@La rge ResearCh VU % \lj:lll-l\fERSITEIT

z | Massivizing Computer Systems AMSTERDAM

Performance Characterization of NVMe

Flash Devices with Zoned Namespaces
(ZNS)

Ultrastar‘“
DC ZN540

Lr<
ZONED g
STORAGE E\L :

Krijn Doekemeijer, Nick Tehrany, Balakrishnan Chandrasekaran,
Mattias Bjagrling, Animesh Trivedi

The amount of data is ever-increasing

-+ Rocks

1 Yottabyte
each year!

Flash SSDs have become ubiquitous

sgake

% RocksDB

Read rite

What we will discuss today

Problem:

1. Block interface does not perform for flash
2. New ZNS interface promises good performance
3. ZNS' performance characteristics are not known...

Goal: Infer ZNS performance characteristics

Block interface: Random write/read

Read pguWritten
T Empty

Flash is different. Sequential writes only

B \Written
T Empty

Flash is different: Random reads

B \Written
T Empty

Flash is different: Reset at block level

Block 1 Block ... Block N

B \Written
T Empty

Flash is different: Reset at block level

Block 1 Block ... Block N

CEEE [LLLLE LT e en
> > > 9

Block 1 Reset Bjlock 1
T B o o I R I Y A I I N
0o 1 2 3 Q@ 5 @ 1 2 3 4 5

Block interface: Need to migrate data

BV alid

B nvalid

T Empty
Block 1 (1) Copy Block 2

[S O I I D I
0 1 2 3 @ 5 0 1
(2) Reset Block 1

I I T N N

@1 2 3 4 5

Flash: The problem of the block interface

Question?: What happens if we keep writing to the SSD?
What about data migration?

Flash: The problem of the block interface

Consistent write throughput
1250

1000
750
500
250

Throughput (MiB/s)

0

0 5 10 15 20
Time (minutes)

Flash: The problem of the block interface

Consistent write throughput
1250

1000

750
500
250

Throughput (MiB/s)

0

0 5 10 15 20
Time (minutes)

Flash: The problem of the block interface

Consistent write throughput

1250 .
@ 1000
= >120x!
= 750
3
2 500
=
S 250
E \
|_

0

0 5 10 15 20
Time (minutes)

Flash: The problem of the block interface

Consistent write throughput
1250

1000

2
25 Unstable?
500

250

Throughput (MiB/s)

0

0 5 10 15 20
Time (minutes)

|s there a different interface
For flash storage?

10

Meet Zoned Namespace SSDs

Zone 1 Zone ... Zone N

Meet Zoned Namespace SSDs

Zone 1 Zone ... Zone N
Sequential write Random read Reset
Write Read Reset

Zone 1 Zone 1

11

Zone state complexity

Possible zone states:

Reset Full | Write
l Write Terte
Empt Open Closed
mPY Open| P Open
> -
A
Reset

Research problem

Write/Read/Reset Stable? Zone o%erations

?
<€
v -

>
A >

Research problem

Question: What are ZNS performance characteristics?

Write/Read/Reset Stable? Zone o%erations

?
<€
v —

>
A >

Research problem

Before we use ZNS we need to characterize its performance
characteristics

APACHE &5

Big data Spark

14

Solution: A characterization framework

Goal: Infer performance characteristics
Microbenchmarks and scalability tests of:

e Appends/writes/reads T
e All zone management operations DC ZN540

Interference tests of == @%J

STORAGE

e \Writes and reads
e Resets and writes/reads

VU 15

Solution: A characterization framework

R e S u I tS : lestern Digital

e 13 Key observations Ultrastar
. DC ZN540

. 5 Recommendatlons DATA CENTER NVMe™ZNS SSD

X
ZONED %@
STORAGE

We discuss the 4 biggest observations

() https://github.com/stonet-research/NVMeBenchmarks

16

https://github.com/Krien/NVMeBenchmarks

Write operation methods
Sequential write

Appends

W1 W2

0 1 2 O 1 2
Host schedules one-by-one

VU¥

A1 A2 A1 A2

L

0 1 2

Device schedules and
returns address

Latency: writes versus appends i R1/R4

Motivation: What operation to use for low latency applications?

