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Abstract

Language-integrated query (LINQ) frameworks offer a convenient programming abstraction for processing in-memory col-
lections of data, allowing developers to concisely express declarative queries using popular programming languages. Existing
LINQ frameworks rely on the type system of statically typed languages such as C* or Java to perform query compilation
and execution. As a consequence of this design, they do not support dynamic languages such as Python, R, or JavaScript.
Such languages are however very popular among data scientists, who would certainly benefit from LINQ frameworks in data-
analytics applications. The gap between dynamic languages and LINQ frameworks has been partially bridged by the recent
work DynQ, a novel query engine designed for dynamic languages. DynQ is language-agnostic, since it is able to execute
SQL queries on all languages supported by the GraalVM platform. Moreover, DynQ can execute queries combining data from
multiple sources, namely in-memory object collections as well as on-file data and external database systems. The evaluation
of DynQ shows performance comparable with equivalent hand-optimized code, and in line with common data-processing
libraries and embedded databases, making DynQ an appealing query engine for standalone analytics applications and for
data-intensive server-side workloads. In this work, we extend DynQ addressing the problem of optimizing high-throughput
workloads in the context of fluent APIs. In particular, we focus on applications which make use of data-processing libraries
mostly for executing many queries on small batches of datasets, e.g., in micro-services, as well as applications which make
use of data-processing libraries within recursive functions. For this purpose, we present reusable compiled queries, a novel
approach to query execution which allows reusing the same dynamically compiled code for different queries. As we show in
our evaluation, thanks to reusable compiled queries, DynQ can also speed up applications that heavily use data-processing
libraries on small datasets using a typical fluent API.
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1 Introduction very blurry. Data lakes [15] and emerging machine-learning

frameworks such as TensorFlow [64] make it very practical

In modern data processing, the boundary between where data
is located and who is responsible for processing it has become
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for data scientists to develop complex data analyses directly
“in the language” (i.e., in Python or JavaScript), rather than
resorting to “external” runtime systems such as traditional
RDBMSs. Such an approach is facilitated by the fact that
many programming languages are equipped with built-in
or third-party libraries for processing in-memory collec-
tions (e.g., arrays of objects). Well-known examples of such
libraries are the Microsoft LINQ-to-Objects framework [35]
(which targets .NET languages, e.g., C*) and the Java Stream
API [48]. Microsoft’s implementation of LINQ not only
allows developers to query in-memory collections, but it can
be extended with data-source providers [34] (e.g., LINQ-to-
SQL and LINQ-to-XML) that allow developers to execute
federated queries (i.e., queries that process data from multi-
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ple sources). Many systems with similar features have been
proposed (e.g., Apache Spark SQL [2]). LINQ systems have
been studied from a theoretical point of view [11,20], and sev-
eral optimization techniques have been proposed [31,41,42].
However, the proposed solutions mostly focus on statically
typed languages, where type information is known before
program execution.

Despite the many benefits it offers, LINQ support is cur-
rently missing in popular dynamic languages, i.e., languages
for which the type of a variable is checked at runtime, such
as Python or JavaScript. Such languages are often preferred
by data scientists (e.g., in Jupyter notebooks [27]), because
they are easier to use and typically come with a simple data-
processing API (e.g., filter, map, reduce) and data-frame API
(e.g.,Rdplyrlibrary [69] and Python Pandas library [38]) that
simplify quick data exploration. Besides data analytics, sup-
porting language-integrated queries in dynamic languages
would also be useful in other contexts. As an example,
JavaScript and Node.JS are widely used to implement data-
intensive server-side applications [60].

Due to their popularity, embedded database systems such
as DuckDB [53] often provide bindings for some dynamic
languages. With such an approach, the database query engine
is hosted in the application process, removing the inter-
process communication overhead imposed by solutions that
adopt an exernal database system [52]. However, develop-
ers cannot use embedded databases to query arbitrary data
that resides in the process address space (e.g., an array of
JavaScript objects or a file loaded by the application). Instead,
using embedded databases, it is usually required to create
tables with a data schema and then traverse the object col-
lection and insert relevant data into such tables, a so-called
ingestion phase. Some embedded databases are able to query
specific data structures implemented in a dynamic language,
e.g., DuckDB [53] can execute queries on both R and Pan-
das data frames. However, both R and Pandas data frames
are implemented with a columnar data structure composed
of typed arrays, and they cannot store heterogeneous objects,
such as a JavaScript map.

In this article, we present an in-depth description of the
DynQ [57] LINQ engine targeting dynamic languages for
the GraalVM platform [72]. Unlike existing LINQ sys-
tems, DynQ is capable of running queries on dynamically
typed collections such as JavaScript or R objects. More-
over, DynQ is language-agnostic and can execute queries on
data defined in any of the languages supported by Graal VM.
DynQ is highly optimized and benefits from just-in-time
(JIT) compilation to speed up query execution. To the best
of our knowledge, DynQ is the first query engine targeting
multiple programming languages, which explicitly inter-
acts with a JIT compiler. Such a tight integration with
the JIT compiler is obtained by using the Truffle language
implementation framework [70] in a novel and previously
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unexplored way. Indeed, the Truffle framework was designed
for programming-language implementations, whereas our
approach exploits Truffle as a general code-generation frame-
work in the context of a data-processing engine.

In this work, our goal is to extend the applicability
of DynQ by exposing (to developers) data-frame-like API
defined by method chaining, often referred to as fluent
APIs [14]. The DynQ approach to query execution has
been successful on database workloads [57]; however, it still
remains an open research question whether it is also suit-
able as a drop-in replacement for a typical data-processing
library implemented in a dynamic language which exposes
a fluent API (e.g., the Lodash [36] library for JavaScript).
Unfortunately, our preliminary evaluation shows that the
performance of DynQ is suboptimal when it comes to high-
throughput workloads, i.e., workloads that process a lot of
small batches of datasets. Such workloads are very common
in data-intensive server-side applications such as microser-
vices. Moreover, the performance penalties can become more
evident on applications that make use of data-processing
libraries within recursive functions.

To overcome this performance issue, we first introduce
parametricity in DynQ with a generalization of prepared
statement which extends the binding of query parameters
from raw values to expressions through user-defined func-
tions (UDFs). Then, we present reusable compiled queries,
a novel approach to query execution which allows reusing
the same compiled code for different queries. Reusable com-
piled queries are implemented within the fluent API exposed
by DynQ, and they are completely transparent to the user.

This article makes the following contributions:

— We describe DynQ, a language-agnostic query engine
which can execute queries on collections of objects as
well as on file data (e.g., JSON files) and other data
sources without requiring any data schema (neither pro-
vided nor inferred). DynQ is able to optimize itself on
the data types encountered during query execution.

— We describe DynQ’s approach to query compilation,
which relies on self-optimizing abstract syntax tree
(AST) interpreters and dynamic speculative optimiza-
tions.

— Weintroduce reusable compiled queries, anovel approach
to query execution relying on an efficient and flexible
cache of compiled queries which allows reusing the same
compiled code to execute similar queries.

— We evaluate DynQ on workloads designed for both
databases and programming languages. Our evaluation
shows that DynQ’ performance is comparable with a
hand-optimized implementation of the same query and
outperforms implementations based on built-in or third-
party data-processing libraries in most of the workloads.
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— We release an open-source prototype of DynQ.!

This article is structured as follows. In Sect.2 we intro-
duce relevant background information. In Sect. 3 we describe
the design of DynQ, and in Sect.4 we describe how we inte-
grate parametricity in DynQ and how we extend its query
compilation model for efficient execution of multiple similar
pipelines on small datasets. In Sect.5, we evaluate the per-
formance of DynQ against hand-optimized queries as well
as existing data-processing libraries and databases. Section 6
discusses related work, and Sect.7 concludes this article.

2 Background

In this section, we give an overview of the .NET implemen-
tation of language-integrated queries (LINQ) and we discuss
its execution model as well as improvements proposed in the
research literature. Then, we introduce the GraalVM plat-
form [72] and the Truffle [70] framework that we use for
implementing DynQ.

2.1 Language-integrated queries

LINQ was first introduced in Microsoft .NET 3.5 to extend
the C* language with an SQL-like query comprehension syn-
tax and a set of query operators [6]. The following is an
example of a LINQ query:

IEnumerable<int> xs = .o

var evenSquares = from x in xs
where x % 2==
select x * x;

LINQ implements a lazy evaluation strategy by convert-
ing query operators to iterators, a so-called pull-based
model [58], i.e., each operator pulls the next row from
its source operator. In the example query, the where and
select clauses in the query comprehension are de-sugared
into calls to the methods Where and Select defined in the
IEnumerable interface.

Another important feature of LINQ is its extensibility to
new data formats. LINQ can execute queries not only on
in-memory object collections, but also on any data type that
extends the generic types IEnumerableor IQueryable;
indeed, from a theoretical point of view, LINQ queries
can be executed on any data type that exhibits the prop-
erties of a monad [20]. This great flexibility is obtained
through so-called LINQ providers, i.e., data-source specific
implementations of the mentioned generic types. Relevant
examples of LINQ providers are LINQ-to-XML (that queries
XML documents) and LINQ-to-SQL, which converts query
expressions into SQL queries and sends them to an external

! DynQ is available at hitps:/github.com/usi-dag/DynQ- VLDB.

DBMS. Despite the benefits it provides, LINQ was explic-
itly designed targeting statically typed languages, and it is
currently not available in dynamic languages. Our work over-
comes this limitation.

2.2 Query execution models

The C? implementation of LINQ executes queries by lever-
aging the pull-based model, which shares many similarities
with the Volcano [17] query execution model in use by
many popular relational databases, such as PostgreSQL [5].
It has been shown [32] that the main performance draw-
backs of this execution model are virtual calls to the interface
methods (e.g., MoveNext () and Current () in Ct, or
hasNext () and next () in Java), which introduce non-
negligible overhead, since they are executed for each input
row of each operator in the query plan. In the context of
relational databases, the most relevant optimizations for
removing such overhead are vectorization [7] and data-
centric query compilation [44].

Vectorized query execution, similarly to the Volcano
model, uses a pull-based approach. However, the query inter-
pretation overhead is mitigated by leveraging a columnar
data representation and batched execution, i.e., instead of
evaluating a single data item at a time, query operators
work on a vector of items which represents multiple input
rows. Data-centric query execution completely removes the
interpretation overhead by generating executable code for
a given query. Code generation commonly happens at run-
time, using schema and type information to generate code
that is specialized for the tables used in a query. Data-centric
query compilation adopts a so-called push-based model,
i.e., each operator pushes a row to its destination operators.
Both pull-based and push-based models have been studied
from the point of view of compilers and program transfor-
mations [29,41,42]. Interestingly, it has been shown [58]
that, by leveraging compiler optimization techniques such
as loop fusion, method inlining, and scalar replacement, nei-
ther model clearly outperforms the other.

A well-known disadvantage of query compilation is the
overhead introduced by the compilation itself. For statically
typed and compiled languages, query compilation can take
place at different times, namely at application compilation
time (e.g., in SBQLA4J [68]) or during its execution (e.g., in
Steno [41]). While the former approach has the advantage
of hiding the query compilation cost during the compila-
tion of the application, it imposes serious limitations: the
queries must be expressed in the application code, mean-
ing that a system that accepts queries as user input cannot
leverage such an approach. In the context of dynamic lan-
guages (such as JavaScript or Python), this approach cannot
be used in general, because the application source code is
directly executed by the runtime. On the other hand, runtime
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query compilation does not suffer from these limitations,
but the compilation cost can shadow the benefits obtained
by the optimization passes, in particular for short-running
queries. Recent research [30] addresses this issue with an
adaptive query compilation model. With such a compilation
model, the engine first quickly generates an executable rep-
resentation of the query and executes it in an interpreter.
Then, during query execution, the engine performs adap-
tive decisions whether to compile a query operator based
on execution-time estimations. This approach is inspired by
the implementation of JIT compilers in language VMs and
shares similarities with the query execution model adopted by
DynQ. Unlike existing SQL-query compilation approaches,
DynQ needs to generate machine code that is specialized to
access objects located in the memory space of a running lan-
guage VM. This scenario presents unique challenges that are
not found in existing SQL execution runtimes, as we will
discuss in the rest of this article.

