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Abstract
Modern NVMe devices are capable of millions of IOPS in
throughput and low microsecond latencies. However, it re-
mains a challenge to consistently provide peak throughput,
low latencies, and fairness simultaneously when a device is
shared between multiple tenants. In addition, modern NVMe
devices depend on advanced controller logic that leads to be-
havior that can be hard to predict. This survey explores the
challenges of providing QoS guarantees on NVMe devices
and current solutions. We explore solutions across the storage
stack, on the device controller, the OS block layer, and higher
layer solutions in virtualized- and container environments.

1 Introduction

Solid State Drives (SSDs) are a popular means of storage in
modern server, desktop, and mobile applications. Compared
to traditional Hard Disk Drives (HDDs), they provide orders
of magnitude higher throughput and lower latency. A modern
SSD can offer latencies on the order of 10 µs and a throughput
of 1 million IOPS [14]. In recent years, host interfaces and
storage stacks have been rearchitected to better utilize SSD
capabilities, for example with blk-mq [9] and NVMe [2].

However, providing good performance does not come with-
out challenges. First, SSDs come with complex flash con-
trollers that must perform tasks such as garbage collection,
wear-leveling and address translation [50]. The cost of these
tasks often interferes with requests from the host, resulting in
QoS problems such as unpredictable behavior, lower through-
put, and high tail latencies [72]. Second, when multiple ten-
ants share a device, the predictability of each tenant’s per-
formance further degrades [36, 64]. As we will explore in
this survey, designing SSD controllers and software stacks
that can provide fairness between tenants without impacting
performance is a big challenge.

Predictable performance and fairness are desirable in many
applications. Database systems want to guarantee a minimum
number of queries per second, or hypervisors guarantee a
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Figure 1: NVMe storage stack with example I/O paths. The
survey explores solutions at the three highlighted layers.

certain minimum bandwidth to all virtual machines. Such
guarantees are also known as QoS (Quality of Service). The
goal of this survey is to explore QoS challenges and solu-
tions on NVMe devices. In this survey, we define QoS as the
following goals.

G1 Fairness - The device should be shared fairly, i.e. all
tenants should receive a proportional share of throughput
and latency.

G2 Isolation - The performance of each tenant should be
isolated. A tenant should not be able to degrade the
throughput of other tenants or cause latency to spike.

G3 Predictability - Latency and throughput should be stable
in both single- and multi-tenant settings, unpredictable
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spikes are undesirable.

G4 Performance - It should be possible to saturate the de-
vice, i.e. the combined throughput received by tenants
should be near the capabilities of the device.

The cloud computing market was valued at US$718 Bil-
lion in 2022 [1]. NVMe storage is widely used in the
cloud, where both providing reliable service and using re-
sources cost-effectively is of great importance. There is cur-
rently active research in improving QoS with I/O sched-
ulers [24,27,51,69], SSD controllers [34, 64,72], and storage
virtualization [55, 56, 75]. However, to the best of our knowl-
edge, no surveys have been published on QoS in Solid State
Drives. This motivates us to compile a survey on QoS in
NVMe storage environments.

Figure 1 shows examples of paths that application I/O can
take. In the simplest case, an app runs as an OS process
and the OS I/O scheduler can provide QoS. Applications
running in containers can make use of cgroup policies for
QoS, and finally, some hypervisors bypass the host block
layer, and the guest OS may be running its own scheduler. In
all scenarios, the device-side flash controller can also make
QoS decisions. In the following sections, these scenarios will
be further explored.

The survey is organized as follows: In Section 3 we provide
background on recent advancements in storage, flash device
internals, new interfaces, and how QoS is provided. In Sec-
tion 4 we discuss the current challenges with providing QoS
on flash storage that motivate this survey. We then explore
solutions at different layers as seen in Figure 1. We look at 1
device-side solutions in Section 5, 2 block-layer solutions in
Section 6, and 3 virtualization / containerization solutions
in Section 7. Lastly, in Section 8 we look at emulation solu-
tions to explore new storage stack designs. We summarize
future work in Section 9 and finally we draw our conclusion
in Section 10.

2 Survey Design

In this section we define the goal of the survey and present
several research questions. We also define the scope of the
work and the methodology used to find research papers.

2.1 Survey Goals
As mentioned in the introduction, the goal of this survey is
to investigate the challenges in providing QoS guarantees
on NVMe devices when the device is shared with multiple
tenants. The main survey question is: What are the challenges
in providing fairness and reliable performance to multiple
applications on modern SSDs? We also ask the following
sub-questions to help us understand various aspects of the
larger problem.

RQ1 How can I/O schedulers preserve peak throughput on
SSDs while providing other QoS guarantees?

RQ2 What are the causes of performance degradation on
SSDs and how can they be prevented?

RQ3 What factors limit QoS in SSD-based virtualized and
container environments?

RQ4 How can the design space of SSDs and block layers
be explored with the goal of improving QoS?

2.2 Scope
In this survey, we focus on work that is specific to NVMe
devices. Research that is aimed at HDDs or scheduling in
general is not included unless we consider it important back-
ground knowledge. There is also extensive research on im-
proving the design of SSD controllers, but we do not include
it unless it contributes to understanding QoS aspects. For
a paper to be included, it must satisfy all of the following
inclusion criteria.

I1 The paper explores one or more of the QoS goals that
we defined.

I2 The paper proposes a new design of an I/O scheduler,
SSD controller or another storage stack component, or
investigates QoS properties of existing solutions.

I3 The paper specifically targets NVMe devices.

I4 The paper is from around 2010 or later to keep our work
time bound.

2.3 Methodology
We use several methods to find papers to include in the survey.
We first start with several seed papers and use the Snowball
methodology [68] to find related papers by looking at ref-
erences in both directions. The seed papers are shown in
Table 1. We also look at several conferences that include
storage-related topics and look for papers that satisfy the in-
clusion criteria. The conferences considered are FAST, Hot-
Storage, USENIX ATC, SYSTOR, ODSI and EuroSys. We
look through all conferences from 2018 to 2023 and look for
relevant papers. Finally, we do a manual search using several
relevant keywords.

3 Background

Providing quality of service on NVMe devices comes with
challenges at many layers of the storage stack. This section
provides the relevant background on the storage stack and
recent advancements. Subsection 3.1 discusses storage in the
era of hard disk drives. Subsection 3.2 explains the internals of
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Category Paper Source Year
Interfaces ZNS [8] ATC 2021

Open-Channel [10] FAST 2017
KAML [30] HPCA 2017
SALSA [28] MASC. 2018

I/O sched. D2FQ [69] FAST 2021
blk-switch [27] OSDI 2021
A+CFQ and H+BFQ [37] IEEE 2019

Flash FLIN [64] ISCA 2018
FlashBlox [26] FAST 2017

VMs MDev-NVMe [56] ATC 2018
SPDK Vhost-NVMe [75] SC2 2018

Emulation QEMU NVMe Driver [20] UCC 2018
FEMU [44] FAST 2018
NVMeVirt [39] FAST 2023
MQSim [63] FAST 2018

Table 1: The seed papers that were used to find papers for this
survey (with shortened titles)

modern SSDs and their design space. Subsection 3.3 goes into
the details of host-to-device storage interfaces. Subsection 3.4
goes over how the Linux storage stack has been redesigned
for the Flash age. Subsection 3.5 explains the main ideas
of I/O schedulers and their evolution on Linux, and finally,
Subsection 3.6 provides a background on queueing theory
and fair queueing algorithms.

3.1 Hard Disk Drives

Hard Disk Drives (HDDs) have been the primary type of
storage for decades. Thus, the design of operating systems,
file systems and applications has largely been based on their
characteristics. An HDD consists of one or more spinning
platters, each with a number of tracks and each track with a
number of sectors (typically 512 bytes). On a read / write op-
eration, a mechanical disk head moves to the track containing
the sector, known as seek time. It then waits until the sector
is underneath the head, known as rotation delay.

HDD performance is limited by the rotation rate of the
platters, typically around 7,200 - 15,000 RPM. The latency
of an I/O operation is around 1 - 20 milliseconds, sequen-
tial throughput around 50,000 IOPS and random throughput
around 250 IOPS [17]. The high cost of seeking makes ran-
dom operations highly unfavorable. HDDs continue to ad-
vance but mainly in capacity, throughput continues to grow
slowly, but latency has been stagnant for decades [15, 52].

These characteristics have made system and application
programmers put great effort into minimizing I/O and making
operations as sequential as possible [7]. For example, operat-
ing system I/O schedulers would merge and reorder operations
using an elevator algorithm, as explained in Subsection 3.5.

3.2 The Advent of NVM Drives
Non-Volatile Memory (NVM) is a type of memory that is
semiconductor-based and persists after losing power. A pop-
ular type is NAND flash, which has been available since the
1980s, but could not compete with the price and capacity of
HDDs until recently [13]. Solid-State Drives (SSDs) typi-
cally consist of NAND flash chips along with a controller. In
Section 4 we describe the challenges that SSDs bring with
regards to QoS.

SSD Internals

A NAND flash chip contains one or more dies, each of which
contains multiple planes (Figure 2). Each plane contains mul-
tiple blocks and a single register. A block contains multiple
pages, typically 4 kB large. Read operations work on page
granularity and can access any page in the chip. A write oper-
ation also works on page granularity but can only write pages
that have been erased. An erase operation works on block
granularity and zeroes out all pages in the block. Finally, the
chips are rated for a limited number of erase cycles. A typical
NAND chip might offer 25 µs reads, 200 µs writes, 1.5 ms
erases and 100,000 erase cycles [3].

The flash chip has data lines to transfer data in or out of
plane registers, and control lines to send commands. The
time to transfer data may be lower than the operation time,
making it possible to interleave multiple operations. However,
interleaved operations must operate on different planes. An
SSD consists of multiple flash chips along with a controller,
DRAM for mapping data and host interface logic. Multiple
flash chips can share data lines in units which are called
channels, as seen in Figure 3.

One of the largest constraints of NAND flash is that blocks
must be erased to make pages writable. The block interface
exposed to the host allows writes to happen at any address at
any time. To make writes efficient, the FTL (flash translation
layer) maps between logical block addresses (LBA) exposed
to the host, and physical block addresses within the device.
When a write operation arrives, the device selects a free page
and updates the mapping table. However, this means that
writes do not happen in place and older pages turn into zombie
pages that must be garbage collected. Selecting a free page
should also aim to improve the parallelism and wear-leveling
of the device, i.e. making sure that all parts of the device age
uniformly [3, 50].

