
The State of Serverless Applications: Collection,
Characterization, and Community Consensus
Simon Eismann , Joel Scheuner , Erwin van Eyk , Maximilian Schwinger, Johannes Grohmann ,

Nikolas Herbst , Cristina L. Abad , and Alexandru Iosup

Abstract—Over the last five years, all major cloud platform providers have increased their serverless offerings. Many early adopters

report significant benefits for serverless-based over traditional applications, and many companies are considering moving to serverless

themselves. However, currently there exist only few, scattered, and sometimes even conflicting reports on when serverless applications

are well suited and what the best practices for their implementation are. We address this problem in the present study about the state of

serverless applications. We collect descriptions of 89 serverless applications from open-source projects, academic literature, industrial

literature, and domain-specific feedback. We analyze 16 characteristics that describe why and when successful adopters are using

serverless applications, and how they are building them. We further compare the results of our characterization study to 10 existing,

mostly industrial, studies and datasets; this allows us to identify points of consensus across multiple studies, investigate points of

disagreement, and overall confirm the validity of our results. The results of this study can help managers to decide if they should adopt

serverless technology, engineers to learn about current practices of building serverless applications, and researchers and platform

providers to better understand the current landscape of serverless applications.

Index Terms—Serverless, FaaS, serverless applications, survey, community consensus, FAIR dataset

Ç

1 INTRODUCTION

SERVERLESS computing is an emerging technology with
increasing impact on our modern society, and increasing

adoption by academia and industry [1], [2], [3]. The key
promise of serverless computing is to make computing serv-
ices more accessible, fine-grained, and affordable [4], [5], by
having the infrastructuremanage all operational concerns [6].
Major cloud providers, such as Amazon, Microsoft, Google,
and IBM, already offer capable serverless platforms with
well-defined responsibilities and pricing. However, server-
less computing, and its common Function-as-a-Service (FaaS)
realization, still raises many important challenges that may

reduce adoption. These challenges have been recognized and
discussed in fields such as software engineering, distributed
systems, and performance engineering [7], [8], [9]. An impor-
tant challenge that remains open is to present a clear view on
the state of serverless applications for managers, engineers,
and scientists. This work proposes amixed-method approach
to understand the state of serverless applications.

There exist only few, scattered, and sometimes conflicting
reports addressing important questions such as Why develop-
ers build serverless applications?, When are serverless applications
useful?, or How are serverless applications implemented in prac-
tice? For example, although some report significant cost-sav-
ings by switching to serverless applications [10], [11], others
identify in some scenarios a higher cost compared to tradi-
tional hosting [12]. Similarly, although reports of successful
serverless applications for data-intensive applications
exist [13], [14], other reports claim that serverless is not well
suited for data-intensive applications [9]. As a third and last
example, although a recent study differentiates between con-
tainers and serverless and finds the former to be preferable
for latency-critical tasks [15], others see them as con-
nected [16], [17] or report successfully applying serverless to
latency-critical, user-facing traffic [18]. Having concrete infor-
mation on these topics would be valuable for developers, to
guide decisions on whether serverless is a suitable paradigm
for their specific application.

However much needed, systematic studies about serverless
applications still do not exist. For serverless computing, exist-
ing research has focused on serverless platforms and their per-
formance properties [19]. Pioneering studies about the
features, architecture, and performance properties of these
platforms [20], [21], [22], [23], [24], [25] do not study systematic
collections of applications. Shahrad et al. [26] characterize the
aggregated performance properties of the entire production

� Simon Eismann, Johannes Grohmann, and Nikolas Herbst are with the
Department of Software Engineering, University of W€urzburg, 97070
W€urzburg, Germany. E-mail: {simon.eismann, johannes.grohmann,
nikolas.herbst}@uni-wuerzburg.de.

� Joel Scheuner is with the Division of Software Engineering, Chalmers |
University of Gothenburg, 412 96 G€oteborg, Sweden.
E-mail: scheuner@chalmers.se.

� Erwin van Eyk and Alexandru Iosup are with the Massivizing Computer
Systems, Vrije Universiteit Amsterdam, 1081 Amsterdam, Netherlands.
E-mail: {E.vanEyk, A.Iosup}@atlarge-research.com.

� Maximilian Schwinger is with the Department of Software Engineering,
University of W€urzburg, 97070 W€urzburg, Germany, and also with German
Aerospace Center, Cologne, Germany. E-mail: maximilian.schwinger@dlr.de.

