
Servo: Increasing the Scalability of Modifiable
Virtual Environments Using Serverless Computing

Jesse Donkervliet
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
J.J.R.Donkervliet@vu.nl

Javier Ron
KTH Royal Institute of Technology

Stockholm, Sweden
JavierRo@kth.se

Junyan Li
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
Junyan.Li@student.vu.nl

Tiberiu Iancu
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
T.Iancu@student.vu.nl

Cristina L. Abad
ESPOL

Guayaquil, Ecuador
CAbad@fiec.espol.edu.ec

Alexandru Iosup
Vrije Universiteit Amsterdam

Amsterdam, Netherlands
A.Iosup@vu.nl

Abstract—Online games with modifiable virtual environments
(MVEs) have become highly popular over the past decade. Among
them, Minecraft—supporting hundreds of millions of users—is
the best-selling game of all time, and is increasingly offered as a
service. Although Minecraft is architected as a distributed system,
in production it achieves this scale by partitioning small groups of
players over isolated game instances. From the approaches that
can help other kinds of virtual worlds scale, none is designed
to scale MVEs, which pose a unique challenge—a mix between
the count and complexity of active in-game constructs, player-
created in-game programs, and strict quality of service. Serverless
computing emerged recently and focuses, among others, on ser-
vice scalability. Thus, addressing this challenge, in this work we
explore using serverless computing to improve MVE scalability.
To this end, we design, prototype, and evaluate experimentally
Servo, a serverless backend architecture for MVEs. We imple-
ment Servo as a prototype and evaluate it using real-world exper-
iments on two commercial serverless platforms, of Amazon Web
Services (AWS) and Microsoft Azure. Results offer strong support
that our serverless MVE can significantly increase the number of
supported players per instance without performance degradation,
in our key experiment by 40 to 140 players per instance, which is
a significant improvement over state-of-the-art commercial and
open-source alternatives. We release Servo as open-source, on
Github: https://github.com/atlarge-research/opencraft.

Index Terms—MVE, serverless, scalability, virtual environ-
ments, online games, backend, design, experimentation

I. INTRODUCTION

Today’s digital societies increasingly leverage online games,
which are cloud-deployed services architected as distributed
systems, for other tasks with societal impact such as ed-
ucation [1], professional training [2], and social activism.
Facilitating these use-cases requires support from a scalable
virtual world. Modifiable virtual environments (MVEs) are a
highly popular type of game which feature a virtual world that
allows players to freely modify the game world. The canonical
example of an MVE is Minecraft, which is the best-selling
game of all time and supports over 140 million monthly active
players [3]. Although MVEs are highly popular, their scala-
bility in practice is very limited [4], with commercial services
partitioning players into small, isolated game instances and

+140

+60

Opencraft

Minecraft

Servo

0 50 100 150

Maximum number of players supported

G
a
m

e

Fig. 1: The maximum number of supported players in Servo.

recommending as few as 10 (+1) maximum concurrent players
per instance [5]. Existing techniques for scaling online games
can help increase the number of players for a variety of game
types, but do not address fundamental scalability challenges
in MVEs. In contrast, in this work, we posit that MVE scal-
ability can be addressed by leveraging serverless computing,
and in particular, fine-grained deployment of applications as
Function-as-a-Service (FaaS).

Online games have existed since at least the PLATO III
distributed system [6, L.4,195] from the 1970s. Today, gaming
is a lucrative industry that reaches a yearly revenue of $175 bil-
lion [7]. An important part of the online gaming ecosystem
are modifiable virtual environments, which are online games
that feature a virtual environment that is modifiable, or even
programmable, by players [8]. Prominent examples of MVEs
are Minecraft, Roblox, and Second Life.

Fundamental scalability challenges in MVEs include nu-
merous elements that do not appear in other types of games:
its computationally-intensive virtual world containing in-game
constructs that change state actively, player-created constructs
that act as (repeated) programs, and other aspects we detail
in Section II.

A promising technology to address MVE scalability chal-
lenges is serverless computing [9]–[11]. Serverless computing
is a cloud-computing technology and another step towards
providing computational resources as a utility. The canonical
example of serverless computing is FaaS, which offers users
serverless compute. However, serverless services are known to

exhibit high latency and latency variability, which makes them
difficult to use in real-time systems such as online games.

In this work, we posit that serverless computing, and in
particular, fine-grained deployment of applications as FaaS,
can address MVE scalability when used in conjunction with
latency-hiding mechanisms. Starting from this design prin-
ciple, we design, implement, and conduct real-world exper-
iments with Servo, a novel serverless backend architecture for
scaling MVEs.

Figure 1 illustrates the real-world experimental results we
obtain with a prototype of Servo, in comparison to Minecraft,
the leading commercial MVE, and Opencraft, a state-of-the-
art open-source MVE without a serverless architecture [12].
Servo scales to 150 players per instance, whereas Minecraft
and Opencraft support up to 90 and 10 players, which is an
increase of 60 and 140 players respectively.

Existing approaches do not solve the challenge of scaling
MVEs. Figure 1 also illustrates that MVE workloads can pose
significant stress to the gaming platform for even relatively few
players, through other in-game elements that create complex
workloads dynamically (which we detail in Section II-A).
These elements raise very diverse scalability challenges that
we aim to address in this work. Existing scalability techniques
for online games [13]–[16], such as zoning and replication, can
improve scalability for non-MVE games, but are not designed
to take into account MVE scalability, which features complex
in-game constructs that change state actively, player-created
constructs that act as repeated programs, and other aspects we
detail in Section II. As we explain in our technical report [17],
zoning leads to frequent communication and coordination
between game-servers, and replication even multiplies the
workload caused by active in-game components.

Scaling Minecraft-like MVEs can have high societal impact.
Through their modifiable environments, MVEs provide im-
portant benefits to society, providing entertainment, education,
activism, and social interaction to an audience of more than
100 million people. With its large numbers of players and
mods, MVEs provide world-wide entertainment, but they are
also used for other beneficial societal needs. For example,
MVEs are used for education in academia [18]–[20] and in
industry with Microsoft’s Minecraft Education Edition [21].
MVEs are further used for social activism, with efforts in-
cluding stopping illegal logging in Europe [22], and promoting
press freedom around the globe [23]. Minecraft is not alone as
a popular MVE. In fact, tens of thousands of other MVEs and
MVE modifications (e.g., mods) exist [24], [25], many with
large followings of millions of active players. Following this
trend, Meta has already invested $36 billion in developing
an immersive, scalable MVE with advanced virtual-reality
equipment for player-feedback [26]—a metaverse [27].

Addressing the scalability challenges of MVEs and focusing
on Minecraft-like games, we design, prototype, and evaluate
Servo, a scalable, serverless, MVE system with fine-grained
workload balancing. Our main Contributions are four-fold:
C1 We propose MVEs as a promising but challenging use

case for serverless, and particularly, FaaS computing. We

describe this use case in Section II.
C2 We design Servo, a serverless backend architecture for

MVEs (in Section III). Ours is the first real-time online-
multiplayer game using serverless design principles to
improve the scalability of its virtual world. Although
serverless simplifies building highly scalable and elastic
applications, its programming model is not designed
for online games, which operate under strict quality of
service (QoS) requirements and need to continuously
maintain consistency.

