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Abstract
Abstract syntax tree (AST) interpreters allow implementing
programming languages in a straight-forward way. How-
ever, AST interpreters implemented in object-oriented lan-
guages, such as e.g. in Java, often suffer from two serious
performance issues. First, these interpreters commonly im-
plement AST nodes by leveraging class inheritance and poly-
morphism, leading to many polymorphic call sites in the
interpreter implementation and hence lowering interpreter
performance. Second, widely used implementations of these
interpreters throw costly runtime exceptions to model the
control flow. Even though Just-in-Time (JIT) compilation
mitigates these issues, performance in the first stages of the
program execution remains poor.
In this paper, we propose a novel technique to improve

both interpreter performance and steady-state performance,
lowering also the pressure on the JIT compiler. Our technique
automatically generates AST supernodes ahead-of-time, i.e.,
we automatically generate compound AST-node classes that
encode the behavior of several other primitive AST nodes be-
fore the execution of the application. Our technique extracts
common control-flow structures from an arbitrary, given set
of ASTs, such as e.g. the functions of popular packages. It is
based on matchmaking of AST structures, instantiation of
matching supernodes, and replacement of the corresponding
AST subtrees with the instantiated supernodes at load-time.
We implement our technique in the GraalVM JavaScript
engine, showing that our supernodes lead to an average in-
terpreter speedup of 1.24×, an average steady-state speedup
of 1.14×, and an average just-in-time compilation speedup
of 1.33× on the web-tooling benchmark suite.
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1 Introduction
Abstract syntax tree (AST) interpreters allow implementing
programming languages in an elegant and straight-forward
way. However, AST interpreters frequently suffer from se-
rious performance issues. AST interpreters are often imple-
mented in object-oriented languages, such as e.g. in Java or
C++, and exploit features such as class inheritance and poly-
morphism. Even though these features improve code main-
tainability, polymorphic call sites in the interpreter imple-
mentation lower interpreter performance. Moreover, widely
used implementations of AST interpreters rely on costly
runtime exceptions to model the control flow of the inter-
preted language. For instance, exceptions are used to break
the execution of a loop iteration or to return from a function.

To mitigate these performance issues, research has mostly
focused on the development and improvement of just-in-
time (JIT) compilers. The JIT compiler—executed at runtime
and usually concurrently with the application—transforms
the ASTs into optimized machine code that the system can
execute without the need for interpretation. After the JIT
compiler has compiled all relevant ASTs, the system can
reach a steady state, i.e., a state where the system internals
have stabilized and the system executes predominantly JIT-
compiled code. JIT compilation aims at high steady-state
performance, but does not solve the problem of poor startup
performance of AST interpreters.
In this paper, we make a first step towards the investi-

gation of a new technique to improve both interpreter per-
formance and steady-state performance, lowering also the
pressure on the JIT compiler (i.e., feeding the JIT compiler
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with input code that can be more easily optimized). We base
our work on the concept of AST supernode [7] (also known
as superoperator [16] in the context of bytecode interpreters),
i.e., compound AST-node classes that encode the behavior
of several other primitive AST nodes. In particular, we aim
at answering the following research questions:
RQ1. Can supernodes speed up interpreter performance?
RQ2. Can supernodes help the JIT compiler produce better

optimized machine code?
RQ3. Can supernodes reduce the pressure on the JIT com-

piler?

Contributions. To answer RQ1, RQ2, and RQ3, we pro-
pose a new technique to improve virtual-machine perfor-
mance by exploiting AST supernodes. Our technique lever-
ages automatic ahead-of-time generation of supernodes and
runtime installation of matching supernodes, exploring a
new point in the design space between ahead-of-time and
just-in-time compilation (Section 4). Our technique auto-
matically generates supernodes from a set of ASTs that ex-
ercise common control-flow patterns before building the
Virtual Machine (VM). At runtime, our technique performs
an efficient matchmaking of AST structures, instantiation of
matching supernodes, and replacement of the corresponding
AST subtrees with the instantiated supernodes. Despite the
ahead-of-time generation of supernodes, our technique does
not prevent the JIT compiler from exploiting profiling data
to fully optimize the emitted machine code [4].
We implement our technique in the GraalVM JavaScript

engine (also known as Graal.js [11]) and we evaluate our
implementation on the web-tooling benchmark suite [17],
showing that supernodes improve both interpreter and
steady-state performance. Moreover, we show that super-
nodes reduce JIT compilation time, at the cost of moderate
extra memory, increased VM building time, and some startup
costs for loading the supernode classes (Section 5).
We complement the paper by presenting background in-

formation (Section 2), a motivating example (Section 3), a
discussion of related work and our technique (Sections 6 and
7, respectively), and some concluding remarks (Section 8).

2 Background
In this section we present the required background on AST
interpreters (Section 2.1) and Graal.js (Section 2.2).

2.1 AST Interpreters
AST allows representing a program using a simple tree struc-
ture where each AST node represents a language operation.
For example, AST nodes may represent control-flow con-
structs, such as if and while, or primitive operations, such
as arithmetic expressions, memory accesses, function calls,
etc. We call AST nodes that represent control-flow constructs
control-flow nodes and AST nodes that represent primitive
operations non-control-flow nodes.

In an object-oriented implementation, AST nodes are often
subclasses of a common abstract class, and ASTs are created
exploiting composition—each AST node instance stores ref-
erences to its children (if any). Each AST node implements
the code to perform the behavior of the operation it encodes,
returning the produced result. Each AST node is responsible
for invoking the execution of its children.
The control-flow of the language to be interpreted is im-

plemented by exploiting the control-flow structures of the
language used to implement the interpreter. To implement
break, continue, and return statements that span multiple
AST nodes, AST interpreters often employ runtime excep-
tions [9, 27]. An AST node throws a runtime exception of a
specific type and an ancestor AST node catches and handles
that runtime exception. We note that control-flow nodes are
usually found in the lower tree levels of an AST (i.e., closer
to the root node), while non-control-flow nodes are usually
found in the higher levels (i.e., closer to the leaf nodes).

