Calls. In 9th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 10), 2010.

[80] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas. Reaping

the Performance of Fast {NVM} Storage with {uDepot}. In 17th USENIX

Conference on File and Storage Technologies (FAST 19), pages 1�15, 2019.

[81] Jens Axboe. Kernel/Git/Torvalds/Linux.Git - Linux Kernel Source Tree.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c7fb19428d67dd0a2a78a4f237af01d39c78dc5a,

May 2022.

[82] Zebin Ren and Animesh Trivedi. Performance Characterization of Modern

Storage Stacks: POSIX I/O, Libaio, SPDK, and Io_uring. In Proceedings

of the 3rd Workshop on Challenges and Opportunities of E�cient and Performant

Storage Systems, pages 35�45, Rome Italy, May 2023. ACM.

[83] John Kariuki and Vishal Verma. Improved Storage Performance Using

the New Linux Kernel I/O Interface. SDC 2019, 2019.

[84] Ruslan Savchenko. Reading from External Memory, February 2021.

[85] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler,

and Animesh Trivedi. Understanding Modern Storage APIs: A System-

atic Study of Libaio, SPDK, and Io_uring. In Proceedings of the 15th ACM

International Conference on Systems and Storage, pages 120�127, Haifa Israel, June

2022. ACM.

121

REFERENCES

[86] Rudolf Bayer and Edward McCreight. Organization and Maintenance of

Large Ordered Indices. Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)

Workshop on Data Description, Access and Control, 1970.

[87] J. Postel. Transmission Control Protocol. Technical Report RFC0793, RFC

Editor, September 1981.

[88] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol

4 (BGP-4). Request for Comments RFC 4271, Internet Engineering Task Force,

January 2006.

[89] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-

own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vah-

dat, George Varghese, and David Walker. P4: Programming Protocol-

Independent Packet Processors. ACM SIGCOMM Computer Communication

Review, 44(3):87�95, July 2014.

[90] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner,

Vladimir Gurevich, Florian Zeiger, Reinhard Frank, and Michael

Menth. A Survey on Data Plane Programming with P4: Fundamentals,

Advances, and Applied Research. Journal of Network and Computer Applica-

tions, 212:103561, March 2023.

[91] Celio Trois, Marcos D. Del Fabro, Luis C. E. de Bona, and Magnos

Martinello. A Survey on SDN Programming Languages: Toward a Tax-

onomy. IEEE Communications Surveys & Tutorials, 18(4):2687�2712, 2016.

[92] Rahim Masoudi and Ali Ghaffari. Software De�ned Networks. Journal of

Network and Computer Applications, 67(C):1�25, May 2016.

[93] J. Postel. User Datagram Protocol. Request for Comments RFC 768, Internet

Engineering Task Force, August 1980.

[94] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Un-

derstanding Data Center Tra�c Characteristics. ACM SIGCOMM Computer

Communication Review, 40, 2010.

[95] Gerard Salton, Edward A. Fox, and Harry Wu. Extended Boolean In-

formation Retrieval. Communications of the ACM, 26(11):1022�1036, November

1983.

122

REFERENCES

[96] Justin Zobel and Alistair Moffat. Inverted Files for Text Search Engines.

ACM Computing Surveys, 38(2):6�es, July 2006.

[97] Alex McEachern. Micro-Synchrophasors for Distribution Grids: Instru-

mentation Lessons Learned (so Far!). Power Standards Lab, 2016.

[98] Ceph. Ceph.Io � Home. https://ceph.io/en/.

[99] DB-Engines. DB-Engines Ranking. https://db-

engines.com/en/ranking/time+series+dbms, August 2023.

[100] Google. LevelDB. https://github.com/google/leveldb, August 2023.

[101] Google. Snappy/Format_description.Txt at Main · Google/Snappy.

https://github.com/google/snappy/blob/main/format_description.txt, October 5.

[102] Patrick O'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O'Neil.

The Log-Structured Merge-Tree (LSM-tree). Acta Informatica, 33(4):351�

385, June 1996.

[103] OpenTSDB. OpenTSDB - A Distributed, Scalable Monitoring System.

http://opentsdb.net/, 2023.