C3 We conduct real-world experiments evaluating the perfor-
mance of our Servo prototype (in Section IV). There is no
standardized evaluation method for distributed systems,
and benchmarking serverless systems is an active area of
research [28], [29]. We design comprehensive real-world
experiments that can help compare serverless and non-
serverless MVEs, covering player-intensive workloads,
workloads with complex in-game constructs, and other
Minecraft-like workloads. From our key experiment on
computational offloading (Section IV-B), we find that
Servo can support up to 120 players during workloads
with 200 in-game constructs, compared to 0 players(!) for
Opencraft and Minecraft. For other workloads, Servo can
increase the number of supported players under favorable
conditions by 40 (+31%) to 140 (+1400%) players. These
values summarize a complex suite of experiments, and
not the exemplary result in Figure 1.

C4 We implement a prototype on top of Opencraft, an
open-source MVE and research platform. Our proto-
type runs on two popular commercial cloud platforms:
Amazon Web Services (AWS) and Microsoft Azure. We
release its source code on Github: https://github.com/
atlarge-research/opencraft.

II. MODIFIABLE VIRTUAL ENVIRONMENTS USE CASE

We argue in this section that modifiable virtual environ-
ments (MVEs) are an important but challenging use case for
serverless computing. To this end, we propose and describe an
operational model for MVEs, describe the performance char-
acteristics of serverless computing, and describe the benefits
and challenges of using serverless computing for online games.

A. The Modifiable Virtual Environment

MVEs are online real-time interactive systems, or games,
which allow players to explore virtual worlds. A main require-
ment of MVEs is to provide stable and good performance
to players. To provide insight into how MVEs meet this
requirement, we propose and describe here an operational
model of MVEs, visible in Figure 2.

Users, or players, run an MVE client (1) on their personal
device, which connects to an MVE server over the Internet.
Players can only see and interact with other players connected
to the same server. The main responsibilities of the client are
to translate and relay user inputs to the server, and to show the
user a visual representation of the virtual world by rendering

Player actions

Move avatar

Avatar moved

1/R = 50ms

tr

TG

Game
State

R=
20Hz

Storage

Sim.

Player Home Internet Cloud Environment

MVE client
ts

tn

State updates

MVE server

render

translate

1

2

3

4

8

9

7
6Simulator

Avatars
...

World
Entities

5

Fig. 2: An operational model of MVEs. Elements highlighted in blue indicate the components most relevant to this work.
Whiskers indicate latency values. Components 6 and 7 are examples of MVE workloads absent in traditional online games.

state updates received from the server, typically at a fixed
rate (e.g., 60 Hz).

Key to good performance is the game’s response time (tr),
which is the time between a player performing an action on
their client, and the result of this action becoming visible
to all players connected to the same server. This metric is
shown visually in Figure 2 using a “Move avatar” command
as an example (2). Although click-to-photon latency, the time
between a player clicking a button and the result appearing
on the screen, is significantly affected by local and remote
latency [30], [31], we focus in this work on the distributed
systems aspects, modeling response time as dependent on the
network latency (tn) and the performance of the server (ts).

Servers (3) are typically deployed in a cloud datacenter.
Their main responsibility is to maintain a view of the global
game state (for one instance of the virtual world) and simulate
its state changes. The game simulates an immersive virtual
world using its simulator, which takes as inputs player actions
and the current game state, and produces state changes which
are sent to players and stored internally to be used in the next
iteration of the simulator.

The performance of the server depends on two main fac-
tors (4). First, the time it takes for the simulator (5) to com-
plete one full iteration (ts). Second, the simulation rate (R),
i.e., the number of iterations per second. The simulation rate
is typically fixed and varies per game type. For first-person
perspective games, R is typically between 20 and 120, with
Minecraft using an R of 20. Lowering the simulation rate
increases the time budget for individual iterations, but also
increases response time.

Providing good performance to users requires maintaining
good response time, which requires maintaining the simulation
rate, R, under varying workloads. This is challenging because
online games, and especially MVEs, have highly dynamic
workloads. These workloads exert monthly, weekly, and di-
urnal patterns, but also fluctuate moment-to-moment based on
player behavior and environment simulation. For game service
providers to offer these services cost-efficiently, this requires
scalable and elastic resource management. Analyses of the
temporal workload dynamics of online games are available

in existing work [32]. In this work, we focus on MVEs. Their
modifiable, programmable, and procedurally generated terrain
creates additional dynamic workloads for the server, which we
describe below.

First, the game must process simulated constructs (SCs, 6).
Players can modify the terrain by placing and removing blocks
of varying types. Some block types, such as batteries and
lamps, have internal state and can interact with other nearby
blocks. For example, placing a battery next to a lamp may
temporarily turn the lamp on. By connecting a collection
of stateful blocks, players can program the MVE’s terrain.
Throughout this article, we refer to such collection of stateful
blocks as simulated constructs or SCs. Players can construct
SCs of arbitrary size, within the limits imposed by the game,
ranging from simple digital circuits to programmable digi-
tal computers, creating additional work for server instances,
which must keep track of block states and their interactions
with other blocks.

Second, procedural content generation (PCG, 7) is an
important task in MVEs because players explore an infinite
world that is generated on demand. When players move their
avatar through the virtual world, the game must generate new
parts of the world (i.e., terrain) with low latency, before the
terrain data must be forwarded to the client.

Once a part of the terrain is generated, it is managed and
persisted by the game server. Due to the world’s virtually
infinite size, existing terrain must be loaded to and from
persistent storage dynamically, based on avatar locations.
Simulated constructs are only updated when their terrain is
loaded in memory. When players leave the area, the terrain
state is persisted (9) and its simulation is halted. When
players approach areas that are not in memory, the MVE must
retrieve these areas from storage, start updating any embedded
simulated constructs, and forward the terrain data to clients.
These actions must be completed before the terrain comes
into the player’s view, and can increase the MVE’s bandwidth
usage by an order of magnitude [4].

Although the generation and storage of terrain are not part
of the game’s simulator, we identify two ways in which these
elements can affect the game’s performance. First, a lack of

performance isolation can lead to interference, reducing the
simulation rate when terrain generation is triggered. Second,
even when the game meets its intended simulation rate, the
separate generation component can fail to generate content at
a sufficiently high rate, preventing players from moving to new
areas and making the game unplayable.

To manage system complexity, our model makes two sim-
plifying assumptions. First, it assumes network latency (tn)
is symmetrical. Second, it assumes that state updates are
only sent after the simulator has completed one full iteration.
However, implementations can interleave the sending of state
updates and simulating state changes.