Latency: writes versus appends i R1/R4

Motivation: What operation to use for low latency applications?

Operation latency (microseconds)

® Sequential write ® Append
20

15 il

10

Latency: writes versus appends i R1/R4

Motivation: What operation to use for low latency applications?

Operation latency (microseconds)

® Sequential write ® Append
20

15 il

10

5

0

Recommendation: Use writes for lower latency
VU% 18

ZNS write parallelism methods g R2/R4

Sequential Zone Write to multiple zones
writes !% appends

W1 W2 A1 A2 A1 A2 W1 W2

L

0 1 2

Throughput: ZNS writes I R2/R4

Motivation: What write operation to use for scaling throughput?

Throughput: ZNS writes I R2/R4

Motivation: What write operation to use for scaling throughput?

Throughput (operations per second)

® Appends e Writes — — Peak throughput
1250
1000
750
500
250
0

1 2 3 4 5 6 7 8
In-flight requests

Throughput: ZNS writes I R2/R4

Motivation: What write operation to use for scaling throughput?

Throughput (operations per second)

® Appends e Writes — — Peak throughput
1250

1000
750
500

250
0

1 2 3 4 5 6 7 8
In-flight requests

Recommendation: Use appends to scale throughput because
VUfe of the open zone limit 21

Predictable performance? R3/R4

Question: Does ZNS lead to the same variability as block
devices?

Consistent write throughput
1250
1000

750

500

250

0

Throughput (MiB/s)

0 5 10 15 20

Time (minutes)

Predictable performance? R3/R4

Question: Does ZNS lead to the same variability as block
devices? It does not

Consistent write throughput
- Block interface = ZNS

1250
1000
750
500
250
0

Throughput (MiB/s)

0] 5 10

Time (minutes)

Reset operation latency

Reset comes in two flavors:

Reset
(1) Pure Reset: - — -

Open Zone Empty Zone

Finish
LU | | e

Open Zone

(2) Finish:

Full Zone

Reset operation latency

Reset comes in two flavors:

Reset

Open Zone Empty Zone

Finish
LU | | e

Open Zone

(2) Finish:

Full Zone

Finish is used to prevent reaching the open zone limit

VU¥ 23

Reset operation latency - == R4/R4

Reset comes in two flavors:

Reset
1) Pure Reset: - —

Open Zone

Finish
LU | | e

Open Zone

Empty

2) Finish:

Full Zone

Important question: does occupancy (% filled) matter™

VU¥ 23

Reset operation latency

Reset comes in two flavors:

Reset

Open Zone Empty Zone

Finish
LU | | e

Open Zone

2) Finish:

Full Zonée

Important question: does occupancy (% filled) matter?

VU¥

23

Motivation: Applications have to issue resets

Reset latency (miliseconds)
20

10 —

0O <01 625 125 25 50 ~100
Zone occupancy (%)

Motivation: Applications have to issue resets

Reset latency (miliseconds)
20

15 / —
10 —
5 // E BB Empiy Zone

0
0 <01 625 125 25 50 ~100 Occupancy matters!

Zone occupancy (%)

Reset operation latency

Motivation: Applications have to issue resets

|
GF"TIS“ latency (miliseconds) 1 second!
1000

750

500

250

0
0 <01 625 125 25 50 ~100

Zone occupancy (%)

VU¥ 94

Reset operation latency

Motivation: Applications have to issue resets

Finish latency (miliseconds)

1000

750

250 Empty Zone
0

|
<01 625 125 25 50 ~100 Occupancy matters!