[104] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui

Zhang, Rong Kang, Julian Feinauer, Kevin A. McGrail, Peng Wang,

Diaohan Luo, Jun Yuan, Jianmin Wang, and Jiaguang Sun. Apache

IoTDB: Time-Series Database for Internet of Things. Proceedings of the

VLDB Endowment, 13(12):2901�2904, August 2020.

[105] Eugene Lazin. Akumuli. https://akumuli.org/, May 2020.

[106] Linux. Mmap(2) - Linux Manual Page. https://www.man7.org/linux/man-

pages/man2/mmap.2.html.

[107] Andrew Crotty, Viktor Leis, and Andrew Pavlo. Are You Sure

You Want to Use MMAP in Your Database Management Sys-

tem? CIDR 2022, Conference on Innovative Data Systems Research.

https://db.cs.cmu.edu/papers/2022/p13-crotty.pdf, 2022.

123

REFERENCES

[108] Bo Mao, Suzhen Wu, Hong Jiang, Yaodong Yang, and Zaifa Xi. EDC:

Improving the Performance and Space E�ciency of Flash-Based Storage

Systems with Elastic Data Compression. IEEE Transactions on Parallel and

Distributed Systems, 29(6):1261�1274, June 2018.

[109] Luc Bouganim, Björn Þór Jónsson, and Philippe Bonnet. uFLIP: Un-

derstanding Flash IO Patterns. arXiv preprint arXiv:0909.1780, 2009.

[110] Kenton Varda. Cap'n Proto. https://github.com/capnproto/capnproto, August

2023.

[111] Anna Kornfeld Simpson, Adriana Szekeres, Jacob Nelson, and Irene

Zhang. Securing RDMA for High-Performance Datacenter Storage Sys-

tems. 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20),

2020.

[112] Anduo Wang. Centralized Control � Separating Data- and Control-

Planes.

[113] Srinivas Narayana. Control-Dataplane Separation, October 2019.

[114] SPDK. Storage Performance Development Kit. https://spdk.io/.

[115] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter

Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-Ahead Logging.

ACM Transactions on Database Systems, 17(1):94�162, March 1992.

[116] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,

and Anastasia Ailamaki. Scalability of Write-Ahead Logging on Multicore

and Multisocket Hardware. The VLDB Journal, 21(2):239�263, April 2012.

[117] Richard L. Wexelblat, editor. History of Programming Languages. ACM Mono-

graph Series. Academic Press, New York, 1981.

[118] Andy Gavin. Making Crash Bandicoot � GOOL � Part 9, March 2011.

[119] R S Scowen and Birchwood Grove. Extended BNF � A Generic Base

Standard. Proceedings 1993 Software Engineering Standards Symposium, 1993.

124

REFERENCES

[120] J. Borchardt. Lampe, B./Jorke, G./Wengel, H., Algorithmen Der

Mikrorechentechnik. Maschinenprogrammierung Und Interpretertech-

niken Des U880. Berlin, VEB Verlag Technik 1983. 364 S., 230 Abb.,

M 37,50. BN 5532246. ZAMM - Journal of Applied Mathematics and Mechanics

/ Zeitschrift für Angewandte Mathematik und Mechanik, 64(11):474�474, 1984.

[121] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kaminsky.

MICA: A Holistic Approach to Fast In-Memory Key-Value Storage. 11th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 14),

page 17, 2014.

[122] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. The Impact of Thread-

Per-Core Architecture on Application Tail Latency. In 2019 ACM/IEEE

Symposium on Architectures for Networking and Communications Systems (ANCS),

pages 1�8, Cambridge, United Kingdom, September 2019. IEEE.

[123] ScyllaDB. Home. https://www.scylladb.com/.

[124] Piotr Grabowski, Juliusz Stasiewicz, and Karol

Baryla. Apache Cassandra 4.0 Performance Benchmark.

https://www.scylladb.com/2021/08/24/apache-cassandra-4-0-vs-scylla-4-4-

comparing-performance/, August 2021.