� Cristina L. Abad is with the Department of Electrical Engineering and Com-
puter Science, Escuela Superior Politecnica del Litoral, Guayaquil 09 01 5863,
Ecuador. E-mail: cabadr@espol.edu.ec.

Manuscript received 22 April 2021; revised 16 August 2021; accepted 31
August 2021. Date of publication 21 September 2021; date of current version
17 October 2022.
This work was partially supported by the NWO projects Vidi MagnaData and
TOP2 OffSense and the Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
(Corresponding author: Simon Eismann.)
Recommended for acceptance by P. Eugster.
Digital Object Identifier no. 10.1109/TSE.2021.3113940

4152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

0098-5589 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1224-4945
https://orcid.org/0000-0003-1224-4945
https://orcid.org/0000-0003-1224-4945
https://orcid.org/0000-0003-1224-4945
https://orcid.org/0000-0003-1224-4945
https://orcid.org/0000-0003-4169-0258
https://orcid.org/0000-0003-4169-0258
https://orcid.org/0000-0003-4169-0258
https://orcid.org/0000-0003-4169-0258
https://orcid.org/0000-0003-4169-0258
https://orcid.org/0000-0001-6474-4971
https://orcid.org/0000-0001-6474-4971
https://orcid.org/0000-0001-6474-4971
https://orcid.org/0000-0001-6474-4971
https://orcid.org/0000-0001-6474-4971
https://orcid.org/0000-0001-9643-6543
https://orcid.org/0000-0001-9643-6543
https://orcid.org/0000-0001-9643-6543
https://orcid.org/0000-0001-9643-6543
https://orcid.org/0000-0001-9643-6543
https://orcid.org/0000-0003-3462-6426
https://orcid.org/0000-0003-3462-6426
https://orcid.org/0000-0003-3462-6426
https://orcid.org/0000-0003-3462-6426
https://orcid.org/0000-0003-3462-6426
https://orcid.org/0000-0002-9263-673X
https://orcid.org/0000-0002-9263-673X
https://orcid.org/0000-0002-9263-673X
https://orcid.org/0000-0002-9263-673X
https://orcid.org/0000-0002-9263-673X
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
https://orcid.org/0000-0001-8030-9398
mailto:simon.eismann@uni-wuerzburg.de
mailto:johannes.grohmann@uni-wuerzburg.de
mailto:nikolas.herbst@uni-wuerzburg.de
mailto:scheuner@chalmers.se
mailto:E.vanEyk@atlarge-research.com
mailto:A.Iosup@atlarge-research.com
mailto:maximilian.schwinger@dlr.de
mailto:cabadr@espol.edu.ec

FaaS workload from Microsoft Azure Functions, but do not
provide details on individual applications. A recent mixed-
method empirical study investigates how developers use serv-
erless computing, focusing on mental models and the issues
(pain points) developers experience [27]. Another multivocal
literature review discusses simple patterns common in the
architecture of serverless applications [28], but do not analyze
the applications themselves. The only existing collection of
serverless applications is linked to an article by Castro et al. [6],
which introduces ten applications collected from non-peer-
reviewed (industrial) literature.

This article makes three main contributions towards fur-
thering the understanding of serverless applications:

1) Systematic collection of serverless applications, the largest
to date (in Section 2): Building on resources created
by the community [29], [30], we systematically col-
lect a total of 89 serverless applications from four dif-
ferent sources. 32 applications are from open-source
projects, 23 from academic literature, 28 from indus-
trial literature, and 6 from the area of scientific com-
puting; this is the largest collection of serverless
applications to date, by a factor of 8.9x over the next
largest [6].

2) First systematic and comprehensive characterization of
serverless applications (in Section 3): We characterize
each application from our collection, through a sys-
tematic and comprehensive pair-reviewing process,
with regard to 16 characteristics, such as execution
pattern, workflow coordination, use of external serv-
ices, and motivation for adopting serverless. We
have presented a small subset of these results for
general magazine audience [31], but here we present
the technical details and identify for the first time
where serverless helps (e.g., from APIs to batch proc-
essing), common traffic patterns for serverless appli-
cations, workflow complexity and coordination, etc.
The underlying dataset is described in detail in our
technical report [32].

3) First analysis of community consensus (in Section 4): To
understand whether the community can reach con-
sensus across its attempts to characterize serverless
applications, we systematically contrast our and pre-
vious community results. We conduct a literature
search, finding 10, mostly industrial, web surveys
and datasets on the characteristics of serverless
applications. Next, we compare the results of these
studies to this study, to identify characteristics for
which there is a consensus among multiple studies
and investigate points of disagreement (which give
opportunities for further research).