Zone occupancy (%)

VU¥ 94

Motivation: Applications have to issue resets

Reset latency (miliseconds) Finish latency (miliseconds)
20 1000

¥ 750

10 / — 500
5 —— — 250

0 <01 625 125 25 50 ~100 0 <01 625 125 25 50 ~100
Zone occupancy (%) Zone occupancy (%)

Reset operation latency - == R4/R4

Motivation: Applications have to issue resets

Reset latency (miliseconds) Finish latency (miliseconds)
20 1000
15 — 750
10 — 500
5 B . 250
0 0
0 <01 625 125 25 50 ~100 0 <01 625 125 25 50 ~100
Zone occupancy (%) Zone occupancy (%)

Recommendation: Prevent issuing resets
VU 24

Conclusion of discussed results

1. Low latency: use sequential writes
2. High throughput: use appends
3. ZNS has latency stability
4. ZNS reset operations should be avoided
Write/Read/Reset Stable? Zone operations
Known!
Known! Known! <
X S s

A

Performance Characterization of NVMe Flash
Devices with Zoned Namespaces (ZNS)

Krijn Doekemeijer*!, Nick Tehrany*!%, Balakrishnan Chandrasekaran!, Matias Bjorling®, and Animesh Trivedi'
'Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
2Delft University of Technology, Delft, the Netherlands
3Western Digital, Copenhagen, Denmark

{k jer. n.atehrany, b.

Abstract—The recent emergence of NVMe flash devices with
Zoned Namespace support, ZNS SSDs, represents a significant
new advancement in flash Storage. ZNS SSDs introduce a new
storage abstraction of append-only zones with a set of new VO
(i.e., append) and management (zone state machine transition)
commands. With the new abstraction and commands, ZNS SSDs
offer more control to the host software stack than a non-zoned
SSD for flash management, which is known to be complex
(because of garbage collection, scheduling, block allocation,
parallelism management, overprovisioning). ZNS SSDs are, con-

arivedi} @vunl, matias bjorling@wdc.com

supporting random and sequential /O operations. Though
this model works with conventional HDDs, it is not apt
for flash-based storage devices as flash internally does not
support overwriting data [26], [27), [28]. Flash devices offer
the illusion of “overwritable” storage via the flash translation
layer (FTL), a software component that runs within the device.
The FTL enables easy integration of flash devices (by allow-
ing lh:m to mmqucmde as fast HDDs), albeit it introduces

sequently, gaining adoption in a variety of (e.g. file
systems, key-value stores, and databases), particularly latency-
sensitive big data applications. Despite this enthusiasm, there has
yet to be a systematic characterization of ZNS SSD performance
With its zoned storage model abstractions and 1/0 operations.
‘This work addresses this crucial shortcoming. We report on the
performance features of a commercially available ZNS SSD (13
key observations), explain how these features can be incorpo-
rated into publicly available state-of-the-art ZNS emulators, and
recommend guidelines for ZNS SSD application developers. All
artifacts (code and data sets) of this study are publicly available
= ¢

Index Terms—Measurements, NVMe storage, Zoned Names-
pace Devices

1. INTRODUCTION

The emergence of fast flash storage in data centers, HP(
and commodity computing has fundamentally caused changes
in every layer of the storage stack, and led to a series of new
developments such as a new host interface (NVM Express,
NVMe) (1], [2), [3], a high-performance block layer [4], [5],
[6], [7], new storage L/O abstractions [8], [9], [10]. [11], [12],
[13], [14]), and re/co-design of storage application stacks [15],
[16], [17), (18], [19), [20}, [21]. Today, flash-based solid-
state drives (SSDs) can support very low latencies (i.c., a few
microseconds), and multi GiB/s bandwidth with millions of
1O operations per second [22], [23], [24].

Despite these advancements, the conceptual model of a
storage device remains unchanged since the introduction of
hard disk drives (HDDs) more than half a century ago. A
storage device supports only two necessary operations: write
and read data in units of sectors (or blocks) [25]. Data can
be read from and written to anywhere on the device, hence

Equal contributions, joint first authors. Nick was with TU Delft during
this work

in 1291, (30]. [31], [32]. [33]).
[34] and complicates device lifetime management [35]. These
challenges are defined as the umvritten contracts of SSDs [26].
As data centers have largely transitioned to SSDs for f:
reliable storage [36]. [37]. and modern big data applications
have high QoS demands (38). [39]. there is a dire need to
address these unwritten contracts.