[125] Zhiqi Wang, Jin Xue, and Zili Shao. Heracles: An E�cient Storage Model

and Data Flushing for Performance Monitoring Timeseries. Proceedings of

the VLDB Endowment, 14(6):1080�1092, February 2021.

[126] Eugene Siow, Thanassis Tiropanis, Xin Wang, and Wendy Hall. Tri-

tanDB: Time-series Rapid Internet of Things Analytics. arXiv:1801.07947

[cs], January 2018.

[127] Intel. Intel® Xeon® Silver 4210R Processor

(13.75M Cache, 2.40 GHz) Product Speci�cations.

https://www.intel.com/content/www/us/en/products/sku/197098/intel-xeon-

silver-4210r-processor-13-75m-cache-2-40-ghz.html.

[128] Mingming Cao, Suparna Bhattacharya, and Ted Tso. Ext4: The Next

Generation of Ext2/3 Filesystem. LSF, 2006.

[129] QEMU Team. QEMU. https://www.qemu.org/, April 2021.

125

REFERENCES

[130] Martin Leitner-Ankerl. Martinus/Nanobench: Simple, Fast, Accurate

Single-Header Microbenchmarking Functionality for C++11/14/17/20.

https://github.com/martinus/nanobench/tree/master.

[131] TimescaleDB. Time Series Benchmark Suite (TSBS).

https://github.com/timescale/tsbs, November 2022.

[132] TimescaleDB. Time-Series Data Simpli�ed. https://www.timescale.com.

[133] Nicholas Nethercote. Valgrind Home. https://valgrind.org/, 2023.

[134] Jens Axboe. Fio. https://�o.readthedocs.io/en/latest/�o_doc.html.

[135] Eelco Dolstra. Nix Package Manager - NixOS Wiki.

https://nixos.wiki/wiki/Nix_package_manager, 2006.

[136] Gabriel Haas, Michael Haubenschild, and Viktor Leis. Exploiting

Directly-Attached NVMe Arrays in DBMS. CIDR, 2020.

[137] Florian Gross. Index Search Algorithms for Databases and Modern

CPUs, June 2017.

[138] Michael McCandless. Using Finite State Transducers in Lucene.

[139] Mehryar Mohri. Weighted Finite-State Transducer Algorithms. An

Overview. In Janusz Kacprzyk, Carlos Martín-Vide, Victor Mitrana,

and Gheorghe P un, editors, Formal Languages and Applications, 148, pages

551�563. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[140] Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard E. Wat-

son. Incremental Construction of Minimal Acyclic Finite-State Automata.

Computational Linguistics, 26(1):3�16, March 2000.

[141] Andrew Gallant. Index 1,600,000,000 Keys with Automata and Rust,

November 2015.

[142] L. Peter Deutsch. GZIP File Format Speci�cation Version 4.3. Request

for Comments RFC 1952, Internet Engineering Task Force, May 1996.

[143] Apoorv Gupta, Aman Bansal, and Vidhi Khanduja. Modern Lossless

Compression Techniques: Review, Comparison and Analysis. In 2017 Sec-

ond International Conference on Electrical, Computer and Communication Technolo-

gies (ICECCT), pages 1�8, February 2017.

126

8

Appendix

8.1 Experiment reproduction

In this section, we will provide the necessary steps to reproduce the experiments shown in

chapter 5. We start with a guide on how to setup the environment in which the experiments

are to be conducted.

8.1.1 Setup

The main requirements for the setup are git and the Nix package manager.

$ git clone git@github.com:NielsdeWaal/Thesis.git

The Thesis repository contains the code for the database, client, virtual machines, and

TimeTree. The code for TimeTree is located in a di�erent repository. However, this

repository does not need to be cloned explicitly, as it will be retrieved by the cmake code

for the database.

8.1.1.1 VM generation

The images for the virtual machine are reproducible through the Nix package manager.

The VM-flakes folder contains the nix �akes, which are used to generate the images.