2.2 GraalVM JavaScript (Graal.js)
We implement our technique in Graal.js [11], an open-source,
high-performance implementation of the JavaScript pro-
gramming language built on top of GraalVM [26]. GraalVM
is a managed language runtime system based on the Java
Virtual Machine (JVM), capable of executing several differ-
ent programming languages such as Ruby, R, Python, and
JavaScript. GraalVM supports ahead-of-time compilation
thanks to native images [24] and yields high performance
thanks to the Graal compiler [4].
Graal.js is implemented using Truffle [25], a language

implementation framework that allows implementing self-
optimizing AST interpreters running on GraalVM [27], i.e.,
implementing AST interpreters using customAPIs that allow
the Graal compiler to partially evaluate [5] and efficiently JIT
compile ASTs. In particular, the goal of the partial evaluator
is to remove the AST-interpretation overhead by following
the execution path in the program ASTs, before other JIT-
compiler optimizations take place.
We define as VM startup the initial VM setup before pro-

gram interpretation begins, as warmup the initial stages of
program execution taking place after the VM startup that
include program interpretation, partial evaluation, and JIT
compilation, and as steady-state the stages of program execu-
tion where the system has stabilized and all the performance-
relevant ASTs have been compiled.

In Graal.js, AST nodes are subclasses of the abstract class
Node provided by the Truffle API. Each node class imple-
ments an execute method that defines the behaviour of the
node and declares the children the node accepts. To model
the control-flow, Graal.js exploits runtime exceptions, as
described in the previous subsection.
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1 function fibonacci(n) {
2 if (n < 2) {
3 return n;
4 }
5 return fibonacci(n - 1) + fibonacci(n - 2);
6 }

Figure 1. JavaScript implementation of function fibonacci.

function

if

n < 2
return
exception

n

return

fibonacci(n -1)
+

fibonacci(n -2)

Figure 2. Simplified AST of the JavaScript function
fibonacci (Figure 1). Collapsed nodes are represented us-
ing dashed borders.

3 Motivating Example
AST supernodes are compound AST-node classes that en-
code the behavior of several other primitive AST nodes.
While supernodes can help improving AST interpreter per-
formance, defining what nodes to aggregate in a supernode is
non trivial. In this section, we illustrate our technique, show-
ing how an example AST (consisting of primitive nodes only)
is transformed into an AST that contains an (automatically
generated) supernode.
Figure 1 shows a JavaScript implementation of the func-

tion fibonacci, i.e., a function that, given a number n as pa-
rameter, returns the n-th element of the fibonacci sequence.
A simplified AST corresponding to the fibonacci function is
shown in Figure 2. For a more compact presentation, we do
not show all the nodes of the AST; we collapse some subtrees
into single nodes (illustrated with dashed borders). We show
simplified implementations of the execute methods of the
function, if, return, and return exception AST nodes in
Figure 3.
In the example, the root function node has two children:

an if node and a return node. Unless a control-flow excep-
tion is thrown, these children are executed one after the
other, as reported in the execute method of Figure 3 at lines
2–17. The if node first evaluates the condition expression
n < 2 (line 21) and only if the condition evaluates to true,
the if node executes its body (line 23), i.e., the subtree with
the return exception node as root. The return exception

node in the body of the if statement throws an exception

1 // execute method of the `function ` node
2 public Object execute () {
3 try {
4 int childrenLength = children.length;
5 if (childrenLength == 0) {
6 return null;
7 }
8
9 for (int i = 0; i < childrenLength - 1; i++) {
10 children[i]. execute ();
11 }
12
13 return children[childrenLength - 1]. execute ();
14 } catch (ReturnException re) {
15 return re.getValue ();
16 }
17 }
18
19 // execute method of the `if` node
20 public Object execute () {
21 if (condition.executeBoolean ()) {
22 if (thenPart != null) {
23 return thenPart.execute ();
24 } else {
25 return null;
26 }
27 } else {
28 if (elsePart != null) {
29 return elsePart.execute ();
30 } else {
31 return null;
32 }
33 }
34 }
35
36 // execute method of the `return ` node
37 public Object execute () {
38 return child.execute ();
39 }
40
41 // execute method of the
42 // `return exception ` node
43 public Object execute () {
44 throw new ReturnException(child.execute ());
45 }

Figure 3. Simplified implementation of the function, if,
return, and return exception nodes of Figure 2.

that encapsulates the value produced by the evaluation of its
child node (line 44). This is because this return exception

nodemust break the interpretation loop of the function node
at lines 9–11. The function node catches the exception and
returns the value the exception encapsulates (lines 14–16).
Finally, the return node executes its child, returning the pro-
duced result (line 38). In this case, since the return node is
the last child of the function node, no exception to model the
control flow is required—the function node simply returns
the result produced by the last child (line 13).
To avoid the use of an exception (that can cause runtime

performance degradation), a supernode can be generated
that replaces all the control-flow nodes of the AST, as shown
in Figure 4. In particular, the control-flow supernode replaces
the function, if, return, and return exception nodes. For
the sake of exemplification, a simplified implementation of
the execute method of this control-flow supernode is re-
ported in Figure 5 (the details of the generated code will be
shown later in Section 4.2) and consists of a ternary operator
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control-flow supernode

n < 2 n
fibonacci(n -1)

+
fibonacci(n -2)

Figure 4. Simplified AST of the JavaScript function
fibonacci (Figure 1) with a supernode that encodes the
control-flow. Collapsed nodes are represented using dashed
borders.

1 public Object execute () {
2 return condition.executeBoolean ()
3 ? thenPart.execute ()
4 : fallThrough.execute ();
5 }

Figure 5. Simplified execute method of the control-flow
supernode of Figure 4.

where each expression calls the execute method of a child
node (lines 2–4). Child nodes are stored in the instance fields
condition (line 2), thenPart (line 3), and fallThrough (line 4).
To reduce the number of polymorphic call sites, the declared
type of these fields is not Node, i.e., the common ancestor
class of all the AST nodes. Instead, the declared types of
the fields condition, thenPart, and fallThrough are the leaf
classes LessThanNode, ParameterNode, and AddNode, respec-
tively. In the figure, dashed edges represent monomorphic
calls that can generally be better optimized, hence improving
performance.

4 Supernode Generation and Installation
In this section, we first give an overview of our technique
to automatically generate and install AST supernodes (Sec-
tion 4.1). Then, we detail the three steps of our technique,
namely Supernode Generation (Section 4.2), Lookup-Tree Gen-
eration (Section 4.3), and Supernode Installation (Section 4.4).

4.1 Overview
Figure 6 shows how our technique is integrated into the
VM building process and workload execution. The three
steps introduced by our technique are represented using
gray nodes with dashed borders.
The first step of our technique is Supernode Generation.