Researchers and practitioners advocate for open flash SSD
interfaces beyond block 1/0 [40] to address these challenges.
Examples include Open-Channel SSDs (OCSSD) [41], multi-
stream SSDs [9), and, more recently, Zoned Namespaces
(ZNS) [11]. The focus of this work is on NVMe devices that
support ZNS. which are commercially available today [42].
[43). ZNS promises a low and stable tail latency [11] and
a high device longevity, and, hence. addresses the needs of
modern big data workloads. There is, unsurprisingly. a rich
body of active and recent work on ZNS [44], [11]. [45]. [46].
[47]. [48). [49], [50). [51]. [52]. [53]. [54]. [55). [56]. Despite
this enthusiasm, there has nor been a systematic performance
and operational characterization of ZNS SSDs. This lack of
an extensive perf and of
ZNS SSDs severely limits the utilization and application of
ZNS devices in big data workloads. In this work. we bridge
this gap by presenting the performance characterization of a
commercially-available NVMe ZNS device.

We complement this characterization of a physical device
with an investigation of emulated ZNS devices, since they
are widely used in research [51], [57). [58]. [55). Emulated
devices enable researchers to explore the ZNS design space
without being ined by devi
Such unconstrained explorations are crucial since ZNS is a
new interface and the selection of available configurations in a
real SSD is. unsurprisingly, quite limited. The rescarch validity
of all of these works hinge on an emulator’s ability to mimic

Zones of a ZNS device have states (Fig. 1), which dictate
the allowed operations on a specific zone. Since each zone
operation (e.g., read, write, and append) consumes SSD
resources (e.g., internal buffers), there are limits on the number
of zones that can be concurrently opened and used. These
limits are defined as the maximum open zone limit and
maximum_active zone limit, respectively. Applications must
abide by these constraints, and explicitly manage the zone
states and transitions. An application must, for instance, open
azone before it accepts writ es or appends. State transitions
can be internal to a device and implici (e.g., a write to an
empty zone transitions it to an open zone in Fig. 1), or explicit
as a response 1o a user request.

ZNS offers several explicit zone management operations,
which include open, close and finish. We skip dis-
cussing the first two, whose names reveal their functionalities,
and focus on the last. The £inish operation transforms an
open zone directly into a full zone. It releases all resources
attached to the zone (to stay within the maximum open zone
limit). Then, the device can either fill the zone with data or
mark the unused capacity with mapping updates (metadata
updates) in the “finished” zone (Fig. 1). Mapping updates
would require extra metadata to keep track of partially-filled
zones. The £inish operation has impl s for perfor-
mance, and the costs of this operation varies from one ZNS
SSD implementation to anot

In summary, ZNS devices support a rich /O interface that
includes operations beyond the simple read and write
operations seen in traditional flash storage. It is, therefore,
crucial to understand and the of these

More details/results in the paper ...

TABLE I: Overview of the key insights

Category | tnsight

Appendys. write | Weite operations have up to 23% lower la-
tencies than append operations (§111-C)

Scalability Prefer intra-zone scalability (111D, §IILE)

Zone transitions Finish is the most expensive operation: it
takes up to hundreds of milliseconds (S1I1-E)

VO interference NVMe ZNS offers 3x higher read throughput
under concurrent /O operations than NVMe
@H-H

VO & GC interference | Reset latency increases by up 1o 78% under
concurrent 1O operations, but reset opera-
tions themselves have no effect on append,
read or write operations (§111-G)

on characterizing one SSD model and synthesize the perfor-
mance questions to ask when evaluating a ZNS SSD. Tab. I
summarizes our key findings.

A. Benchmarking setup

We use fio [80] for generating the workloads and bench-
marking the ZNS device. We also employ custom SPDK
benchmarks for benchmarking state transitions (§111-E) and
reset interference (§I11-G), since fio does not support them.
We describe our benchmarking platform in detail in Tab. I1.