2 SERVERLESS APPLICATION COLLECTION

In this section, we create a process to collect serverless
applications, and show the main result of using it—the larg-
est public collection of serverless applications, to date.

2.1 Methodology

Serverless applications have been described in many kinds
of materials written for experts including peer-reviewed
academic publications, open-source projects, blog posts,
podcasts, talks, and provider-reported success stories. The
field is only a few years old, so any of these types of materi-
als could include meaningful and unique material. We aim
to create a process for collecting a large amount of descrip-
tions of serverless applications, spanning this range of mate-
rials judiciously and without a strong selection bias toward
one or another. Our aim is not that the process should be
exhaustive; doing so while the field is still growing and new
applications are still emerging would not be useful long-
term. Fig. 1 shows the result of our use of this process—a
large, varied sample, obtained from the following sources:

� Open-source projects (Fig. 1, component A): We start
with an existing dataset on open-source serverless
projects [29]. We remove small and inactive projects
based on the number of files, commits, contributors,

Fig. 1. Methodology for serverless application collection (left part, Section 2) and characterization (right part, Section 3).

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4153

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

and watchers. Next, we manually filter the resulting
dataset to retain only projects that implement server-
less applications. Finally, we select only projects that
have an active and appreciative community (projects
with over 50 stars). This results in a set of 32 server-
less applications from open-source projects.

� Academic literature (Fig. 1, B): We base our search on
an existing, community-curated dataset on litera-
ture for serverless computing of over 180 peer-
reviewed articles [30]. As the authors are familiar
with 5 additional publications describing serverless
applications, we contribute them to the commu-
nity-curated dataset and include them in this study.
We first filter all the articles based on title and
abstract, and remove any articles that implement
only a single function for evaluation purposes or do
not include sufficient detail to enable a review. This
results in 23 serverless applications from academic
literature.

� Industrial literature (Fig. 1, C): There are many blog
posts by companies or individuals, talks at industry
conferences, and provider-reported success stories
that describe serverless applications. We filter the
case studies reported by the major serverless pro-
viders (AWS, Azure, Google, and IBM) and select
from them solutions that depend on serverless tech-
nology. We also include the 10 applications reported
in a recent article [6], which until this work is the
largest public collection of serverless applications
from industrial literature. We further extend this col-
lection with industrial literature describing server-
less applications in main industry events (e.g.,
KubeCon), etc. This process results in 28 serverless
applications from industrial literature.

� Scientific computing (Fig. 1, D): The scientific comput-
ing community is showing increasing interest in
serverless solutions (e.g., at NASA [33] and
CERN [34]). However, most of these applications are
still at an early stage, with scarce public information.
To address this deficit of public data, we collect and
include in this work information from the German
Aerospace Center (DLR) and from the German Elec-
tron Syncrotron (DESY). This results in 6 serverless
applications from the area of scientific computing.

For each of these sources, we use the same predefined
inclusion (I) and exclusion (E) criteria to determine if an
application should be included in our dataset:

I1 Concrete application. Real world use is a plus.
I2 Application description has sufficient detail to con-

duct meaningful review. (Exclude high-level descrip-
tions that lack technical detail.)

E1 Serverless platforms and frameworks, as these are
not serverless applications.

E2 Boilerplate code and simple technology demonstra-
tions, as they donot constitute real-world applications.

I3/E3 Include only one out of multiple academic papers
describing the same use case. For example, many aca-
demic papers discuss serverless neural network serv-
ing [35], [36], [37], but we only include a single
representative paper.

To ensure that our application collection process is trans-
parent and reproducible, we have included further details
on this process in our replication package.1

2.2 Resulting Collection

Finding 1. About half of the 89 serverless applications in
our dataset are used in production, and about half of
them are open source. However, only few applications
are both used in production and open source.

We collect a diverse dataset of 89 serverless applications from
open-source projects, academic literature, industrial litera-
ture, and scientific computing based on the methodology in
Section 2.1. This dataset (see Fig. 1, component E) is publicly
available as part of our replication package.1 Out of the total
of 89 applications, 55% are used in production, and 53% are
open source. Researchers can use this dataset to study differ-
ent applications, which facilitates extracting meaningful pat-
terns and could trigger newdesigns. The dataset can also help
with identifying representative applications, which can later
be used for the evaluation of novel approaches and in empiri-
cal studies. Engineers can find in the dataset useful examples
and identify areas in which serverless computing is success-
fully applied, to help decidewhether to adopt serverless com-
puting and to select blueprints for similar use-cases. Platform
providers can extract knowledge on how their products are
used and thus optimize them, and gaps in adoption that can
point out deficits in current platform capabilities.