2.3 GraalVM and the Truffle framework

DynQ is implemented targeting the GraalVM [72] platform,
i.e., a polyglot language runtime compatible with the Java
Virtual Machine (JVM). GraalVM is capable of executing
programs developed in a variety of popular programming
languages, such as Java, JavaScript, Ruby, Python, and R.
At its core, GraalVM relies on a state-of-the-art dynamic
compiler (called Graal [71]), which brings JIT compilation
to all Graal VM languages. Language runtimes for GraalVM
(including DynQ) are implemented using the Truffle [70]
language implementation framework. Unlike other code-
generation frameworks for the JVM or the .NET platform,
Truffle does not rely on bytecode generation, but rather on
the concept of self-optimizing interpreters [70], i.e., language
interpreters that use custom API and data structures enabling
explicit and direct interaction with the underlying language
VM components (including the JIT compiler). The Graal
optimizing compiler has special knowledge of such API, and
is capable of generating efficient machine code by means of
partial evaluation [25].

In addition to JIT compilation, the Truffle framework
provides mechanisms to interact with any of the dynamic
languages supported by GraalVM. Thanks to these interop-
erability mechanisms, DynQ can effectively inline machine
code used by GraalVM language runtimes into its own
query execution code. For example, DynQ can use the very
same machine code used by the GraalVM JavaScript VM to
read JavaScript heap-allocated objects, thereby enabling effi-
cient access to in-memory data during SQL query execution.
This approach to SQL execution allows DynQ to efficiently
exploit runtime information, to benefit from optimizations
that are normally used in high-performance language VMs,

@ Springer

such as dynamic loop unrolling and polymorphic inline
caching [22].

3 DynQ

In this section, we give a detailed description of DynQ’s inter-
nals, presenting its general design (Sect. 3.1), dynamic query
compilation (Sect.3.2), and its built-in support for third-
party data providers (Sect. 3.3). We also explain how DynQ’s
architecture facilitates the development of language-specific
optimizations (Sect.3.4). In designing DynQ we focused on
the following goals:

— Language-independence and modularity: DynQ should
be able to execute queries on any collection of objects
from any language supported by GraalVM. Moreover,
integrating new data sources and query operators in
DynQ should impact only their respective components,
i.e., theirimplementation should be language-independent.

— High performance: Query execution with DynQ from
a dynamic language should be as efficient as a hand-
optimized application written in the same language.

In the following subsections we describe how we designed
DynQ to meet all these requirements.

3.1 DynQ architecture

Atits core, DynQ is adynamic query engine for GraalVM that
exploits advanced dynamic compilation techniques to opti-
mize query execution. DynQ is exposed to users by means
of a language-agnostic API, and is capable of executing
queries on any object representation supported by GraalVM
languages. Unlike the popular LINQ implementation for
the .NET platform, DynQ does not extend its supported pro-
gramming languages with a query-comprehension syntax,
but rather relies on SQL queries expressed as plain strings.
The LINQ query-comprehension syntax allows query val-
idation at program compilation time. However, as already
discussed in the literature [24], in a dynamically typed lan-
guage, where syntactic validation and type checking take
place at runtime, lacking this form of compile-time valida-
tion is not an issue. Moreover, since one of the main goals
of DynQ is language independence, extending the syntax of
multiple languages would not be a practical approach.

Two important differences between DynQ and existing
LINQ systems are its dynamic type system and the tight
integration with the underlying Graal VM platform. The flexi-
bility of dynamic languages imposes additional performance
challenges compared with query engines that process data
with a known type, as the engine has to take into account that
a value may be missing in an object and that runtime types of
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the objects in a single collection (e.g., an array) can be differ-
ent from each other. JIT compilation is crucial in this context,
as it allows DynQ to generate machine code that is special-
ized for the data types observed at runtime. For example,
DynQ can emit offset-based machine code when accessing
R data frames, or hash-lookup-based access code when read-
ing data from JavaScript (map-like) dynamic objects. Close
interaction with the platform’s JIT compiler is a peculiar fea-
ture of DynQ and a key architectural difference w.r.t. other
popular language-integrated approaches. Existing systems
(e.g., .NET LINQ or Java 8 Streams) do not interact with
the underlying language runtime; in these systems, queries
are compiled to an intermediate representation (e.g., .NET
CLR or Java bytecode) like any other language construct
(e.g., Java 8 Streams are converted to plain Java bytecode
with virtual method calls and loops). Query compilation to
such intermediate representations happens statically, before
program execution. At runtime, the language VM might (or
might not) generate machine code for a specific query. How-
ever, the lack of domain knowledge of the underlying JIT
compiler could limit the class and scope of optimizations
that the language VM can perform. For example, a language
VM might (or might not) decide to inline certain methods
into hot method bodies depending on runtime heuristics that
have nothing to do with the structure of the actual query being
executed.

DynQ, on the contrary, takes a radically different approach
as it explicitly interacts with the underlying VM’s JIT com-
piler to drive query compilation. In this way, DynQ can
effectively propagate its runtime knowledge of any given
query to machine code generation, resulting in high per-
formance. As an example, DynQ can effectively force the
inlining of the predicates of a given query expression into
table-scan operators, ensuring efficient data access. More-
over, the tight integration with the language VM’s JIT
compiler unlocks a class of optimization that are not achiev-
able with existing LINQ-like systems, namely, dynamic
speculative optimizations: not only can DynQ apply an opti-
mization (e.g., inlining) when it sees potential performance
gains, but it can also de-optimize the generated machine code
when certain runtime assumptions get invalidated, giving the
query execution engine the chance to re-profile the code that
is being executed, possibly leading to the generation of new
machine code that now takes different runtime assumptions
into account.

Thanks to its design, DynQ is able to outperform hand-
optimized implementations of queries written in dynamic
languages. Internally, the type system of DynQ’s query
engine handles two main types, namely primitive types and
structured types. Primitive types include all Java primitive
types as well as String and Date. Structured types include
arrays and nested data structures, i.e., objects with proper-
ties of any of the mentioned types; multiple nesting levels

are supported as well. As expressions, DynQ supports log-
ical and arithmetic operators, the SQL LIKE function on
strings, and the EXTRACT function on dates. Moreover,
DynQ seamlessly supports user-defined functions (UDFs),
as it can directly inline code from any GraalVM language
into its SQL execution code. In this way, UDFs from any of
the GraalVM languages can be called during SQL evalua-
tion with minimal runtime overhead. In particular, it is not
required that a UDF is written in the same language as the
application thatis using DynQ, e.g., it is possible to use DynQ
from JavaScript, executing a query with a UDF written in R.

As GraalVM is compatible with Java, DynQ can lever-
age existing Java-based components to perform SQL query
parsing and initial query planning. To this end, our implemen-
tation leverages the state-of-the-art SQL query parser and
planner Apache Calcite [4]. While using Calcite as an SQL
front end has the notable advantage that DynQ’s implemen-
tation can focus on runtime query optimization after query
planning, DynQ’s design is not bound to Calcite’s API, and
other SQL parsers and planners could be used as well.

A high-level overview of the life cycle of a query exe-
cuted with DynQ from a dynamic language (JavaScript in
the example) is depicted in Fig. 1. As the figure shows, as
soon as a developer has defined a dataset in the form of an
object collection (e.g., an array) it is possible to execute
an SQL query on the in-memory data. DynQ is invoked
from the host dynamic language, passing (as parameters)
a string representation of the query and a reference to the
input data. DynQ leverages Calcite for parsing and vali-
dating the SQL query; if successful, the validated query is
converted into an optimized query plan. Then, DynQ tra-
verses the query plan, generating an equivalent executable
representation (i.e., Truffle nodes [70]), which is our form
of a physical plan. By generating Truffle nodes, the code
generation phase of DynQ is very efficient, as Truffle nodes
are ready to be executed by GraalVM. Query execution thus
begins by executing the Truffle nodes generated by DynQ. As
soon as the DynQ runtime detects that the AST (or parts of
it) are frequently executed, it delegates the JIT compilation
to GraalVM. Dynamic compilation is triggered by DynQ,
which also takes possible runtime de-optimizations and
re-compilations into account. Finally, the result of query exe-

JavaScript DynQ

Apache Calcite
QP = plan(“SQL QUERY");

¥

AST = generateAST(QP)
Truffle.execute(AST)

var result = DynQ(
“SQL QUERY”, data); [

// Language-independent
// ResultSet

Fig.1 High-level query life cycle in DynQ
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cution, i.e., a language-independent data structure accessible
by any GraalVM language, is returned to the application.

3.2 Query compilation in DynQ

Query compilation in DynQ uses a push-based approach and
takes place by visiting the query plan generated by Calcite
and converting it into Truffle nodes. The push-based query
execution approach used by DynQ is inspired by the model
introduced in LB2 [63]. In this model, each operator pro-
duces aresult row that is consumed by an executable callback
function. Rather than relying on statically generated callback
functions, however, DynQ propagates result rows to Truffle
nodes. In this way, those nodes can specialize themselves on
the actual data types observed at runtime. Internally, DynQ
relies on two classes of Truffle nodes, namely (1) Expressions
and (2) Query-operators.

Expression nodes represent the supported SQL expres-
sions and UDF functions introduced in Sect. 3.1. Since DynQ
is a schema-less query engine, each expression node used in
a query has initial unknown input (and output) type. Dur-
ing query execution, Truffle nodes rewrite themselves to
specialized versions capable of handling the actual types
observed during query execution. This specialization mech-
anism is natively supported by the Truffle framework and
allows DynQ to handle type polymorphism in a way analo-
gous to language runtimes, resorting to runtime optimization
techniques such as polymorphic inline caches [22]. In this
way, an expression can be specialized during query execu-
tion to handle multiple data types.

Query-operator nodes are responsible for executing SQL
operators, eventually producing a concrete result value.
DynQ relies on two categories of query-operator nodes,
namely consumer nodes and executable nodes. Intuitively,
each query operator (excluding table scans) has its own
consumer node, while only table-scan and join operators
implement an executable node. The main executable node
of a query, i.e., the one containing the root operator, takes
care of producing the result set for that query.

DynQ generates a query’s root executable node by visiting
the plan generated by Calcite. In particular, DynQ gener-
ates a consumer node C for the currently visited operator
O. If O is not a join (i.e., it has only one child), C will
consume the rows produced by the child of O. If O is a
table scan, DynQ generates an executable node which iter-
ates over a data structure (which acts as a table), invoking
the generated chain of consumer nodes for each row. The
implementation of the consumer nodes generated by visit-
ing a join operator depends on the join type. DynQ supports
nested-loop joins and hash-joins (possibly with non-equi
conditions). In case of nested-loop joins, DynQ creates a
left consumer which inserts all rows into a list L, and a right
consumer that finds matching pairs of rows by iterating over
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interface ExecutableNode {
Object execute();
}

interface ConsumerNode {

void consume (Object row) throws
EndOfExecution;

Object getResult ();

}

interface ExpressionNode {
Object execute(Object row);
}

Fig.2 Main interfaces in DynQ

the elements in L for each row. In case of hash-joins, the left
consumer inserts the rows in a hash-map, which is used by
the right consumer to find matching pairs. The corresponding
Javainterfaces ExpressionNode, ConsumerNode, and
ExecutableNode are shown in Fig. 2. When the query
root operator is not a materializer (e.g., for queries com-
posed of projections and predicates), DynQ adds a custom
consumer which fills a list of rows, since DynQ always out-
puts an array data structure. On the other hand, when the root
operator is a sort or an aggregation, DynQ returns the sorted
(or aggregated) data, which is already a list of rows.

Note that stateful operators do not need any specific
executable node, since they are implemented using the
ConsumerNode methods consume (row) and
getResult (). As an example, if a query has a group-
by operator (which is not the root operator in the query
plan), its implementation of consume (row) updates the
internal state (a hash-map) and the implementation of
getResult (), which is invoked by its source opera-
tor once all input tuples have been consumed, sends all
tuples from the aggregated hash-map to its destination (a
ConsumerNode), calling the consume (row) method for
each aggregated row, and finally returns the value obtained
by calling the getResult () method on its destination
consumer. Since push engines do not allow terminating the
source iteration, i.e., an operator cannot control when data
should not be produced anymore by its source operator, DynQ
implements early exits for the limit query operator by throw-
ing a special EndOfExecution exception.