We use two storage stacks for benchmarking: the Linux
kel block layer and the SPDK stack. The Linux block
layer ships with the mg-deadline scheduler. which buffers
multiple write operations to a single zone, merges writes
to contiguous LBAs into one or multiple (larger) writes, and
issues the merged requests. Applications can,

operations as they (and their state-machine transitions) are now
part of the Linux storage software stack

C. Software support

ZNS devices are fully supported in Linux since kernel
version 5.9 [75). Currently there is a limited number of
applications that use ZNS and most that do, do not use all
functionalities (e.g.. no £inish or open). Evaluating these
applications would limit what ZNS properties we can measure
and, therefore, in our work we use synthetic benchmarks as we
need to understand all of ZNS' facets first. The results of our
benchmarks can then be used for application design. Here, we

hence, issue multiple write operations to a single zone.
The SPDK stack, in contrast, is a bare-bones storage stack
without any /O scheduler. The rationale behind our storage
stack selection is twofold. First, no storage stack currently
supports all combinations of 1/O and management operations
that we aim to benchmark. We cannot, for instance, issue and
benchmark append or zone management operations via fio
and the Linux VO stack. In a similar vein, we are restricted
to issuing only one write per zone at a time with SPDK,
since it lacks an /O scheduler. Second, the selection enables
us to compare the implications of state-of-the-practice—the
Linux stack: d that of the s of-the- SPDK—for
ZNS licati

briefly mention a number of prominent ZNS in
research to get an overview of what is currently available. Cur-
rently. applications have access to ZNS-friendly file systems
F2FS [76]. Btrfs [77] and Ceph [78]. There is also support for
a swap system known as ZNSwap (49] and a RAID system
known as ZRAID [79] Lastly, KV-store RocksDB has ZenFS
as a ZNS-capable file system back-end [11].
III. EXPERIMENTS

In this paper, we characterize the performance and interfer-
ence properties of the Western Digital Ultrastar DC ZN540
SSD, a largezone ZNS SSD, using a series of controlled
benchmarks. As of writing the number of commercially-
available ZNS SSDs is limited, therefore, we focus our efforts

‘We run experiments for 20 minutes and/or repeat them at
least three times for deriving robust statistics. We pin our
benchmarking code to the NUMA node containing the ZNS
device. For the Linux storage stack, we use the io_uring
engine with submission-queue polling enabled, following the
recommended settings [14].

B. Performance metrics

We briefly describe the metrics we use to evaluate the
performance of NVMe (ZNS) devices. Two indicators of /O
operation performance are throughput (i.c., the number of
operations or bytes per second) and operation latency (i.e. the
time each operation takes). We measure ZNS throughput in

26

Take-home messages

ZNS SSDs deliver high-throughput stable performance

e /NS has a unique performance model
e \We synthesize ZNS’ performance model

https://qithub.com/stonet-research/NVMeBenchmarks
VU% 27

https://github.com/Krien/NVMeBenchmarks

Further reading

L ooNOUEWNE

O Y
vndwWwnN e o

Bjgrling et al., ZNS: Avoiding the block interface tax for flash-based SSDs, ATC’21

Shin et al., Exploring Performance Characteristics of ZNS SSDs: Observation and Implication, NVMSA’20

Bae et al., What You Can’t Forget: Exploiting Parallelism for Zoned Namespaces, HotStorage’22

Im et al., Accelerating RocksDB for SmallZone ZNS SSDs by Parallel I/O Mechanism, Middleware’22

Jung et al., Preemptive Zone Reset Design within Zoned Namespace SSD Firmware, MDPI'23

Purandare et al. Append is near: Log-based data management on ZNS SSDs, CIDR’22

Bjgrling et al., Zone Append: A New Way of Writing to Zoned Storage, Vault’20

Tehrany et al. Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools, ArXiv (2023)

Tehrany et al. Understanding NVMe zoned namespace (ZNS) flash SSD storage devices, ArXiv (2023)

Doekemeijer et al. TropoDB: Design, Implementation and Evaluation of an Optimised KV-Store for NVMe Zoned Namespace Devices, MSc thesis (2022)
Kim et al., Performance Modeling and Practical Use Cases for Black-Box SSDs, TOS'21

He et al., The Unwritten Contract of Solid State Drives, EuroSys’17

Chen et al, Understanding Intrinsic Characteristics and System Implications of Flash Memory Based Solid State Drives, SIGMETRICS'09
Bjgrling et al., LightNVM: The Linux “ Open-Channel SSD Subsystem, FAST’17