This step takes place at build time, before the building of the
production VM, and aims at generating a supernode for the
lower tree levels of each AST in a collection of functions, i.e.,
the part of the AST that contains the control flow of the func-
tion the AST encodes.1 We call this collection of functions
1For simplicity, in this paper, we refer to the ASTs of functions written in
the interpreted language, whereas our approach is applied to the root of

generation set, which will consist of the functions of popular
packages. Supernode generation is eager—it creates the max-
imal supernode that encodes the whole control-flow of the
provided AST. We do not create supernodes that encapsu-
late only part of an AST’s control-flow nodes. Moreover, we
do not create supernodes for non-control-flow AST nodes
(such as arithmetic operations, function calls, or memory
accesses). As detailed in Section 3, to avoid polymorphic call
sites within supernodes, we generate supernodes that store
their children in instance fields whose declared types are the
dynamic types of the children nodes. We assume that the
interpreter is implemented in a statically typed language, i.e.,
Java in the case of Graal.js.

After the supernodes have been generated, the supernodes
need to be organized for efficient matchmaking. This is done
in the second step of our technique, Lookup-Tree Genera-
tion. In our technique, each supernode is associated with a
sequence of unique IDs (henceforth called supernode struc-
ture or simply structure) that encodes the structure of the
supernode; the structure contains the types IDs of the AST
control-flow nodes that the supernode encapsulates (in a
fixed traversal order) and the types IDs of the children nodes
that the supernode accepts, e.g., the type IDs of the corre-
sponding non-control-flow nodes. At execution time, before
parsing the source code, we load the supernode classes and
use the supernode structures to generate a lookup-tree for
the subsequent supernode installation step.
Finally, after supernodes have been generated and orga-

nized for efficient matchmaking, suitable supernodes are
installed at runtime. The parser needs to be aware of their
existence and should instantiate them when appropriate.
This is achieved in the third step of our technique, Supernode
Installation. After the creation of each AST, we match AST
structures, instantiate matching supernodes, and replace the
corresponding AST subtrees with the instantiated super-
nodes. To do so, we traverse the lookup-tree generated in the
second step of our technique together with each parsed AST,
collecting children nodes that will be used to instantiate a
supernode, if a matching one is found.
After the supernode installation step, the VM executes

the user code by interpreting the optimized ASTs that con-
tain our supernodes (eventually JIT compiling the optimized
ASTs to machine code).

4.2 Supernode Generation
Before the VM building phase, we generate the supernodes
that will be included in a production build of the VM, e.g.,
by using the ASTs of the functions of popular packages.

Algorithm 1 depicts the pseudocode for generating super-
nodes. As input, the algorithm takes a set of ASTs for which
supernodes shall be created and produces the supernodes

any generated AST (i.e., for functions, procedures, methods, constructors,
etc.).
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VM Ini-
tialization

Lookup-Tree
Generation

Source Code
Parsing AST Creation

Supernode
Installation

Interpretation
Execution of
JIT-emitted

machine code

JIT Compilation

Supernode
Generation

VM BuildingBuild Time

Execution Time

Figure 6. Integration of the proposed technique into the VM building process and workload execution. White nodes with solid
borders represent baseline steps. Gray nodes with dashed borders represent the steps introduced by our technique.

Algorithm 1: Supernodes generation
generateSupernodes(𝐴): generate supernodes for

the provided ASTs
Input: 𝐴, the set of ASTs to be used to generate

supernodes
Output: Supernode classes dumped as Java files

1 𝑆 ← new 𝑆𝑒𝑡 ()
2 foreach 𝑎 ∈ 𝐴 do
3 𝑟𝑜𝑜𝑡 ← 𝑎.𝑟𝑜𝑜𝑡 ()
4 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑐𝑜𝑑𝑒 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒 (𝑟𝑜𝑜𝑡)
5 if 𝑒𝑥𝑐𝑒𝑒𝑑𝑠𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) and

!𝑆.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) then
6 𝑐𝑜𝑑𝑒.𝑎𝑑𝑑𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐹𝑖𝑒𝑙𝑑 (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)
7 𝑐𝑜𝑑𝑒.𝑑𝑢𝑚𝑝 ()
8 𝑆.𝑎𝑑𝑑 (𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)

as output in the form of Java files. In particular, the algo-
rithm iterates over the provided ASTs (line 2), extracts the
root of each AST (line 3), and calls a subroutine that recur-
sively generates the supernode, returning the supernode
structure and the corresponding code. Then, our algorithm
checks whether the generated supernode should be saved
or discarded (line 5). We save supernodes whose structure
encodes a minimum number of control-flow nodes (in our
experiments, we set this threshold to 3) and whose structure
has not yet been encountered before, i.e., we save supernodes
that are sufficiently complex and we avoid duplicates. If a
supernode is saved, we store its structure in the supernode
class in a static final field (line 6), we dump the supernode
class as a Java file (line 7), and we update the set 𝑆 (declared
at line 8) that contains the already saved supernodes (line 1).
Algorithm 2 shows the recursive subroutine to generate

supernodes. As input, the algorithm takes an AST node for
which a supernode is to be created and returns a pair as out-
put. The first element of the pair is the supernode structure

Algorithm 2: Supernode generation
generateSupernode(𝑛): recursively generate a

supernode for the lower
levels of the provided AST
that contain the
control-flow nodes

Input: 𝑛, root of an AST subtree for which a
supernode may be created

Output: A pair that consists of:
(1) The supernode structure as a list
(2) The code of a supernode class encoding the lower
tree levels of the input AST

1 𝑐𝑜𝑑𝑒 ← new 𝐶𝑙𝑎𝑠𝑠𝐵𝑢𝑖𝑙𝑑𝑒𝑟 ()
2 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ← new 𝐿𝑖𝑠𝑡 ()
3 𝑖𝑑 ← 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝐼𝑑 (𝑛)
4 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖𝑑)
5 if 𝑖𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐹𝑙𝑜𝑤𝑁𝑜𝑑𝑒 (𝑛) then
6 𝐶 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛)
7 𝑐𝑜𝑑𝑒 += 𝑒𝑚𝑖𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑑𝑒𝐵𝑒 𝑓 𝑜𝑟𝑒𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛,𝐶)
8 for 𝑘 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) do
9 𝑐 ← 𝐶𝑘