The available images are:

� in�ux_machine

� clickhouse_machine

� questdb_machine

127

8. APPENDIX

� zns_machine

As the VM's require SSH to be accessed, the authorized_key must be replaced in the

common/default.nix �le. When in the VM-flakes folder, an image can be generated using

the following command:

$ nix build .#IMAGE_NAME

Where IMAGE_NAME has to be replaced with the desired image. Nix will download the

required packages and con�gure the image. The resulting qcow2 image will be located in

the result folder.

As the size of the benchmarking data is very large, increase the size of the image to

accommodate the size during ingestion.

$ qemu-img resize result/nixos.qcow2 +200G

The resize command will increase the image size with 200GB.

8.1.1.2 Code compilation

To compile the code for FrogFishDB, navigate to the DB folder. To generate the build �les

and start the build, issue the following commands:

$ mkdir build

$ cd build

$ cmake -DCMAKE_BUILD_TYPE=Release ..

$ make -j $nprocs

The client is built in a similar manner, from the client folder in the thesis repository,

execute the following:

$ mkdir build

$ cd build

$ cmake -DCMAKE_BUILD_TYPE=Release ..

$ make -j $nprocs

The TimeTree folder contains the TimeTree implementation and its performance tests.

From the TimeTree folder, execute the following commands:

$ mkdir build

$ cd build

$ cmake -DTIME_TREE_TESTS=1 -DCMAKE_BUILD_TYPE=Release ..

$ make -j $nprocs

128

8.1 Experiment reproduction

The TIME_TREE_TESTS directive will enable the testing and benchmarking code for the

TimeTree.

Before going into the build folder, one can opt to use the Nix package manager to launch

a shell which contains the exact compiler and library versions as those used in this thesis.

The shell can be started with the following command:

$ nix develop

The Nix package manager will use the flake.lock and flake.nix �les to populate the

shell with the versions. The lock �le dictates the version through the Nix store. The store

is pinned through a collection of hashes stored in the lock �le.

8.1.1.3 Generating data

For this step, the go programming language needs to be installed.

We use the TimeSeries Benchmark Suite for generating the timeseries data. Due to

issues with the clickhouse integration, we need to apply a patch to �x the code.

$ git clone git@github.com:timescale/tsbs.git

$ cd tsbs

The patch is located in the scripts folder of the thesis repository. Apply the patch

with:

$ git apply THESIS_FOLDER/scripts/clickhouse.patch

Replace THESIS_FOLDER with the location of the thesis repository.

Next, we generate the data. Be aware that this requires a lot of storage space. The 3200

scale data �le will require 200GB of storage.

$ cd cmd/tsbs_generate_data

$ go build

$./tsbs_generate_data --use-case="cpu-only" --seed=420 --scale=32

--timestamp-start="2016-01-01T00:00:00Z" --timestamp-end="2016-06-01T00:00:00Z"

--log-interval="10s" --format="influx" > TIMESERIES_DATA_SCALE_32

$./tsbs_generate_data --use-case="cpu-only" --seed=420 --scale=320

--timestamp-start="2016-01-01T00:00:00Z" --timestamp-end="2016-03-01T00:00:00Z"

--log-interval="10s" --format="influx" > TIMESERIES_DATA_SCALE_320

$./tsbs_generate_data --use-case="cpu-only" --seed=420 --scale=3200

--timestamp-start="2016-01-01T00:00:00Z" --timestamp-end="2016-02-01T00:00:00Z"

--log-interval="10s" --format="influx" > TIMESERIES_DATA_SCALE_3200

129

8. APPENDIX

$./tsbs_generate_data --use-case="cpu-only" --seed=420 --scale=32

--timestamp-start="2016-01-01T00:00:00Z" --timestamp-end="2016-06-01T00:00:00Z"

--log-interval="10s" --format="clickhouse" > TIMESERIES_DATA_SCALE_32

$./tsbs_generate_data --use-case="cpu-only" --seed=420 --scale=320

--timestamp-start="2016-01-01T00:00:00Z" --timestamp-end="2016-03-01T00:00:00Z"

--log-interval="10s" --format="clickhouse" > TIMESERIES_DATA_SCALE_320

$./tsbs_generate_data --use-case="cpu-only" --seed=420 --scale=3200

--timestamp-start="2016-01-01T00:00:00Z" --timestamp-end="2016-02-01T00:00:00Z"

--log-interval="10s" --format="clickhouse" > TIMESERIES_DATA_SCALE_3200

Replace the end of the three tsbs_generate_data commands with the folder destination.