Kang et al., The Multi-streamed Solid-State Drive, HotStorage’14

Also check out other research from the AtLarge research team!: https://atlarge-research.com/publications.html

VU

be 27

https://scholar.google.com/citations?user=_n1RL7QAAAAJ&hl=nl&inst=4393003693960974403&oi=sra
https://scholar.google.com/citations?user=_n1RL7QAAAAJ&hl=nl&inst=4393003693960974403&oi=sra
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=yWgr7XsAAAAJ&citation_for_view=yWgr7XsAAAAJ:u-x6o8ySG0sC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=YNMjKQoAAAAJ&citation_for_view=YNMjKQoAAAAJ:qjMakFHDy7sC
https://scholar.google.com/citations?user=_n1RL7QAAAAJ&hl=nl&inst=4393003693960974403&oi=sra
https://atlarge-research.com/publications.html

- Backup slides -

29

Flash SSDs are ubiquitous

Storage demands

e 1yottabyte every year by 2030!?
e Performance SLAs

Why flash SSDs?
e Faststorage }?

e Blockinterface requires NO changes to '
host applications ~100 MiB/s ‘ ~10 GiB/s

1. Huawei, 2021 https://www-file.huawei.com/-/media/corp2020/pdf/qgiv/industry-reports/computing_2030_en.pdf

VU¥ 29

https://www-file.huawei.com/-/media/corp2020/pdf/giv/industry-reports/computing_2030_en.pdf

The problem of the block interface

Block interface is a mismatch for flash
Write throughput over time

e Requires firmware that runs GC 1250 1
e Unpredictable GC performance

p—
o]
o]
o

Throughput (MiB/s)

0 5 10 15 20
Time (minutes)

Meet NVMe Zoned NameSpace (ZNS)

ZNS is a match for flash

e Application-managed GC
e Applications have to be rewritten

Throughput (MiB/s)

ot
S
S
e}

Write throughput over time

| = ZNS NVMe

—— NVMe

5 10
Time (minutes)

15

20

29

Problem: ZNS is complex and novel

Device is split in append-only, application-managed zones
4 ZNS-unique zone management operations
New zone append operation

We do NOT know any performance characteristic!

NVMe ZNS Applications

Zone 1

Zone N

‘|Zone ...

Ultrastar

DC ZNS540

ZONED o
AGE " .

29

How can we design for ZNS
If we do not know its
performance model?

29

Why Cluster?

Convergence of HPC and big data - IEEE

= » CLUSTER 2025

Santa Fe, New Mexico, USA e 31 October-3 November

e Performance isolation for HPC

e Cheap, less overprovisioned flash
storage for Big Data workloads

e /NS promises to support both, but we
need to model its performance first

VU¥ 29

Performance model: What do we need?

1. Performance scalability of zones
2. Performance of the 4 zone management operations
3. 1/0O request interference
4. Zone management request interference
? ? ? Open? Clrse? Reret? Finish?
/
Zone 1 Zone ... : Zone N \ Zone X

Ultrastar
DC ZN540

ZONED 8
TORAGE @

In short, we know none of these...

What is allowed on a zone?

Active I Open

Zones | Zones

I/
|
|
' |
\

N — — — -

P

Reset Z , L |
Finis} L P & Full =
Zox Write .’ L — vy

R(_w,? @ Write — Z
Zone " ?‘ L) Empty
o <
i)

29

Solution: A characterization framework

e We introduce a characterization framework:
o Generic to support any ZNS device T
rastar

o 13 key observations! (today we discuss only a few) DC ZN540

o 3 key recommendations! o>

‘wihttps://qithub.com/stonet-research/NVMeBenchmarks

https://github.com/Krien/NVMeBenchmarks

ZNS highlight #1: Write scalability

ZNS Scalability methods:

ZNS Write throughput

1200 ¢p“—-—-—/-‘.————-‘

1. Intra-zone: issue zone appends to one
zone

2. Inter-zone: write/zone appends to multiple
zones concurrently

1

o}
S
=}

0
=)
)

400 1

—4¢— Intra-zone 4KiB —¢— Inter-zone 4KiB
200 —4— Intra-zone 8KiB —#$- Inter-zone 8KiB
—-%- Intra-zone 16KiB -#%- Inter-zone 16KiB
0'— ; . :
1 2 4 8
Concurrency level

Throughput (MiB/s)
o
S
S

Problem: inter-zone is limited by active zones!