Fig. 2 shows two example serverless applications from our
dataset. Fig. 2a depicts the serverless backend of Coca-Cola
vending machines—an operation that handles 30 million
requests per year. Fig. 2b illustrates the open-source applica-
tion StreamAlert, by AirBnB, which allows the validation of
security rules on streams of log data. Both applications use
the cloud provider AWS, but are implemented in different pro-
gramming languages. The architecture of these applications is
different: whereas the vending machine uses a single external
service, a managed cloud API gateway, StreamAlert uses sev-
eral, including managed databases, managed streaming,
managed queues, and managed storage. They use different
trigger types, HTTP requests for the vending-machine back-
end, cloud events for StreamAlert. The number of serverless
functions also differs: whereas the vending machine backend
uses a single serverless function, StreamAlert consists of
many serverless functions. The workload of both applications
further differs in execution pattern, burstiness, and data volume.
The vending machine backend focuses on cost savings as the
motivation behind adopting serverless, whereas StreamAlert
seems to choose serverless to avoid operational overheads.

Motivated by this comparison, we focus in the next sec-
tion on analyzing these and more characteristics for all serv-
erless applications in our dataset.

3 SERVERLESS APPLICATION CHARACTERISTICS

This section describes our methodology to identify and ana-
lyze characteristics of serverless applications. We analyze

1. https://doi.org/10.5281/zenodo.5185054

4154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.5185054

the dataset collected in Section 2, using six general questions
about serverless applications.

3.1 Methodology

Fig. 1, points 1–4, gives an overview of our methodology to
identify the characteristics of serverless applications.
Although we apply the methodology described in the fol-
lowing on the dataset collected in Section 2, the characteri-
zation methodology we introduce here could be applied to
other, similar datasets. This level of generality allows fur-
ther comparison between studies, a feature we leverage to
conduct our own cross-community study, in Section 4.

We first identify and formalize the set of investigated
characteristics through a multi-round process. In an initial
round, we start from a set of questions (headers in Sec-
tion 3.2), and each author suggests characteristics indepen-
dently, based on expertise. In the next round, we merge
similar characteristics and retain only the characteristics
that at least two authors consider relevant, in this work,
22 characteristics. Based on group discussion, we further
define for each characteristic either the range of values or an
exhaustive set of potential values, as applicable. For some
characteristics, we cannot define a set of potential values
before reviewing the applications. For these characteristics,
we use text fragments during the review. Using thematic
coding [38], [39], we extract codes and treat those as values
for these characteristics.

We then conduct an initial round of reviews (Fig. 1,
label �1). Each application is assigned two reviewers out of a
pool of seven available reviewers (all are authors). We man-
ually adjust a few reviewer assignments to reduce the num-
ber of coinciding reviewer pairs. Subsequently, each
reviewer individually assigns values to all characteristics of
their assigned applications. For the scientific applications, a
different approach was necessary, because many were not
publicly available at the time of our review. Therefore, these
applications are reviewed by a single domain expert, which
was either involved in the development of the application
or in direct contact with the development (Fig. 1, label �2).
Our replication package contains descriptions of the scien-
tific use cases and outline which domain experts were con-
sulted for each application.

Each review of an application characterizes it according
to 22 characteristics: cloud platform, programming languages,

external services, trigger types, number of functions, execution pat-
tern, burstiness, data volume, application type, function runtime,
latency relevance, motivation, cost/performance tradeoff, resource
bounds, locality requirements, update frequency, domain, is it a
workflow?, workflow coordination, workflow structure, workflow
size, and workflow internal parallelism. For each, the result is
typically a value, one of the possible values for that dimen-
sion.However, if the information to determine a characteristic
for a serverless application is not available, we label the char-
acteristic as ”Unknown” for this application.

After completing the initial round of reviews, we calculate
the Fleiss’ kappa to quantify the level of agreement between
the reviewers [40] (Fig. 1, label�3). We exclude all characteris-
tics that use thematic coding and all characteristic assign-
ments where at least one reviewer assigned more than one
value, as the Fleiss’ kappa can not be calculated in these cases.
As each characteristic has a different number of possible val-
ues, we calculate Fleiss’ kappa value for each characteristic
individually and then quantify the overall agreement with a
weighted average over the individual Fleiss’ kappa value of
each characteristic. This results in a Fleiss’ kappa value of
0.48, which can be interpreted as “moderate agreement” [41].