B. Serverless Computing

Serverless computing is an emerging computing service and
a next step towards making digital services as simple to use as
traditional utilities. Serverless computing promises effortless
and cost-efficient scalability, but its characteristics make it
challenging to adopt for certain application domains.

Although serverless computing does not have a generally-
accepted precise definition, we follow in this work the defini-
tion from [33]. Following this definition, serverless computing:
(1) Moves the responsibility of resource management and
scheduling (RMS) from the end user to the cloud operator.
Users merely provide application logic, and trust the cloud
operator to scale the amount of resources to the current
workload. (2) Employs fine-grained utilization-based billing.
Users do not pay setup cost, or cost for idle resources,
but only pay for resources used, with fine granularity (e.g.,
milliseconds).

Commercial clouds offer a plethora of serverless services.
Well-known examples of these services include Function-as-a-
Service (FaaS) (e.g., AWS Lambda and Azure Functions) and
serverless storage (e.g., AWS S3 and Azure Blob Storage).
With FaaS, users upload code to their cloud provider of choice
and configure one or several events that trigger the execution
of this code. When such an event occurs, the cloud provider
schedules the execution of the user-provided code. This model
has several appealing properties. First, it allows for simple but
powerful scalability because every request is handled by its
own instance. Second, the user only pays for the amount of
time and resources consumed while executing their provided
code, which means the user does not pay for setup costs nor
gets charged when there are no requests.

Serverless storage allows users to read and write (binary)
data to persistent storage in the cloud. Depending on the
service, users are charged for the amount of data stored, the
number of read and write operations, the number of bytes
transferred over the network, or a combination of these met-
rics. In return, the cloud provider performs all necessary RMS,
leaving the user with a simple read-write API. Commercial
clouds offer a range of serverless storage services that make
different performance-cost trade-offs. For example, services
catering to long-term data archiving are generally cheaper to
use, but have significantly higher read and write latencies,
sometimes in the order of days.

Player

Terrain

0 250 500 750 1000

Latency [ms]

G
a
m

e
 d

a
ta

Service Premium Standard

Fig. 3: Download latency (variability) from Azure Blob
Storage for two types of game data.Vertical bars indicate
approximate network latency thresholds for FPS (blue, left),
RPG (green, middle) and RTS (red, right) games [35].

C. Leveraging Serverless for MVEs

In this section, we describe the main benefits and challenges
of using serverless computing for online real-time games
generally, and MVEs specifically.

Benefits: First, games can benefit from the simple elastic-
ity serverless computing provides because gaming workloads
change significantly over time [34]. Furthermore, MVE work-
loads can increase or decrease significantly in the order of
seconds, depending on player actions. For example, if a player
builds and enables simulated constructs, a single player can
exceed the resource requirements of a game instance (see Sec-
tion IV). Second, fine-grained billing allows this elasticity
to be cost-efficient and allows smaller development teams to
participate in the market without large up-front investments.

Challenges: First, whereas games typically have stringent
latency requirements in the order of tens of milliseconds,
serverless services commonly exhibit high latency and signif-
icant performance variability, for example due to cold starts.
Not meeting the game’s latency requirements can result in
significant (visual) glitches for the player that can cause them
to quit the game, causing the game developer to lose users
and revenue.

An example of this phenomenon is shown in Figure 3.
The figure shows the end-to-end latency of retrieving terrain-
data and player-data from Azure Blob Storage. The former
operation is performed when players move their avatars to-
wards a previously unloaded area of the virtual world, which
occurs frequently during play, whereas the latter is performed
every time a player connects to a game instance, and their
associated data is retrieved from persistent storage. For both
storage plans, the latency variability is significant, as indicated
by the width and length of the box an whiskers, and the
value of the outliers. The vertical lines show approximate
values for the maximum acceptable network latency for vary-
ing game genres [35]. Games with an omnipresent model
(e.g., RTS games, in red), third-person games (e.g., RPGs,
in green), and first-person games (e.g., FPSs, in blue). Most
MVEs, including Minecraft, are first-person games, putting
them in the games with the most restrictive network latency
requirement (100 ms). This indicates that a naive application
of serverless technology can easily break its performance
requirements.

Game
State

Sim.

Cloud Environment

ts

MVE server

R=20Hz

FaaS

Serverless Storage

Simulator
State Seq.

Simulator

State Seq.

3

R ≫
20Hz

TG

Terrain DataTerrain Cache

Terrain Gen.

Spec. Exec. Unit

Speculative
Game State

Scheduler

2
1 5

4

6 7

Fig. 4: Servo design overview. Simulated constructs (SC) and
components 1 , 2 , etc. are discussed in the main text.

Second, FaaS services typically impose strict limits on
the amount of time a function is allowed to run, whereas
online games typically consist of long-running player sessions
that can last several hours. Third, and finally, FaaS services
typically do not allow external services to initiate commu-
nication to a running function instance, whereas games and
other interactive systems require continuous communication
between the system components to maintain a consistent state.

III. SYSTEM DESIGN

In this section we discuss our design for Servo, a serverless
backend architecture for MVEs which uses a collection of
serverless techniques to provide fine-grained virtual-world
scalability. We describe the requirements for such a system
and formulate a novel design.

A. System Requirements

R1 Independently scale MVE server components. Al-
though replicating monolithic MVE instances is the sim-
plest approach to scale out, it is not efficient. Because
players increase the workload on specific components
of the MVE (e.g., terrain simulation, terrain generation),
scaling these components independently limits wasted
resources.

R2 Simulation latency should not exceed 50 ms. To provide
an immersive experience to players, the game should
maintain a constant simulation rate, R = 20Hz. This
implies the simulation latency should not exceed 1/R =
50ms (see Section II).

R3 Limit additional resource management complexity for
game operators. An important benefit of the client-server
architecture discussed in Section 2 is its simplicity: a
game operator runs one server instance for every virtual
world instance. A serverless game design should limit the
additional number of steps game operators must perform.

R4 System is fully transparent to users. To improve
usability and potential for community adoption, using
the system should require zero effort from, and be fully
transparent to, the users (i.e., players). Specifically, this
means players should not need to run additional software
or perform additional steps to benefit from the system.

B. Design Overview

This section describes the design of Servo, a serverless
backend architecture for MVEs that provides fine-grained
horizontal scalability while maintaining low operational effort
from game developers. Figure 4 shows our design, with novel
aspects indicated in blue.

Servo is a backend system that modifies and interacts with
server instances. It does not interact with the game client, nor
change the protocol used between the client and server (ad-
dresses R4). Instead, Servo modifies existing components in
the server to leverage serverless services. To save resources
and maintain an update rate of 20 Hz under high workload,
Servo uses computational offloading for simulated constructs,
a computationally intensive part of the game loop (first part
of Requirement R1).

Novel in this work, Servo leverages serverless technologies
such as Function-as-a-Service (FaaS) and managed storage to
provide fine-grained scalability for the key MVE components
described in Section II-A. We provide first an overview of
Servo’s novel elements, and proceed by describing each of
these elements in detail in the remainder of this section.