Query compilation example. Consider the DynQ query tar-
geting a JavaScript array of objects shown in Fig. 3. The
query execution plan for the example query is composed of
a table-scan operator, a predicate operator, and an aggrega-
tion operator that counts the number of rows that satisfy the
predicate. The AST of Truffle nodes generated by DynQ for
the example query is depicted in Fig. 4. A simplified imple-
mentation of the nodes that compose the query is depicted in
Fig. 5. As shown in Fig. 5, the LessThanNode node lever-
ages Truffle specializations for implementing the less-than
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var data = [{x: 1, y: 2},
{x: 2, y: 1},
{x: Date(’2000-01-017),
y: Date(22000-01-027)1}];

DynQ.registerTable (data, ’T’);
var Q = ’SELECT COUNT(*) FROM T WHERE x < y’;
var result = DynQ.execute(Q);

Fig.3 Example of a DynQ query on a JavaScript array

D Executable Node

c _I Consumer Node

TableScan
=T R |

_ _Predicate

5_. _. _: Expression Node

Fig.4 AST generated by DynQ for the query in Fig. 3

operation. The LessThanNode implementation shown in
Fig. 5 presents only the specializations for Int and Date
types, because those types are the ones used in the example.
The actual implementation contains specializations for all
types supported in DynQ as well as their possible combina-
tions (e.g., Int/Double and Double/Int). In particular, DynQ
specializations with mixed types respect the implicit type
conversion (i.e., type cast) semantics commonly integrated
in a query planner, but in DynQ the detection of such casts
must take place during data processing (instead of during
query planning), since at query planning time types are not
known in DynQ. Consider the method execute (Object
row) defined in the class LessThanNode. This method
first executes the left and right children expression nodes (i.e.,
property reads in the example query). Then, the method call
to executeSpecialized (internally) performs a type
check for the two arguments (i.e., £st and snd). If both
values have type int, the specialization execute (int,
int) is executed; if they are both dates, the method
execute (LocalDate, LocalDate) isexecuted;oth-
erwise, the current tuple is discarded. Note that, although our
current implementation is permissive, i.e., it does not stop the
query execution throwing an exception in case a malformed
row is encountered, implementing different error handling
strategies would be trivial.

Consider again the AST generated by DynQ for the exam-
ple query depicted in Fig. 4. If the query is executed on
an R data frame, DynQ would generate the same tree, but
the TableScan executable node and the ReadMember
expression nodes would specialize in different ways, depend-
ing on the runtime types. The flexible design of DynQ allows
reusing the very same query-operator nodes for executing
queries on different data structures, like a JavaScript array
of objects or an R data frame. Thanks to this design, we
achieve all the three goals listed in the beginning of this sec-
tion. In particular, the extensibility and modularity of our

class TableScanNode implements ExecutableNodef{
ConsumerNode consumer;
PolyglotArray input;

public Object execute() {
try {
for(int i=0; i<input.numElements; i++) {
Object row = jsArrayElement (input, i);
consumer . consume (row) ;
}
} catch (EndOfExecution e) {}
return consumer.getResult ();
}
}

class PredicateNode implements ConsumerNode {
ConsumerNode consumer;
Expression predicate;

public void consume(Object row) {

if (predicate.execute(row)) {
consumer . consume (row) ;

}

}

public Object getResult () {
return consumer.getResult ();

}

}

class CountNode implements ConsumerNode {
long result = 0;

public void consume(Object row) {
result++;
}
public Object getResult () {
return result;
}
}

class LessThanNode implements ExpressionNode {
ExpressionNode left, right;

public boolean execute(Object row) {
Object fst = left.execute(row);
Object snd = right.execute(row);
return executeSpecialized(fst, snd);

}

@Specialization

boolean execute(int left, int right) {
return left < right;

}

@Specialization

boolean execute(LocalDate 1, LocalDate r) {
return 1l.isBefore(r);

}

}

class ReadMember implements ExpressionNode {
String name;

public Object execute(Object row) {
return readJsMember (name, row);
}
}

Fig.5 Simplified Truffle-node implementation in DynQ for the nodes
used in the example query in Fig. 3
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design allow adding new data sources (e.g., a data structure
in a dynamic language or an external source like a JSON file)
by integrating only the expression nodes which take care of
accessing data from such a data source, without requiring
any modification to the query-operator nodes.

Dynamic machine code generation. By implementing DynQ
on top of Truffle, DynQ has fine-grained control over Graal,
the GraalVM’s JIT compiler. Dynamic compilation is trig-
gered based on the runtime profiling information collected
during query execution, and the Graal JIT compiler applies
(to DynQ queries) all optimizations that are commonly used
in dynamic language runtimes. Examples of optimizations
applied by Graal include aggressive inlining, loop unrolling,
and partial escape analysis. JIT compilation is performed by
Graal VM using a configurable number of parallel compiler
threads. This leads to short compilation times, as we will
further discuss in Sect. 5.2.

In contrast to many engines based on query compilation,
DynQ does not need to generate machine code before exe-
cuting a query. Query execution in DynQ begins as soon
as the Truffle nodes have been instantiated. First, the exe-
cution starts by interpreting those nodes; during this phase
the runtime collects type information for the nodes that
leverage Truffle specializations (e.g., LessThanNode in
the previous example). Then, once the runtime detects that
some nodes are frequently executed (e.g., the main loop in
TableScanNode), it initiates machine-code generation.
Once the runtime has collected type information for those
rows which have been executed in the interpreter, it specula-
tively generates machine code assuming that the subsequent
rows will have the same types. If such speculative assump-
tions get invalidated (e.g., because a subsequent row has an
unexpected type), the compiled code gets invalidated and
the execution falls back to interpreted mode. Then, the run-
time can update the collected type information and later
re-compile the nodes to machine code accordingly. It is
important to note that, even if triggering recompilation has
a cost, specializations stabilize quickly [71], typically incur-
ring only minor overhead. By leveraging a state-of-the-art
dynamic compiler like Graal, DynQ can selectively compile
single components of the query’s physical plan. In particular,
each table-scan executable node can be selectively compiled
to self-contained machine code. Thanks to this approach, a
query does not need to be fully compiled to machine code
to achieve high performance, since, e.g., executing a join
operator could lead to the evaluation of one child node in
the interpreter (if it has few elements) and another child in
compiled machine code.

Figure 6 shows the pseudo-code equivalent to the machine
code generated by DynQ for the example query of Fig. 3, once
both types in the example are encountered (i.e., both x and v
properties have either type Int or Date). As the figure shows,
all the calls to the interface methods are aggressively inlined
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executeMethodAfterJITCompilation() {

result = 0;
for(int i = 0; i < input.numElements, i++) {
row = // read i-th array element

fst = // read property "x" of row

snd = // read property "y

// Type checking for predicate

if(/* fst and snd are integers */) {
if (fst < snd) { result++; }

}

else if (/* fst and snd are dates */){
if (fst.isBefore(snd)) { result++; }

}

" of row

}
return result;

}

Fig.6 Pseudo-codeequivalent to the machine code generated by DynQ,
executing the example query in Fig. 3

by the compiler. The operations listed at the beginning of the
while loop that interact with the host dynamic language
(i.e., reading the current array element and its properties x
and y) are inlined by the compiler as well. Moreover, the
predicate node is compiled into two 1 £ statements that check
whether in the current row the fields x and v have one of the
expected types. If this is not the case, in general, the generated
code would be invalidated as described above, while in this
specific example, since there is no other specialization in the
less-than node, the current row is discarded and the generated
code does not need to be invalidated.

3.3 DynQ providers

As introduced in Sect.2.1, LINQ queries are not limited
to object collections, instead they can be executed on any
data format for which a so-called LINQ provider (i.e., a
data-source specific implementation of the enumerable and
queryable interfaces) is available. Such flexibility is an
appealing feature for developers, since it allows executing
federated queries within the same programming model, leav-
ing the complexity of orchestrating different data sources
to the system. In the context of DBMS, orchestration of
federated queries is a widely studied topic, pioneered by sys-
tems like Garlic [26] and TSIMMIS [10]. As an example
of custom providers in DynQ, consider a scenario where a
developer needs to analyze a web-server log file in JSON
format, counting the number of accesses for each user who
registered to the website after a specific date, with user regis-
tration data however stored in a database. Figure 7 shows how
such a log analysis can be executed with DynQ. As the figure
shows, developers do not have to deal with opening/closing
any file or database connection; they only need to provide a
file name and configurations for accessing the database (e.g.,
the URL, credentials, and database name) to DynQ, which
takes care of everything else. Moreover, the Calcite query
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var path = 'file://.../log.json';
DynQ.registerJSON('logs', path);
var config = // DB url, credentials,

DynQ.registerJDBC('users', config);

var result = DynQ.execute (
SELECT users.name, COUNT(*) as count
FROM users, logs
WHERE logs.user.id = users.id
AND users.registration_date > DATE
GROUP BY users.name”);

Fig.7 Federated query with DynQ

planner detects the operators that can be pushed to exter-
nal data sources. When executing the example query, DynQ
sends (to the database) the SQL query with the predicate
on the date field and retrieves only user names of the rows
matching the predicate. Hence, the operation can be executed
more efficiently (i.e., exploiting database optimizations) and
communication overhead is reduced.

Implementing a DynQ provider requires defining a spe-
cific table-scan operator, which takes care of iterating over
the rows in the input data source, and a data-accessor oper-
ator, which takes care of accessing the fields of each row.
Our JSON provider builds on Jackson [16], an efficient
JSON parser for Java, for accessing fields in JSON objects.
This approach can be further extended with more complex
parsers that integrate predicate execution during data-scan
operations, which is an approach already explored in the lit-
erature [33,56].

Besides the query parser and planner, Apache Calcite has
another appealing feature for DynQ, namely its flexibility in
integrating new data sources by defining specific adapters.
A Calcite adapter takes care of representing a data source as
tables within a schema, i.e., a representation that can be pro-
cessed by the query planner. Similarly to LINQ providers,
from a query execution point of view, a Calcite adapter takes
care of converting the data from a specific source to a Cal-
cite enumerable that can be integrated into the query engine,
allowing the execution of federated queries.

3.4 Language-specific type conversions

Although GraalVM allows efficient interactions among dif-
ferent languages [18], it may introduce overhead related
to data conversion operations. As an example, dates are
represented as LocalDate instances once shared among
different languages, but the internal representation in a spe-
cific language may be different, e.g., in JavaScript dates are
represented as long values, as the number of milliseconds
from the epoch day January 1, 1970-01-01, UTC [13]. As an
example, consider the following simple query:

SELECT COUNT (*)
#2000-01-01"

FROM T WHERE X < DATE

Suppose DynQ executes such a query (without language-
specific type conversions) on JavaScript objects, in a first
step (before query execution) it would create a LocalDate
instance for the constant date (2000-01-01), then during pred-
icate evaluation, for each row:

— It would check that the current row contains the field X
and that it is actually a date instance (this step cannot be
avoided in the context of dynamic languages).

— It would convert the JavaScript date into a LocalDate
instance.

— Finally, it would compare the converted LocalDate
instance with the constant one (2000-01-01).

On the other hand, evaluating the predicate in JavaScript
would require only the first step above (i.e., checking that
the field exists and has type date), if so the date comparison
is executed using the JavaScript internal representation of
dates, that is, a single comparison of two primitive longs,
which is of course much more efficient than the steps above.

The reason for those data conversions is that different
languages may internally represent the same data type differ-
ently, but exposing those types to other languages requires
a common representation. To overcome these inefficiencies
related to the type conversions introduced by language inter-
operability, DynQ provides an extension mechanism that can
be used to implement language-specific type conversions. As
discussed in Sect. 3.2, DynQ relies on two main categories of
nodes, namely expression nodes and query operator nodes.
Language-specific type conversions can be implemented by
extending expression nodes with new specializations for
types of a certain language.