10 𝑐𝑜𝑑𝑒 += 𝑒𝑚𝑖𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑑𝑒𝐵𝑒 𝑓 𝑜𝑟𝑒𝐶ℎ𝑖𝑙𝑑 (𝑛, 𝑐)
11 𝑐𝑠, 𝑐𝑐𝑜𝑑𝑒 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒 (𝑐)
12 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒.𝑎𝑝𝑝𝑒𝑛𝑑𝐴𝑙𝑙 (𝑐𝑠)
13 𝑐𝑜𝑑𝑒 += 𝑐𝑐𝑜𝑑𝑒

14 𝑐𝑜𝑑𝑒 += 𝑒𝑚𝑖𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑑𝑒𝐴𝑓 𝑡𝑒𝑟𝐶ℎ𝑖𝑙𝑑 (𝑛, 𝑐)
15 𝑐𝑜𝑑𝑒 += 𝑒𝑚𝑖𝑡𝑆𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑑𝑒𝐴𝑓 𝑡𝑒𝑟𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛,𝐶)
16 else
17 𝑐𝑜𝑑𝑒 += 𝑒𝑚𝑖𝑡𝐶ℎ𝑖𝑙𝑑𝐼𝑛𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑛)
18 𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑐𝑜𝑑𝑒

represented as a list, while the second element is the code
of a supernode that corresponds to the returned structure.
First, the algorithm creates a new code builder (line 1), a new
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if

less than

return exception

parameter

return

add

constant

return

add

Figure 7. Lookup-tree encoding two supernodes. Nodes
containing a reference to a supernode class are represented
using double borders. For the sake of exemplification, each
illustrated node contains the AST node type name instead
of the unique ID of the corresponding node type.

structure (line 2), and appends the id of the input node to
the newly created structure (lines 3–4). Then, the algorithm
checks whether the input node is a control-flow node (line 5).

If the input node is not a control-flow node (lines 16–17),
the algorithm generates a field in the supernode class with
the same declared type as the dynamic type of the child node.
The dynamic node type is uniquely identified by 𝑖𝑑 and the
field will be used to store the child node. The algorithm then
generates code that invokes the execute method of the child
node (line 17).
If the input node is a control-flow node, the algorithm

emits Java source code that corresponds to the primitive
operations encoded by the input node (lines 7, 10, 14, and 15).
We provide more detail on the generated Java source code
in the next paragraph. The algorithm recursively traverses
the child nodes of this input node (line 11), generating the
corresponding structures and code. The algorithm merges
the generated structure and code into the current structure
and code (lines 12–13), allowing a recursive supernode gen-
eration. Finally, we return the structure and code as a pair
(line 18).

On the one hand, extracting supernode structures from the
generation set, creating the lookup-tree of supernodes, and
installing supernodes at runtime are interpreter-independent

1 public Object execute () {
2 boolean tmp1 = child1.executeBoolean ();
3 if (tmp1) {
4 Object tmp2 = child2.execute ();
5 return tmp2;
6 }
7 Object tmp3 = child3.execute ();
8 return tmp3;
9 }

Figure 8. Execute method of the control-flow supernode of
Figure 4 without simplifications.

algorithms and will work for any Truffle AST interpreter
out-of-the-box. On the other hand, the generation of the Java
source code of supernodes requires knowledge of the inter-
preter implementation and currently is a manual effort by the
developers of an AST interpreter. In our implementation, we
have dedicated source-code generation functions for 45 dif-
ferent control-flow node types (Graal.js contains more than
300 AST node types). Figure 8 shows the code emitted by our
generation functions that corresponds to the control-flow
supernode of Figure 4, without the simplifications reported
in Figure 5. Consider the if AST node encapsulated by the
supernode (Figure 2), the if generation function emits a Java
if statement (line 3) that accepts (as its condition) the re-
sult produced by the execution of the condition child node
(line 2) and (as its body) the code produced by the traversal
of the if-body subtree (lines 4 and 5). In supernodes, AST
return nodes that throw exceptions to model the control
flow are simply replaced by Java return statements (line 5).
Even though not present in this example, when generating
Java source code, we generate also Java labels that can be
later referenced by break and continue statements. In this
way, we can avoid the usage of exceptions to model the con-
trol flow. We are investigating techniques to automate code
generation and further reduce the burden on the interpreter
developer.

4.3 Lookup-Tree Generation
After the VM Initialization, we iterate over the structures of
all the generated supernodes and build a lookup-tree that
efficiently maps AST structures to supernodes. The lookup-
tree is a trie (i.e., a prefix tree), for which the alphabet is
the set of node IDs that occur in the supernodes’ structures.
Apart from the root, each node in the lookup-tree stores the
type ID of an AST node.
Algorithm 3 reports our pseudocode for generating the

lookup-tree. As input, the algorithm takes the supernodes
generated by the Supernode Generation step and returns the
root of the generated lookup-tree as output. In particular,
the lookup-tree has an empty root, where later the match-
making of AST structures will start (line 1). We iterate over
the input supernodes (line 2) and we extract the structure
of each supernode (line 4). Then, we iterate over the ids
that compose the structure of each supernode (line 5) and

6



Automatically Generated Supernodes for AST Interpreters Improve Virtual-Machine Performance GPCE ’23, October 22–23, 2023, Cascais, Portugal

Algorithm 3: Lookup-tree generation using super-
node structures.
generateLookupTree(𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠): generates a

lookup-tree for
the provided
supernodes

Input: 𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 to register in the lookup-tree
Output: A lookup-tree that contains the provided

supernodes
1 𝑟𝑜𝑜𝑡 ← new 𝑁𝑜𝑑𝑒 ()
2 foreach𝑚 in 𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 do
3 𝑐 ← 𝑟𝑜𝑜𝑡

4 𝑖𝑑𝑠 ← 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑚)
5 for 𝑘 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑖𝑑𝑠) do
6 𝑖𝑑 ← 𝑖𝑑𝑠𝑘

7 𝑡 ← 𝑐.𝑔𝑒𝑡 (𝑖𝑑)
8 if 𝑡 == 𝑛𝑢𝑙𝑙 then
9 𝑡 ← new 𝑁𝑜𝑑𝑒 ()

10 𝑐.𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑 (𝑡)
11 𝑐 ← 𝑡

12 𝑐.𝑠𝑒𝑡𝑆𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒 (𝑚)
13 𝑟𝑒𝑡𝑢𝑟𝑛 𝑟𝑜𝑜𝑡

for each supernode we create a path in the tree. This path
starts from the root (line 3) and has an edge for each id in
the supernode structure (lines 6–7). When generating the
lookup-tree, the algorithm traverses the edges that already
exist and creates new edges only if one cannot be found
(lines 8–10). After the creation of the path for each super-
node, the algorithm associates the supernode class to the
last node of the path. This supernode class represents the
supernode whose structure is equal to the path that led to
that node. We note that each node, including non-leaf nodes,
potentially may contain a reference to a supernode class,
because a supernode may have a structure that is a prefix of
another supernode’s structure. Finally, the algorithm returns
the (empty) root (line 13).
Figure 7 shows an example lookup-tree that stores two

supernodes. The path that starts from the root and ends with
the add node on the left side of the Figure encodes the exam-
ple supernode reported in Figure 4. The path that starts from
the root and ends with the add node on the right side of the
Figure encodes a supernode that returns a constant (instead
of a function parameter) in the body of the if-statement. In
practice, the only difference between the two supernodes is
the declared type of the field storing a reference to a child
node.