To provide good performance for terrain simulation, Servo
modifies the MVE simulator (1) to use a speculative exe-
cution unit (2) to simulate SCs. The speculative execution
unit is responsible for managing speculative executions of
each simulated construct, and providing the simulator with the
speculative states that turn out to be correct. The execution unit
offloads the SCs to serverless functions (3 , partially addresses
Requirement R3). Unlike the game loop, the function is not
required to simulate changes at a fixed rate (e.g., 20 Hz),
allowing it to compute state changes speculatively. Each
function invocation simulates a single simulated construct,
computes its state changes for multiple simulation steps, and
sends these state changes back to the execution unit, allowing
the simulator to merge the state changes with those computed
in the game loop (partially addresses R2).

To independently scale terrain generation, Servo moves
the responsibility of terrain generation from the (monolithic)
server to an independent serverless function, reducing the
server’s computational load (completes R1). The terrain gen-
erator (4) is responsible for invoking terrain generation tasks
based on the current location of each avatar. Each generation
task (5) corresponds to a serverless function invocation, and
generates a fixed-sized area of the terrain.

Finally, Servo moves the responsibility of managing persis-
tent game state from the game operator to the cloud provider,
storing game state in cloud-based managed storage (7 , R3).
MVE persistent storage includes player-, meta-, and terrain-
data. We focus in our design on the latter because it is
the most data-intensive and is accessed most frequently. To
maintain good quality of service (QoS), Servo uses a server-
local cache (6) with a simple pre-fetching policy to hide
latency and performance variability from the managed storage
solution (R2). A more detailed description of Servo’s server-
less storage can be found in our technical report [17, §3.5].

MVE State Serverless environment

< , , ... >

< , , ... >

< , , ... >

Fig. 5: A visual representation of speculative execution in
Servo. Colored areas are simulated constructs. White areas
are static parts of the virtual world.

C. Replicated Speculative Execution for Simulated Constructs

MVEs allow players to build simulated constructs. As
described in Section II, simulated constructs are part of the
virtual world’s terrain, allow players to program the virtual
world, and generate additional computational load for the
MVE instance. This section describes how Servo uses compu-
tational offloading and speculative execution to scale simulated
constructs.

Servo scales horizontally by offloading the computation
of individual simulated constructs to serverless functions.
Whenever a player builds and activates a simulated construct,
Servo invokes a function and passes the simulated construct’s
current state and the number of steps to simulate. Although
this approach scales well with the players’ ability to build an
endless number of simulated constructs, it raises an important
design challenge: Because simulated constructs are part of
the terrain, their update rate must match that of the virtual
world (i.e., 20 Hz), and their state changes must become visible
to players with low latency (i.e., after a single tick, or 50 ms).

Servo addresses this challenge through replicated, specula-
tive execution. Figure 5 presents an overview of this approach.
The left-hand side of the figure depicts a simplified top-down
view of a voxel-based 3D virtual world. The colored areas
are simulated constructs: simulated elements that change state.
An example of a simulated construct is a circuit that powers
a lamp, shown in green and red. Servo isolates the state of
these elements and forwards each to a serverless function
for speculative execution. If no speculative state results are
available on the game server on time, or the speculative state
is incorrect, Servo falls back to server-side simulation.

Speculative results can be incorrect because, although SCs
operate independently of other simulated constructs and play-
ers, players have the possibility to interact with the simulated
construct, for example by modifying the underlying terrain.
Because such changes cannot be part of the original request to
the remote function, its results will likely be inconsistent with
the new correct state. Addressing this challenge, we include
in the request a logical timestamp indicating when a player
last modified the simulated construct. The function sends this
same timestamp in its reply, allowing the server to disregard
the reply if its result is outdated.

40 1 2 3 5 6 7 8Server

Time (abstract)

Function
41 2 3 5 6 7 8

computed by

current state speculative
state sequence

(real time)

(speculative)

server
computed by computed by
function, applied function, discarded

Fig. 6: Example of speculative execution for simulated con-
structs. Servo simulates the construct locally, until it receives
the results from the remote function.

This approach reverses the common application of specu-
lative execution and rollback mechanisms: instead of specu-
latively applying updates locally and undoing those changes
if they turn out to be incorrect, Servo performs speculative
execution remotely and only applies changes when they are
correct. This approach is feasible due to the game’s fixed
update rate, which artificially limits their processing speed.

Figure 6 shows a visual representation of this approach.
When a simulated construct is started, Servo starts simulating
simultaneously on the server and in a remote function. Starting
the simulation on the server hides the (cold-start) latency from
the remote function (completes R2), However, performing all
the work on the server would defeat the purpose of offloading
the computation. Instead, we observe that, unlike the server,
the function does not need to simulate at a fixed rate, and
therefore can (speculatively) work ahead. This allows the
function to catch up with, and get ahead of, the game server,
and return a collection of future states. Upon receiving a reply
from the worker, Servo stops its local simulation and instead
applies state updates received from the remote function.

The number of steps that need to be computed locally
determines the efficiency of the speculative execution. For the
example shown in Figure 6, 5 out of 8 steps are computed
both locally and in the offloaded function, resulting in an
efficiency of 8−5

8 ≈ 0.38. Although the first speculative
execution is likely to reach low efficiency, the efficiency is
likely to increase significantly for all following invocations
by invoking further speculative execution several steps before
the results are needed. Throughout the rest of the article, we
refer to this number of steps as the tick lead. Returning to
the example in Figure 6, the second speculative execution can
start at time 6, but simulate starting at state 8, resulting in a
tick lead of 8-6=2.

D. Leveraging FaaS for On-Demand Content Generation

Players exploring the virtual world, or teleporting their
avatar to new locations, cause computationally intensive work-
loads and contention for resources with the game’s simulator,
which must maintain stable performance. Here we briefly
describe how Servo horizontally scales the MVE’s content
generation process by running content generation tasks in
remote functions.

TABLE I: Overview of Experiments. Experiments focus on Simulated Constructs (SC), Terrain Generation (TG), and Remote
Storage (RS). Components either run locally (L), use serverless computing (S), or combine the two (L+S). For a detailed
description of parameters, workload, environment, and explanations on the notation, see Section IV-A.

Focus Parameters Workload Environment Rep. Dur.

SC TG RS Players Behavior World Server Services [m]

Section IV-B SC: System scalability L+S L L 10-200 A flat DAS-5 AWS 1 10
Section IV-C SC: Latency hiding L+S L L 1 - flat DAS-5 AWS 1 5
Section IV-D TG: QoS - S L 5 Sinc default DAS-5 AWS 1 5
Section IV-E TG: System scalability - L+S L+S 100 S3, S8, R default Azure Azure 1, 20 10
[17, §4.6] RS: Perf. variability - - S 8 S3 default Azure Azure 1 10
[17, §4.7] SC: Performance S - - 1 - flat DAS-5 AWS - -

TABLE II: Player actions in the random behavior (R). See
Section IV-A for a detailed description.