Garbage Collection

When the same LBA is written multiple times, the writes
do not happen in place and the old data still exists in pages
known as zombies, because nothing is mapped to them. To
reclaim this space, garbage collection is required. The garbage
collector will copy all active pages from a block into a new
block and then erase the old block. Designing an efficient
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Figure 2: Internal structure of a NAND flash chip.
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SSD garbage collector has been researched extensively. For
example, a simple garbage collector might be triggered as
soon as the ratio of active pages to zombie pages (known as
cleaning efficiency) reaches a threshold.

Garbage collection is expensive, as it consists of an erase
operation and multiple read and write operations. Depending
on the controller design, the GC can block the plane, chip
or entire device for other operations. Because GC can block
requests from the host, this can lead to high tail latencies and
unpredictable performance for applications. Some flash chips
support copying data within a plane. If the GC selects a new
block within the same plane, no data will cross the channel,
which can improve performance. The ratio of writes issued
by the host and the total number of writes including GC is
known as the Write Amplification Factor (WAF), and a lower
value indicates more efficient use [50, 72].

Data Placement

A single flash chip has limited bandwidth, so it is essential to
exploit all the channels in parallel in order to achieve good
performance. A mapping policy determines how operations
are distributed across the channels. The two most commonly
used policies used in practice are (i) LBA-based mapping,
where LBAs are striped across channels, i.e. a given LBA is
always mapped to channel LBA mod N, where N is the num-
ber of channels, and (ii) write-order-based mapping where
incoming writes are striped across channels, i.e. write Wi goes
to channel i mod N, where Wi is the i-th write. Depending on

the mapping, some access patterns may cause operations to be
spread unevenly across channels, crashing performance [11].

3.3 New Hardware Interfaces
Most early SSDs had a SATA or SCSI interface, which are
designed for HDDs. As the latency and throughput of SSDs
improved, these interfaces proved insufficient. For example
SATA 2.0 has a maximum bandwidth of 600 MB/s, and de-
vices are connected through an HBA (host bus adapter) which
introduces latency (Figure 4) [70]. In addition, SATA devices
can only have a single outstanding request, but SATA devices
with NCQ (native command queueing) can have a queue depth
of 32.

Host
PCIe

Host Bus
Adapter 

(HBA)

SATA Drive

SATA Drive

NVMe Drive NVMe Drive

Figure 4: Comparison of NVMe and SATA host interfaces.

The NVMe protocol is designed for high-throughput SSDs
and allows SSDs to attach directly to the PCIe bus. NVMe
allows setting up multiple pairs of I/O submission and com-
pletion queues to fully utilize the internal parallelism offered
by SSDs. The queues have a maximum depth of 64k and the
standard allows up to 64k queues, however drives typically
support 8-128 queues. The host may set up a queue pair for
each application, or like the Linux block layer, for each core.

The mainstream storage interfaces present a block inter-
face. Blocks are typically 512 B - 4 KB large and can not be
partially read or written, but may be accessed in any order.
There have been many proposals for alternative SSD inter-
faces. Bjorling et al. [8] argue that a block interface puts a
tax on SSD performance, caused by the internal logic needed
to abstract flash erase blocks. They introduce ZNS, which
exposes zones that must be written sequentially. ZNS devices
do not need internal garbage collection or large translation
tables, thus performance is more predictable. However, the
end performance depends on how well applications can adapt
to the sequential write-order criteria. SALSA [28] implements
an FTL on the host and eliminates the device FTL overhead
by only writing large sequential chunks.

Other interfaces include Open-Channel SSD [10], which
offers even less abstraction than ZNS by exposing the com-
plete channel/chip/plane organization to the host. KAML [30]
exposes a key-value interface and implements the key-value
store on the SSD controller. Finally, multi-streamed SSDs [33]
allow applications to specify the expected lifetime of blocks.
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The blocks are arranged such that erase blocks contain data
with a similar lifetime, improving the efficiency of garbage
collection.

3.4 Advances in the (Linux) Storage Stack
In the era of HDDs and the single-queue Linux block layer,
the journey of an I/O operation would look as follows. An
application makes a standard read or write syscall, causing a
context switch into the kernel, and the data is copied to kernel
space. The virtual file system looks up which file system the
file belongs to, and then asks the file system for the physical
address that corresponds to the offset within that file. Then,
a block I/O request (struct bio) is submitted to the block
layer which stages the bio’s in a request queue. While staged
in the queue, an I/O scheduler can merge adjacent requests,
reorder requests (e.g. to make them more sequential), and do
accounting. Requests are then dispatched from the queue to
the driver of the storage device. When the device has finished,
a hardware interrupt triggers an IRQ routine, and the user
process can be scheduled again.

This design could handle thousands of IOPS, but not mil-
lions. In this design, there is a single request queue for each
storage device protected with a lock. When bio requests are
submitted from multiple cores, contention on the lock in-
creases and performance declines. In addition, all hardware
interrupts used to be handled on the same core [9].
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Figure 5: Comparison of single-queue (right) and multi-queue
(left) block layer designs.

A Multi-Queue Block Layer

To make the Linux block layer future-proof for the next gen-
erations of NVM devices, a new multi-queue design was
introduced (known as blk-mq) in Linux 3.13 (2014). Instead
of a single global queue for all I/O requests, there are now
a configurable number of software queues, commonly one
per CPU core (Figure 5). In addition, there are a number of

hardware dispatch queues to match with devices that offer
multi-queue support. The software queues act as a staging
area for I/O requests. I/O schedulers can be plugged in during
runtime and they can reorder requests within each software
queue. The hardware queues are responsible for managing
back-pressure on the device, i.e. that the device does not
get more requests than its queues can hold. The hardware
queues do not allow modifications, requests are added from
SW queues to the tail and the device driver consumes from the
head of the queue. This separation of functions between two
queues, and having a software queue on each core allows for
better performance scalability. The performance of blk-mq
grows roughly linearly with the number of cores [9].

Polling Instead of Interrupts

Traditionally, hardware interrupts have been the only mecha-
nism for finishing an I/O request. With interrupt-driven I/O,
the OS scheduler puts the issuing process in a waiting state,
and schedules another task once the I/O submission has com-
pleted. The device issues an interrupt when the request has
finished, causing a context switch into the interrupt handler
of the driver, and the issuing process becomes schedulable
again.

This works well for HDDs as milliseconds of CPU time
is not wasted, and interrupts are relatively few and fast. For
NVM drives that can reach millions of IOPS and latencies
in the order of microseconds, the number of interrupts can
become so high that it saturates the CPU core. In addition the
end-to-end latency seen by the application may be worse due
to more context switches and delay until it is scheduled again.

An alternative to interrupts is polling, where after submit-
ting I/O, the kernel stays in a busy loop and constantly polls
the device. The kernel then switches back to the same process
once the I/O is completed, resulting in fewer context-switches
and no delay. Polling might thus offer lower latency and higher
throughput for modern devices, at the cost of wasting CPU
cycles in a busy loop [73].

Rethinking the Kernel Interface (io_uring)

As described before, I/O was typically done through blocking
system calls such as read or write or the vectorized variants
preadv and pwritew. Linux also has an async interface, called
aio, but it has limitations and is not considered a success.
Linux 5.1 (2019) introduced io_uring [6], an async I/O inter-
face that aims to be future-proof, easy to extend, and provide
better performance, for example by minimizing copying, the
number of context switches, and supporting polling.

io_uring offers three modes of passing submission and
completion events between kernel and application.

Interrupt driven - The application puts one or more
submission events in the SQ and calls the io_uring_enter
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syscall to notify the kernel. The call is async and returns
immediately, When the storage device interrupt routine is
triggered, an event will be added to the corresponding CQ
which will become visible to the application.

I/O polling - The uring is initiated such that the stor-
age device will not throw interrupts. Instead, the application
must call io_uring_enter, which will poll the device in a
busy-loop and return when a specified number of events have
completed.

SQ polling - This creates a kernel thread that polls
the SQ for new events. The application then does not have to
call io_uring_enter to submit events, making the operation
almost free of context switches.

The modes are not mutually exclusive, e.g. when us-
ing SQ polling, the completion side can either be interrupt
driven or use I/O polling. Using both polling options has
been shown to give the best performance, but at the cost
of higher CPU usage [16]. The SQ polling kernel thread
requires a dedicated CPU core for optimal performance, as
descheduling it will block all submission events.

Most system calls, including read and write, will copy data
from the user’s buffer into the kernel. To avoid copying,
io_uring uses a pair of ring buffers (Figure 6) that are shared
between userspace and kernel, one for I/O submissions and
one for I/O completions. To submit I/O, the application looks
at the SQ head pointer and places a request at that location in
the ring buffer. When the kernel consumes from the queue, it
will update the tail pointer to the index where it should next
consume. If the head and tail pointers are the same, there is
nothing to consume. The completion queue works similarly
but with switched roles. Ring buffers are good for perfor-
mance as they are lock-free data structures. They do however
need memory fences to ensure memory operations are or-
dered, as modern CPUs may otherwise execute them out of
order, leading to incorrect execution.

Head

Tail

Submission Queue Completion Queue

Head

Tail

Figure 6: io_uring uses ring buffers for the submission and
completion queues.

Bypassing the Block Layer (SPDK)

For high-performance storage applications, it may be worth
it to bypass the I/O facilities provided by the OS. SPDK is
one such solution, providing an NVMe driver that runs in
userspace. The NVMe device is thus not managed by the OS
and is only usable by a single application. The I/O path be-
comes shorter as there is no scheduling and fewer abstractions,
and SPDK has been shown to perform better than the kernel
block layer. SPDK always runs in polling mode, as forwarding
interrupts to a user process is difficult and expensive [16, 58].

3.5 Evolution of I/O schedulers
The purpose of an I/O scheduler is to order and modify I/O
requests before they are submitted to a storage device, e.g. in
order to improve performance or application experience. The
goal of I/O schedulers can be

• Fairness - Ensure that multiple processes get a fair share
of I/O submitted, the processes do not degrade the per-
formance of others and no process becomes starved.

• Performance - Reorder and merge requests in order to
produce a better performing access pattern, for example
by ordering requests in sequential order for HDDs.

• Prioritization - A scheduler may support giving differ-
ent priorities to I/O requests.

• Deadlines - A scheduler can provide a deadline guaran-
tee, i.e. guarantee that a request will be finished within a
certain timeframe after it was submitted.

Note that these goals intersect with the QoS goals that we
have defined. In this subsection we will describe how existing
I/O schedulers have evolved to provide these goals, focusing
on I/O schedulers on Linux.