Considering for example JavaScript dates, language-
specific type conversions can be implemented to extend
comparison nodes by taking care of checking if the objects
to be compared are actually JavaScript dates. If so, the com-
parison can be executed more efficiently by delegating it
to the JavaScript engine, an operation that could be inlined
by the Graal compiler into DynQ’s query operator nodes.
Note that language-specific type conversions do not break the
high modularity of DynQ, since only expression nodes are
extended with such optimizations, while adding new query
operators, data sources, or features of the query engine (e.g.,
parallel query execution) would impact only query operator
nodes. Moreover, language-specific type conversions are an
optional extension, i.e., DynQ can execute queries on objects
of a language for which no language-specific type conver-
sions are implemented. In this case, depending on the data
type of the processed objects, DynQ may have to execute
data-conversion operations.
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3.5 Fluent APIs in DynQ

In this section, we focus on data-processing libraries for
dynamic languages which allow developers to query heap-
allocated objects using a data-frame-like APL, i.e., expressing
query operators as a chain of method calls. Examples of this
syntax are the Spark DataFrame API [2] and LINQ queries
when used with the de-sugared method-call syntax [35]. The
following is an example of a pipeline built with method chain-
ing, which is a de-sugared version of the LINQ query written
with the comprehension syntax in Sect.2.1.

IEnumerable<int> xs = ...;

var evenSqguares = XS
.Where(x => x % 2 == 0)
.Select (x => x * x);
. ToArray ()

Such a chained method-call syntax is used by many
existing data-processing libraries. Using this syntax, devel-
opers invoke an operator on enumerable objects (also called
pipeline builders), passing as parameters the expressions to
be evaluated by the operator. The invocation results in a new
enumerable object on which another operator can be invoked,
forming a chain of method calls. The method chain will result
in a materialized result once the developer makes use of a
terminal operator, e.g., on the de-sugared LINQ query in the
example, evenSquares . ToArray () is called to materi-
alize the query resultinto an array. From now on, we will refer
to this syntax as fluent APIs. As an example of fluent APIs
usage with DynQ, Fig. 8 shows how the de-sugared LINQ
query in the example above can be executed with DynQ.

Note that, in contrast to SQL queries, using a fluent API
developers can fragment the definition of a single query. As
an example, using a fluent API one can define a function
which returns an enumerable object, e.g., the representation
of a table scan followed by a predicate, and then call such a
function in two different contexts, appending a different ter-
minal operator in each context. This feature greatly improve
modularity; indeed, it is often offered by Object-Relational
Mapping (ORM) systems [65].

Existing data-processing systems which offer fluent APIs
and that are based on query compilation are implemented
similarly to SQL query compilers. In particular, those sys-
tems lazily keep track of the operators composing a pipeline
as well as their parameters (e.g., UDFs). Once a terminal
operator is called, the sequence of operators are considered

var xs = [...];

var evenSquares = DynQ
.scan(xs)
.filter(x => x % 2 == 0)
.map(x => x * x)
.toArray ();

Fig.8 Example of fluent APIs usage with DynQ
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as a single, standalone query, which is then compiled as a sin-
gle unit. From now on, we will refer to this approach which
triggers compilation for each query execution per-query com-
pilation.

Per-query compilation has the well-known advantage of
generating code which is specialized as much as possible for
a given query, which means that the generated code is, in prin-
ciple, the best possible implementation of that query. DynQ
offers developers the fluent APIs leveraging the described
per-query compilation approach. However, as further ana-
lyzed in the next section and shown in our evaluation, while
the per-query compilation approach performs very well on
analytical workloads, it is suboptimal for high-throughput
workloads which perform many queries on small batches of
data. In the next section we will present an extension of DynQ
to efficiently deal with high-throughput workloads, too.

4 Caching compiled queries

In the context of query engines based on compilation,
a natural solution to the problem of improving the per-
formance on high-throughput workloads is reducing the
compilation overhead. Since DynQ is able to execute queries
through interpretation before (or instead of) compiling them,
compilation overhead is already mitigated. However, for
high-throughput workloads, where many queries are exe-
cuted on small batches of datasets, using the DynQ execution
model as discussed before, the application could end up exe-
cuting all those queries through interpretation.

To improve DynQ’s performance on high-throughput
workloads, we integrate query-reuse capabilities within the
engine. In particular, we present reusable compiled queries, a
novel approach to query execution inspired by the code cache
implemented in managed runtimes of dynamic languages
based on hot-code compilation. With hot-code compila-
tion, the runtime first executes an application through its
interpreter. Methods that are invoked often are identified as
“hot” and are dynamically compiled to native code. Such an
approach has the goal of reaching a stable (or steady) com-
piler state, i.e., eventually all hot methods which compose the
running application are compiled by the JIT of the language
runtime. Although the reachability of a stable compiler state
is not guaranteed by the runtimes, it is typically achieved for
most long-running applications. To reach a stable compiler
state, the language runtime must be able to avoid recompil-
ing the same method every time it gets called from a different
code location (unless such a method gets inlined). This fea-
ture is commonly achieved by leveraging code caches, i.e.,
map-like data-structures which store the compiled method
defined at a given code location.

Considering the context of data-processing libraries,
reaching a stable compiler state means that the pipelines are
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Table 1 Benefits and drawbacks

of approaches to fluent API Approach

Calls de-virtualization Reachability of a stable state

compilation: per-query,
hot-code, and reusable compiled
queries

per-query compilation
hot-code compilation

reusable compiled queries

v guaranteed (all calls)
x best-effort (all calls)

x never (by design)
v most of the applications
v guaranteed (subset of calls) v' most of the applications

x best-effort (remaining calls)

executed in compiled code. However, it is unlikely that the
performance of a single pipeline is as good as the one that
could be obtained by compiling the specific pipeline using a
per-query compilation approach. Indeed, the compiler might
(or might not) decide to inline a certain operator as expected
destination of another operator, similarly the compiler might
(or might not) decide to inline a whole pipeline in a certain
code location, e.g., if detected to be frequently executed.

Table 1 shows the benefits and drawbacks of the described
approaches, per-query compilation, hot-code compilation,
and reusable compiled queries in the context of an applica-
tion that accepts queries as user input. In particular, per-query
compilation can guarantee that all the virtual calls in the
implementation of the query operators are de-virtualized
through specialization. However, such an approach cannot
reach a stable compiler state by design, as every time a query
is executed, it triggers its compilation. On the other hand, hot-
code compilation is commonly able to reach a stable compiler
state, executing the (hot) implementation of the query opera-
tors in compiled code. However, method de-virtualization
is offered only on a best-effort basis through heuristics.
Although it is intuitively impossible to achieve both full de-
virtualization and the reachability of a stable state, we argue
that by restricting de-virtualization to a subset of calls, it
is possible to design an execution model which reduces the
number of compiler invocations compared with per-query
compilation, but generates more specialized code than hot-
code compilation. To implement reusable compiled queries,
we first integrate parametricity within the query preparation,
such that a single compiled query can be reused multiple
times passing different parameters. Then, we leverage the
pipeline builders’ API to detect similar queries and so that
internally we can make use of parametricity, i.e., as an auto-
matic compiler optimization.

In this section, we first describe parametricity in its simpler
form, i.e., prepared statements [47], a well-known feature
offered by many database systems. Then, we introduce a
parametric extension of a fluent API, a generalization of
prepared statements which extends the applicability of para-
metricity from raw values to expressions through UDFs.
Finally, we describe reusable compiled queries, a novel
approach for implementing a fluent API which does not
require developers to make explicit use of parametricity,
without suffering from the query compilation overhead for

each single query execution as done using the tradition per-
query compilation approach.

4.1 Explicit parametricity

Prepared statements have been designed to efficiently exe-
cute the same query multiple times with differently bound
variables. DynQ supports prepared statements which are
implemented as instances of ExecutableNode that accept
parameters. In particular, when a query is prepared, DynQ
generates an equivalent AST as discussed in the previous
sections. During the AST generation, when DynQ encoun-
ters a query variable, i.e., the question mark symbol, it creates
an expression node which acts as a placeholder for a value
to be bound at query execution time. During the execution of
a prepared statement, DynQ binds the placeholders to their
values which are retrieved from the local scope of the cur-
rently executing query, i.e., its stack frame. Thanks to this
approach, once the AST generated from a prepared statement
is compiled by the JIT compiler, all subsequent invocations of
the prepared statement will execute the same compiled code.
Note that, similarly to the case of executing a query with-
out bound parameters, prepared statements may be subject
to re-compilation, too. However, since prepared statements
are designed to be executed multiple times, re-compilation
could take place among different executions. In particular,
re-compilation could take place if the types of the prepared
statements’ parameters change among the different invoca-
tions of the same prepared statement, as DynQ would need to
generate new machine code specialized for different types.

Figure 9 shows an example of a prepared statement with
DynQ. The prepared statement in the example is very similar
to the example query in Fig. 3, with the only difference that
the expression x < y in Fig. 3 is now x < 2. Figure 10
shows the AST generated from the prepared statement in
Fig. 9. As expected, the AST is very similar to the one shown
in Fig. 4, the only difference is the node PlaceHolders$0,
i.e., the placeholder for the prepared statement variable,
which replaces the node ReadMember (y) . Note that also
the compiled code for the AST depicted in Fig. 10 is very
similar to the one shown in Fig. 6, with the only difference
that the generated function now takes a parameter to be com-
pared with the property x of each row.
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var data = [{x: 1, y: 2},
{x: 2, y: 1},
{x: Date(’2000-01-01°),
y: Date(°2000-01-027)1}];

DynQ.registerTable (data, °T’);

var Q = ’SELECT COUNT(*) FROM T WHERE x < 7’
var prepared = DynQ.prepare(Q);

var resultl = prepared(3);

var result2 = prepared(Date(’2000-01-027));

var xs = [...];

var squaresOf = DynQ
.prepare ()
.scan(xs)
.filter (DynQ. par)
.map(x => x * Xx)

.toArray () ;
var evenSquares = squareOf(x => x % 2 == 0);
var oddSquares = squareOf(x => x % 2 == 1);

Fig.9 Example of a DynQ prepared statement on a JavaScript array

TableScan (O Executable Node
Py
[ 2 « _! Consumer Node

r -
1__Predicate _ _\I

:.. _. : Expression Node

Fig. 10 AST generated by DynQ for the prepared statement in Fig. 9

As we will show in Sect. 5.3, using prepared statements,
DynQ shows performance in line with an equivalent hand-
written function which takes the variables of the prepared
statement as arguments.

In the implementation of DynQ, we generalize the notion
of prepared statement in the context of a fluent API. To
this end, we introduced a special marker in our fluent API:
DynQ.par, as well as a special operator: prepare. The
parameter marker DynQ . par acts as the question mark sym-
bol in prepared statement. However, in contrast to prepared
statements, parameters are not limited to placeholder replace-
ments for raw values, since placeholder nodes in the fluent
API can represent any UDF. When a UDF is provided as
argument to an operator appended into a pipeline-builder,
e.g., .map(x => x*x), as with per-query compilation
DynQ forces the inlining of the UDF into the query code,
de-virtualizing the call to such UDF. On the other hand, when
the marker DynQ.par is used to indicate that a parameter
will be provided at query execution time, DynQ introduces
a virtual call into the generated code pointing to the place-
holder location, where DynQ will place the reference to the
UDF provided at query execution. Consider again the DynQ
fluent API example in Fig. 8, which selects the squares of the
even numbers in a given array. Figure 11 shows an example
of parametricity defining a similar query which is parametric
for the predicate expression. Such a parametric fluent API
can be later invoked by passing (as parameter) an arbitrary
UDF as predicate expression. Indeed, as the figure shows,
the same compiled query can be used to evaluate the squares
of even numbers as well as the squares of the numbers which
pass any given predicate, e.g., the odd numbers.