N

VU 29

ZNS highlight #2: Zone management

e Expensive operations (writes are in Js)

e Cost depends on zone occupancy

1s! 1000

800

Latency (ms)

200 1

0_
0 <0.16.2512.5 25 50 ~100

Finish operation latency

o)
o)
o

400 1

Zone occupancy (%)

Latency (ms)

-)
(9] o

=
o

(%)

o

Reset operation latency

Over 15x!

=t

0 <0.16.2512.5 25 50 ~100
Zone occupancy (%)

29

ZNS emulators

Problem:

e Researchers resort to emulators (at least 4 papers)
e Available emulators do not capture our observations
o Applications are designed wrongly!

Solution:
e Emulators should be changed Emulated
e Applications should also be tested on real devices ZNS SSD

o o/
VU 29

Application design

We make the following key recommendations:

Use write instead of append for low latency % RocksDB
Prefer intra-zone scalability

Avoid finish operations!

There is no need to account for GC interference
Resets can be issued with concurrent I/O without F2FS
performance hiccups

ok w0bd -~

What is next?

e Extend to more physical ZNS SSDs
o Any collaborators?

e Incorporate our findings into emulators
o We need this for future applications!
Introduce a ZNS scheduler

e Extend to benchmarking applications

Take-home messages

Flash SSDs are everywhere
ZNS enables latency stability for flash SSDs
ZNS has a unique performance model
We synthesize this performance model
o Use this model on your ZNS SSD!
e /NS emulators are not accurate

Ultrastar
DC ZN540

g
ZONED %ﬁ\
STORAGE ©

29

Benchmark setup

e raw ZNS command performance
e synthetic/controlled experiments

OS configuration Linux 5.19, Ubuntu 22.04
Workload generator for I/O fio (3.32, git commit: db7fc8d)
Zone transition benchmarks Custom benchmarks (C++)
Zone transition interference Custom benchmarks (C++)
benchmarks

ZNS: A new abstraction

A new abstraction: ? ? ?

Zone 1 =Zone Zone N

e Device is divided into zones
o |/O isissued to zones
o Append-only (NO overwrites)
o Zones have state

ZNS: A new abstraction

A new abstraction:

e Device is divided into zones
o Append-only (NO overwrites)
o Zones have state
e Explicit State management of zones | Zone 1 |Zone ... Zone N
o Clients do GC with reset
operations
e What is the performance of ZNS?

VU¥ 29

ZNS is complex!

Reset Zone ., |
Finish ? - > wul
Zone | = Write ., i A A <
Finish ?
Zone " Write ? B

n
Finish ‘
Proma N Ry, Iy S Sy P — 7('lose Zonewnte?l

/7

I

| | \ Open7 J - L

I -;;::: | g(:):ens Tplicit Open € Zone = Explicit Open < | = Closed II
| | Open? N

l TWrite Write T Zone ™ I
T T et | do e — -— |
e | | e R l‘:ﬁ_‘? _____________ _ 7
? l.onv‘ Open
Reset ? Write u f_'_\ Zone ™ Reset ?
Zone " Empty Zone "
N |

N

VU 29

What do we need to know?

What are the ZNS performance characteristics?

e How do we scale I/O and how scalable is
ZNS?
e How expensive are zone transition

operations?
e Does ZNS suffer from I/O interference? l

We can not optimize for ZNS if we do not know
its performance characteristics!

VU¥ 29

What we measured

What we measured (a lot):

e Scalability: Inter- and intra-zone scalability
e Scalability: Impact of request size

e Zone transition overhead: All zone transitions (reset, open, finish, close)
e Interference: Interference of reads/writes and zone transitions/writes/reads

We have 11 key observations, we will explain 3 of them (they are essential!):

1. Scalability: Prefer Intra-zone scaling
2. Zone transition overhead: Finish operations are the most expensive operations
3. Zone transition overhead: Zone occupancy influences transition overhead

VU¥ 29

ZNS write Scalability: how?