Elevator Scheduling - Elevator schedulers attempt to
minimize seek times by ordering requests by sector (LBA) in
sequential sweeps. For example, the SCAN algorithm starts
by dispatching its first request, then only dispatching requests
with higher (or lower, depending on direction) LBAs. Other
requests will be scheduled for the next sweep, in sequential
descending (or ascending) order. The variant C-SCAN always
sweeps in one direction, as going back and forth statistically
gives more priority to sectors in the middle [15].

The Linus Elevator - The first I/O scheduler on Linux was
an elevator named after its creator. It uses a SCAN-ordered
queue and also merges incoming requests with adjacent
requests in the queue. It also includes a mechanism to
prevent starvation. When inserting a new request, it will
not be inserted in front of a request that is older than a
given threshold, where age is measured as the number of
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succeeding requests. However, this maximum age guarantee
does not sufficiently prevent starvation [7].

Deadline - To improve I/O scheduling, Linux 2.6 (2004)
introduced support for hot-pluggable I/O schedulers, with the
default being the new Deadline scheduler. To limit starvation,
every request is given an expiry time, default 500 ms for reads
and 5 s for writes. A pointer to the request is stored in two
queues, one sorted by LBA (red-black tree) and one by expiry
time (FIFO queue), with separate queue pairs for reads and
writes (Figure 7). Finally, requests are moved to the dispatch
queue in batches. Requests are moved from the read queues
unless there are only writes, or if writes have been ignored
too many times. It then takes requests from the LBA sorted
queue, unless the head of the expiry queue has expired, in
which case it moves that request and adjacent requests from
the sort list, keeping the batch sequential [7, 59].

RB Tree

Rea
ds

Writes

FIFO List

RB Tree

FIFO List

Insert Dispatch

Deadline
Criteria

Figure 7: Queue structure of the deadline scheduler.

Anticipatory - The anticipatory scheduler is based on the
deadline scheduler, but includes a few additional heuristics.
Most notably it collects statistics about the I/O pattern of
each process, and when dispatching the last request for a
given process, will try to anticipate whether a new request is
likely to come soon. This blocks potential requests from other
processes, typically for a few milliseconds, but the prevented
seeks may provide a greater benefit. Figure 8 shows such a
scenario. An I/O scheduler that does not dispatch any work
even though it is available is said to be non-work-conserving,
and the anticipatory scheduler is one such example [46, 57].
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Figure 8: A scenario where anticipation improves perfor-
mance. Dispatching an available request (gray) is more ex-
pensive than waiting for more sequential requests.
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Figure 9: Queue structure of the CFQ scheduler.

CFQ - The first Linux I/O scheduler that aims to provide
fairness between competing processes. It has a high number
of queues (default 64) and requests are placed on a queue de-
termined by hashing the process PID (Figure 9). Requests are
then moved in batches to the dispatch queue in a round-robin
manner. It was later improved by giving time slices to each
queue rather than moving fixed batches, allowing a queue to
sit idle and wait for more requests, similar to the anticipatory
scheduler. It also introduced per process I/O priorities, which
default to the process CPU priority level. Compared with the
deadline scheduler, CFQ can provide better throughput and
fairness, but latency may be higher [5, 46].

3.6 Queueing Theory
Although originally invented for network switches, fair queue-
ing algorithms can be used to build I/O schedulers. Fairness
is a metric of how proportionally the capabilities of a device
are shared between multiple tenants. Assume that we have
n tenants (T1, T2, . . . , Tn). A tenant that runs alone on the
device uses bandwidth BWalone(Ti), and the device is capable
of BWtotal . When all tenants run together, the bandwidth of
each tenant is BWshared(Ti). We can then define the slowdown
of each tenant as

S(Ti) =
BWalone(Ti)

BWshared(Ti)
(1)

In a completely fair scenario, all tenants should experience
the same slowdown. Thus, we can define the fairness F as the
ratio between the greatest and lowest slowdown.

F =
min∀t∈Ti S(t)
max∀t∈Ti S(t)

(2)

The fairness value is always between zero and one. We have
F = 1 in a completely fair scenario and a lower value means

7



more unfairness. Note that this defines fairness in terms of
throughput, however we also need to consider it in terms
of latency. In that case, slowdown is the ratio of average
latency when running alone over average latency when shared.

Example - A device is capable of BWtotal = 1.000 MB/s.
Tenant 1 wants full throughput BWalone(T1) = 1.000 MB/s
and tenant 2 wants BWalone(T2) = 250 MB/s. To maximize
fairness, both tenants should be slowed down by S = 1.25
and receive 800 MB/s and 200 MB/s respectively.

This is a simplified example, in reality the total bandwidth is
not fixed but depends on data direction and access pattern, as
we will explore in the next section.

Fairness scheduling can be done with different techniques.
Linux’s CFQ and BFQ schedulers use a timeslice approach,
and so do Argos and FIOS, providing fairness in terms of
device time. FLIN uses virtual time to order a single queue by
the estimated departure time of each request if it was alone
in the queue. WA-BC uses deficit-round-robin, where each
tenant has a queue and requests are dispatched in round-robin
until a per-tenant budget runs out. Lottery scheduling uses a
probabilistic method to achieve fairness.

WFQ

Weighted Fair Queueing (WFQ) [53] is an algorithm that
guarantees fair service to multiple queues on a shared resource
(each queue might represent one tenant). The queues contain
variable-sized tasks (e.g. packets or I/O requests) and the
resource can consume one task at a time. The queues can also
have different weights to control the proportionality.

When a task ti is enqueued, it is assigned a virtual start time
Tstart , which is either the virtual finish time of the succeeding
task ti−1 in the queue, or the global virtual time Tglobal if the
queue is empty (Equation 3). The task’s virtual finish time
is the virtual start time plus the cost of the request, which
accounts for the task size and queue weight as a fraction of
the device capacity C (Equation 4). The global virtual time is
the total service of the device, e.g. number of bytes processed.

Tstart(ti) = max(Tglobal ,Tf inish(ti−1)) (3)

Tf inish(ti) = Tstart(ti)+
W

∑Wj
·C · size(ti) (4)

When the current task has finished, WFQ will look at the
heads of all queues and choose the task with the lowest virtual
finish time. This ensures that no queue’s progress grows out of
proportion, thus ensuring fairness. As WFQ always dispaches
work if any queue is non-empty, it is a work conserving algo-
rithm. Another characteristic is that queues accumulate shares
when they are backlogged, but when they become empty, all
shares are forfeited, ensuring fairness with bursty workloads.

WF2Q

Worst-case Fair Weighted Fair Queueing (WF2Q) [77] is an
extension of WFQ that provides the same guarantees but aims
to prevent bursts when queues have different weights. By
adding a requirement that a task’s virtual start time must be
lower than the current global virtual time, all queues will move
forward more equally, producing a more smooth workload.
Figure 10 shows scheduling for 4 queues where the last queue
has weight 3 and the others 1. In WFQ, queue 4 is dispatched
in periodic bursts (yellow), while in W2FQ, all queues receive
a smooth service.

Time

Flow 4

Flow 3

Flow 2

Flow 1

Time

Flow 4

Flow 3

Flow 2

Flow 1

Figure 10: A comparison of schedules produced by WFQ
(left) and WF2Q (right).

SFQ

Start-Time Fair Queueing (SFQ) [19] is also based on WFQ
but dispatches requests in order of start times rather than
finish times. SFQ has been shown to provide better fairness
for devices where performance is non-fixed. Unfairness can
occur when the device completes requests slower or faster
than the configured cost and the virtual time drifts ahead or
behind. That time is used to tag new requests, but backlogged
queues may have diverged times. SFQ(D) is an extension of
SFQ that allows dispatching D requests in parallel, which is
useful for SSD devices with high parallelism. SFQ(D) is used
in MQFQ, FlashFQ, and vFair.

DRR

Deficit Round Robin (DRR) [61] is a computationally effi-
cient fair-queueing algorithm that can select a task to dispatch
in O(1) time rather than O(log N) like the other algorithms.
It works similarly to weighted round-robin (WRR) but it ac-
counts for different task sizes. In each round, each queue can
submit tasks until a given quantum is exceeded, and if the
queue stopped on a task larger than the remaining quantum,
the unused quantum (deficit) is added to the quantum in the
next round. If all tasks have equal size, DRR is equivalent to
WRR. A downside of DRR is that service can be bursty and
latencies can grow long. DRR is used in WA-BC.
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2DFQ

2 Dimensional Fair Queueing (2DFQ) [49] is an advanced
fair queueing algorithm that supports parallel dispatch and
variable request costs. Similar to WF2Q, it aims to minimize
the burstiness of service. When tasks have a high variance in
cost, 2DFQ provides lower tail latencies compared to other
schedulers. This may be useful for I/O requests where e.g. 4K
requests compete with 256K requests.

4 Motivation

In this section we explore the challenges of providing QoS
guarantees on SSDs that motivate this survey. We describe the
unique characteristics of SSDs, as QoS mechanisms must be
designed around them. We then describe interference which
can be caused by these characteristics. Finally, we explore the
challenges in software design and how additional work in the
I/O path can decrease performance.

4.1 SSD Characteristics

Making performance guarantees on SSDs is challenging be-
cause their throughput, latency, and IOPS are highly depen-
dent on the access pattern and device state. This is caused
by the complex internal logic of SSDs, for example the FTL
logic that is needed to expose a block device, but also due to
the parallelism offered by the SSD’s internal organization.

The first characteristic of SSDs is that flash read and write
(program) operations take different times, and TSUs (trans-
action scheduling units) may reorder operations to prioritize
reads. Another is that internal tasks such as garbage collec-
tion and wear leveling also need to access the flash chips
and thus compete with host operations. The intensity of these
operations depends on the device state. A device has reached
steady-state when all pages have been written to at least once
and the internal tasks have become stable.

The internal parallelism of SSDs also causes certain perfor-
mance characteristics. For peak throughput, an I/O flow must
make use of all channels. A bad access pattern may hit some
channels more than others and thus introduce a bottleneck.
If an SSD uses a cache for translation table entries, some
access patterns may cause more evictions so translations take
more time. Many SSDs also contain a write-back buffer, with
varying flushing policies which can produce latency spikes.
Any attempt to share an SSD and provide QoS will need to
account for these factors [23, 45].

4.2 Interference

Because of the characteristics that we just explained, mixing
operations from multiple workloads can have unexpected
performance results. Two different workloads may show

High Intensity Queue

Low Intensity Queue

Mixed

Head of Line (HoL)
Blocking

Figure 11: When high- and low-intensity workloads are
mixed, the low-intensity transactions stay deeper in the queue
and experience head of line blocking.

good performance when running in isolation, but signifi-
cantly worse performance when interleaved. Interference
can be caused by different SSD functions, e.g. the write-
back cache, translation tables, and in per-channel transaction
schedulers [63]. The authors of FLIN [64] identify the four
following categories of interference on SSDs.