As we will show in Sect.5.3.3, both prepared statements
and parametric fluent API are efficient solutions for query
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Fig. 11 Example of parametric fluent API usage with DynQ

reuse, since the query compilation happens only once and
its overhead is mitigated by multiple executions of the
same compiled code with different parameters. However,
unfortunately, even if parametric fluent API offer a great
performance benefit, its usage has many limitations in com-
parison with a traditional (i.e., nonparametric) fluent API.
This is motivated by the fact that both prepared queries and
parametric fluent API offer parametricity in an explicit man-
ner. First, all queries must be expressed in the application
code, meaning that a system that accepts queries as user input
cannot leverage such an approach. Moreover, reusing queries
requires developers to carefully refactor each code location
in the application which makes use of a fluent API. As an
example, in order to leverage the benefit of parametric flu-
ent API, a developer needs to be aware of all the possible
code locations within an application which are suitable for
being expressed with parametric fluent API, which may not
be the case for large applications. Moreover, the process of
switching from a common data-processing library with a flu-
ent API to a parametric fluent API version as offered by DynQ
may require rewriting a large part of the application. Finally,
parametric fluent API cannot be used for cross-library opti-
mizations. In particular, suppose an application makes use
of multiple libraries that internally use the same pipeline. To
execute that pipeline on the same compiled code, a devel-
oper should create a separate module with the definition of
the pipeline and refactor those libraries’ code such that they
all make use of the introduced pipeline in the shared module.
In the next sections, we will describe a novel approach for
implementing a fluent API which does not require develop-
ers to make explicit use of parametricity, without suffering
from the query compilation overhead for each single query
execution as done using the tradition per-query compilation
approach.

4.2 Reusable compiled queries

In this section, we introduce reusable compiled queries,
a novel approach to query compilation which gets the
best of the two abovementioned approaches, per-query and
hot-code compilation. The main design goal of reusable
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compiled queries is to leverage the DynQ query-compiler
to de-virtualize a strict subset of the virtual calls in the
implementation of the query operators and to share the same
compiled code across multiple similar pipelines. Therefore,
also reusable compiled queries are suitable for executing sim-
ilar pipelines multiple times on small datasets, as well as for
executing recursive functions that use the same pipeline with
different parameters. However, instead of requiring develop-
ers to make explicit use of parametricity, reusable compiled
queries internally detect the usage of similar pipelines and
leverage parametricity to reuse previously compiled code
transparently with respect to the user prospective, i.e., as an
automatic compiler optimization.

The subsets of calls that are ensured to be de-virtualized
with reusable compiled queries are all the calls to DynQ’s
Truffle nodes of type ConsumerNode, i.e., consume (row)
and getResult (). We avoid forcing inlining of calls to
nodes of type Expression, leaving the inlining decisions
of expression nodes to the underlying JIT compiler (i.e.,
Graal), as done with all methods during the execution of
an application on a VM with hot-code compilation. Con-
sider again the even-squares example query in Fig. 8, the
sequence of operators which composes such a query starts
with a source table scan operator, followed by a predicate,
a projection, and finally a sink toArray operator which
materializes the rows into an array. The representation of
this query partially specialized by de-virtualizing the calls to
nodes of type ConsumerNode is equivalent to the follow-
ing parametric fluent API.

/var partiallySpecialized = DynQ/
.prepare ()
.scan (DynQ/.par)
.filter (DynQ/.par)
.map (DynQ/ .par)
.toArray () ;

Let’s now consider a similar query to the one in the exam-
ple, i.e., a query which returns the cubes (instead of squares)
of the odd numbers (instead of even) in a given array. Since
the sequence of operators which composes this query is
exactly the same as the even-square query in the example,
the partially specialized function shown above can be used
for executing both queries, even if their predicate and pro-
jection expressions are different. In particular, the odd-cubes
pipeline can be executed on the existing compiled code for the
function partiallySpecialized, passing as parame-
ters xs,x => x % 2

Reusable compiled queries are an optional feature of our
fluent API, which developers can enable globally as well
as for a single query. We implemented the caching strat-
egy behind reusable compiled queries within the pipeline
builders, leveraging the parametric fluent API described in
Sect.4.1. In particular, the reusable compiled queries are
stored with a tree shape in a memory location which is shared
among the whole application. The pipeline tree is composed

== landx => x * x * x.

of two kinds of nodes, intermediate nodes and leaves nodes.
Each leaf contains a prepared query generated with a para-
metric fluent API, while each intermediate node represents
a query operator. Thus, a path from the root to a leaf repre-
sents a sequence of operators, i.e., a pipeline, and such a leaf
contains a reference to the compiled representation of that
pipeline, i.e., a DynQ executable node. Since there must be
a single root in a tree and there can be multiple scan imple-
mentation, the root of pipelines tree is an empty operator; all
scan operators are children of the empty root.

Reusable compiled queries are transparently created by
DynQ through the pipeline builder instances created when
developers make use of a fluent syntax. Figure 12 shows
the internal (simplified) Java implementation of the pipeline
builders. As the figure shows, each pipeline-builder object
contains two fields, a reference to a (shared) node in the
pipeline tree, and an array of actual parameters. Each node
in the pipeline tree contains three fields, a reference to a (par-
tially) prepared query using a parametric fluent API, a map
which stores the children nodes by operator, and a reference
to an executable node generated by the (fully) prepared query,
which is non-null only for leaf nodes. Note that the empty root
of the pipeline tree is created with an empty map and a refer-
ence to a prepared query with parametric fluent API without
any operator, i.e., root .query = DynQ.prepare().

When a developer makes use of a fluent API with reusable
compiled queries, DynQ internally creates a new pipeline
builder composed of an empty array as actual parame-
ters and a reference to the (shared) root of the pipeline
tree. Then, every time an operator Op with parameters
(p1, ..., pn) 1s appended on a pipeline builder Py through
method call, the method Py.appendOperator is called,
and a new pipeline-builder instance P; is created (line 44
in Fig. 12). The actual parameters of P; are defined as
Po.actual Parameters ++ [p1, ..., pn], Where ++ denotes
the array concatenation (line 45 in Fig. 12). The reference
to a the pipelines-tree node in P; (i.e., Pj.shared Node)
will be evaluated as follows. If the node Py.sharedNode
has already a child node for the operator Op (say node’),
then we define Pj.sharedNode = node (line 18 in
Fig. 12). Otherwise, a new (shared) node node” is cre-
ated for the operator O as a child of Py.sharedNode in
the pipeline tree, and P;.shared Node will be assigned to
node” (lines 20-32 in Fig. 12). Finally, if the operator Op
is a terminal operator, then Pj.shared Node is a leaf in the
pipeline tree. If such a leaf was freshly created, DynQ cre-
ates the ExecutableNode through the parametric fluent
API instance in the tree node and cache it in the tree node
itself. Otherwise DynQ reuses the already generated (i.e.,
cached) ExecutableNode. Note that the generated AST
does not contain any expression node but parameters, since
all actual parameters provided by the developer are inter-
nally stored in the pipeline-builder instances and replaced
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class ParametricFluent { 1
// Implementation omitted for brevity 2
ParametricFluentAPI append( 3

Operator op, Object[] params) { ... } 4

5

ExecutableNode toExecutable() { ... } 6

} 7
8

class PipelineNode { 9
ParametricFluent query; 10
Map<Operator, PipelineNode> children; 11

12

// note: non-null only for leaf nodes 13
ExecutableNode executable; 14
15

PipelineNode getOrCreate(Operator op) { 16
if (children.contains (op)) { 17
return children.get (op); 18

} 19
int n = op.parametersCount; 20
Object [] params = new Object[n]; 21
for(int i=0; i<n; i++) { 22
params [i] = DynQ.par; 23

} 24
PipelineNode next = new PipelineNode(); 25
next.query = this.query.append(op,params); 26
if (op.isTerminal) { 27
next.executable = 28
next.query.toExecutable () ; 29

} 30
children.put(op, next); 31
return next; 32

} 33
¥ 34
35

class PipelineBuilder { 36
Object [] actualParameters; 37
PipelineNode sharedNode; 38

39

Object appendOperator ( 40
Operator op, Object[] params) { 41

42

PipelineBuilder next = 43
new PipelineBuilder (); 44
next.actualParameters = arrayConcat( 45
this.actualParameters, params); 46
next.sharedNode = this.sharedNode 47
.getOrCreate (op); 48

if (next.executable != null) { 49
// terminal operator: 50

// invoke the executable node 51

// and return the result 52
return next.executable.execute( 53
next.actualParameters) ; 54

} else { 55
// intermediate operator: 56

// return the new enumerable object 57
return next; 58

} 59

} 60
61

} 62

Fig. 12 Java-like pseudocode of PipelineBuilder objects for reusable
compiled queries
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with DynQ . par within the generated executable node, mak-
ing that node reusable for any other query composed of the
same sequence of operator. Once the ExecutableNode
has been retrieved (either cached or freshly created) it is
automatically invoked by passing as parameters the array
Pi.actual Parameters (line 54 in Fig. 12). It is important
to note that reusable compiled queries do not prevent addi-
tional speculative compiler optimizations, e.g., the compiler
could decide to speculatively inline a UDF in a query as in
hot-code compilation.

Note that reusable compiled queries share a similar design
goal with the code cache implemented in language runtimes,
i.e., avoiding recompiling the same code location multi-
ple times. There are however important differences between
reusable compiled queries and general-purpose code caches.
In particular, a code-cache can store a compiled method, it
cannot automatically partially specialize such a method for
subsequent similar reuse, as in the case of reusable com-
piled queries. Moreover, the lookup in the code-cache is more
expensive than the one in the pipeline tree, as each lookup is
performed on a single global map on the code-cache, while
in the case of the pipeline tree, each lookup is local at the
level of a specific operator. In particular, the cost of a single
lookup in the pipeline tree is constant, i.e., a lookup only
checks whether a specific attribute of an object is null.
Reusable compiled queries can be seen as an optimized data-
processing-specific code cache for fluent API which is able
to detect similar queries and reuse their compiled represen-
tation.

Thanks to the normal (i.e., nonparametric) fluent syntax
offered by reusable compiled queries, a developer can switch
from using a typical data-processing library implemented in
a dynamic language to DynQ with minimal effort. In particu-
lar, there is no need to take care of rewriting the pipelines with
explicit parametricity leveraging the parametric fluent APL
Moreover, as we will show in Sect. 5.3.3, thanks to reusable
compiled queries, DynQ outperforms Lodash [36], a popu-
lar data-processing library for JavaScript, making DynQ an
attractive drop-in replacement for existing data-processing
libraries.

We note that reusable compiled queries may reduce peak
performance of long-running queries when compared to
per-query compilation. This is expected, because per-query
compilation guarantees that all calls in the query-operator
implementations are de-virtualized at compilation time,
which is not the case for reusable compiled queries. However,
it is important to note that, when reusable compiled queries
are enabled, the virtual calls that are not de-virtualized by
DynQ are still candidates to be de-virtualized by the under-
lying VM on a best-effort basis, which in many cases is
effectively applied. As an example, if a hot code location
makes use of the DynQ’s fluent API and the calls to DynQ
are inlined within that code location, the parameters passed



DynQ: a dynamic query engine with query-reuse capabilities embedded in a polyglot runtime 1125

to the fluent API (e.g., the UDF for a £ilter operation)
can be de-virtualized by the VM once the generated code for
DynQ’s fluent AP is inlined and optimized in the context of
the caller.

5 Evaluation

In this section, we evaluate the performance of DynQ. First,
we describe our evaluation plan (Sect.5.1), explaining the
setup and the motivation for each experiment. Then, we
evaluate DynQ with two dynamic languages, R (Sect.5.2)
and JavaScript (Sect.5.3). We evaluate DynQ on existing,
established workloads designed for both databases and pro-
gramming languages. Moreover, we also evaluate DynQ in
a realistic scenario by recasting an existing server-side data-
processing application to make use of DynQ.

As database workloads, we evaluate DynQ using the TPC-
Hbenchmark [66] queries and a micro-benchmark composed
of a set of queries based on the dataset of the TPC-H bench-
mark. Those queries, listed in Table 2, have been presented
in the context of stream-fusion engine [58], and they belong
to the following categories:

— Queries consisting of selection and aggregation (without
group by), leading to a single row (i.e., queries 1, 2, 3).

— Queries consisting of selection, projection, which return
a list of rows (i.e., query 4), with also a limit operator
(i.e., query 6) and with both sort and limit (i.e., query 5).

— A query consisting of selection and join, followed by an
aggregation operator (i.e., query 7).

From now on, we refer to the i-th query in TPC-H as Qi,
and to the j-th query in the micro-benchmark as MQj.