4.4 Supernode Installation
After the source code parsing and the creation of each AST,
we match AST structures, we instantiate supernodes, and

we replace the matched subtrees with the instantiated super-
nodes. To do so, we traverse each AST and the lookup-tree at
the same time, accumulating children nodes and potentially
finding a supernode that replaces part of the AST.
Algorithm 4 reports the pseudocode for replacing AST

subtrees with supernodes. The algorithm takes (as input) the
root node of an AST subtree that may bemodified with super-
nodes and the root node of the lookup-tree that contains the
supernode classes. The algorithm returns (as output) the root
node of an AST subtree that contains the installed super-
nodes. If no supernode is installed, the algorithm returns the
root of the unmodified AST subtree provided as input.
The algorithm starts by searching for the matching AST

structure, using the recursive subroutine lookupTreeSearch

(line 1). This subroutine returns a pair that contains (1) a
node of the lookup-tree potentially containing the supernode
class matching the provided AST or an empty result if the
lookup-tree cannot be traversed due to missing edges, and,
(2) a list that contains the roots of the subtrees of the input
AST needed for supernode instantiation. We will describe
this subroutine in the next paragraph. After performing the
search, the algorithm checks whether the subroutine found
a lookup-tree node and whether this node is associated with
a supernode class (line 2). If not, the algorithm returns the
root of the unmodified AST subtree (line 6). Otherwise, the
algorithm extracts the supernode class associated with the
lookup-tree node (line 3) and returns a modified AST, i.e.,
an instance of the matched supernode class that takes as
children nodes the nodes contained in the list returned by
the recursive subroutine (line 4).

Algorithm 5 reports the pseudocode of the recursive
lookup-tree search subroutine. The algorithm takes (as input)
an AST node and a lookup-tree node to start the search, and
returns (as output) the aforementioned pair. The algorithm
first initializes a list that will contain the childen nodes to be
used for (potential) supernode instantiation (line 1). Then,
the algorithm extracts the unique id of the AST node pro-
vided as a parameter (line 2) and traverses the lookup-tree
using this id, updating the current lookup node (line 3). If an
edge for this id cannot be found in the lookup-tree (line 4),
the algorithm returns a pair of null values (line 5). Otherwise,
the algorithm checks whether the input node is a control-
flow node (line 6). If the input node is not a control-flow
node, the algorithm appends the input node to the children
list (line 15).
If the input node is a control-flow node, the algorithm

iterates over the children of the input node (line 8). In par-
ticular, the algorithm performs a recursive search for each
child, providing the current child and the current lookup
node as parameters (line 9). If the lookup node returned by
the recursive call is null (line 11), meaning that the lookup-
tree cannot be traversed, the algorithm terminates early by
returning a pair of null values (line 12). Otherwise, the algo-
rithm updates the current lookup node, assigning the lookup
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Algorithm 4: Supernode installation
installSupernode(𝑛, 𝑙): tries to install a supernode

in the provided AST
Input:
𝑛, root of an AST subtree for which a lookup-tree
node may be found
𝑙 , root node of a lookup-tree
Output: Root node of an AST subtree containing

installed supernodes. Otherwise, the input
root.

1 𝑐, 𝑣𝑠 ← 𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑟𝑒𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝑛, 𝑙)
2 if 𝑐 != 𝑛𝑢𝑙𝑙 and 𝑐.ℎ𝑎𝑠𝑆𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒 () then
3 𝑚 ← 𝑐.𝑔𝑒𝑡𝑆𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒 ()
4 𝑟𝑒𝑡𝑢𝑟𝑛 𝑚.𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒 (𝑣𝑠)
5 else
6 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛

node returned by the recursive call (line 10), and appends
the children list returned by the recursive call to the local
children list (line 13). After processing the input node and
potentially all its children nodes, excluding the case of early
termination, the algorithm returns the latest lookup-tree
node and the updated children list (line 16).
We note that we stop traversing the AST and we do not

install any supernode as soon as matching fails. This is be-
cause our supernode-generation algorithm is eager and each
supernode encodes a specific structure and accepts a specific
number of children nodes of exact types—a single failure
indicates a mismatch in the AST structure. Since the instal-
lation step is deterministic, there is only one match for one
supernode, the same AST cannot match two different super-
nodes. Moreover, if the algorithm does not stop because of
missing edges, the algorithm may return a non-leaf node of
the lookup-tree. This node may contain a supernode class.
We do not need to traverse the lookup-tree up to the leaves.
The complexity of the supernode installation algorithm is
𝑂 (𝑛) where 𝑛 is the number of nodes of the input AST.

5 Evaluation
In this section, we first present our experimental setup (Sec-
tion 5.1). Then, we present the interpreter speedups (Sec-
tion 5.2), steady-state speedups (Section 5.3), and compilation-
time speedups (Section 5.4) achieved by our technique. Fi-
nally, we discuss the memory overhead (Section 5.5) and
the VM build-time overhead (Section 5.6) introduced by our
supernodes, as well as the overhead of lookup-tree genera-
tion (Section 5.7).