1. I/O Intensity - A high-intensity workload slows down
a low-intensity workload. This is because when a low-
intensity workload runs alone, the chip dispatch queues
stay short and the waiting time is low. With a high-
intensity workload, the queues are longer and thus trans-
actions from the low-intensity workload get positioned
deeper in the queue (Figure 11).

2. Access Pattern - A workload with a bad access pat-
tern with respect to parallelism slows down a workload
with a good access pattern. By not utilizing the paral-
lelism, the workload causes congestion on a few flash
channels or chips. Transactions from the good workflow
will experience slowdown on those channels or chips,
and the slowest transaction of an I/O command is what
determines the latency.

3. Read / Write Ratio - A read-intensive workload slows
down a write-intensive workload. Because write opera-
tions are much slower on flash (10-40x), existing sched-
ulers prioritize reads over writes. This results in the
slowdown of a write-intensive flow as there are more
read requests being prioritized.

4. Garbage Collection - A workload that requires frequent
garbage collection slows down a workload that is more
GC friendly. Transactions from garbage collection are
not scheduled with respect to which flow caused them.

Garbage collection is a frequent source of SSDs perfor-
mance quirks and can affect interference. For example, con-
sider two workloads. When running alone, A has a low WAF
(write amplification factor) while B has a worse WAF. The re-
sulting WAF of the combined stream is not the average of the
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two, it can even be higher than the value of B, meaning that
everyone loses [36]. Interference can also happen even if apps
don’t run concurrently, for example if a previous app leaves
the device in an unfavorable state for the current app [20].

4.3 Software Overheads

Given the high performance of SSDs, software components
such as the block layer must be able to withstand the through-
put and not introduce additional latencies. For example BFQ,
the most complex Linux scheduler, has been shown to perform
poorly on fast SSDs. Recent studies argue that I/O schedulers
are not needed anymore, as even light schedulers such as Ky-
ber and mq-deadline introduce non-negligible latency (5-10%)
and don’t deliver peak throughput. However, this argument
ignores the need for QoS and fairness [67].

Another study shows that without an I/O scheduler on
Linux, the block layer still can not saturate an SSD using a sin-
gle CPU core, as the CPU intensity is too great. Lightweight
solutions such as SPDK require less CPU power to saturate a
device. In addition, to achieve peak performance, modern tech-
niques like io-uring and polling must be used [58]. However,
this introduces challenges for hypervisors as these solutions
can not easily be passed into a virtual machine.

5 Flash Device Controllers

In this section we explore solutions that propose changes to
SSD firmware and architecture to improve QoS, correspond-
ing to layer 1 in Figure 1. The solutions are summarized in
Table 2, which will be discussed at the end of this section.

5.1 QoS-Aware Controllers

We first explore several solutions that implement QoS on the
SSD controller, for example by implementing a fair queueing
algorithm or an isolation scheme.

FLIN - The Flash-Level INterference-aware scheduler
(FLIN) [64] is a transaction scheduler for SSDs that aims to
provide fairness and performance. It accounts for four types of
interference by reordering and prioritizing transactions within
the per-chip TSU (transaction scheduling unit).

The FLIN scheduler consists of three steps that address
different types of inference (Figure 12). When transactions
arrive at the chip-level scheduler, they are inserted into the
queue for their priority and direction (read or write) and each
queue is ordered to optimize fairness. The second step does
not address any inference problem, but implements priority
awareness by using weighted-round-robin on the queues of
each priority level. The third step addresses access pattern
and GC inference by choosing one of four options from step
2, a read, write, GC read or GC write transaction.

Different I/O intensities are the most dominant source of
interference, and thus step 1 provides most of the improve-
ment to fairness. The key in step 1 is an algorithm that orders
the queue to maximize fairness. It first checks whether the
transaction belongs to a low- or high-intensity flow (default
threshold is 32 MB/s for reads and 256 kB/s for writes). The
queue consists of two regions for each intensity, so that low-
intensity transactions are always in front. For each position
in the region, the resulting fairness is computed using an effi-
cient two-pass approach and the transaction is inserted in the
optimal position.

Stage 1

Device
Queues

Queue Reordering

Read
Flash

Channels

Stage 2 Stage 3

Write

GC Read

GC Write

R
Priority 1

Priority N

W

R

W

Priority Aware
Arbitration (WRR)

Transaction
Selection

Figure 12: The three steps of the FLIN scheduler.

To address the other inference types, step 3 balances the
wait time between read and write requests, and also ensures
that GC transactions are distributed across flows. The algo-
rithm computes the Proportional Wait Time (PWT) of the two
available read and write transactions. The PWT indicates the
resulting cost of the transaction if the other one is dispatched
first. This ensures that write requests are not stalled for too
long.

A benefit of FLIN is that it can be implemented within the
SSD controller and requires no change to the host interface.
It makes use of the multi-queue nature of NVMe to separate
flows and the queue weight feature to set flow priorities.
FLIN is implemented using the MQSim flash simulator and
is shown to give better maximum slowdowns than existing
solutions. It should also be noted that FLIN does not sacri-
fice throughput and only reorders transactions within the TSU.

WA-BC - Workload-aware budget compensation (WA-
BC) [31] is a flash scheduler for SSDs that are shared be-
tween multiple virtual machines using SR-IOV, a mechanism
to directly pass PCIe devices to multiple virtual machines.
It gives the queue of each VM a budget and dispatches re-
quests using round-robin, but jumps over non-empty queues
that have exhausted their budget. When all non-empty queues
have exhausted their budget, they are replenished.

The cost that is deducted from the budget is dependent on
the workload. First, WA-BC uses linear regression to deter-
mine the different read and write costs, CR and CW . In a given
interval, the number of read and write operations and the total
time is collected. When K intervals have passed, there are
thus K equations with 2 variables (Equation 5), and a linear
regression along with the best fit for CW and CR can be com-
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QoS Goals Addressed

Solution Interface Tail Latencies Fair Isol. Predict. Perf. Summary

FLIN [64] NVMe ✗ ✓ ✗ ✗ ✓ Flash I/O transaction scheduling that ac-
counts for interference among tenants

WA-BC [31] NVMe
SR-IOV

✗ ✗ ✓ ✗ ✓ Round robin scheduling with budgets that
account for GC overhead

OPS Isolation [36] N/A ✗ ✗ ✓ ✗ ✓ Isolation of flash erase blocks to prevent
interference during GC

FlashBlox [26] Custom ✓ ✗ ✓ ✗ ✓ Hardware isolation of channels, dies, or
blocks, that guarantees uniform aging

UPS [34] N/A ✓ ✗ ✓ ✗ ✓ Hardware isolation that partitions re-
sources dynamically based on load

ttFlash [72] NVMe ✓ ✗ ✗ ✓ ✓ Elimination of tail latencies by minimiz-
ing resource blocking caused by GC

AutoSSD [35] N/A ✓ ✗ ✗ ✓ ✓ Scheduler that reserves shares for internal
functions based on urgency

Table 2: A summary of solutions that improve QoS at the device level

puted. The write cost is then adjusted by the WAF for each
VM, i.e. the write cost may be higher for some VMs.

Ti =CR ·NR(i)+CW ·NW (i) (5)

It is difficult to determine the WAF of each VM when an
erase block contains pages from multiple VMs. Therefore
WA-BC implements an erase-block isolation similar to
other work such as OPS isolation and multi-stream SSDs.
WA-BC achieves good performance isolation (QoS goal G2,
isolation) when VMs with different WAF (write amplification
factor) run side by side, which would otherwise cause high
interference.

OPS Isolation - OPS (over-provisioning space) Isola-
tion [36] is a hypothetical SSD that partitions the over-
provisioning resources of SSDs. SSDs typically include
more internal storage than can be accessed, known as over-
provisioning space and is used for GC (garbage collection).
When I/O streams from multiple workloads are interleaved
on a single SSD, the flash blocks contain a mix of pages from
all workloads. As a consequence, when one workload triggers
GC of a block, it impacts the performance of all workloads.

The ratio of valid pages in a block selected by the GC is
known as utilization (u) and a lower value corresponds to
lower write amplification, resulting in better performance. It
is shown that interleaved workloads can result in lower uti-
lization values than if each workload is executed individually,
resulting in lower throughput overall.

Using OPS Isolation, each workload is assigned a weight
and both data blocks and over-provisioning blocks are

Shared

Isolated

Figure 13: OPS Isolation separates pages from different work-
loads into different blocks.

partitioned in proportion. The I/O requests are tagged by
workload so each block only contains either pages that are
free or have data from a single workload (Figure 13). Each
workload is also guaranteed a certain IOPS, as a proportion
of the device peak IOPS based on weight. It is then possible
to compute the required u value to sustain that IOPS. The
algorithm dynamically distributes the OPS blocks so that the
u target of each workload is reached.

FlashBlox - Similar to OPS Isolation which dedicates blocks
to workloads in order to provide isolation, FlashBlox [26]
provides hardware isolation by partitioning channels into so
called virtual-SSDs (vSSD). Each channel of an SSD op-
erates independently and thus there will be no interference
between the vSSDs. However, channel isolation leads to a
challenge with wear-leveling, as the workloads on different
vSSDs may be causing unequal aging. To prevent unequal
aging, FlashBlox introduces a migration mechanism that pe-
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riodically swaps the least-aged channel with the most-aged
channel.

FlashBlox also offers two other isolation modes with dif-
ferent trade-offs, (i) die-isolated vSSDs, which offers weaker
isolation as multiple dies must share the same channel bus.
In that case, wear-leveling must also be done to ensure equal
aging of the dies. (ii) software-isolated vSSDs that is compa-
rable to OPS Isolation. A token bucket rate limiter on the host
ensures equal access to blocks within each die. FlashBlox
exposes a ZNS-like interface enforcing sequential writes and
each block is allocated to only one application to reduce GC
interference.

FlashBlox is implemented on an open-channel SSD and
benchmarks are done using LevelDB, which integrates nicely
with the log-based block interface of FlashBlox. A limitation
of FlashBlox is that a workload running on a channel-isolated
vSSD has a strict throughput ceiling which is proportional to
the number of its channels. For example, if using 4 out of
8 channels, only half the SSD throughput can be reached.
A software-isolated workload may borrow unused IOPS
from other workloads, but may also be causing interference
and stealing the IOPS. Another limitation is the periodical
channel migration for wear-leveling. An average workload
may need a 15-minute migration every 3 weeks, during which
throughput and latency decrease by one-third.