Notice that we generate data for both In�uxDB and Clickhouse. We can reuse the data

for In�uxDB for QuestDB and FrogFishDB. However, before we can use the data for

FrogFishDB, we need to convert it to the proper format.o

In the scripts folder is a Python �le which is used to prepare the In�uxDB data for

ingestion into FrogFishDB.

$ cd Thesis/scripts

$ source bin/activate

$ python PrepareBenchmark.py TIMESERIES_DATA_FILE NR_CLIENTS SCALE BATCH_SIZE

Replace TIMESERIES_DATA_FILE with the location of the In�uxDB data �le, replace

NR_CLIENTS with the number of clients to be tested, replace SCALE with the scale factor

(e.g. 32, 320, or 3200), and replace BATCH_SIZE with the size of each batch. Note that the

batch size will have to be rounded to a multiple of the scale factor.

8.1.1.4 Ingestion experiments

The ingestion experiments need to run in each of the VM's seperately. For In�uxDB,

QuestDB, and Clickhouse we use TSBS for the performance measurements. Copy the

TSBS folder cloned earlier over to the virtual machine through a tool such as SCP.

Build the benchmark tools using these commands:

$ cd tsbs/cmd/load_influx

$ go build

Replace influx in the �rst command with the desired database, so either Clickhouse or

QuestDB.

The TSBS benchmarking tools are invoked as follows:

130

8.1 Experiment reproduction

$ cat TIMESERIES_DATA_SCALE | ./tsbs_load_influx --workers=NR_CLIENTS

--reporting-period=1s --batch-size=BATCH_SIZE > result.csv

Running a load command will generate a csv �le with the results. As the result �le will

be overriden and in preparation for the data processing step, move each �le to the scripts

folder and rename them into database_{nr_clients}_{scale}_series.csv.

To measure FrogFishDB there is a script in scripts folder. The RunTests.sh script will

generate the required client con�gs, start the benchmark, and collect the results.

To prepare FrogFishDB there is a con�guration �le which is required to launch the

database. The DB folder contains an example con�guration �le. FrogFish.toml contains

all the settings which are con�gurable by the user.

Another setting, one which cannot be changed from the settings �le is the size of the

memtable. This setting can be altered in the FrogFish.hpp source �le. In there is the

bufSize variable which denotes the size in the number of bytes. Changing this variable

does require the database to be recompiled.

All of the ingestion bandwidth tests are run using the RunTests.sh script. This script

will run all of the tests and move the �les to the scripts folder. These do have to be moved

by hand in order to make sure they are not overwritten by running the script again after

changing one of the settings.

To measure the performance of TimeTree, navigate to the TimeTree repository. In the

build folder is an executable called bench. Running this executable will generate �les

containing the results which we can process using scripts located in the scripts folder of

the Thesis repository.

8.1.1.5 Memory usage experiment

Testing for memory usage requires the same procedure as described in section 8.1.1.4.

However, to generate the memory statistics, the FrogFish database has to be launched

using the valgrind massif tool.

Using the tool, the database is launched using the following command:

$ valgrind --tool=massif ./source/FrogFish

Move the resulting massif �les to the scripts folder and rename them to the massif-SCALE,

where SCALE should be replaced with the scale which has been used during the test.

131

8. APPENDIX

8.1.1.6 Query experiments

In the scripts folder, there is the TestQuery.py python script. This script will issue the

queries to the database. The database will then record the latencies in query_latencies.csv.

This �le can be processed using the ProcessQueryLatencies.py python script to generate

the query graphs.

8.1.2 Processing the data

After collecting all the data, we can generate the graphs used in this thesis.

Generating the ingestion bandwidth graphs is done using the ProcessMultieClientStats

python script in the scripts folder of the Thesis repository. However, before we can process

the statistics for In�uxDB, QuestDB, and Clickhouse we need to remove unneeded leftovers

from the output of the benchmarking tool.