5.1 Evaluation Settings
We run our experiments on a machine equipped with an 18-
core Intel i9-10980XE (3.00 GHz) and 256 GB of RAM running

Algorithm 5: Lookup-tree search
lookupTreeSearch(𝑛, 𝑙): tries to find a node in the

lookup-tree for the
provided AST

Input:
𝑛, root of an AST subtree for which a lookup-tree
node may be found
𝑙 , current lookup node in the lookup-tree
Output: A pair that consists of:
(1) A node of the lookup-tree potentially containing
the supernode class matching the provided AST or
𝑛𝑢𝑙𝑙 if the lookup-tree cannot be traversed further
due to missing edges
(2) A list that contains the roots of the subtrees of the
input AST needed for supernode instantiation

1 𝑣𝑠 ← new 𝐿𝑖𝑠𝑡 ()
2 𝑖 ← 𝑛𝑜𝑑𝑒𝑇𝑦𝑝𝑒𝐼𝑑 (𝑛)
3 𝑙 ← 𝑙 .𝑔𝑒𝑡 (𝑖)
4 if 𝑙 == 𝑛𝑢𝑙𝑙 then
5 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑢𝑙𝑙 , 𝑛𝑢𝑙𝑙
6 if 𝑖𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝐹𝑙𝑜𝑤𝑁𝑜𝑑𝑒 (𝑛) then
7 𝐶 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑛)
8 for 𝑘 ← 1 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶) do
9 𝑙𝑐, 𝑣𝑧 ← 𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑟𝑒𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝐶𝑘 , 𝑙)

10 𝑙 ← 𝑙𝑐

11 if 𝑙 == 𝑛𝑢𝑙𝑙 then
12 𝑟𝑒𝑡𝑢𝑟𝑛 𝑛𝑢𝑙𝑙 , 𝑛𝑢𝑙𝑙
13 𝑣𝑠.𝑎𝑝𝑝𝑒𝑛𝑑𝐴𝑙𝑙 (𝑣𝑧)

14 else
15 𝑣𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛)
16 𝑟𝑒𝑡𝑢𝑟𝑛 𝑙, 𝑣𝑠

Linux Ubuntu (kernel v. 5.4.0-58-generic). Frequency scaling,
turbo boost, and hyper-threading are disabled, CPU governor
is set to “performance”. We conduct our experiments on
Graal.js 22.3.0 community edition, based on OpenJDK 11
that uses the Graal compiler. In particular, we modify both
Graal.js and Graal to implement our technique. We perform
our experiments on the web-tooling benchmark suite [17],
consisting of 18 benchmarks.
To generate our supernodes, as generation set, we use a

collection of popular JavaScript packages for web develop-
ment. We set the supernode threshold to 3, i.e., we create
supernodes that encode at least 3 control-flow nodes. In this
setting, our supernode generation creates ∼6500 supernodes.

5.2 Interpreter Speedup
In this section, we answer RQ1 by evaluating the impact
of our technique on interpreter performance. To do so, we
force interpretation by disabling JIT compilation, we run 10
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Figure 9. Interpreter speedup factors achieved by the pro-
posed technique.

iterations of each benchmark, and we take the average of
the last five time measurements. In this way, we let cache
behaviors stabilize and we avoid the potential measurement
perturbations of the first iterations. Tomitigatemeasurement
noise, we repeat this process five times.

Figure 9 reports the interpreter speedup as
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 , where 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the average
execution time obtained without using our technique and
𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 refers to the average execution time obtained
using our technique. The benchmarks are reported on the
x-axis of the plot, while the speedup factor is reported on the
y-axis. Above each bar, we report the exact speedup factor.
The black error bars represent the 95% confidence intervals
(CI) of the measurements. We note that the error bars are
narrow for most of the experiments thanks to the stable mea-
surements obtained, both with and without supernodes. The
last bar on the right represents the geometric mean of all the
other speedup factors.

We notice that our technique does not introduce any slow-
down for any benchmark. Interpreter speedups range from
1.04× (chai, coffeescript, and terser) to 1.55× (espree), 1.24× on
average.2 This is because the VM needs to traverse less AST
nodes upon interpretation—our supernodes reduce the size
of the ASTs with possible cache improvements. Moreover,
our supernodes help reduce the overhead of using expensive
exceptions to model the control flow as well as the number
of polymorphic call sites. Hence, we positively answer RQ1.

5.3 Steady-state Speedup
Here, we answer RQ2 by evaluating the impact of our tech-
nique on steady-state performance, i.e., we investigate the
impact of supernodes on JIT compilation, to understand
whether supernodes lead to better optimized JIT-compiled
code and consequently to speedups in steady state. We run

2Average speedup factors across multiple benchmarks are computed using
the geometric mean.
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Figure 10. Steady-state speedup achieved by the proposed
technique.

1 000 iterations of each benchmark (without disabling JIT
compilation) and take the average of the last 10 iteration time
measurements. In this way, we let JIT compilation stabilize
and we take our measurements only after all the relevant
ASTs have been compiled. We repeat this process five times.

Similarly to Figure 9, Figure 10 reports the steady-state
speedup as 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 , where 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the
average execution time obtained without using our tech-
nique and 𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 refers to the average execution time
with our technique.

Steady-state speedups range from 1.01× (source-map) to
1.36× (typescript), 1.14× on average. Our experimental re-
sults positively answer RQ2, confirming that supernodes im-
prove JIT compilation. As part of our future work, we plan
to conduct an in-depth study on the effect of supernodes on
JIT-compiler budget-driven optimization heuristics, which
may lead to better optimized JIT-emitted code.

5.4 Compilation-time Speedup
We evaluate now the impact of our technique on compila-
tion time, answering RQ3. We run 1 000 iterations of each
benchmark (without disabling JIT compilation) and take the
overall compilation time.

Figure 11 reports the compilation-time speedup as
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 , where𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 refers to the compilation
time obtained without using our technique and 𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠
refers to the compilation time obtained using our technique.
Compilation-time speedups range from 0.62× (babylon)

to 2.86× (lebab), 1.33× on average. The benchmarks lebab
(2.86×) and typescript (2.76×) benefit the most from our
supernodes, because these benchmarks contain functions
with complex control flow that is captured by supernodes.
Our technique yields a compilation-time slowdown on the
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Figure 11. Compilation-time speedup achieved by the pro-
posed technique.

benchmarks babylon (0.62×) and coffeescript (0.98×). By in-
vestigating the root cause of the compilation-time slow-
downs, we find that in babylon supernodes lead to a sig-
nificant increase of compilations w.r.t. the baseline. When
using supernodes, the JIT compiler compiles the same func-
tions multiple times with different specializations, increasing
the number of compilations. We plan to conduct a thorough
investigation of this phenomenon as part of our future work.

Overall, we can positively answer RQ3, stating that super-
nodes reduce the pressure on the partial evaluator and the
JIT compiler. Since the ASTs contain fewer nodes, the par-
tial evaluator needs to traverse and partially evaluate fewer
nodes. Moreover, the JIT compiler does not need to opti-
mize runtime exceptions and polymorphic call sites in the
supernodes, saving compilation time.