UPS - Utilitarian Performance Isolation (UPS) [34] is a
scheme for multiple tenants to share an SSD. Rather than
using a fixed partitioning such as FlashBlox, UPS partitions
the NAND chips of an SSD according to each tenant’s utility
and adjusts the partitioning periodically. Pages are always
written to chips within the tenant’s partition, but as the parti-
tioning changes, the tenant’s data may reside within another
tenant’s partition.

Given a partition of NAND chips, the utility is a value that
indicates how well a given tenant would utilize the chips. A
partitioning is chosen so that the utility of all tenants is the
same and is computed periodically based on previous usage.
Having one tenant’s reads go to another tenant’s partition
can affect performance isolation. To improve isolation, UPS
uses the opportunity of garbage collection to relocate pages
back to their tenant’s partition. UPS reduces interference com-
pared to a shared device, but also allows for more flexibility
than a static partitioning, for example when one workload
experiences a burst of traffic.

5.2 Eliminating Tail Latencies
Tail latencies caused by internal FTL functions such as
garbage collection are a big source of QoS problems on SSDs.
Solutions that attempt to hide the cost of house-keeping func-
tions can be categorized as follows.

• Exploiting Idle-Times - The best time to perform the
FTL functions is when throughput from the host is low.

• Data Redundancy - Similar to RAID, data can be
striped across channels, and if one channel is busy with
internal tasks, data can be reconstructed from other chan-
nels.

• Feedback-Based Scheduling - Internal tasks get as little
share as possible of the device, only enough to keep up
with its work.

We now explore two of these solutions in detail.

ttFlash - Tiny-Tail Flash (ttFlash) [72] is an SSD controller
architecture that significantly reduces tail latencies. It makes
use of three recent hardware advancements.

• When GC is triggered, SSDs block requests on the same
channel, and simple SSDs might block the whole device
(e.g. USB sticks). With the increased computing power
of controllers, it is possible to implement plane-blocking
garbage collection. This makes use of flash chips that
support intra-plane copy commands, as explained in Sub-
section 3.2. Thus, the GC’s intra-plane copy commands
can be interleaved with commands for other planes, leav-
ing only one plane blocked.

• Modern SSDs implement RAIN (Redundant Array of
NAND) which uses parity pages to prevent data loss, as
NAND chips are getting denser and thus corruption is
becoming more frequent. The redundancy can also be
used to quickly read a page that is blocked by GC in
one plane, by reading from other planes. This requires a
smart layout of the pages within planes and GC must be
scheduled so that only one plane is blocked at a time for
each stride (i.e. the redundancy group)

• DRAM buffers are now frequently used as write-back
caches for writes, backed by capacitors in case of power
loss. This removes any spikes in write latency, but the
write-back operation must keep up with incoming writes.
ttFlash coordinates the write-back with its GC schedul-
ing so that data is written back to planes when they are
not blocked by GC.

Using these three techniques, ttFlash can almost eliminate
tail latencies regardless of workload. A downside of using
parity pages is that a portion of the SSD capacity is wasted.
In addition, reconstructing pages using parity data requires
more reads, making operations slightly more expensive. The
same applies to writes, as parity pages must also be updated.

AutoSSD - AutoSSD [35] is an architecture for SSD con-
trollers that schedules flash operations from all FTL functions
together. Flash operations can come from host I/O requests,
garbage collection, wear-leveling, and read scrubbing. Read
scrubbing is a preventative operation that prevents corruption
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of pages that have been read too often by migrating them
elsewhere.

The scheduler uses a request windowing technique that
limits how many requests can be in-flight from each function
based on their share. The shares are dynamically controlled
using a feedback system that aims to correct an error value
for each FTL function. To begin with, all shares belong to the
host I/O requests, but as garbage collection, read sweeping
and wear-leveling become more critical, their shares grow
proportionately. It should be noted that AutoSSD is not work-
conserving, a non-empty queue may be blocked by an empty
queue that has a higher share.

5.3 Discussion
The solutions that we have explored aim to improve QoS with
different approaches. The three most visible approaches are
improvements to SSD internal scheduling, isolation schemes
for SSD resources, and elimination of tail latencies. Table 2
summarizes which QoS goals are considered in each solution.
We can see that device-side solutions do not sacrifice perfor-
mance in general, but only one of the first three goals (fairness,
isolation, predictability) is considered in each solution. Only
FlashBlox imposes a new host interface, other solutions are
based on NVMe or do not specify a host interface, typically
because they are implemented in emulators.

6 I/O Schedulers

In this section, we look at I/O schedulers for SSDs that aim
to improve QoS in terms of fairness and performance reli-
ability, or investigate performance problems. This section
corresponds to layer 2 in Figure 1. The solutions are summa-
rized in Table 3, which will be discussed at the end of this
section.

6.1 Linux Schedulers
We begin with an exploration of the I/O schedulers that are
currently offered on Linux.

BFQ - The Budget Fair Queueing (BFQ) scheduler is in-
tended to improve the fairness and latency guarantees of CFQ.
Similar to CFQ, each application has its own queue, but each
queue now has a budget measured in block count. Rather
than selecting queues in a round-robin way, the B-WF2Q+
algorithm is used to select the next active queue. A new queue
is chosen when the budget is exhausted or the queue is empty,
and a new budget is computed in a way that high-throughput
queues get a high budget, but latency-sensitive queues get
a low budget. The B-WF2Q+ algorithm selects low-budget
queues earlier, resulting in lower latency.

BFQ also comes with multiple heuristics. One heuristic
is Early Queue Merge (EQM), which merges queues with

requests to adjacent blocks, often seen in applications with
multiple I/O worker threads. It also has special heuristics
for flash and NCQ devices with internal queues, where the
device may optimize the ordering at the cost of unfairness or
higher latencies. Overall, BFQ has been shown to provide
the same throughput as CFQ and better fairness and latency
guarantees [65].

Kyber - For NVMe devices with high IOPS throughput,
BFQ proved to be too complex and CPU intensive to give
good performance. Kyber is a simpler scheduler designed
for the multi-queue block layer. Applications typically care
more about read latencies, because the application may be
waiting for the data to become available, while writes are less
likely to block execution. Kyber separates reads and writes
to separate queues, and then moves requests to a dispatch
queue that is kept short enough to make certain latency
guarantees for read requests. It uses a histogram to compute
the 90th percentile latency in the dispatch queue and adjusts
its length accordingly. It is based on bitmap queues to give
good performance [12, 16].

None - Another option for I/O scheduling on Linux is to use
no scheduler (none). After the multi-queue block layer, none
was the only option for around 3 years, and it is the default
option on many distributions today for NVMe devices [12].
Due to the high performance of NVMe devices, all schedulers
have a non-negligible impact on the throughput, and latency
and fairness may be less important for some users, because
the drive provides abundant performance [58].

6.2 Multi-Queue Schedulers

MQFQ - Multi-Queue Fair Queueing [24] is an I/O scheduler
designed for the Linux multi-queue block layer. It introduces
a fair queueing algorithm for multi-queue systems, and uses
clever data structures to minimize the overhead of coordina-
tion between CPU cores. It is intended for multi-queue SSDs
which have internal parallelism. An assumption is made that
by limiting the number of in-flight requests to D, the device
can be saturated but the SSD will not need to arbitrate between
requests, which might otherwise be destructive to host-side
fairness decisions. The parameter D can be discovered with a
probing method.

MQFQ is based on SFQ(D), but a relaxed ordering crite-
ria is added to decrease the required coordination between
queues, as every dispatch would otherwise have to look at
the virtual time of all other queues, which would limit the
scalability of MQFQ. When a queue goes ahead of the win-
dow T however, it must be throttled for a short time period.
In addition, all queues must obtain a dispatch slot so that the
global in-flight count can be controlled. MQFQ uses three
clever data structures to manage virtual time, throttling and,
dispatch slots.
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QoS Goals Addressed

Solution
Required
Interface

Multi
Queue

Multiple
Dispatch Fair Isol. Predict. Perf. Summary

MQFQ [24] Any ✓ ✓ ✓ ✗ ✗ ✓ Fair queueing scheduler that introduces
efficient multi-core data structures

D2FQ [69] NVMe
WRR

✓ ✓ ✓ ✗ ✗ ✓ Fair queueing scheduler that exploits
device-side scheduling (NVMe WRR)

FlashFQ [60] Any ✗ ✓ ✓ ✗ ✗ ✗ Single queue fair queueing scheduler
with anticipation

blk-switch [27] Any ✓ ✓ ✗ ✗ ✓ ✓ Block layer that provides low latencies
while device is at peak throughput

A+CFQ
H+BFQ [37]

Any ✗ ✓ ✓ ✗ ✗ ✗ Improvements of CFQ and BFQ times-
lice schedulers for SSDs

FIOS [54] Any ✗ ✓ ✓ ✗ ✗ ✗ Single queue timeslice scheduler that
exploits parallelism with multiple active
timeslices

vFair [48] Any ✗ ✓ ✓ ✗ ✗ ✗ Single queue fair queueing scheduler
with a per-request cost model

MittOS [22] OC-SSD ✓ ✓ ✗ ✗ ✓ ✓ Storage stack that improves predictabil-
ity with a fast rejection mechanism

K2 [51] Any ✓ ✓ ✗ ✓ ✓ ✓ Scheduler that reserves a fast path for
urgent requests

TABS [38] NVMe ✓ ✓ ✗ ✗ ✓ ✓ Scheduler that prevents SSD interfer-
ence due to FUA write requests

Table 3: A summary of I/O schedulers that improve QoS

1. Mindicator - All queues must be able to determine the
global virtual time, which is the lowest time across all
queues. The naive approach would be scanning an array
of per-queue times, but that would cause too many cache
invalidations. The Mindicator data structure uses a tree
where the value of each queue is in a leaf node. When one
queue’s value is updated, the minimum value is traversed
upwards and relatively few operations update the root
value, i.e. the global minimum. The tree is aligned with
respsect to thread, core, and NUMA structure for better
cache utilization.

2. Token Tree - To keep track of the number of in-flight
requests and prevent device-side arbitration, a global
atomic counter does not scale. The token tree data struc-
ture keeps track of tokens that each queue must obtain
before dispatching and gets released after completion.
Normally, all queues have equal shares of tokens and
no coordination is needed to use the local tokens. If one
queue does not use all tokens, nearby cores can request
unused tokens. The tree-based approach resembles the

Mindicator tree and prefers tokens from the same core
and NUMA domain.