Probability Action

40% Move to a random destination at 1 to 8 blocks per second.
30% Break or place a nearby block.
20% Stand still.

5% Send a message to all other players.
5% Set inventory to a random item.

As described in Section II, MVE’s generate new areas of
the terrain on-demand, when players approach these areas.
Servo separates the virtual world and content generation
responsibilities and moves the content generation component
to a remote function. When players approach non-existent
areas, the game invokes a remote function for each area that
requires generation, providing as parameters the seed for the
pseudo-random number generator, and the coordinates of the
area. Although the generation of a single area is expected to
complete in the order of seconds, all generation requests can
be invoked concurrently, leveraging FaaS’s simple scalability.

E. Remote State Storage

Whereas MVEs typically save state to local disk, Servo
uses serverless storage to reduce the operational effort for the
game developer (completes R3). However, managed storage
can exhibit significant performance variability, which must be
hidden from MVE players to provide good QoS. Although
Servo uses managed storage for player-, meta-, and terrain-
data, we focus in this section on terrain-data, because it is
the most challenging: terrain-data consists of relatively large
files which are accessed frequently and with strict latency
requirements.

Servo addresses the latency requirements of terrain storage
by caching terrain data on local storage and pre-fetching
data from remote storage. When avatars change location, the
storage service checks which files correspond to the avatar’s
current location and the areas in the player’s view range,
and load these into memory from the local file system or
remote storage. Areas not within any player’s view distance
are removed from memory after a certain amount of time.
Servo caches these areas on the local file system, reducing the
number of accesses to remote storage and saving bandwidth.
To improve the cache’s hit rate and hide latency, Servo pre-

fetches terrain data outside of, but close to, the player’s view
distance and proactively loads these into memory. In contrast
to reads, writes to remote storage are performed periodically.

IV. EXPERIMENTS

To evaluate our design, we implement Servo on top of Open-
craft, an open-source MVE and research platform compatible
with the original Minecraft network protocol [12]. We imple-
ment Servo’s serverless components on the two most popular
commercial cloud platforms: Amazon Web Services (AWS)
and Microsoft Azure, and conduct real-world experiments
using our prototype implementation of Servo. Table I shows
an overview of our experiments, from which we derive the
following main findings:

MF1 Serverless offloading of simulated constructs improves
game scalability. Servo supports up to 140 (+1400%)
additional players under favorable conditions, compared
to state-of-the-art alternatives (Section IV-B).

MF2 Speculative execution efficiently hides serverless offload-
ing latency, with a median of 84% of speculative states
applied without invoking functions in advance, and 100%
when invoking functions 10 steps in advance (Sec-
tion IV-C).

MF3 Serverless content generation provides good QoS (Sec-
tion IV-D). Servo can maintain full view distance (128)
whereas Opencraft drops below 16.

MF4 Serverless content generation maintains good perfor-
mance, increasing the number of supported players by
6 compared to Opencraft (Section IV-E).

MF5 Caching significantly reduces performance variability
when reading game data (see our technical report [17,
§4.6]). Servo reduces the 99.9th percentile latency for
loading terrain data from serverless storage from 226 ms
to 34 ms, enabling terrain loading within a single simu-
lation step.

MF6 Simulated constructs of small and medium scale can be
used for speculative execution effectively [17, §4.7]. At
least 95% of samples speculatively executing 100 steps
for simulated constructs consisting of 252 and 484 blocks
simulate at a rate of 488 and 105 updates per second, 24.4
and 5.3 times faster than the simulation rate respectively.

0

50

100

200

0 50 100 150 200

Maximum players supported N
u

m
b

e
r

o
f

si
m

u
la

te
d

 c
o

n
st

ru
c
ts

(a) Max. players for increasing
SCs. Higher is better.

7
8

8
1 9
0

8
1 8
5

8
3

8
0 8
0

1
1
8

8
5 8
8 9
8 1

8
0 1
2
3 1
3
6 2

1
3 2
4
1 4

0
2 3

0
5

4
0
4

1
2
1

1
0
2

1
0
7

1
1
2

1
1
3

1
1
0

1
1
7 1

2
5 1
4
9

1
3
9

1
4
7 1
4
9 1
8
3

1
6
3 1
7
1 1

8
6

1
9
0

1
8
4

1
8
5

2
2
6

8
8

9
8 1
2
3

1
1
3

1
2
4

1
0
4

1
2
1

1
0
5

1
1
7

1
2
8

1
2
4

1
2
5 1
2
8

1
3
4

1
4
7

1
6
8

1
4
9 1
8
7

1
8
3 1

8
1

Simulated constructs = 200

Servo supports up to 120 players

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of players

T
ic

k
d

u
ra

tio
n

 [
m

s]

Game

Minecraft

Opencraft

Servo

(b) The tick duration distribution for a varying number of players and 200 SCs. Lower is better.

Fig. 7: Comparing the scalability of Servo with alternative systems. Scalability is expressed in maximum number of players
while maintaining stable performance. Missing bars indicate the game could not support any players.

A. Experimental Setup

Table I shows an overview of our experiments, and details
their parameters, workloads, and experiment environment. The
experiments cover three major system parameters: simulated
constructs (SC in Table I, explained in Section II-A and
depicted in Figure 2, component 6), terrain generation (TG),
and remote storage (RS). Each of these components either runs
locally (L in Table I), uses serverless computing (S), or a
combination of the two (L+S).

The experiment workloads are defined through three param-
eters. First, players indicates how many players connect to the
game throughout the experiment.

Second, the behavior indicates what players do once con-
nected. Sx indicates that players move away from the starting
location (i.e., spawn location) at a speed of x blocks per
second, in a star-shaped pattern, whereas Sinc indicates players
that increase their velocity over time. These synthetic behav-
iors increase the amount of terrain covered by the players,
and allows stress-testing the game’s terrain generation. R
indicates a randomized behavior, in which players perform
actions that are common in MVEs. An overview of these
actions is available in Table II. We use a randomized behavior
because no MVE-specific player behavior models currently
exist. A indicates a behavior where players exclusively take
move actions, within a bounded area. This behavior limits the
amount of terrain generation, and is used to evaluate simulated
construct (SC) performance.

Third, the world indicates the type of terrain (generation)
used. The default world type uses procedural content gen-
eration and is commonly used by real players and features
mountains, rivers, and other natural phenomena. The flat world
type consists of an infinite plain in all directions. This terrain
makes it easy to build, and players commonly use this world
type to prototype simulated constructs.

We perform our experiments on the commercial cloud plat-
forms Amazon Web Services (AWS) and Microsoft Azure, and
on DAS-5, a local medium-sized supercomputer for research
and education [36]. Server indicates the location of the MVE
server instance, and services indicates the platform used for

managed services (e.g., FaaS, managed storage). Unless oth-
erwise indicated, we use 512 MB memory on AWS Lambda,
and compare the performance of Servo with Opencraft and
Microsoft’s official Minecraft 1.16 Java Edition.