ZNS does not allow multiple writes to 1 zone!

Method 1. Intra-zone:

e Append, let the device reorder
o Applications need to be rewritten...

e Merge, merge multiple “writes” on host

Method 2. Inter-zone:

e Concurrent zones

O

Limit “max open zones”

Intra-zone Inter-zone
RQ1, RQ2 RQ1, RQ2
Appenw Write’ Write
Zone 1 Zone 1 : Zone 2

VU¥

29

ZNS Scalability: bandwidth

e Both intra- and inter-zone reach device limit

o Intra is appends, inter is concurrent zone writes oo ,,;,;"“"’"_:.‘/‘"‘—"“““_
e Request size is very important 0007 =
e |Intra is preferable!

o No max zone reached
o Zones are shared between tenants... (Multi-tenancy)

800 A

600 { *

400 1

Throughput (MiB/s)

Intra-zone V

Inter-zone x

200 1

—$— Appends 4KiB
—#-- Appends 8KiB

—$— Writes 4KiB
—-- Writes 8KiB
—¥- Appends 16KiB =¥- Writes 16KiB

VU¥

0

4 8

RQ1 , RQ2 RQ1 , RQ2 Conlcurrency level (aspends are intra-zone, writes inter-zone)
Append Write’ Write
Zone 1 Zone 1 one 2

29

ZNS: State transitions

e Applications issue all transitions

o Zones need to be opened to accept I/O
o Zones are limited

e \WVe evaluate all transition latencies

In isolation, one-by-one

Measure submission to completion

We fill zones for a percentage (1, ..., 100%)
o Repeated at least a thousand times

e Important observations:

o Finish and Reset are expensive
o Called regularly
o These are not negligible!

o O O

VU¥

Reset

Finish

Write

29

State transitions #1: finish operation

What are finish operations for?: 15! == 1000

800 1

e Open zones to full zones
e Ensures max open zones is not
reached

600 1

Latency (ms)

400 A

Results/recommendations:

200 1

The most expensive operation!
AVOId fInIShIng zones 0 0% <0.1% 6.25% 12.5% 25% 50% ~100%‘
Do not finish “empty” zones Zone occupancy

Prefer intra-zone scalability

VU¥ 29

State transitions #2: reset operation

What are reset operations for:
e Zone garbage collection
Results/recommendations:

e Reset latency correlates with zone
occupancy

e Resets are not free

e Resets should be scheduled on zone
occupancy

VU¥

Latency (ms)

=] Unfinished zones

1 Finished zones

I BBBEREEEE

0% <0.1% 6.25% 12.5% 25% 509
Zone occupancy

=S

29

Other results/conclusions...

Please read the paper for more:

The impact of I/O size...

Open/close zone performance...

I/O interference effects...

ZNS-aware applications (and how to design them)

Observation: Request size always matters!

Througput (KIOPS)

Appends

0_
4KiB 8KiB 16KiB 32KiB 64KiB 128KiB
Request size

Througput (KIOPS)

Writes

140 1

120 1

100

4KiB 8KiB 16KiB 32KiB 64KiB 128KiB
Request size

29

Scalability #1: intra-zone

Method 1. Writes with scheduler:

e NVMe operation
e One write to one zone allowed?
e Merge I/O on host

Method 2. Appends:

e ZNS-specific operation!
e Multiple appends to one zone allowed!

Results/recommendations:

e Prefer appends at low depth
e Use large requests

VU¥

Throughput (KIOPS)

500

400 A

300 A1

200 A

100 1

4KiB “Write” throughput

—4$— Appends
—4— Writes [mg-deadline]

2

4 8 16 32 64
Queue depth [1 concurrent zone]

29

Scalability #2: inter-zone

Zone parallelism

500

e \We can issue I/O to concurrent zones
e Limited by “max active zone” constraint

Results/recommendations:

Throughput (KIOPS)

e Writes have better inter-zone scalability

100 1

N

VU

4KiB “Write” throughput

400 1

300 A

200 A

—-— Max active zones
—$— Appends
—$— Writes

1 2 4 8 14 16

Concurrent zones [QD=1]

29