3. Timing Wheel - When a queue is throttled, the time at
which it can be unthrottled must be stored. The timing
wheel is an array of bitmaps where each bit indicates
a queue that can be unthrottled and a bitmap at offset i
indicates the event after i periods. When an event has
passed, the bitmap becomes the event after n periods,
making it resemble a wheel.

The MQFQ scheduler can provide the same level of fairness
as BFQ does for HDDs. However, IOPS throughput is 25%
lower than when the nosched option is used.

D2FQ - Device-Direct Fair Queueing [69] is an I/O scheduler
that is also implemented for Linux. D2FQ makes use of the
NVMe Weighted Round Robin (WRR) feature to offload a
part of the scheduling to the device. WRR is an optional
NVMe feature that allows device queues to be given one of
three priority levels (low, medium, and high) and each level a
weight between 1 and 256. The device will then process I/O
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requests in proportion to each queue’s weight. D2FQ adds 3
queues on each core with low, medium, and high priorities and
weights are dynamically adjusted (Figure 14). I/O requests
get high priority by default but medium and low priority if
they need to be throttled.

In the Linux block layer, D2FQ uses a virtual time-based
fair queueing mechanism for scheduling. D2FQ maintains a
virtual time for each flow which grows in proportion to bytes
dispatched and normalized for the flow’s weight. When an I/O
request comes in, the scheduler compares that flow’s virtual
time to the global virtual time. In strict SFQ, only the flow
with the lowest virtual time would be allowed to dispatch a
request. In D2FQ however, all requests are dispatched imme-
diately, but if the flow’s virtual time is too far ahead, it will be
dispatched to a lower priority queue. That causes the flow’s
virtual time to pass more slowly and thus balances all flow’s
virtual times.

App
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Figure 14: D2FQ with three device queue pairs per core, each
with a different priority.

For D2FQ to achieve fairness, the weights of the priority
levels must have enough contrast to balance the flows, i.e. the
high/low ratio must be high enough. However, choosing a
ratio that is too high will cause the lower-priority queues to
delay requests for too long, introducing higher tail latencies.
D2FQ introduces a dynamic mechanism to periodically adjust
the weights if the virtual times start diverging too much, which
would indicate unfairness.

Because D2FQ adds little complexity to the block layer, it
is only slightly more CPU intensive than the no-op scheduler.
Unlike other fair queueing schedulers, D2FQ does not
provide a theoretical bound on unfairness. However empirical
results show that it achieves comparable fairness to other
schedulers. D2FQ shows better CPU utilization compared to
MQFQ, but unlike MQFQ which works on any NVMe drive,
D2FQ only works on devices with WRR support.

blk-switch - blk-switch [27] builds on ideas from network
switches to modify the Linux multi-queue block layer. It sepa-
rates latency-sensitive apps (L-apps) and throughput-intensive
apps (T-apps) by reserving two ionice I/O weight values.
Users must explicitly choose a profile for each process. blk-
switch addresses the problem of tail latencies that occur in

the Linux block layer due to CPU contention. The high IOPS
from T-apps can induce high CPU usage in the block layer
which can slow down the processing of requests from L-apps.

For each CPU core, blk-switch creates two egress queues,
for L-apps and T-apps. Requests from L-apps are always
prioritized over T-apps. To prevent complete starvation of T-
apps, if the load of a CPU is above a threshold, T-app requests
are routed to an egress queue of a less loaded core. This differs
from the base Linux block layer, where I/O requests never
move between cores. The processing of L-apps and T-apps is
done by separate kernel threads and the L-app thread is given
a higher priority. Thus if a core has a high CPU load (e.g. due
to block layer overhead) it will still process L-app requests
with low latency.

blk-switch has been shown to successfully maintain
low latencies in high-throughput scenarios (QoS goal
G4, performance). However, it achieves slightly less total
throughput than the base Linux block layer.

MittOS - MittOS [22] is a mechanism to quickly reject I/O
requests if their SLA can’t be satisfied. An application can
specify a threshold for tail latencies that it can tolerate, and
use a modified read syscall that returns an EBUSY error if
there is too much contention to complete the request in time.
For database applications with multiple replicas, the request
can be moved to a different replica if the first one returns
EBUSY. Without knowledge of contention, applications can
also use a wait-and-speculate method, where if a request has
not completed before a threshold, it assumes contention and
tries a different replica. Figure 15 shows an application that
immediately sees contention compared to an application that
waits and speculates after a threshold, which results in more
wasted time.
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Figure 15: A comparison of speculation and a MittOS busy
signal.

To implement MittOS, the latency of an incoming request
must be accurately speculated. For mechanical drives with
no device side queueing, the estimation can be done in the
OS scheduler. With a FIFO scheduler, the latency of the re-
quest is simply the sum of all requests ahead in the queue.
With schedulers that reorder requests, however, a request may
initially appear to get low latency, but a later request with
higher priority may push it back. In that case, MittOS may
cancel older requests while still respecting the SLA. The la-
tency estimation becomes more complex on NVMe drives,
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as knowledge of the internal state is required. MittOS uses
Open Channel SSD to observe per-channel contention. Large
requests may access many channels, in which case the slowest
channel determines the overall latency.

In multi-tenant environments with shared storage, noisy
neighbors can lead to high tail latencies for database queries.
However, it is unlikely that multiple database replicas
experience contention at the same time. With the MittOS fast
rejection mechanism, tail latencies are reduced almost to the
level of a single-tenant environment.

K2 - K2 [51] is a multi-queue scheduler that provides real-
time guarantees for requests, but does not guarantee fairness.
It uses 8 staging queues corresponding to the eight ionice
priority levels on Linux. It always consumes from the highest
priority queue that is not empty in order to provide lower
latency to high-priority requests. K2 also limits the number
of in-flight requests, similar to MQFQ, to prevent device-
level scheduling from doing arbitration that is destructive
to host-side decisions. When a latency-sensitive process runs
alongside high-throughput processes, K2 is able to provide
lower latencies than other Linux I/O schedulers, however, it
sacrifices considerable throughput.

6.3 Single-Queue Schedulers

FlashFQ - FlashFQ [60] is an I/O scheduler for Linux’s
single-queue block layer. Firstly, FlashFQ argues that times-
lice scheduling as done by CFQ, BFQ, Argos, and FIOS is
not suitable for Flash as it impacts responsiveness. Instead, a
fine-grained per request queueing algorithm should be used.
That is because when a flow’s timeslice is out, it must wait in
round-robin for its next slice, leading to high latencies.

FlashFQ uses SFQ(D), an extension of SFQ that can dis-
patch D requests in parallel. Dispatching requests in parallel
is essential to utilizing SSDs full performance, but it also in-
troduces interference between requests. FlashFQ recognizes
that interference on the flash device may lead to unbalanced
performance between two parallel requests. To balance flows,
FlashFQ introduces a throttled dispatch mechanism that throt-
tles flows when their virtual time is too far ahead.

As described in Section 3, anticipation improves through-
put on mechanical drives by idling for short periods in the
hopes of receiving more sequential requests, rather than
immediately serving requests that require more seek time.
Although SSDs do not benefit from maximizing locality,
FlashFQ finds that anticipation can be used to improve
fairness. A characteristic of fair queueing algorithms is that
when a flow becomes inactive, it can not accumulate shares,
instead it starts with a new virtual time when it becomes
active again. By holding the virtual time of a flow for a
short window after becoming inactive, the flow can use
accumulated resources in the case of deceptive idleness.

A+CFQ and H+BFQ - Kim et al. [37] look at I/O propor-
tionality of the CFQ and BFQ schedulers. To satisfy SLA
requirements, processes and VMs can be given different I/O
weight using Linux cgroup. However, CFQ and BFQ do not
reach the expected proportionality on Flash devices. This is
caused by device queue idling on fast SSDs, as CFQ will
constantly be switching between request queues, making it
difficult to reach proportionality goals.

To improve proportionality, A+CFQ implements antici-
pation in CFQ which prevents excessive switching between
queues. In the case of BFQ, proportionality is affected
by excessive budget allocations. H+BFQ (History added
BFQ) gives less budget to aggressive processes. Although
satisfying proportionality is an important goal for modern
I/O schedulers, BFQ and CFQ have been shown to perform
poorly on SSDs.

FIOS - FIOS [54] is a Flash I/O scheduler that uses a
timeslice method for fairness. It addresses limitations in the
CFQ scheduler, which does not fully utilize SSD parallelism,
and does not recognize the different read and write costs
on Flash storage. Two features are added to the timeslice
mechanism. First, multiple timeslices may be active at the
same time, and second, timeslices may be fragmented within
the round-robin cycle (also known as epoch). For every
dispatched request, the cost is subtracted from the timeslice.
In CFQ, the cost is the request size in bytes. However, FIOS
builds two linear models, for reads and writes, to estimate
their cost based on their size, improving fairness.

vFair - vFair [48] is a single-queue I/O scheduler that pro-
vides fairness by computing per-request IO costs. For each
flow, vFair determines the saturation point of the access pat-
tern, i.e. the peak throughput that could be reached if running
alone. Initially, four models must be calibrated that give the
peak IOPS that can be reached for a given request size and
access type (sequential, random, read, or writes). vFair col-
lects the ratio of the four different access types for each flow,
and periodically computes the peak IOPS by combining the
four models. vFair then reaches fairness by slowing down all
flows equally with respect to each flow’s saturation point.

vFair also shows that synchronous flows are likely to be
slowed down by asynchronous flows, because synchronous
flows can only submit more requests after digesting the
responses of previous requests. This makes it harder to
quantify unfairness, as synchronous flows do not have a
visible backlog, thus showing deceptive fairness.

TABS - TABS [38] is an I/O scheduler that throttles writes
to ensure fairness to reads. In particular, some database ap-
plications make heavy use of the NVMe FUA (forced unit
access) flag that makes writes go straight to flash rather than
the device’s write-back cache. In that case, strong interfer-
ence occurs between reads and FUA writes. TABS limits the
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number of outstanding FUA writes in order to speed up read
requests. It uses a dynamic feedback mechanism to adjust the
queue depth limit that is required to achieve fairness. TABS
only considers fairness between operation types rather than
between processes.

6.4 Other Work

Yang et al. [74] argue that fairness can not be achieved by
an I/O scheduler alone. First, when read and write requests
are cached in the page cache, processes may unfairly evict
pages from other processes. Second, the I/O scheduler is not
allowed to reorder certain write requests for consistency re-
quirements. The Argon I/O scheduler [66] explores similar
cache unfairness in device-side read-ahead and write-back
buffers. To prevent unfairness, Argon implements a cache
partitioning scheme.