We run all our experiments on an 18-core Intel i9-
10980XE (@3.0 GHz) with 256 GB of RAM. The operating
system is a 64-bit Ubuntu 20.04 and the language runtime

Table 2 Micro-benchmark queries from stream-fusion engine [58]

is GraalVM Community Edition 21.3.0, i.e., the latest LTS
release at the time of writing. Unless otherwise specified,
for all experiments the reported execution times include the
query preparation time, i.e., the Truffle nodes generation
obtained by traversing the query plan generated by Calcite
and the actual query execution time. Note that we do not mea-
sure the time spent for query parsing and planning done by
Calcite since it is not an optimized component of our system
and, on some queries, planning is currently rather slow on
Calcite, a performance issue which can be solved with more
engineering effort. However, it is important to note that mea-
sured time takes into account the generation of our physical
plan representation (i.e., Truffle nodes), and also their JIT
compilation, which happens during query execution. Unless
otherwise indicated, all the figures presented in this section
are bar plots that show the query execution time for each
implementation. The numbers on top of the bars represent
the speedup (factors) achieved by DynQ. Speedup factors
below 1 indicate that DynQ is slower.

5.1 Evaluation plan

On R, we evaluate DynQ against the data.table API,
DuckDB [53], and MonetDB [23]. In this setting, we import
the TPC-H tables into R data frames. Since TPC-H is based
on a strict (relational) schema, and the data is imported into
R data frames, which is a typed data structure, the evaluation
on R does not highlight the DynQ peculiarity of efficiently
accessing data with unknown schema. Indeed, for all the
experiments in this setting, DynQ uses the schema infor-
mation from the data frames. However, DynQ currently uses
the schema only for the data-access operations, all the query
operators nodes as well as the other expression nodes share
the same implementations as in the case of unknown schema,
as described in Sect. 3.4. The main goal of this evaluation is
to show that on relational database workloads the flexibility
of DynQ in accessing data formats which are not directly

MQI|SELECT COUNT(*) FROM lineitem WHERE 1_shipdate >= DATE ’1995-12-01'

WHERE 1 _shipdate >= DATE ’1995-12-01"

MQZSELECT SUM(1_discount * 1_extendedprice) FROM lineitem

MQ3SELECT SUM(1_discount * 1_extendedprice) FROM lineitem
WHERE 1 shipdate >= DATE ’1995-12-01’ AND 1 shipdate < DATE ’'1997-01-01"

WHERE 1_shipdate >= DATE ’'1995-12-01"

MQ4SELECT 1_discount * 1_extendedprice FROM lineitem

MQSSELECT 1_extendedprice FROM lineitem

WHERE 1 shipdate >= DATE ’1995-12-01’ ORDER BY 1 orderkey LIMIT 1000

MQ6SELECT 1_discount * 1_extendedprice FROM lineitem
WHERE 1 shipdate >= DATE ’1995-12-01’ LIMIT 1000

MQ7WHERE o_orderkey = 1_orderkey
IAND o_orderdate >= DATE '1995-12-01"
AND 1 shipdate >= DATE '1995-12-01"

SELECT SUM(o_totalprice) FROM lineitem, orders
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managed by the query engine does not impair performance,
in contrast to other data-processing systems.

On JavaScript, we evaluate DynQ in very different set-
tings. First, we evaluate DynQ against AfterBurner [14]
using AfterBurner’s memory layout, i.e., a columnar layout
composed of typed JavaScript arrays. In this setting we use
TPC-H and the microbenchmark queries as workloads. Since
AfterBurner is a relational database, also this setting uses a
strict schema, and similarly to the evaluation on R the goal of
this evaluation is to show that query execution performance
with DynQ on relational data is in line with a query engine
which reads data using its own memory layout.

Then, we evaluate DynQ on datasets stored as JavaScript
object arrays. For all the experiments in this setting, no
schema information is provided to DynQ. Here, we first
evaluate DynQ against Lodash [36] and handwritten imple-
mentations using the microbenchmarks. Then, we evaluate
DynQ on existing code bases (the npm module cities [12]),
leveraging prepared statements (Sect.5.3.2) to implement a
web-service backend module to search locations based on
user input. Those experiments highlight the ability of DynQ
to efficiently process dynamic objects with unknown schema.
Finally, we evaluate reusable compiled queries (Sect.5.3.3)
on a JavaScript implementation of two relevant benchmarks
that use a fluent API for data processing that we recasted from
the Renaissance [50] benchmark suite, which was originally
implemented in Java. One of these two latter experiments
also show the ability of DynQ to handle efficient query exe-
cution on polymorphic types, since the engine needs to deal
with mixed types of input arrays.

5.2 R benchmarks

In this section, we evaluate DynQ with the R programming
language. Here, we use the dataset from the TPC-H bench-
mark generated with the original dbgen tool [66] loaded into
an R data frame. Since, like DynQ, DuckDB [53] allows exe-
cuting SQL queries directly on R data frames, we evaluate
DynQ on the TPC-H benchmark queries and the micro-
benchmark queries against DuckDB, on a dataset of scale
factor 10; the dataset size is 0GB in a text format. In partic-
ular, we use DuckDB (version 0.3.0), executed on GnuR [51]
(version 3.6.3). Since the measured execution time with
DynQ does not take into account query planning time, we
slightly modified the DuckDB R plugin so that queries can
be planned and executed in two different steps, so that the
measured execution time on DuckDB does not take into
account query planning as well. DuckDB provides two ways
for executing queries on R data frames, i.e., directly on the
data-frame data structure, and in a managed table, which is
much more efficient but requires an ingestion phase. We refer
to the former setting as DuckDB(df), and to the latter one as
DuckDB(preload). Note that, by comparing DynQ against
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DuckDB, the fair comparison is with DuckDB(df), since the
datais accessed directly on R data frames, as in DynQ. More-
over, in evaluating DuckDB(preload), we do not measure the
time spent in the ingestion phase. In this evaluation, we mea-
sure the median of 10 executions.

Due to the different query planners and implementation
choices in DynQ and DuckDB (DuckDB is vectorized and
interpreted while DynQ is tuple-at-a-time and JIT compiled),
the goal of this performance evaluation is not to compare two
very different systems, but rather to demonstrate that DynQ
achieves performance competitive with an established, state-
of-the-art data-processing system. We consider the micro-
benchmark queries important in our evaluation, since, due to
their simplicity, the query plans are the same in DynQ and in
other systems. Moreover, since the micro-benchmark queries
are rather simple, they stress data-access operations, showing
that the extensibility of DynQ in accessing data in different
formats does not impair query execution performance, which
we consider a great achievement.

Micro-benchmarks. Due to the simplicity of the queries in
the micro-benchmarks listed in Table 2, we manually imple-
ment them using the data. table API, which is arguably
the most efficient library for processing R data frames. The
benchmark results are depicted in Fig. 14. As the figure
shows, DynQ is slower than the data . table API only on
MQ7 and outperforms it on all other queries by speedup fac-
tors ranging from 1.16x (MQ4) to 27.8x (MQ5). The speedup
on MQ6 against data . table (i.e., 826x) is because DynQ
chains query operators and stops the computation once it
finds the first 1000 elements that satisfy the predicate (i.e.,
the limit operator). On MQG6, DynQ performs comparably
with DuckDB, with speedup factors of about 1.18x against
DuckDB(df) and 0.63x against DuckDB(preload), with a
query execution time of about 1ms, showing the effective-
ness of our exception-based approach for implementing early
exits for the LIMIT operator. We consider such a low query
execution time a great achievement for DynQ), since the exist-
ing query engines based on compilation commonly suffer
from a latency overhead due to query compilation. DynQ
outperforms DuckDB(df) in all other queries as well, with
speedup factors ranging from 4.38x (MQ7) to 48.14x (MQ1).
Those speedups against DuckDB(df) are motivated by the
fact that the micro-benchmark queries are simple and mostly
dominated by table scans. DuckDB(df) requires table-scan
operations to convert data on-the-fly from data frames into
the DuckDB physical data representation, which introduces
high overhead. On the other hand, DynQ can execute queries
on R data frames in-situ, i.e., without any conversion. Indeed,
DynQ performance is closer to DuckDB (preload), which sig-
nificantly outperforms DuckDB(df), showing that the great
flexibility of DynQ in accessing data in different formats does
not impair performance. In particular, DynQ is slower than
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DuckDB(preload) only on queries MQ6 (factor 0.63x) and
MQ?7 (factor 0.65x), and outperforms DuckDB(preload) on
all other queries, with speedup factors ranging from 1.11x
(MQ1) to 1.77x (MQ3).

TPC-H Benchmark. Here, we evaluate DynQ using the TPC-
H benchmark. Like in our previous experiment, we compare
DynQ against DuckDB executing queries directly on the data
frame, i.e., DuckDB(df) and with data loaded into a man-
aged memory space, i.e., DuckDB(preload). The benchmark
results are depicted in Fig. 13.

As the figure shows, DynQ is slower than DuckDB(df)
only on QI3 (factor 0.81x) and Q16 (factor 0.71x), in all
other queries DynQ outperforms DuckDB(df), with speedup
factors ranging from 1.27x (Q9) to 26.55x (Q15). In com-
parison with DuckDB(preload), DynQ is faster on 12 queries
(i.e., Q1,Q2, Q4, Q6, Q7, Q10, Q12, Q14, Q15, Q17, Q18,
Q19).

Latency Benchmarks. As discussed in Sect. 3.2, even if DynQ
is an engine based on query compilation, it is able to start exe-
cuting a query before compiling it, by executing the Truffle
nodes which represent the query in the interpreter. This fea-
ture is crucial for obtaining high throughput when executing
queries on small datasets. Here, we evaluate the throughput
of DynQ against DuckDB. Since DuckDB is based on inter-
pretation and vectorization, it does not spend any time on
code generation and query compilation. On small datasets,
this approach is commonly faster than compiling queries,
since the compilation overhead may not be paid off.

For this evaluation, we consider an experiment similar to
the one performed in the context of Umbra [45]. Such an
experiment [28] evaluates the throughput (by calculating the
geometric mean of queries per second for all TPC-H queries)
over different scale factors. In our experiment we evaluate
the throughput over scale factors 0.001, 0.01, 0.1, 1, and 10,
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first on the micro-benchmark queries and then on the TPC-H
queries.

The benchmark results are depicted in Fig. 16 for the
micro-benchmark and in Fig. 15 for TPC-H. As the fig-
ures show, for both the micro-benchmark and TPC-H, DynQ
outperforms DuckDB(df) on all evaluated scale factors.
In particular, on the micro-benchmark DynQ outperform
DuckDB(df) of factors 9.17x (SF 0.001), 5.94x (SF 0.01),
6.51x (SF0.1), 11.02x (SF 1) and 14.29x (SF 10). On TPC-H,
DynQ outperform DuckDB(df) of factors 5.59x (SF 0.001),
3.56x (SF 0.01), 2.65x (SF 0.1), 4.31x (SF 1) and 4.4x (SF
10).

In comparison with DuckDB(preload), the evaluation
shows interesting trends. On the smallest scale factors (SF
0.001 and 0.01), DynQ fully executes all queries in the inter-
preter and it never triggers compilation. On scale factor 0.001,
the DynQ throughput differs from DuckDB(preload) by a
factor of 4.08x on the micro-benchmark, and of 2.7x on TPC-
H. On scale factor 0.01, the DynQ throughput is in line with
DuckDB(preload), in particular, DynQ shows a throughput
factor improvement of 1.06x on the micro-benchmark, and
of 0.95x on TPC-H. On scale factors 0.1, DynQ starts com-
piling parts of the queries; however, since the datasets are
still small, most of the query execution is still in the inter-
preter. On such scale factor, the DynQ throughput is smaller
than the one of DuckDB(preload), by factors 0.58x on the
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micro-benchmark, and of 0.56x on TPC-H. Then, on scale
factor 1, in DynQ query compilation is paid off on the micro-
benchmark, reaching a throughput in line with the one of
DuckDB(preload), i.e., 0.96x factor. This is not the case for
TPC-H, where the throughput of DynQ is factor 0.84x com-
pared with DuckDB(preload). The reason is that the TPC-H
queries are much more complex than the micro-benchmark
queries, leading to longer query compilation times. Finally,
on scale factor 10, DynQ outperforms DuckDB(preload) on
the micro-benchmark by a factor of 1.15x, and becomes com-
parable with DuckDB(preload) on the TPC-H queries, by a
factor of 0.98x.