5.5 Memory Overhead
We discuss now the memory overhead introduced by our
supernodes. For all our experiments, we install supernodes
generated by using a collection of the most commonly used
JavaScript packages. For this reason, we do not report the
overheads for each benchmark. Instead, we report a single
memory overhead factor computed as𝑀𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠/𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ,
where𝑀𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 is the size of a VM build that contains our
supernodes, and𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the size of a VM build without
supernodes, respectively.

Using a supernode threshold of 3 (i.e., the minimum num-
ber of control-flow nodes subsumed by a supernode, as de-
scribed in Section 4.2), our technique yields a memory over-
head of 1.09× (the sizes are ∼671MB and ∼615MB for the
VM build that contains our supernodes and the VM build
without supernodes, respectively).

Onmodernmachineswherememory consumption is often
not a major issue, we consider such a memory overhead
acceptable. Nonetheless, we note that memory consumption
may be reduced by performing a study to identify and keep

only the most commonly used supernodes (of the ∼6500
automatically generated supernodes from our generation
set).

5.6 VM Build-time Overhead
Here, we discuss now the VM build-time overheads intro-
duced by our supernodes. Similarly to Section 5.5, we do not
report the overheads for each benchmark but a single VM
build-time overhead factor computed as𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠/𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ,
where 𝑇𝑠𝑢𝑝𝑒𝑟𝑛𝑜𝑑𝑒𝑠 is the time required to build a VM that
contains our supernodes, and 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the time required
to build a VM that does not contain our supernodes, respec-
tively.
Using ∼6500 automatically generated supernodes, our

technique yields a VM build-time overhead of 1.73× (121
seconds with supernodes, versus 70 seconds without super-
nodes). We note that a high VM build-time overhead fac-
tor is a minor drawback of our technique, considering the
achieved runtime speedups. Indeed, once supernodes have
been generated, the VM needs to be built only once before
the production release, without any impact on the final user.

5.7 Lookup-Tree Generation Overhead
In this section, we evaluate the overhead of generating the
lookup-tree, i.e., the overhead that our technique introduces
upon VM startup. In our experiment, we measure the time
required to build the lookup-tree and to load and link the
Java class files of the supernodes in a fully sequential setting
without any optimization—we parallelize neither lookup-
tree generation nor supernode class loading, and we do not
run the lookup-tree generation concurrently with other VM
initialization steps.

Our implementation requires ∼3 seconds to generate the
lookup-tree and to load the code of ∼6500 supernodes. We
note that the startup is rather expensive in Graal.js and the
lookup-tree generation is not critical for performance. For
this reason, we have not optimized this phase yet. To lower
this overhead in the future, we note that the lookup-tree
can be built asynchronously and in a parallelized manner
(including the loading and linking of the supernode classes),
or serialized at VM building time and then deserialized upon
VM startup. Moreover, the supernode classes may also be
lazily loaded upon the first match in the process of supernode
installation. With such optimizations, one can hide (part
of) the costs of lookup-tree creation and supernode class
loading.

6 Related Work
Different techniques try to improve warmup performance
of managed language runtime systems by optimizing and
implementing efficient interpreters.
The concept of supernode was initially proposed in the

context of bytecode interpreters. In particular, Proebsting
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[16] reduce the cost of instruction dispatching in bytecode
interpreters by creating superoperators, i.e, compound oper-
ations composed of many smaller primitive operations that
avoid costly per-operation overheads. Larose et al. [7] apply
a similar technique to AST interpreters, manually generating
20 supernodes. Differently from their method, we automati-
cally generate and install supernodes, reducing the burden
on interpreter developers. Our technique requires only the
implementation of the interpreter-specific generation func-
tions. Moreover, we implement our technique in a more
complex Truffle implementation used in industry (Graal.js),
in contrast to the toy language TruffleSOM targeted in [7].
Sun’s JVM implementation [22] dynamically replaces oc-

currences of certain bytecode instructions—after their first
execution—with more efficient _quick pseudo-instructions.
The pseudo-instructions speed up the execution by taking
advantage of the work done the first time the associated
normal instructions are executed. In contrast to this method,
we perform supernode instantiation right after AST creation,
before an AST is executed for the first time.
Static compilation, also known as ahead-of-time (AOT)

compilation, improves warmup performance by compiling
applications before execution and hence removing interpre-
tation costs. This feature is available for widely used lan-
guages, such as Java [6, 14] and JavaScript [19, 20]. The main
issue of AOT compilation is the degradation of steady-state
performance—specifically in the case of dynamic languages—
since aggressive, speculative optimizations may not be per-
formed due to the lack of profiling data. While our super-
nodes are generated ahead-of-time, our technique does not
compile the source code of the application ahead-of-time. For
this reason, in contrast to static compilation, our technique
allows for steady-state performance improvements.

Other techniques try to improve the performance of either
bytecode or AST interpreters. Threaded code [2] solves the
branch prediction problem in bytecode interpreters. Savrun-
Yeniçeri et al. [18] speed up hosted interpreters on the JVM
by providing annotations that enable the generation of effi-
cient threaded code and avoid the insertion of unnecessary
runtime checks produced by the JIT compiler. Brunthaler
[3] illustrate inline-caching optimizations, a technique to
unfold code, a new reduced instruction format, a technique
to eliminate reference counting operations in interpreters,
and a technique to cache local variables of the host language
in the stack frame of the executing language. Sullivan et al.
[21] partially evaluate sequences of native instructions with
respect to the in-memory representation of the program
being interpreted by using instrumentation and a dynamic
optimizer. Truffle [25] applies AST specialization [23, 27]
during interpretation, enabling partial evaluation [5] and
hence the execution of highly optimized code.
Finally, related work proposes strategies to reduce the

runtime overhead of JIT compilation and hence improve
warmup performance. ShareJIT [28] is a technique to cache

and share JIT-compiled code across processes. Even though
this technique improves warmup performance, differently
from our technique, it leads to steady-state performance
degradation since the compiler cannot emit shared
JIT-compiled code that uses absolute addresses. To overcome
this limitation, instead of sharing JIT-compiled code, other
techniques [1, 8, 15] share profiling data that is used to JIT
compile the application either before or during the execu-
tion of the application itself. The main limitation of these
approaches is that the code for which no profiling data is
available is still interpreted.