Most fairness schedulers need to determine the cost of each
request to either advance virtual time or subtract from budgets.
The simplest schedulers use request latency or size in bytes
as cost. Some schedulers (e.g. FIOS, vFair) build models that
require initial calibration. Liu et al. [47] propose D-IOCost, a
cost model that dynamically adjusts flow weights.

6.5 Discussion

We have seen multiple approaches to improving QoS with I/O
schedulers, such as fair queueing algorithms, utilizing special
hardware features, special treatment of latency-sensitive re-
quests, and throttling heuristics. Table 3 shows a summary of
the solutions. Several solutions offer good performance (QoS
goal G4), however, only D2FQ can fully saturate a device.
For the first three goals (fairness, isolation, predictability) all
solutions only consider one out of three, apart from K2. Most
solutions can run on a standard host interface, however, D2FQ
and MittOS require special hardware features.

7 Virtualization

For cloud service providers, it is often practical to offer vir-
tual machines and container-based services in order to better
utilize resources and provide more flexibility. For example,
resources can be oversubscribed and tenants can easily scale
up and down. In these multi-tenant environments, providers
are often bound by service level agreements (SLA) and must
guarantee certain throughput or latency. This chapter explores
the storage stack design for hypervisors and containers, corre-
sponding to layer 3 in Figure 1, and how QoS can be integrated
into such designs. The solutions are summarized in Table 4,
which will be discussed at the end of this section.

7.1 Storage Virtualization
There are many options for providing storage to a virtual ma-
chine. Perhaps the simplest method is hardware passthrough,
where an entire device is passed through using an IOMMU
mapping. The NVMe standard also supports SR-IOV, where
the device is partitioned and appears as multiple separate de-
vices on the PCI bus. Hardware passthrough typically offers
near-native performance but limits flexibility and the number
of virtual machines.
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Figure 16: I/O paths of four storage virtualization options.

On the other end of the spectrum is full software emulation,
where the hypervisor uses the trap and emulate method to
expose a real NVMe or SCSI device to the guest OS, but
every operation gets trapped by the hypervisor, which then
emulates the device. However, emulating a real device can
be CPU-intensive. Para-virtualization is a technique where
the guest OS is presented with a simplified I/O interface,
which is more friendly to the hypervisor compared to real
hardware interfaces. KVM provides para-virtualized storage
with virtio-blk and virtio-scsi which typically perform better
than emulation. Figure 16 shows the different I/O paths of
these solutions.

Recent research on storage virtualization has focused on
bridging the performance gap between bare metal and virtual
machines with different approaches. Two popular approaches
are SPDK storage drivers that run entirely in userspace, and
mediated passthrough where most device functions are passed
directly to a VM with minimal emulation. Dowty and Sug-
erman [18] introduce the following taxonomy for GPU vir-
tualization, which can also explain the different trade-offs in
storage virtualization.

• Performance - How does the virtualized storage per-
form compared to the underlying device and how much
additional CPU usage is introduced.

• Fidelity - How feature-rich is the virtualized storage?
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QoS Goals Addressed

Solution
CPU

Overhead
Required
Hardware Fair Isol. Predict. Perf. Summary

MDev-NVMe [56] Polling
thread

NVMe ✗ ✗ ✗ ✓ NVMe storage virtualization with
polling based mediated passthrough

SPDK vhost-NVMe [75] Polling
thread

NVMe ✗ ✗ ✗ ✓ Userspace NVMe virtualization
backend that uses SPDK

FVM [42] Minimal FPGA
NVMe

✗ ✓ ✗ ✓ Hardware assisted NVMe virtualiza-
tion that uses an FPGA card

LeapIO [43] Minimal SmartNIC
NVMe

✗ ✓ ✗ ✓ Hardware assisted NVMe virtualiza-
tion with an ARM co-processor

LPNS [55] Polling
thread

NVMe ✓ ✓ ✗ ✓ Extension of MDev-NVMe that
adds QoS and latency predictability

mClock [21] Unknown None ✓ ✓ ✗ ✗ VMware ESX scheduler with QoS
based on limits and reservations

blk-iocost [25] Minimal None ✓ ✗ ✗ ✓ Cgroup block layer policy that throt-
tles I/O based on a cost model

Table 4: A summary of solutions that improve QoS in virtualized- and container environments

For example trim support and NVMe admin commands
such as WRR configuration.

• Multiplexing - Can the underlying device be shared with
multiple tenants? And if so, are there any constraints on
the scalability.

• Interposition - Can additional features be introduced
between the VM and storage device? This could be fea-
tures such as checkpointing, compression, backups, and
live-migration.

We will now take a closer look at two state of the art
storage virtualization techniques that offer near-native
performance. In a later section, we will see an extension of
this work that offers QoS.

MDev-NVMe - MDev-NVMe [56] is a mediated passthrough
mechanism for NVMe. It uses the VFIO mdev (mediated
devices) Linux kernel module. MDev-NVMe exposes an em-
ulated NVMe device to the guest OS with a number of admin
queues and I/O queues. However, each virtual I/O queue is a
shadow of a physical queue on the device. When I/O is sub-
mitted, MDev-NVMe translates both the DMA address of the
data and the LBA of the device block. All admin commands
are fully emulated however in order to present a virtual device
to the guest, which may have different properties than the
physical device.

When I/O is submitted over NVMe, the host typically
writes to the device doorbell register with MMIO. In a
virtual machine, this can be expensive as each MMIO

write is trapped and requires emulation. NVMe offers an
admin command to set up a shadowed doorbell register,
which MDev-NVMe can poll to prevent frequent VM exits.
MDev-NVMe thus enables zero-copy NVMe virtualization
with minimal emulation overhead and provides near-native
performance.

SPDK vhost-NVMe - To improve VirtIO performance,
the vhost protocol can be used to move emulation from
QEMU into a kernel module or a user process. SPDK vhost-
NVMe [75] is a userspace storage target that communicates
with the guest OS driver through shared memory and can
poll the guest NVMe queues to minimize VM exits. Similar
to MDev-NVMe, this also allows for zero-copy operation
with few VM exits, thus providing near-native performance.
SPDK is a complete userspace NVMe driver that bypasses
the overhead of the block layer.

Other vhost targets also exist, such as a kernel-based virtio-
scsi backend and userspace virtio-scsi and virtio-blk SPDK
drivers, these protocols don’t match NVMe data structures
as well and require more conversion, impacting performance.
Running the target in userspace also improves performance
as there are fewer kernel context switches.

7.2 Hardware Offloading

A limitation of MDev-NVMe and SPDK vhost-NVMe is that
they rely on polling to provide good performance, which re-
quires at least one dedicated CPU core. Kwon et al. [42] argue

18



that if the performance of NVMe devices grows faster than
CPUs, the CPU overhead of those solutions will grow. They
find that SPDK vhost-NVMe requires 61% more CPU time
compared to native storage. As a response, they propose FVM,
an FPGA-assisted storage virtualization technique. The FPGA
card presents SR-IOV virtual devices to VMs and interacts
with SSDs directly through PCIe peer-to-peer communica-
tion.

Li et al. [43] also find that host-based storage virtualiza-
tion comes with a high CPU tax, as it takes up 10-20% of
hypervisor CPU time. They propose LeapIO, an ARM-based
SmartNIC for offloading storage virtualization. The two so-
lutions offer limited QoS however. FVM implements round-
robin dispatching between virtual I/O queues, but does offer
bandwidth throttling for individual VMs. LeapIO dispatches
from virtual queues in FIFO order.

7.3 Fair Mediated Passthrough

As we have seen, the latest storage virtualization techniques
have focused on high throughput, but have limited QoS sup-
port. Most techniques also bypass the OS block layer, and thus
QoS control in the I/O scheduler does not help. LPNS [55]
is a mediated passthrough virtualization system inspired by
MDev-NVMe, that also provides predictable latencies. LPNS
can be used in hybrid deployments where some virtual queues
are used by the host NVMe driver, while others are passed
through to VMs.

Using LPNS, a virtual storage device can be tagged to indi-
cate that it is latency-sensitive. The NVMe hardware queues
are split into two groups, queues that are 1:1 mapped to a
virtual device, and queues that are 1:N mapped to multiple
devices (Figure 17). Latency-sensitive VMs are given 1:1
queues to prevent head-of-line blocking. LPNS uses a method
called deterministic network calculus, borrowed from net-
working theory, to compute upper bounds on latency for
a given throughput and throttles virtual queues when the
throughput would cause latency goals to be exceeded.

LPNS can give an upper bound on the latency of VMs, but
compared to MDev-NVMe the throughput loss is around 20%.
LPNS uses a polling thread to mediate the passthrough. A
single thread is enough to utilize a single SSD, however more
threads may be needed to achieve predictable latency goals.
This technique thus suffers from a CPU tax.

mClock [21] is an I/O scheduler implemented on VMware
ESX. It offers setting I/O weights for each VM, but also
a minimum reservation and a maximum limit in terms of
throughput. It combines a fair-queueing scheduling method
with a constraint-based method, satisfying the fairness criteria
and also minimum and maximum constraints.
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Figure 17: The structure of LPNS.

7.4 Container Storage
Containers offer lightweight virtualization by isolating pro-
cesses on the same operating system. They allow for higher
levels of consolidation compared to VMs because resources
are not statically reserved. On Linux, the cgroup feature can
be used to isolate and limit resources for processes. For I/O
resource control, the simplest mechanism is blk-throttle,
which allows limiting read/write IOPS or bytes per second.
Since the total throughput of storage devices varies with ac-
cess patterns, setting fixed limits is not effective for QoS
control. [4, 25]

IOCost (blk-iocost) [25] improves QoS with an I/O cost
model. The model returns the cost of a request in virtual
time. When a request is submitted, the cgroup local virtual
time progresses by the cost, which is adjusted by the cgroup
I/O weight. Requests are throttled if the cgroup is ahead of
global virtual time. By default, IOCost uses four linear models
to give different costs to read/write and random/sequential
requests. An arbitrary model can be specified in the form of
an eBPF program. Both blk-throttle and IOCost are built
into Linux and have been shown to have near-zero overhead
on high-performance SSDs.

7.5 Other Work
Ahn et al. [4] observed that blk-throttle could not achieve pro-
portionality, i.e. balance the throughput of different cgroups
according to their weights. They propose WDT, which
achieves proportional sharing through dynamic throttling.
Spool [71] is a userspace SPDK driver for QEMU that im-
proves the reliability of NVMe storage for hypervisors. They
find that device errors are regular occurrences in large-scale
clouds, most of which can be solved by restarting the storage
system. Spool minimizes the restart duration so that tenants
experience a milder latency spike. vMigrater [29] shows that
when virtual CPUs are time-shared (i.e. not dedicated cores),
I/O may be poorly utilized when a vCPU becomes inactive.
They propose migrating I/O operations between vCPUs if the
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VM has another active vCPU.