In the following discussion and consolidation phase
(Fig. 1, label�4), the reviewers compare their notes and try to
reach consensus for the characteristics with conflicting
assignments. Formost conflicts, consolidation turns out to be
a quick process, as themost frequent type of conflict was that
one reviewer found additional documentation that the other
reviewer did not find. In only a few cases, the two reviewers
still have different interpretations of a characteristic; these
conflicts are discussed among all authors to ensure that char-
acteristic interpretations are consistent. Following this pro-
cess, wewere able to resolve all conflicts.

Our process is data-driven, so it also has to account for
missing or malformed data. For 6 characteristics (resource
bounds, locality requirements, update frequency, domain, work-
flow internal parallelism, and cost/performance tradeoff), many
applications are assigned the “Unknown” value, i.e., the
reviewers were not able to determine the value of this char-
acteristic, as the required information was missing in the
documentation. Therefore, we exclude these characteristics
from this study.

For the remaining 16 characteristics, the percentage of
“Unknowns” ranges from 0–19%, with two outliers at 25%

Fig. 2. Two examples of serverless applications from our collected dataset of 89 serverless applications.

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4155

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

and 30%. These ”Unknowns” are excluded in the percent-
age values presented in this article. A breakdown per char-
acteristic of the “Unknown” percentages is available in our
replication package.1 Additionally, for a single characteristic
(the application type), the list of potential values turns out to
be inadequate, so we repeat the mapping for this character-
istic with a new set of potential values.

3.2 Resulting Characteristics

In the following, we describe the serverless application
characterization results in the context of six common ques-
tions about serverless applications, in turn.

3.2.1 How are Serverless Applications Implemented?

Finding 2. Currently, AWS is the dominating platform for
serverless applications (80%), and most applications are
implemented in either JavaScript or Python (42% each).

When AWS revealed Lambda in 2014, it was the only FaaS
platform offered by a major cloud provider, and it only sup-
ported JavaScript functions. Since then, tens of serverless
platforms have emerged [20, x3], offering support for
diverse programming languages. The capabilities and per-
formance features of these platforms and languages have
been studied extensively [42]. We focus here on the state of
practice in implementing serverless applications.

We analyze the collection of serverless applications intro-
duced in Section 2. Fig. 3 shows that 80% of the applications
in our dataset are using the cloud provider AWS, whereas the
other major cloud providers are used a lot less often (10%
Azure, 7% IBM Cloud, and 3% Google Cloud). Although
AWS also has the largest market share when it comes to IaaS
at 47.8% [43], this difference alone is not enough to explain
why so many of the applications in our dataset are using
AWS. A potential explanation is that AWS Lambda was
released two years before any other large cloud provider
released their Function-as-a-Service solution, which means
this platform is likely more mature and there was more
time for customers to adopt its serverless features. Since
then, many open-source Function-as-a-Service solutions
launched [20], yet we do not see significant adoption for them

in our dataset (a combined 8%, mostly by scientific applica-
tions). We observe that most applications in our dataset use
managed cloud services that would not be available in a pri-
vate cloud environment; this could explain the low adoption
of the open-source Function-as-a-Service solutions and also
spur innovators in serverless technology to consider more
carefully the ecosystemwhere their platforms canwork.

Interpreted languages could be better suited for serverless
applications than compiled languages, because compiled
languages suffer from longer cold-starts [44]. Fig. 4 corrobo-
rates this rule-of-thumb: JavaScript (42%) and Python (42%)
are the most popular programming languages. Serverless
applications are also written in Java (12%), C/C++ (11%), or
C# (8%); few use Go (5%) or Ruby (2%). However, this may
change, as the usage of ahead-of-time compilation, e.g., for
Java, has been shown to alleviate the difference in cold-start
durations [45].

3.2.2 How Does a Typical Serverless Architecture

Look?

Finding 3. Serverless applications typically use cloud
storage (61%), cloud databases (47%), and cloud
messaging (38%). They use few cloud functions: 82% of
serverless applications use 5 or fewer functions.

Developers looking to implement serverless applications
need to make many architectural decisions, such as which
external services to use, how many functions to use, and
how they are triggered. Understanding patterns in serverless
architecture can guide the general discourse on serverless
applications and provide a valuable guideline for developers
starting to build serverless applications.