Our evaluation on the query latency shows that JIT com-
pilation in DynQ is not a source of performance concerns,
differently from most existing query engines based on com-
pilation.

Comparison with Native DBMS. In this section, we evaluate
DynQ against MonetDB [23], a modern, interpreter-based,
RDBMS featuring high-performance vectorized execution.
Although we do not consider MonetDB a direct competitor
to DynQ, this evaluation should be considered an indica-
tion of how DynQ performs in comparison with a native
RDBMS. For this evaluation, we use MonetDB Database
Server Toolkit 11.43.9 (Jan2022-SP1), executing the queries
with mclient. We measure the end-to-end query execution
time, taking into account the cost of inter-process commu-
nication for sending result sets from the server to the client
process. For fairness, we configure MonetDB for executing
in a single-thread, since we have not yet implemented parallel
query execution in DynQ. For this experiment, we evaluate
DynQ on R data frames, using a scale factor of 10 for both
the micro-benchmark and TPC-H; we present the median of
10 executions.

The benchmark results are depicted in Fig. 17 for TPC-H
and in Fig. 18 for the micro-benchmark. As the figures show,
MonetDB outperforms DynQ in all queries containing the
join operator, i.e., in MQ7 and in all TPC-H queries but Q1
and Q6, with the only exception of Q12, where MonetDB
and DynQ show very similar execution times. All remain-
ing queries are rather simple and mostly dominated by table
scans. For those queries, DynQ is faster than MonetDB; in
particular DynQ outperforms MonetDB by a speedup factor
of 3.3x on QI and 1.3x on Q6. Concerning the remaining
micro-benchmark queries, on MQ6 DynQ shows a speedup
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of 438x; this is because MonetDB (like the data.table R pack-
age) does not stop the query execution once the first 1000
elements (i.e., the limit operator) have been found. On MQ4,
DynQ outperforms MonetDB by a speedup factor of 9.16x,
because MQ4 returns a large result set that MonetDB needs
to serialize and transfer to the client process, whereas DynQ
(being an embedded query engine) does not incur such an
overhead. Finally, on MQ1, MQ2, and MQ3, MQ5 DynQ
outperforms MonetDB by speedup factors of 1.43x, 2.55x,
2.01x, and 1.38x.

5.3 JavaScript benchmarks

Here, we evaluate DynQ using the JavaScript program-
ming language. For this evaluation, we first compare DynQ
against AfterBurner [14], which is an in-memory database
entirely written in JavaScript, on both the micro-benchmark
and on TPC-H. Then, we evaluate DynQ querying data
loaded into a JavaScript array of objects, like in the exam-
ple of Fig. 3. In this setting, we evaluate DynQ on the
micro-benchmark against handwritten implementations in
JavaScript and implementations that rely on Lodash [36],
which is arguably the most efficient and popular data-
processing library for JavaScript. Finally, we evaluate DynQ
on existing code bases, comparing the performance of a
JavaScript library against equivalent implementations using

DynQ.
5.3.1 Evaluation on AfterBurner

For evaluating DynQ against AfterBurner [14], we imple-
mented a specific DynQ provider for the memory layout
implemented in AfterBurner, i.e., a columnar layout com-
posed of JavaScript typed arrays. The implementation of such
aspecific data-source provider required only about 1000 lines
of code, which shows the great extendibility of DynQ. In this

B MonetDB DynQ

7 QI8

Q
Q13 Q14 Q15 Q16 Ql
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setting we evaluate AfterBurner both on GraalVM and on
V8 [67] (Node.JS version 14.17.6). All our experiments on
AfterBurner are executed using only scale factor 1; we cannot
evaluate AfterBurner on bigger datasets due to a limitation
in the Node.js file parser used in AfterBurner, which cannot
parse files exceeding 2GB. In this setting, we measure the
median of 20 executions.

Micro-benchmarks. Due to the simplicity of the queries in
the micro-benchmark listed in Table 2, we manually imple-
mented them using the AfterBurner API, which is a fluent
API inspired by Squel.js [59]. The benchmark results are
depicted in Fig. 20. As the figure shows, even if After-
Burner is based on query compilation, it does not optimize
the early exit for the limit operator. Thus, for MQ6, DynQ
outperforms AfterBurner by a speedup factor of 145x on V8,
and 826x on Graal VM. DynQ outperforms AfterBurner run-
ning on GraalVM for all other queries, too, ranging from a
speedup factor of 2.56x (MQ4) to 12.33x (MQS5). When exe-
cuting AfterBurner on V8, AfterBurner is faster than DynQ
on MQ1, MQ2, MQ4 and MQ7; the reason is that V8’s com-
piler is faster than GraalVM on these queries, so the benefit
of compilation is almost immediate.

TPC-H Benchmark. We evaluate DynQ against AfterBurner
on TPC-H using the original AfterBurner benchmark [1].
Since AfterBurner uses a fluent API, there is no query pars-
ing and planning phase, and the query plan is made explicit
by the API usage. For fairness, we manually fine-tuned the
queries in our evaluation such that Calcite generates the same
query plans used by AfterBurner. The benchmark results
are depicted in Fig. 19. As the figure shows, DynQ out-
performs AfterBurner executed on GraalVM on all queries,
with speedup factors ranging from 3.21x (Q20) to 25.05x
(Q11). When executing AfterBurner on V8, DynQ is slower
on queries QI (0.82x), Q14 (0.88x), Q18 (0.65x) and Q20
(0.41x). On all remaining queries, DynQ outperforms After-
Burner on V8 with speedup factors ranging from 1.26x (Q6)
to 6.03x (Q17), since AfterBurner materializes more inter-
mediate results than DynQ.

5.3.2 Evaluation on object arrays

Here, we evaluate DynQ using JavaScript object arrays as
datasets. First, we evaluate DynQ on the micro-benchmark
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against equivalent handwritten implementations. Then, we
evaluate DynQ on an existing code base, by comparing the
original implementation of an npm [46] module with an
equivalent one based on DynQ. Here, we measure query exe-
cution time at peak performance.

Micro-benchmarks. Similarly to the evaluation on R, we
manually implemented the micro-benchmark queries in the
JavaScript language. In this setting, we evaluate the micro-
benchmark queries against handwritten implementations and
implementations that use Lodash. Since Lodash does not
offer an API for the join operator, we do not evaluate MQ7
using Lodash. The scale factor used for our JavaScript eval-
uation is 1 (whereas we used a scale factor of 10 for the R
evaluation). This is motivated by the fact that querying R data
frames is more efficient than JavaScript object arrays, since
R data frames are internally implemented using a columnar
data format composed of typed arrays, whereas JavaScript
arrays are a more flexible data structure that can be com-
posed of heterogeneous objects.

The benchmark results are depicted in Fig. 21. In this set-
ting, we measure the median of 20 executions. As the figures
show, DynQ outperforms implementations based on Lodash
for all queries. In particular, DynQ outperforms Lodash with
speedup factors ranging from 1.92x (MQ4) to 7.84x (MQO6).
The high speedup on MQG6 is motivated by the fact that,
similarly to the data.table APl in R, also Lodash does
not chain the filter with the limit operation, unlike DynQ.
Moreover, DynQ performance are comparable with the hand
written implementations in most of the queries. In particu-
lar, DynQ is slower than the hand written implementations
only on MQ?2 (0.91x), and faster on MQ6 (2.46x) and MQ7
(2.04x). There are multiple reasons why DynQ is able to
outperform the handwritten queries. First, the JavaScript
semantics may enforce additional operations which are not
required in data processing; as an example, JavaScript’s Map
performs hashing by converting each value into a string rep-
resentation. Moreover, during the execution of handwritten
queries, the JavaScript engine needs to perform more runtime
checks than DynQ. Besides performance, the implementa-
tions using DynQ are the most concise ones. In particular,
the handwritten implementations of the micro-benchmark
queries count 160 lines of code (LOC), the Lodash imple-
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mentations count 58 LOC, and the DynQ implementations
count 40 LOC.

Benchmarks on existing code bases. We evaluate DynQ on an
existing code base by comparing the performance of an exist-
ing JavaScript library against an equivalent implementation
that uses DynQ. In particular, we selected the npm module
cities [12], which exposes a dataset of locations and offers an
API for selecting and filtering elements. In this setting, we
measure the median of 1000 executions (after a warmup of
5000 executions).

The npm module cities stores data in a single table (i.e.,
in a JavaScript array). The API offered by cities are listed
below.

— findByState: finds the first location which matches
a given state name.

— findByCityAndState: finds all the locations which
match a given city name and state name.

— zipLookup: finds the first location which matches a
given zip code.

— gpsLookup: finds the closest location of a given point
(by latitude and longitude).

This module implements the first three API using Lodash,
while the fourth API is manually implemented with hand-
optimized code, which relies on the npm module haver-
sine [21] for evaluating the distance between two points. Due
to the simplicity of the API of the cities module, we also
implemented an hand-optimized version of the first three
APIL. We have not reimplemented the gpsLookup API,
since the original version is already hand-optimized and it
does not use any third-party data-processing library. For eval-
uating DynQ on the gpsLookup API, we use two versions;
one version (DynQ (JS UDF)) uses the JavaScript module
haversine as UDF for calculating the distance between
two points, while the other version (DynQ (Java UDF)) uses a
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Java UDF instead of the JavaScript one. We manually imple-
mented the Java UDF by carefully replicating the JavaScript
version, such that the executed algorithm is exactly the same.

Since all the four API in the cities module are imple-
mented as functions which take as parameters simple raw
values (e.g., £indByState accepts the name of a state) we
implemented those API in DynQ leveraging prepared state-
ment introduced in Sect.4.1. As an example, the following
is the DynQ implementation of the findByState APL

Var locations = { ... }

DynQ.registerTable (locations, ’‘locations’);
Q = ‘SELECT * FROM locations WHERE state=?"'
findByState = DynQ.prepare (Q) ;

The benchmark results are depicted in Fig. 22 for the first
three API, and in Fig. 23 for the gpsLookup API. Since for
the latter experiments we use DynQ in two different ways
(i.e., implementing the UDF in JavaScript and Java), Fig. 23
shows (above the bars of those two implementations) their
respective speedups against the original implementation. As
the figures show, DynQ outperforms both Lodash and the
hand-optimized implementations in all API. Moreover, the
evaluation of the gpsLookup API shows that evaluating
an UDF with DynQ does not introduce any overhead when
the UDF is implemented in the host dynamic language (i.e.,
JavaScript). This is expected, since, as discussed in Sect. 3,
GraalVM can inline the machine code generated from the
JavaScript UDF within the query execution code. More-
over, when the UDF is implemented in Java, performance
improves, i.e., we measure a speedup factor of 1.69x. This is
expected, since executing the JavaScript UDF requires more
type checks than executing the UDF in Java. Our evalua-
tion on existing codebases shows that, besides data analytics,
DynQ is also a promising library for server-side Node.JS
applications that perform in-memory data processing.
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5.3.3 Reusable compiled queries

Here, we evaluate reusable compiled queries, our novel
approach to query compilation discussed in Sect.4.2. As a
benchmark, we re-implemented two workloads, i.e., Scrab-
ble and Mnemonics, which are part of the Renaissance [50],
a well-known Java benchmark suite. The original Java imple-
mentation of these benchmarks evaluate the Java 8 Stream
API, a data-processing API offered by the Java class library.
In this setting, we implemented the benchmarks on JavaScript
using Lodash and DynQ with different implementations of
the fluent API: the per-query compilation approach (Sect. 3.5;
DynQ-per-query in the figures), with explicit parametricity
(Sect.4.1; DynQ-par in the figures) and with reusable com-
piled queries (Sect.4.2; DynQ-rcq in the figures).

As expected, implementations based on DynQ with
explicit parametricity outperform all other implementations
on both benchmarks, so we use this configuration of DynQ as
a baseline. In particular, the bar plots show, above each bar,
the speedup of DynQ with explicit parametricity against the
implementation referred by that bar. However, as discussed
in Sect.4.2, explicit parametricity introduces limitations in
term of modularity. On the other hand, reusable compiled
queries do not suffer from this limitation, as they offer a
classic fluent API. In particular, modifying an application to
switch from a common data-processing library (e.g., Lodash)
to DynQ with reusable compiled queries requires only min-
imal effort. The first goal of this evaluation is to show that
both explicit parametricity and reusable compiled queries
outperform Lodash and DynQ using per-query compilation
approach. The second goal is showing that the enhanced mod-
ularity of reusable compiled queries introduces a very low
overhead w.r.t. explicit parametricity.