The following command removes the last couple of lines from the CSV �les which do not

contain any actual data but are statements about the di�erent worker clients used during

the experiment.

$ for DB in influx quest clickhouse;

do for client in 1 2 4 8 16;

do head -n ((-4 - ${client})) \

${DB}_${client}_32_series.csv > ${DB}_${client}_32_series_fixed.csv;

done;

done

To generate the graphs, we use the following Python scripts:

$ python ProcessMultiClientStats.py

To process the memory usage results, run the following script to generate the memory

usage graphs:

$ python ProcessMemoryUsage.py

8.2 Clickhouse patch

The following code sample contains the di� required to �x the TSBS tool for the Clickhouse

database. The patch must be applied to the pkg/targets/clickhouse/creator.go �le.

132

8.2 Clickhouse patch

146c146,148

<) ENGINE = MergeTree(created_date, (tags_id, created_at), 8192)

>) ENGINE = MergeTree

> PARTITION BY toYYYYMM(created_date)

> ORDER BY (tags_id, created_at)

183c185,188

< ") ENGINE = MergeTree(created_date, (%s), 8192)",

> //") ENGINE = MergeTree(created_date, (%s), 8192)",

> ") ENGINE = MergeTree\n"+

> "PARTITION BY toYYYYMM(created_date)\n"+

> "ORDER BY (%s, created_at)\n",

133

	List of Figures
	List of Tables
	1 Introduction
	1.1 Timeseries databases
	1.2 Flash storage
	1.3 Problem statement
	1.4 Research questions
	1.5 Research Methodology
	1.6 Contributions
	1.7 Societal relevance
	1.8 Thesis Structure
	1.9 Plagiarism Declaration

	2 Background
	2.1 Flash Storage
	2.2 Timeseries data
	2.3 Timeseries databases
	2.3.1 Ingestion protocols: Pull vs Push
	2.3.2 Indexing structure
	2.3.3 Traditional relational databases
	2.3.4 Summary

	2.4 Asynchronous IO
	2.4.1 Asynchronous IO in the Linux kernel
	2.4.2 io_uring
	2.4.3 FrogFishDB and io_uring

	2.5 B and B+ Trees
	2.6 Control and data plane
	2.7 Data model
	2.8 Tags
	2.9 Out-of-order data
	2.10 Query types
	2.11 Inverted index

	3 Related Work
	3.1 Performance of horizontal scaling
	3.2 Indexing structures
	3.3 Flash optimizations
	3.4 Summary

	4 Design of FrogFishDB
	4.1 Overview and requirements
	4.1.1 Requirements
	4.1.2 FrogFishDB as a whole

	4.2 Ingestion
	4.2.1 Push vs Pull
	4.2.2 Protocol
	4.2.3 Summary

	4.3 Indexing structure
	4.3.1 TimeTree
	4.3.2 Storage
	4.3.3 Aggregation
	4.3.4 Summary

	4.4 Querying
	4.4.1 Why the need for a new query language?
	4.4.2 Language design
	4.4.3 Query planner
	4.4.4 Summary

	4.5 Optimization opportunity: Multithreading

	5 Evaluation of FrogFishDB
	5.1 Evaluation plan
	5.1.1 Ingestion bandwidth
	5.1.2 Query performance
	5.1.3 Configuration
	5.1.4 Benchmarking tools

	5.2 Ingestion performance
	5.2.1 TimeTree
	5.2.2 FrogFishDB
	5.2.3 Summary

	5.3 Query performance
	5.3.1 TimeTree
	5.3.2 FrogFishDB

	5.4 Summary

	6 Future Work
	6.1 Multi-threading
	6.2 Bypassing the filesystem for storage
	6.3 Log file compression
	6.4 Usage of SIMD for the indexing structure
	6.5 Use the aggregation function of TimeTree in FrogFishDB
	6.6 Examine the use of a Finite State Transducer

	7 Conclusion
	7.1 Research questions
	7.2 Limitations

	References
	8 Appendix
	8.1 Experiment reproduction
	8.1.1 Setup
	8.1.2 Processing the data

	8.2 Clickhouse patch