Fig. 5, label None, shows that only 12% of the serverless
applications in our dataset do not use any managed service.
This suggests serverless applications are typically created by
combining serverless functions for compute and managed
cloud services for other operations. Themost frequently used
managed services in our dataset are storage (61%) and
databases (48%). Serverless functions are stateless, therefore
all application state needs to be persisted in external storage
and databases. The second class of most frequently used
external services are managed messaging services, including
publish/subscribe solutions (17%), streaming solutions
(11%), and queuing solutions (10%). Serverless functions
often use such messaging services to store their output if it
needs to be processed further.

Fig. 3. Cloud provider used for serverless applications.

Fig. 4. Programming language used for serverless application.

Fig. 5. Managed services used by serverless applications.

4156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

Cloud providers offer different ways to trigger the execu-
tion of serverless functions. As Fig. 6 depicts, we find that
48% of the selected applications use HTTP triggers, and a
further 41% use cloud events triggers (e.g., as a newmessage
in a queue, or a new entry in a database). Generally, HTTP
triggers are commonly used to expose functionality to users,
whereas cloud events help coordinate multiple cloud func-
tions. This is a significant change from microservices, which
typically rely on API calls to coordinate multiple services.
One of the reasons for this change towards an event-driven
architecture could be that synchronous calls between server-
less functions cause double billing [46]. A smaller number of
applications use schedule-based triggers (13%) or manually
triggered functionality (9%). These triggers are usually used
for orchestration ormanagement tasks.

Fig. 7 shows the number of functions per application is
relatively low: Only 7% of the applications in our dataset
use more than 10 functions, and 82% use 5 or fewer func-
tions. This suggests, first, that the use of external services
reduces the amount of (internal) code required to build an
application. Second, the functionality encapsulated by a
serverless function is between a microservice and an API
endpoint, as the applications we review do not wrap every
programming function as a serverless function [47]. The
term “serverless functions” might be misleading, as they
are not related to the programming concept of functions.

3.2.3 What are Common Traffic Patterns for Serverless

Applications?

Finding 4. Most serverless applications have potentially
bursty workloads (84%). Serverless applications are often
used for high-traffic workloads (39%).

Traffic patterns—namely, execution patterns, burstiness
characteristics, and data volumes—can reveal how server-
less platforms are used. Applications can be executed on-
demandwhen a user interacts with the application or a cloud

event occurs; we further classify the on-demand execution
as regular on-demand or high-volume on-demand. Applications
can also be scheduled to run at specific times, e.g., to perform
cleanup tasks during off-hours.

Regarding the execution patterns, Fig. 8 shows that most
applications are triggered on-demand (86%), out of which
more than half are high-volume invocations, associated
with business-critical functions. Only 17% of the applica-
tions are triggered by a periodic schedule. Through an in-
depth analysis, we find that about half of the scheduled
applications execute operations & monitoring functions (see
also Section 3.2.4), highlighting how the serverless model
has been adopted—in many cases—to automate operations,
software management, and DevOps pipelines. We also note
that the high prevalence of on-demand triggered applica-
tions, and specifically, high-volume on-demand patterns, is
well supported by the industry trends of reducing over-
heads (i.e., function start-up time), and of providing quick
and seamless function auto-scaling mechanisms.

Regarding burstiness, we classify applications as having
potentially bursty workloads or non-bursty workloads. A
bursty application follows a workload pattern that includes
sudden and unexpected load spikes, or a significant
amount of sustained noise and variation in intensity. We
classify an application as non-bursty if the workload is
guaranteed to rarely or never experience bursts (e.g., if all
executions are scheduled and known in advance); other-
wise, the workload is bursty. When humans trigger func-
tion executions, the workload pattern can be bursty, as
user behavior can rarely be scheduled or reliably con-
trolled. As Fig. 9 shows, we classify more than 84% of the
workload patterns we analyzed as bursty; only 16% have a
clear non-bursty pattern. As one of the strengths of server-
less computing is its seamless scalability, together with the
general ease of operations, it comes as no surprise that
most of the applications can indeed experience bursty
workload patterns.

Finally, we analyze the data volume or load that the serv-
erless apps issue on the network and storage devices. We
classify applications into: volumes of less than 1 MB per exe-
cution, less than 10 MB, less than 100 MB, less than 1 GB, and
more than 1 GB. Exact numbers rarely appear in our sources
so this classification is based on reviewers’ estimates. Fig. 10
shows (i) more than half of the applications (53%) in the
smallest category of data volumes and 16% in the next
(< 10 MB) and (ii) the second peak (16%) in the largest cat-
egory (> 1 GB). The resulting distribution appears bimodal,
but this might be an artifact of the binning intervals.