Scrabble is a simulation of the well-known board game,
which evaluates the list of words that results in higher score
among a given list of 124,455 words. The benchmark results
are depicted in Fig. 24. On Scrabble, the execution time is
mostly dominated by the UDFs in charge of filtering words
and evaluating their score. For this reason, in comparison to
the slowest implementation, i.e., Lodash, DynQ with explicit
parametricity obtains a moderate speedup of 1.25x. In com-
parison with DynQ with per-query compilation approach,
explicit parametricity obtains a speedup of 1.23x, which is
motivated by the fact that per-query compilation approach
requires DynQ to start executing the query in interpreted
mode even if the same query is executed multiple times,
since the compiled code is not shared among multiple runs.
Finally, in comparison with DynQ with reusable compiled
queries, explicit parametricity obtains a minimal speedup of
1.04x, showing that the better modularity of reusable com-
piled queries does not impair performance.

Mnemonics uses Java streams to compute mnemonic
phone codes [37]. Since Mnemonics uses only simple query

= 1.23 1.25
£.600 1.04
5 . M DynQ-per-query
= | Lodash
.E DynQ-req
£ 200 DynQ-par
%
4]

0

Scrabble

Fig. 24 Scrabble benchmark on JavaScript with reusable compiled
queries

operators, we implemented this benchmark also with the
JavaScript simple (but performance-oriented) implementa-
tion of the query operators (JS-Push in the figure). Since
Mnemonics is implemented as a recursive function which
invokes two queries on each recursive step, we consider
it a relevant application for evaluating reusable compiled
queries. Once the recursion is close to its halting case, those
queries are executed on very small arrays, meaning that high
throughput of a single call is required to achieve high per-
formance in the whole computation. As discussed in Sect. 4,
DynQ approach to query execution without leveraging para-
metricity or reusable compiled queries, i.e., DynQ-per-query,
is not suitable for those kinds of application, as creating a
fresh AST for each query execution leads to executing the
whole workload through interpretation most of the time.

The benchmark results are depicted in Fig. 25. As
expected, the slowest implementation is DynQ-per-query,
which is outperformed by explicit parametricity by a factor
of 6.92x. The speedup of DynQ with explicit parametric-
ity and reusable compiled queries against Lodash (2.69x for
DynQ-par) is because the Mnemonics benchmark uses the
flatMap operator and Lodash implements that operator
by materializing intermediate results. Our JavaScript imple-
mentations of the query operators are similar to the ones in
Lodash, but the f1latMap operator is implemented with-
out materializing intermediate results, as in DynQ, which
explains the performance improvement of our JavaScript
implementations w.r.t. Lodash. Although the JavaScript
implementation of the query operators is conceptually very
similar to those in DynQ, leveraging explicit parametricity
leads DynQ to a speedup of 1.57x against the JavaScript
implementation. Also reusable compiled queries outper-
form the JavaScript implementation, since, as discussed in
Sect.4.2, reusable compiled queries can guarantee that the
sequence of operators composing a pipeline is fully de-
virtualized. Finally, we note that explicit parametricity leads
to a speedup of 1.15x in comparison with reusable compiled
queries, a higher speedup w.r.t. the one observed on Scrabble.
This is expected, since Mnemonics is a function which, for
the benchmark input, executes 338 recursive calls for a single
run of the benchmark, so the overhead of reusable compiled
queries w.r.t. explicit parametricity is amplified in compar-
ison to Scrabble, since each recursive call involves a query
execution.
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Our evaluation on shared compiled queries shows that,
besides high performance query execution, DynQ is now able
to speed up high-throughput workloads, making DynQ an
appealing drop-in replacement for data-processing libraries
which offer a fluent API independently from the workload
characteristics.

6 Related work

Query compilation in relational databases dates back to
System-R [9] and it has been studied in many research
work [44,54]. Recently, query compilation is increasingly
gain interest both in the research community and in indus-
trial systems. In the context of stream libraries and fluent
API, Steno [41] exploits query compilation in LINQ for the
C? language. Nagel et al. [42] further improve LINQ query
compilation in C* by using more efficient join algorithms
and by generating native C code which is able to access
C? collections that reside on the heap of the managed run-
time. OptiQL [62] is a stream library for the Scala language
which leverages the Delite [61] framework for generating
optimized code. Strymonas [29] is a stream library for Java,
Scala, and OCaml. Strymonas leverages the LMS [55] frame-
work for ahead-of-time query compilation for Java and Scala,
and MetaOCaml for the OCaml language. Those libraries are
designed for statically typed languages and exploit type infor-
mation for generating specialized programs during the code
generation.

Most dynamic languages such as JavaScript or Python
offer standard data-processing API (e.g., filter, map, reduce),
as well as more advanced streaming libraries. However, lit-
tle research has focused on optimizing integrated queries in
dynamic languages. Among them, JSINQ [24] is a JavaScript
implementation of LINQ, which has been extended [43]
with a provider for querying the MongoDB [40] database.
JSINQ compiles queries to JavaScript source code. Due to
this design, JSINQ cannot outperform a handwritten imple-
mentation of a query, in contrast to DynQ.

Afterburner [14] is an in-memory, relational database
embedded in JavaScript. Afterburner leverages optimized
JavaScript data structures (i.e., typed arrays) and generates
ASM.js [3] code, i.e., an optimized subset of JavaScript with
only primitive types. Although this design offers very fast
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query evaluation, it comes with many limitations compared
to our approach. First, it cannot execute queries on arbi-
trary JavaScript objects, i.e., the data needs to be inserted
into a database-managed space before query execution,
which introduces overhead, increases the memory footprint,
and requires users to provide a data-schema, whereas our
approach allows objects to be queried in-situ without any
user-provided schema. Another drawback of an ingestion
phase is that, if the dataset is already stored in a collec-
tion (e.g., in an array), copying the data into a managed
memory space may significantly increase the memory foot-
print. Moreover, Afterburner is designed for relational data
of few primitive types (i.e., numbers, dates, and strings),
with no support for querying arrays and nested data struc-
tures, unlike DynQ, which are common in object-oriented
languages. On the other hand, DynQ supports primitive types
as well as arrays and nested data structures. Finally, our
approach targets any language supported by GraalVM, while
Afterburner is specifically designed for JavaScript. In partic-
ular, the approach proposed in Afterburner cannot be easily
replicated in other dynamic languages, since most of them
do not offer efficient data structures like typed arrays and
an efficient subset of the language to operate on primitive
datatypes, like ASM.js.

DuckDB [53] is an embedded database with bindings
for multiple dynamic languages, i.e., Python and R. Dif-
ferently from many other embedded databases, DuckDB is
able to execute queries directly on data structures managed
by a dynamic language, in particular Python and R data
frames. However, DuckDB cannot execute queries on arbi-
trary objects (e.g., on an array of heterogeneous objects), in
contrast to DynQ. Hence, DuckDB does not need to face the
challenge of dealing with unexpected types during query exe-
cution. Moreover, our evaluation shows that when DuckDB is
configured for executing queries directly on the R data frame,
DynQ outperforms DuckDB on all the evaluated queries.

Caching the generated machine code of a compiled query
for later reuse has been recently used in a PostgreSQL query
compiler [49]. However, such approach is similar to DynQ
prepared statement, i.e., it allows reusing compiled queries
by modifying only bind variables. On the other hand, with
reusable compiled queries DynQ is able to reuse compiled
queries also by modifying any expression, e.g., a predi-
cate or a projection. Permutable compiled queries [39] also
addresses the problem of avoiding recompilation. However,
such an approach has been designed for integrating adap-
tivity in compiled queries, and does not allow reusing the
previously compiled code for executing subsequent queries,
as done in DynQ with reusable compiled queries.

The Truffle framework has been successfully adopted for
optimizing existing libraries. FAD.js [8] is a runtime library
for Node.js which optimizes JSON data access by parsing
data lazily and incrementally when the data is actually con-
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sumed by the application. FAD.js focuses on optimizing data
access, while DynQ focuses on data processing. Moreover,
the approach described in FAD.js is complementary to our
approach and can be synergistic with DynQ, i.e., we could
integrate FAD.js in the DynQ JSON provider.

Speculative optimizations based on Truffle have been pro-
posed [56] in the context of Spark SQL for optimizing query
execution on textual data formats. However, the described
approach targets only the leaves of a query plan (i.e., table
scans with pushed-down projections and predicates), while
DynQ is a standalone query engine that can execute a whole
query plan. Another important difference w.r.t. the mentioned
work and DynQ is that in [56] the query compilation is
obtained by combining Spark code generation and ASTs,
leveraging Truffle nodes for speculative optimizations and
using Spark original code as fallback, while in DynQ the
whole query is compiled into an AST. Moreover, the specu-
lative optimizations discussed in [56] are complementary to
our approach, and such optimizations can be integrated into
our DynQ providers for textual data sources.

Recently, a query engine which leverages Truffle for
optimizing polyglot UDF execution has been proposed in
Babelfish [19]. Babelfish and DynQ share some implemen-
tation choices, i.e., leveraging Truffle nodes as representa-
tion of the operators in a physical query plan. However,
Babelfish’s goal is efficiently integrating a polyglot UDF
execution within a database system with static type infor-
mation (i.e., the schema). On the other hand, DynQ’s goal is
integrating a query engine within dynamic language in LINQ
style. Besides efficient UDF execution, DynQ also deals with
query execution on unknown types both on the datasets and
the expressions, e.g., executing queries with UDFs on arrays
of JavaScript objects. This flexibility is crucial for embed-
ding LINQ-style queries and a fluent API within a dynamic
language.

7 Conclusion

In this paper, we introduced DynQ, a new query engine for
dynamic languages. DynQ is based on a novel approach to
SQL compilation, namely compilation into self-specializing
executable ASTs. Our approach to SQL compilation relies
on the Truffle framework and on GraalVM to dynamically
compile query operators during query execution. Truffle was
designed as a programming-language implementation frame-
work; however, in DynQ we exploit it in an innovative
and previously unexplored way, i.e., as a code-generation
framework integrated in a query engine. DynQ has been
evaluated with two programming languages, namely R and
JavaScript, against existing data-processing libraries and
hand-optimized queries. We extended DynQ with reusable
compiled queries, a novel approach to query compilation

which is suitable for applications that perform data process-
ing on many small datasets.

Our evaluation shows that the performance of query eval-
uation with DynQ is comparable with, and sometimes better
than, hand-optimized implementations, outperforming exist-
ing data-processing systems and embedded databases in most
of the benchmarks. Moreover, thanks to reusable compiled
queries, DynQ is also able to outperform data-processing
libraries also on high-throughput workloads that perform
data processing on many small datasets. To the best of our
knowledge, DynQ is the first system which integrates a query
engine within a polyglot VM directly interacting with its
JIT compiler, and allowing execution of federated queries on
object collections as well as on file data and external database
systems for multiple dynamic languages.

Besides the features that DynQ offers to end users, we
believe that DynQ would also be a useful framework in
other data-processing domains. Indeed, since DynQ is a
language-agnostic data-processing framework, and its flex-
ible on executing queries on different data representation,
DynQ could be exploited for implementing query execution
in the context of other existing data processing frameworks
written in any language supported by Graal VM. As an exam-
ple, DynQ could be used for implementing query execution
on external files with possibly malformed data (e.g., JSON
files) in a similar way as done in our previous work on Spark
SQL [56], i.e., by leveraging speculative optimizations.

Finally, besides the high impact that DynQ can provide
being the first LINQ system for dynamically typed lan-
guages, we believe that DynQ is a great tool for further
research. As an example, DynQ could be extended for imple-
menting runtime predicate reordering in the area of adaptive
data-processing. Indeed, we think that releasing DynQ is an
important contribution for the database and programming-
language research communities. For this reason, we released
DynQ as an open-source project, available at https://github.
com/usi-dag/DynQ-VLDB.
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