7 Discussion
In this section, we first discuss use cases of our technique. In
particular, we detail how long-running programs can benefit
from our technique and how our technique can be employed
to speed up specific workloads. Then, we detail ongoing
work on native images and how our technique can be used to
analyze JIT compilers. Finally, we discuss the generation set
used in our experiments and the portability of our technique.

Long-running Programs. For long-running programs
where steady-state performance is more relevant than inter-
preter performance, our technique can be slightly modified
to dynamically generate supernodes at runtime. In particular,
we compile the generated Java source code and we link the
corresponding bytecode at runtime. In this way, we do not
separate the supernode-generation, lookup-tree-generation,
and supernode-installation steps as in Figure 6, but we per-
form them altogether after AST creation.

Workload-specific Supernodes. On server machines
that frequently execute the same workload, our technique
can be employed to generate workload-specific supernodes
and so create a dedicated and optimized VM. For instance, we
can create workload-specific supernodes for user-provided
cloud lambda functions that typically have a short lifetime,
which impairs the ability of the system to collect profiling
data and JIT-compile the lambda function.
Moreover, we can create workload-specific supernodes

for embedded systems with limited hardware resources and
power supply. These embedded systems usually cannot JIT
compile code due to significant runtime compilation over-
head. In both cases, our supernodes may help improve inter-
preter performance.

Native Images. We conducted our experiments on a
Graal.js VM based on OpenJDK, as discussed in Section 5.1.
In addition, we are currently investigating the use of our
technique for native images [24], i.e., our technique can be
employed also when compiling Graal.js to a standalone exe-
cutable. A Graal.js native image contains the VM internals
compiled to machine code ahead-of-time, including the in-
terpreter, the partial evaluator, and the JIT compiler (imple-
mented in Java). At runtime, the partial evaluator and the
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JIT compiler compile the input program to machine code,
but not the VM internals.
In this setting, our supernodes can still help in reducing

the number of polymorphic call sites and thrown control-
flow exceptions. When using native images, the lookup-tree
generation can take place at build time, the lookup-tree may
be serialized and stored in the executable, reducing startup
time. The supernode installation process remains unaltered
when using native images, i.e., the native image parses the
input program, creates the ASTs, and installs the supernodes.
Supernodes can be generated before the native image build-
ing from the same generation set we used in our experiments.
We plan to conduct an in-depth evaluation of our im-

plementation on native images as part of our future work.
Preliminary results show performance improvements similar
to those reported in Section 5. The main advantage of native
image w.r.t. our technique is that the extra startup overhead
associated with supernodes, i.e., class loading, linking, and
possibly JIT compilation of supernode classes, becomes a
cost of native-image building, but is avoided when the native
image is executed. The only remaining sources of overhead
are the loading of the lookup-tree (negligible) and supernode
installation (which already is a very efficient𝑂 (𝑛) algorithm,
where 𝑛 is the number of nodes in an AST).

Analyzing Compiler Optimizations. As shown in Sec-
tion 5.3, our technique yields speedups also in steady-state
performance. One could employ our technique to compare
the JIT-emitted machine code executed in the steady-state
between the original VM and a VM that uses our supernodes.
The JIT-emitted machine code can reveal inefficient code pat-
terns executed in the original VM, and hence shortcomings
in the JIT-compiler optimizations or in the heuristics the JIT
compiler employs.

Generation Set. In our experiments, we considered a
single generation set consisting of the functions of popu-
lar web-development packages to generate our supernodes.
We note that our supernodes could also be generated using
popular Node.js packages or characteristic workloads.

Portability. Our technique could be easily implemented
to speed up other Truffle languages such as Ruby, Python,
and R. Moreover, the algorithms depicted in Section 4 are
interpreter-independent and do not leverage any internal
AST-interpreter implementation details, increasing the porta-
bility of our technique.
As mentioned in Section 4.2, the Java code generation of

the supernodes is the only interpreter-specific part of our
technique. Interpreter developers implementing our tech-
nique may need to manually write and maintain generation
functions for the most common control-flow nodes. We con-
sider the implementation of the code-generation functions an
acceptable effort considering the performance gains thanks
to supernodes.

8 Concluding Remarks
To conclude, we summarize our contributions, discuss the
limitations of our technique, and outline our plans for future
research.

Contributions. In this paper we propose a novel tech-
nique to generate AST supernodes. Our technique automat-
ically improves the performance of AST interpreters, as it
helps reducing typical interpretation overheads related to
polymorphic call sites and control-flow-related exception
handling. Our technique employs ahead-of-time code gen-
eration to automatically create executable supernodes, and
runtime installation of matching supernodes.
We implement our technique in the GraalVM JavaScript

language runtime (also known as Graal.js), and evaluate our
implementation using the well-known web-tooling bench-
mark suite. Our evaluation shows that supernodes help re-
ducing compilation-time and improve both interpreter and
steady-state performance up to a factor of 1.33×, 1.24×, and
1.14×, respectively. Hence, the answers to our research ques-
tions RQ1, RQ2, and RQ3 are affirmative.
Our technique is specific to AST interpreters, and is im-

plemented targeting the Truffle language implementation
framework of GraalVM. Our technique could be easily ported
to other existing Truffle AST interpreters such as, e.g., Truf-
fleRuby [13], FastR [10], or GraalPy [12].

Limitations. The main limitation of our technique is that
runtime lookup-tree generation and supernode installation
increase VM startup time. We are investigating techniques
to serialize the lookup-tree and further reduce the overhead
of our technique during VM startup.
Even though our technique reduces the size of the code

emitted by the JIT compiler by removing exceptions that
model the control flow and several checks in polymorphic
call sites, our technique increases the size of the interpreter
source code and the VM build time (as shown in Section 5.5
and Section 5.6). For these reasons, when using our technique
to build a production VM, it is necessary to find a proper
trade-off between code size and performance improvement.
Finally, to generate effective supernodes, it is crucial to

select a generation set that contains functions that exercise
common control-flow patterns.

Future Work. As part of our future work, in addition to
providing an in-depth explanation of the sources of steady-
state speedups, we plan to expand our technique to create
supernodes that encode non-control-flow nodes as well as
supernodes that encode both control-flow and non-control-
flow nodes. Moreover, we plan to conduct a large-scale analy-
sis to identify the most frequently used supernodes that may
be included in a production build of Graal.js. Finally, we plan
to conduct an in-depth evaluation of our implementation on
native images.
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