Fig. 6. Trigger types used in serverless applications.

Fig. 7. Number of serverless functions per serverless application.

Fig. 8. Execution pattern of serverless applications.

Fig. 9. Burstiness of the workload of serverless applications.

Fig. 10. Data volume handled by serverless applications.

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4157

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

3.2.4 What are Serverless Applications Used for?

Finding 5. Serverless applications are not limited to any
specific types of applications, as they are commonly used
to implement APIs (29%), stream/async processing
(28%), batch tasks (24%), and operations tasks (20%).

A common assumption is that serverless applications are
suitable for operations tasks and batch jobs, as their traffic
patterns profit from the pay-per-use model. For example,
Netflix uses AWSLambda for operations tasks, such as video
encoding, file backup, security audits of EC2 instances, and
monitoring. However, the core functionality—the website
and app backend, and video delivery—is still running on tra-
ditional IaaS cloud services [48]. Contrary to this popular
belief, and as Fig. 11 depicts, we find that the most common
serverless applications in our dataset are implementing
APIs (29%) or are processing frequent events (streams)
asynchronously (28%). Example use cases for these types of
applications are serverless backends for web, mobile, or IoT
applications. Still, a significant portion of serverless applica-
tions focus on processing batch tasks (24%) and on automat-
ing operations tasks (20%).

Another common assumption is that serverless applica-
tions are not suitable for complex analysis tasks. In contrast,
in our dataset, 25% of applications contain functions with
an estimated runtime of over one minute. Among these
applications are scientific workloads, such as SNP Genotyp-
ing [14] or seismic imaging [13], showing an increased
adoption of serverless for complex analysis tasks.

The high percentage of APIs is somewhat surprising, as a
common argument against serverless applications is that
cold starts make them unsuitable for applications with low-
latency requirements or focus on tail-latency. However, we
find that serverless applications are used for latency-critical
tasks. As shown in Fig. 12, 38% of the selected serverless
applications have no latency requirements. However, 32%
of the serverless applications have latency requirements for
all functionality, 28% have partial latency requirements,
and 2% even have real-time requirements.

3.2.5 Why are Practitioners Choosing Serverless?

Finding 6. Reduced hosting costs of serverless applications
(47%), reduced operation effort (34%), and high scalability
(34%) are themain drivers for serverless adoption.

Several potential benefits of serverless applications have
been proposed: reduced operational effort, faster develop-
ment due to the heavy use of Backend-as-a-Service, and
near-infinite scalability of serverless applications. Many
also discuss significant cost savings from switching to serv-
erless. However, these benefits are not generally agreed
upon, for example, cost savings have come under scru-
tiny [49]. To understand why practitioners choose to adopt
serverless, we investigate the descriptions and documenta-
tion of applications in our dataset.

We could not determine the reasons behind the adoption
of serverless for about 30% of the applications in our dataset,
as the documentation did not mention explicitly why server-
less was chosen. We analyze the remainder and depict the
results in Fig. 13. Themain driver is cost—mentioned by 47%
of the remainder applications. While serverless is not per se
cheaper than IaaS hosting, the pay-per-use model and ability
scale to zero reduce costs in scenarios where the IaaS resour-
ces are underutilized. Serverless applications can also offer
seamless, virtually infinite scaling. Scalability is mentioned
as a reason for serverless adoption by 34% of the applications
in our dataset. The third main reason for choosing serverless
over traditional hosting options is reduced operational over-
head, because server management is no longer done by
applications. A few applications also reported improved
performance (19%) and faster development speed (13%) as
reasons for serverless adoption.

3.2.6 How Complex are Serverless Applications?

Finding 7. Almost a third (31%) of the serverless applica-
tions are workflows. Most workflows are of simple struc-
ture, small, and short-lived.

Although initially serverless focused on simple applica-
tions, comprised of mainly small functions, there has been
increasing interest in using serverless for more complex
applications. Such applications can be expressed as server-
less workflows, which orchestrate the dependencies between
multiple functions.

From our dataset, we find a significant percentage of
applications already structured as serverless workflows
(31%). Examples of such serverless workflows can range
from simpleworkflows to large scientific workflows [13].

Similar to workflows in other fields, we can classify these
serverless workflows into specific patterns based on how
the function calls (or tasks) are structured within these
orchestrations. As Fig. 14 depicts, we find that half of the
workflows are sequential in nature, where tasks are exe-
cuted one after the other. We also find bags of tasks (17%),
where a set of tasks can execute without a particular order

Fig. 11. Application type of serverless applications.