B. Offloading Simulated Constructs Improves MVE Scalability

Our results show that: (1) Using serverless offloading of
simulated constructs, Servo can support up to 120 players
under workloads where Opencraft and Minecraft support
none (0); and (2) For other workloads tested, Servo can
increase the number of supported players under favorable
conditions by 40 (+31%) to 140 (+1400%) compared to
Opencraft and Minecraft.

Figure 7a shows the maximum number of supported players
for varying workloads. The vertical axis shows four work-
loads with an increasing number of simulated constructs (i.e,.
increasing computational requirements). The horizontal axis
shows the maximum number of supported players, which we
define as the maximum number of players for which less
than 5% of tick duration samples exceeds 50 ms. The bars
indicate different games. Servo (blue) serverlessly offloads
the simulation of the simulated constructs. Servo is based
on Opencraft (green), which computes simulated constructs
locally. Minecraft (yellow) is the official Minecraft server.

The result shows that Servo significantly improves scalabil-
ity in nearly all cases, and introduces only limited overhead.
The workload with 0 simulated constructs shows the baseline
performance. Minecraft supports 110 players in this scenario,
whereas Servo and Opencraft support 190 and 200 players
respectively. For higher numbers of simulated constructs, the
maximum number of supported players decreases for all
games, but Servo performs best under these conditions.

Opencraft and Minecraft support up to 10 and 90 si-
multaneous players respectively in worlds with 100 sim-
ulated constructs. Servo supports 150 players, an increase
of 140 (+1400%) and 60 (+67%) players respectively. When
using 200 SCs, Servo supports 120 players whereas Opencraft
and Minecraft support zero (0). Even when connecting a single
player to Opencraft or Minecraft, their 95th percentile tick
duration exceeds 50 ms.

40

20

10

0

0.00 0.25 0.50 0.75 1.00

Efficiency

T
ic

k
 l
e
a

d

200

100

50

0.00 0.25 0.50 0.75 1.00

Efficiency

T
ic

ks

Fig. 8: Efficiency of offloaded simulation for varying tick
leads (left), and simulation lengths (right).

Figure 7b shows the detailed performance of all three
games when using 200 SCs for multiples of 10 connected
players between 0 and 200 (corresponds to the top-row in
Figure 7a), and allows an analysis of the observed scalability
differences. We further evaluate the scalability of the games
for fewer than 10 players, but omit this data from the plot for
improved readability. The horizontal axis shows the number
of connected players, and the vertical axis shows a boxplot
of the game’s tick durations. The whiskers extend to the 5th

and 95th percentiles. The maximum value is shown in the text
above each box, and further outliers are omitted. To maintain
good and stable performance, the tick duration must be below
50 ms. The red line indicates the 50 ms threshold.

We observe that for both Minecraft and Opencraft, a
significant number of samples exceed 50 ms, and that this
number increases with the number of connected players. In
contrast, Servo’s tick duration is significantly lower, and shows
a narrower distribution (box height). Servo supports up to 120
players because fewer than 5% of tick duration samples exceed
the 50 ms threshold up to this number of players.

We observe that Servo’s tick duration is consistently close to
the 25th percentile of Opencraft’s tick duration. Upon further
analysis, we observe that both Opencraft’s and Minecraft’s tick
duration distributions are bimodal, and that this behavior is
caused by their implementation, in which simulated constructs
are simulated every other tick. I.e., the bottom half of their
distribution shows the performance when not updating the
simulated constructs.

Overall, the results show that offloading significantly im-
proves the performance of the MVE.

C. Speculative Execution Effectively Hides FaaS Latency

Our results show that Servo’s latency hiding mechanism can
effectively hide the latency from serverless functions.

Figure 8 shows this result. Both plots show the effi-
ciency (Section III-C) of the offloaded computation on the
horizontal axis. The efficiency is computed as the fraction of
offloaded work that must still be performed by the game server
because its result arrives too late at the server instance. The
left-hand plot shows the tick lead on the vertical axis, which
shows how many ticks in advance of the computation result
being required the function is invoked.

The results show that a tick lead of 0 leads to a median
efficiency of 84% (top row in the left-hand plot), indicating
that 16% of the offloaded computation must still be performed

200

100

50

0 2000 4000 6000

Latency [ms]

T
ic

ks

200

100

50

0 300 600 900 1200

Invocations per minute

T
ic

ks

Fig. 9: Latency (left) and number of invocations per
minute (right) for varying simulations lengths in ticks.

locally to meet the game’s latency requirements. However,
when the function is invoked in advance by 10, 20, or 40 ticks,
median efficiency reaches 100% (boxplots align vertically at
1.00). Further analysis shows that for these three configura-
tions, at least 99.1% of invocations have an efficiency of 100%.

The right-hand plot in Figure 8 shows the function efficiency
for a varying number of simulation steps, using a fixed 20-
tick lead. The plot shows that efficiency remains high (100%
median) for both 50 and 100 simulation steps, but drops
below 100% for 200 steps. We find the reason for this drop
in efficiency is the increased latency of the function when
simulating 200 steps, which we explore in Figure 9.

Figure 9 shows the end-to-end latency of invoking a sim-
ulation function, and the number of invocations per minute,
for varying simulation lengths. The left-hand plot shows that
increasing the simulation length increases the function latency.
The 200-tick simulation shows a mean latency of 1459 ms,
which exceeds the lead time of 1000 ms (20 ticks of 50 ms
each). This explains the reduced efficiency in the right-hand
plot in Figure 8.

Figures 8 and 9 show numerous outliers in all plots. Further
analysis shows that outliers have a strong temporal correlation,
providing evidence that these outliers are caused by cold starts.
This is surprising because we perform a warm-up iteration of
the experiment that uses more invocations per minute than the
other configurations, suggesting that AWS starts deallocating
function resources within minutes.

Multiplying the mean latency with the number of invoca-
tions per minute shows the additional cost of running Servo to
be between $0.216 and $0.244 per hour. This is comparable to
the cost of running one c5n.xlarge instance ($0.216 per hour),
but without the instance management overhead.

D. Serverless Terrain Generation Provides Good QoS

Procedurally generating terrain for MVEs using serverless
functions achieves good QoS. Figure 10 shows this result. The
left-hand plot shows how Servo is able to load the required
terrain in time, whereas Opencraft does not. The horizontal
axis shows time, and the vertical axis shows the minimum
distance between a player and the closest missing part of
terrain. To provide good QoS, this value should remain at
128, the default configured view distance of the players. The
workload consists of five players, each moving in a different
direction. The players initially move at a speed of one unit

0

50

100

0 500 1000

Time [s]

V
ie

w
 r

a
n

g
e

 [
b

lo
c
k
s]

Game

Opencraft

Servo

(a) Distance until closest un-
loaded chunk. Higher is better.