7.6 Discussion
We have seen several approaches to improving QoS in
virtualized environments, including mediated passthrough,
userspace SPDK drivers, and hardware-assisted storage virtu-
alization. Table 4 summarizes the solutions from this section
and the QoS goals that they address. Most solutions focus
on improving performance, as older solutions typically per-
form poorly compared to bare-metal. Several solutions also
provide isolation or fairness, however, no solution looks into
predictability. A notable trade-off is that software solutions all
use polling and thus sacrifice one or more CPU cores, while
specialized hardware may introduce additional costs.

8 SSD Emulation

As we have seen, the storage stack of flash devices has a
large design space. The organization of flash chips, design
of the flash translation layer, different host interfaces, and
application side offer many design options. To prototype new
designs, emulation and simulation platforms can model device
internals. Many of the solutions we explored in previous
chapters rely on emulation platforms to prove their viability.

SSD prototyping platforms can be divided into three classes
that have different features and challenges.

• Emulators - Emulators run in real-time and typically
appear as virtualized devices inside a VM or on a bare-
metal host. Emulators therefore allow running unmodi-
fied applications on top. The real-time criteria poses a
big challenge for emulator design.

• Simulators - Simulators are not bound by real-time cri-
teria and typically play trace files from real applications.
This makes simulators simple and cheap to run, but trace
files are more limited than running live applications.

• Real hardware - Hardware prototyping platforms are
real devices that allow prototyping different firmware
or possibly device organization. They offer running live
applications in real-time, but they can be expensive and
some design aspects such as chip organization may be
fixed.

In the following subsections we will explore the details of
each class of solutions.

8.1 Emulators
Real-time emulation of a flash device is cost-efficient and
allows experiments with modifications on all levels of the
storage stack. Figure 18 shows the typical structure of an
emulator. FEMU [44] is a state-of-the-art SSD emulator that

extends QEMU to expose an NVMe device within a VM.
FEMU communicates with a VM through a shared memory
region, similar to SPDK userspace storage drivers, enabling
fast and interrupt-free execution. Because FEMU is backed
by DRAM and is polling-based, the guest OS sees latencies
on par with modern SSDs, both average and tail-latencies,
which is a requirement for the emulation of a fast SSD. With
a low base latency, FEMU can introduce a delay model to
accurately reflect a real device.

The delay model adds the same delay to a request that it
would experience on a real device. The delay model can ac-
count for queueing delays due to internal contention, transfer
times to flash chip registers, and the read, write, and erase
times of the chip. It can also account for different flash trans-
lation and garbage collection schemes. FEMU can be used to
explore the QoS improvements of new designs, e.g. with new
GC schemes, performance isolation designs, and extending
NVMe commands for split-level designs. Both ttFlash and
MittOS are evaluated using FEMU.
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Figure 18: Typical structure of a VM-based storage emulator.

ConfZNS [62] is an extension of FEMU to emulate differ-
ent designs of ZNS devices. In particular, the zone size and
how zones are mapped to the internal channels, chips, and
planes can affect the performance and performance-isolation
of each zone. An evaluation using ConfZNS finds that ZNS
offers stronger performance isolation when internal parallel
units are mapped to single zones.

VSSIM [76] is an older SSD emulator that operates on
QEMU, but is based on a virtual IDE interface which limits
scalability and multi-queue experiments. VSSIM can be either
backed by DRAM or a real SSD for emulating a large device,
as long as the real device is faster than the emulated device.
Gugnani et al. [20] extend the built-in QEMU NVMe emu-
lator to support QoS research by implementing the weighted
round robin (WRR) and deficit round robin (DRR) arbitration
schemes. Experiments with their emulator show that DRR
can be used to provide bandwidth guarantees at the hardware
level.

Most emulators are built for virtual machines. Kim et

20



al. [39] show that this can limit advanced features such as
userspace NVMe drivers and peer-to-peer PCIe functionality.
Their solution, NVMeVirt emulates a real PCIe device by
setting up a memory region that appears as a PCI bus, and
then implementing NVMe emulation on top. NVMeVirt thus
appears as a real device to both the host and other PCIe de-
vices. It supports experiments with bare-metal applications
and produces lower latencies than FEMU, which the authors
show is only slightly faster than modern Optane devices.

8.2 Simulators
Simulators work with I/O trace files and can easily simulate all
SSD details in the absence of time constraints. One challenge
of simulators is accounting for the relations between requests
in a trace, e.g. whether there is a causal dependency between
requests and the host processing time between requests. In
addition, traces can not be scaled for experiments with dif-
ferent device sizes. Not running in real-time also rules out
experiments with host and application design. However, the
simplicity of simulations has lead to several popular solutions.

MQSim [63] is a state-of-the-art simulator that simulates
both NVMe and SATA SSDs. It improves upon older simu-
lators by supporting multi-queue internals and accounts for
more sources of latencies. Most older simulators consider
flash chip operations, chip transfers, and channel queue delays
to be the most significant sources. MQSim argues that as flash
chips become faster, other sources become non-negligible
such as PCIe transfers, translation table lookups, and DRAM
cache time. MQSim also introduces a fast method for precon-
ditioning the simulated device, as experiments should be done
after the SSD has reached a steady-state, i.e. after all pages
have been written to at least once.

MQSim is shown to be useful for QoS research, e.g. to
analyze unfairness caused by interference between flows on
current SSD designs. An experiment with MQSim shows that
(1) write performance of a modest flow can be slowed down
by an intense flow by causing evictions in the write cache,
(2) when translation tables are cached, one flow that causes
frequent evictions can slow down a translation cache-friendly
flow, and (3) contention from an intense flow in per-channel
queues can slow down modest flows.

Other simulators include WiscSim [23] which simulates an
NCQ SATA drive, and FlashSim [40], one of the first flash
simulators. Both are limited by not supporting multi-queue
designs.

8.3 Hardware Prototyping Platforms
Hardware prototyping platforms can present a storage device
without any host software. OpenExpress [32] implements a
complete NVMe controller on a Xilinx FPGA board backed
with DRAM. It can produce a bandwidth and latency compa-
rable to an Optane SSD. However, it does not come with a

ready-to-use delay model like many simulators and emulators.
The low clock frequency of the FPGA also limits performance,
which may not be enough for prototyping next-generation de-
vices. Cosmos+ OpenSSD [41] is a similar FPGA platform
but it is backed with NAND chips and thus the flash charac-
teristics are fixed.

9 Future Work

In this survey, we have seen a variety of solutions that aim to
improve QoS in different ways. However, despite many pro-
posed solutions, few have found their way into real-world sys-
tems. The two state-of-the-art fair I/O schedulers, MQFQ [24]
and D2FQ [69], have limitations that may hinder adoption.
Namely, using MQFQ results in a non-negligible throughput
reduction, and D2FQ requires a hardware feature (WRR) that
few devices have. Future work might further explore the bot-
tlenecks of fair I/O scheduling. The most advanced solution
with real-world adoption might be IOCost [25], used to pro-
vide I/O fairness to Facebook’s entire container fleet. There
is currently limited work comparing cgroup policies and I/O
schedulers.

We have seen multiple QoS strategies in this work, such as
fair queueing algorithms, strict resource isolation, and special
treatment of latency-sensitive requests. A better understand-
ing may be needed of how these strategies affect end appli-
cations. We have also seen how I/O fairness can be provided
by hypervisors with a mediated passthrough solution [55].
These methods may need to be improved to support advanced
interposition features such as live migration, in order to get
wider adoption. Finally, there is limited work that explores
cross-stack solutions, e.g. adding features to host interfaces
or exposing QoS information to applications.

A trend that is visible at all layers of the survey is that
keeping up with ever-improving SSD performance is a chal-
lenge. Thus, solutions that provided good performance a few
years ago may not be sufficient today. Finally, a growing con-
cern in cloud computing is energy efficiency. However, most
solutions do not explore their impact on energy usage. For
example, some solutions depend on polling to achieve good
performance, at the cost of dedicating one or more CPU cores
for polling, thus increasing energy costs.

10 Conclusion

This survey has explored various aspects of QoS challenges
on NVMe drives. We conclude this survey by answering
the questions that we presented in Section 2, which also
answer our main survey question: What are the challenges
in providing fairness and reliable performance to multiple
applications on modern SSDs?

RQ1: How can I/O schedulers preserve peak throughput on
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SSDs while providing other QoS guarantees?

We have seen that providing fairness requires a global view
of all queues. Multi-queue I/O schedulers are essentially
distributed systems, and a major challenge is efficient
coordination between CPU cores [24]. Coordination can
either be done using optimized data structures or with the
assistance of device-side features. All the solutions explored
in Section 6 bring some throughput reduction, apart from
D2FQ [69], which uses device-side arbitration to simplify
scheduling. Thus, preserving throughput without specialized
device features is still an open problem.

RQ2: What are the causes of performance degradation on
SSDs and how can they be prevented?

As we explored in Section 4 and Section 5, SSDs can suffer
from performance degradation, which is influenced by their
internal functions and parallelism. In particular, latency
spikes and reduced throughput can occur due to a bad access
pattern, the SSD’s internal tasks, or by inference from another
flow. Requests must be balanced across channels and planes
to fully utilize the device, and scheduling must account for
fairness and conflicts due to Flash characteristics. Several
solutions mitigate these problems effectively, for example
ttFlash [72] and FLIN [64].

RQ3: What factors can limit QoS in SSD-based virtualized
and container environments?

We discussed the many storage virtualization solutions
that are available in Section 7. For NVMe drives, standard
solutions result in poor I/O performance within virtual
machines, and many solutions have thus been proposed for
improving throughput [56, 75]. However, these solutions
bypass the host block layer, making it harder to provide QoS.
A single solution exists that offers high throughput and QoS
with mediated passthrough [55]. Containers go through the
block layer of the OS like any other process, and can be ad-
justed with cgroup policies, as we have seen with IOCost [25].

RQ4: How can the design space of SSDs and block layers be
explored with the goal of improving QoS?

The emulators and simulators that we discussed in Section
8 can facilitate a detailed exploration of the design space
of SSDs. Many of the solutions explored in this survey
use emulators to confirm their viability. The most apparent
limitation for further QoS research is the difficulty of keeping
up with the performance of the latest SSDs. The solutions
that we explored offer a best-case latency that is not far ahead
of modern devices.
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