0

50

100

0 500 1000

Time [s]

T
ic

k
 d

u
ra

tio
n

 [
m

s]

 Game

Opencraft

Servo

(b) Tick duration over time.
Lower is better.

Fig. 10: Serverless Terrain Generation Performance.

per second, and increase their speed by an additional unit per
second every 200 seconds.

The plots show that Opencraft (red curve) manages to
generate sufficient terrain when the players move at 1 unit per
second, but fails to do so when their speed increases. After
1000 seconds, when the players move 6 units per second,
the closest unloaded terrain is less than 16 units away. I.e.,
the terrain generation cannot keep up with the workload. In
contrast, Servo maintains good QoS throughout the experi-
ment. Initially, after roughly 30 seconds, Servo experiences a
brief and small performance degradation (dip in the blue curve
in the top left). After further analysis, we conclude that this
behavior is caused by cold starts. The area around the avatar
starting-location is generated locally, before the experiment
starts. After 30 seconds, the avatars enter a new area and Servo
starts generating terrain serverlessly. After roughly 30 seconds,
a sufficient amount of resources has been allocated and Servo’s
performance stabilizes.

The right-hand plot shows the tick duration for both games.
The vertical axis shows the tick duration, which must remain
below 50 ms to meet QoS constraints. The outsides of the
colored bands indicate the 5th and 95th percentiles using a
2.5-second window, and the curve inside the band shows a
2.5-second rolling arithmetic mean. Although Servo maintains
good QoS in terms of terrain generation, the 95th percentile
tick duration starts exceeding the 50 ms threshold while play-
ers move at a speed of 2 blocks per second. Further analysis
shows that this is caused by the higher number of terrain
parts generated for Servo compared to Opencraft. Although
content generation happens outside the main game loop for
both games, the overhead of loading the content in the game
causes overhead which increases tick duration.

E. Serverless Terrain Generation Has Good Performance

Under constant workload, serverless terrain generation pro-
vides lower tick times than Opencraft, increasing the median
number of supported players by 17%, and increasing perfor-
mance overall. This section presents experimental evidence for
this result, for three separate workloads.

Figure 11a shows the tick durations over time for the S3 and
S8 workloads, in which players move away from the starting

S
3

S
8

0 10 20 30 40 50

0 100 200 300 400 500

0

25

50

0

25

50

Number of players

Time [s]

T
ic

k
d
u
ra

tio
n
 [
m

s]

Game

Opencraft

Servo

(a) Tick duration over an increasing number of players for workloads
S3 and S8. Lower is better. Values must remain below 50 ms to
maintain good QoS.

Servo

Opencraft

0 10 20 30

Number of players

G
a
m

e

(b) Maximum supported players for the R workload. Higher is better.
The white dot indicates the arithmetic mean.

Fig. 11: Performance improvement of serverless terrain gen-
eration (Servo) compared to local generation (Opencraft) for
varying workloads.

location in a straight line with a speed of 3 or 8 in-game
units per second, respectively. Each player goes in a different
direction, exploring new areas and generating new terrain.

The horizontal axis on the bottom shows time, and the
horizontal axis on the top shows the number of players.
As time progresses, more players connect to the game. The
vertical axis shows the tick duration, which must remain below
50 ms to meet QoS constraints. The outsides of the colored
bands indicate the 5th and 95th percentiles using a 2.5-second
window, and the curve inside the band shows a 2.5-second
rolling arithmetic mean.

The figure shows the tick duration increasing for both Open-
craft and Servo. This is caused by the increasing workload:
every ten seconds, a new player joins the game and starts
moving in a new direction. This causes additional terrain to
be sent to clients and more terrain to be generated, increasing
the load on the server. Under the S3 workload, Opencraft
and Servo support up to 12 and 18 players respectively (the
95th percentile curve exceeds the 50 ms threshold). The S8
workload shows a similar trend, but supports fewer players (9
and 15 respectively) because it is a heavier workload.

Because the plot shows large performance variability (height
of colored bands), we perform an experiment with a random
behavior workload which we repeat 20 times. The result is
shown in Figure 11. The plot shows that Servo supports
slightly more players than Opencraft (distribution is more to
the right), but has increased performance variability (width of
the box is larger). The plot shows that Servo maintains good
performance when using FaaS to offload terrain generation.

V. RELATED WORK

In this section, we present a developing and brief overview
of related work. A more detailed discussion of related work
is available in our technical report [17]. The benefits of
using serverless services have been studied for several novel
application domains such as data processing [37], graph
processing [38], and video encoding [39]. Furthermore, the
application of fine-grained computational units and serverless
computing for gaming services has been an active research
topic for the past decade [40], [41]. However, Servo is the first
online multiplayer game to improve its virtual-world scalabil-
ity through serverless computing. Supporting real-time online-
multiplayer games on serverless platforms is challenging be-
cause real-time games require consistently high performance
and low latency, and because the FaaS programming model
(request/reply) does not match well that of real-time online-
multiplayer games (message streams).

There exist a variety of architectures for scalable online
multiplayer games. An extensive overview is available in [13].
Systems such as VON [42], Colyseus [43], and Rokkatan [44]
distribute the simulation of a single static world over multiple
machines. In contrast, Servo uses additional resources dynam-
ically and is designed specifically to address the computational
challenges of MVEs.

Speculative execution techniques have been applied in a
variety of domains, such as big data processing [45], state
machine replication [46], and in a variety of interactive ap-
plication types: VNC/SRD [47] uses speculative execution to
predict frames for a remote display system. Crom [48] per-
forms speculative execution to hide latency in Web browsing.
Outatime [49] uses speculative execution to render frames
based on a player’s predicted inputs. Although speculative
execution is commonly applied close to the user, Servo uses
speculative execution for computational offloading.

Mirror [50] is an architecture for computation-offloading in
mobile games, in which mobile games can offload computation
to a remote machine. Whereas Mirror requires the remote
machine to be always online, and delays player inputs to
hide latency, Servo uses serverless functions that only run
when the offloaded computation is required and hides latency
by performing local active replication until the offloaded
simulation is complete.

VI. CONCLUSION AND FUTURE WORK

Gaming is the world’s largest entertainment industry, and
MVEs are the best-selling game of all time. Minecraft, the
canonical example of an MVE, has more than 130 million ac-
tive monthly players. However, due to the inherent complexity
of modifiable virtual worlds, this scale can only be reached
by replicating large numbers of isolated instances, preventing
players from playing together. In this work, we explore the use
of serverless computing to address the complexity and limited
scalability of MVE instances. Specifically, we design Servo,
a prototype MVE which leverages serverless to offload both
compute and storage from MVE server instances to the cloud.
Our results show that Servo’s offloading increases the number

of supported players by 140, and that it can successfully hide
(cold-start) latency from players.

In future work, we aim to investigate how to scale large
simulated constructs while meeting their QoS requirements,
and (serverless) MVE designs without a central server.

ACKNOWLEDGMENTS

This work is funded by the projects NWO OffSense, EU
Graph-Massivizer, CloudStars, and by structural funds from
VU Amsterdam. We thank Tim Hegeman, who helped us
improve this work by providing valuable technical expertise.

REFERENCES

[1] D. Bar-El and K. E. Ringland, “Crafting game-based learning: An
analysis of lessons for minecraft education edition,” in FDG, 2020.

[2] Michele Melchiorre, Senior VP BMW, “The BMW iFactory - Highly
Efficient and Competitive,” in Keynote ISC, 2022.

[3] “Minecraft officially crosses over 141 million monthly active
users,” https://www.windowscentral.com/minecraft-live-2021-numbers-
update, October 2021.

[4] van der Sar et al., “Yardstick: A benchmark for minecraft-like services,”
in ICPE, 2019.

[5] Mojang, “Minecraft Realms,” Jan. 2022, “You and up to 10
friends can play together at one time.”. [Online]. Available:
https://www.minecraft.net/en-us/realms

[6] B. Dear, Ed., The Friendly Orange Glow: The Untold Story of the
PLATO System and the Dawn of Cyberculture. Pantheon Books, 2017.

[7] Newzoo, “Newzoo global games market report 2021 free version new-
zoo,” July 2021.

[8] Donkervliet et al., “Towards supporting millions of users in modifiable
virtual environments by redesigning minecraft-like games as serverless
systems,” in HotCloud, 2020.

[9] Eyk et al., “Serverless is more: From PaaS to present cloud computing,”
IC, vol. 22, 2018.

[10] J. Schleier-Smith et al., “What serverless computing is and should
become: the next phase of cloud computing,” Commun. ACM, vol. 64,
no. 5, 2021.

[11] P. C. Castro et al., “The rise of serverless computing,” Commun. ACM,
vol. 62, no. 12, 2019.

[12] Donkervliet et al., “Dyconits: Scaling minecraft-like services through
dynamically managed inconsistency,” in ICDCS, 2021.

[13] González et al., “Key technologies for networked virtual environments:
A new taxonomy,” CoRR, vol. abs/2102.09847, 2021.

[14] Liu et al., “Survey of state melding in virtual worlds,” ACM Comput.
Surv., vol. 44, 2012.

[15] Liu and Theodoropoulos, “Interest management for distributed virtual
environments: A survey,” ACM Comput. Surv., vol. 46, 2014.

[16] Gilmore and Engelbrecht, “A Survey of State Persistency in Peer-to-Peer
Massively Multiplayer Online Games,” TPDS, vol. 23, 2012.

[17] Donkervliet et al., “Servo: Increasing the scalability of modifiable virtual
environments using serverless computing – extended technical report,”
arXiv, 2023.

[18] Worsley et al., “Multicraft: A multimodal interface for supporting and
studying learning in minecraft,” in HCI-Games, vol. 12790, 2021.

[19] Slovák et al., “Mediating conflicts in minecraft: Empowering learning
in online multiplayer games,” in CHI, 2018.

[20] Zhu and Heun, “Teaching and learning of chinese history in minecraft:
A pilot case-study in hong kong secondary schools,” in IDC, 2017.

[21] “Minecraft Official Site — Minecraft Education Edition,”
https://education.minecraft.net/en-us/homepage.

[22] A. Natividad, “How Greenpeace Used Minecraft to Stop Illegal
Logging in Europe’s Last Lowland Primeval Forest,” Adweek, Jan.
2018. [Online]. Available: https://bit.ly/MinecraftGreenpeace

[23] “The Uncensored Library – Reporters without borders.” [Online].
Available: https://www.uncensoredlibrary.com/

[24] “Steam Search,” Jan 2021. [Online]. Available: http://bit.ly/steam-mves
[25] “Mods - Minecraft - CurseForge,” Jan 2021. [Online]. Available:

http://bit.ly/ModsForMinecraft
[26] J. Mann, “Meta’s spent $36 billion on the metaverse. The iPhone and

Xbox cost way less.” October 2022.

[27] N. Stephenson, Ed., Snow Crash. Bantam Spectra Books, 1992.
[28] Eyk et al., “Beyond microbenchmarks: The SPEC-RG vision for a

comprehensive serverless benchmark,” in ICPE Companion, 2020.
[29] Yu et al., “Characterizing serverless platforms with serverlessbench,” in

SoCC, 2020.
[30] K. Raaen and A. Petlund, “How much delay is there really in current

games?” in MMSys, 2015.
[31] Z. Ivkovic et al., “Quantifying and mitigating the negative effects of

local latencies on aiming in 3d shooter games,” in CHI, 2015.
[32] Nae et al., “Dynamic Resource Provisioning in Massively Multiplayer

Online Games,” TPDS, vol. 22, 2011.
[33] S. Kounev et al., “Toward a Definition for Serverless Computing,” in

Serverless Computing (Dagstuhl Seminar 21201), 2021, vol. 11.
[34] V. Nae et al., “Efficient management of data center resources for

massively multiplayer online games,” in SC, 2008.
[35] M. Claypool and K. T. Claypool, “Latency and player actions in online

games,” Commun. ACM, vol. 49, no. 11, 2006.
[36] Bal et al., “A medium-scale distributed system for computer science

research: Infrastructure for the long term,” Computer, vol. 49, 2016.
[37] Jonas et al., “Occupy the cloud: Distributed computing for the 99%,” in

SoCC, 2017.
[38] Toader et al., “Graphless: Toward Serverless Graph Processing,” in

ISPDC, 2019.
[39] Fouladi et al., “Encoding, fast and slow: Low-latency video processing

using thousands of tiny threads,” in NSDI, 2017.
[40] Bernstein et al., “Orleans: Distributed virtual actors for programmability

and scalability,” Tech. Rep., 2014.
[41] B. Bors, Game Backend Development. Apress, 2023.
[42] Hu et al., “VON: A scalable peer-to-peer network for virtual environ-

ments,” IEEE Netw., vol. 20, 2006.
[43] Bharambe et al., “Colyseus: A distributed architecture for online multi-

player games,” in NSDI, 2006.
[44] Müller et al., “Rokkatan: Scaling an RTS game design to the massively

multiplayer realm,” in ACE, 2005.
[45] Xu et al., “Chronos: A unifying optimization framework for speculative

execution of deadline-critical MapReduce jobs,” in ICDCS, 2018.
[46] Wester et al., “Tolerating latency in replicated state machines through

client speculation,” in NSDI, 2009.
[47] Lange et al., “Experiences with client-based speculative remote display,”

in ATC, 2008.
[48] Mickens et al., “Crom: Faster web browsing using speculative execu-

tion,” in NSDI, 2010.
[49] Lee et al., “Outatime: Using speculation to enable low-latency continu-

ous interaction for mobile cloud gaming,” in MobiSys, 2015.
[50] Jiang et al., “A mirroring architecture for sophisticated mobile games

using computation-offloading,” Concurr. Comput. Pract. Exp., vol. 30,
2018.