Fig. 13. Motivation for building serverless applications.

Fig. 12. Latency requirements of serverless applications.

4158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

or inter-dependency. Finally, a third (33%) of the applica-
tions are defined as complex workflows, that is, workflows that
include structures such as conditional branches and loops.
The diversity and level of complexity indicate designers of
workflow management systems are soon to be engaged in a
competition over new features and optimizations.

Another key differentiator between the selected applica-
tions is workflow size (shown in Fig. 15). Most applications
(72%) have rather small workflows, consisting of 2 to 10
tasks. These tend to be applications for business processes
and data pipelines, such as the multi-step provisioning of
developer machines at Autodesk[50]. Almost a quarter of
serverless workflows (23%) contain 11 up to 1,000 tasks.
Finally, a few serverless workflows (4%) consist of more
than 1,000 tasks—typically, large scientific workflows
requiring custom workflow engines to run.

A final factor in serverless workflows is the approach
used to orchestrate their execution. Overall, as Fig. 16 high-
lights, we found that most serverless workflow applications
(60%) use event-based mechanisms–such as file uploads trig-
gering the execution of functions–to implicitly orchestrate
entire workflows by ensuring that the result of one function
triggers the next. About a third of the workflows (38%) are
managed by a dedicated workflow management system, such as
AWS Step Functions, Google Workflows, or Azure Durable
Functions. Besides these cloud-based orchestrationmethods,
we also identify a less-common approach, local coordination
(2%), in which the orchestration complexity is deferred to the
client-side. Although this is less robust than other methods,
it is used for one-off workflows, e.g., the distributed build-
workflows of gg [51].

4 FINDING COMMUNITY CONSENSUS

Because the field of serverless applications is relatively new
and fast-evolving, reaching community consensus about
application patterns and best practices is both desirable and
challenging. This section aims to analyze if existing studies
that analyze one or several characteristics that we also
study, and determine if overlapping studies corroborate our
findings or contradict them. The results are a necessary first
step towards reaching community consensus.

4.1 Methodology

We aim to find and compare with existing studies in the
community on the characteristics of serverless applications.
Our methodology consists of three parts: a literature search
to identify related studies, mapping their findings to our
framework, and quantifying the degree of agreement.

4.1.1 Identification of Related Study

To identify existing surveys and datasets that also investi-
gate at least one of the characteristics investigated in this
work, we conducted a literature search. As we are mostly
looking for industrial studies and datasets, we use Google
as the search engine with the following search term:2

ð00serverless00 OR 00faas00Þ AND

ð00dataset00 OR 00survey00 OR 00report00Þ
after : 2018� 01� 01:

This search term looks for any combination of either
serverless or FaaS alongside any of the terms: dataset, sur-
vey, or report. We further limit the search to articles since
2018, as serverless is a fast-moving field, and therefore any
older studies are likely outdated. This search term results in
a total of 173 unfiltered results.

To validate if using only a single search engine is suffi-
cient, and the search term is broad enough, we check if the 7
studies that the authors were already familiar with appear
in the results. Because the search results include all these
studies, we conclude our literature search is broad enough.

We identified relevant results as follows. In the first itera-
tion, to keep primary sources, we filter out results that do not
report original data. We remove all reports on secondary
data, where the original study was already contained in the
search results. This process results in a total of 16 primary
studies. Finally, we determine for each primary study if they
investigate one of our characteristics. This resulted in a total
of 10 related studies, which Table 1 summarizes. The related
studies include 7 surveys and 3 datasets, survey from 19 to
2 400 participants, and report between 2018 and 2020.

In the following, we give a short description of each
related study, as the methodology and context of each study
are important for the correct interpretation of their results.

Fig. 14. Structure of serverless workflows.

Fig. 15. Size of serverless workflows.

Fig. 16. Coordination of serverless workflows.

TABLE 1
Overview of the Related Studies

Study Year Type Participants Source

SitW 2020 Dataset - https://bit.ly/3bl2vHM
TSoS 2020 Datadog - https://bit.ly/3iSX2gf ?
FtLoS 2020 Dataset - https://bit.ly/3diWZrY
SCS 2020 Survey 583 https://bit.ly/37p56j4
FSS 2020 Survey �150 https://bit.ly/2ZsIVUM
OSS 2019 Survey >1500 https://bit.ly/3dnViJH
MMS 2018 Survey 182 https://bit.ly/3dpcJd6
DSS 2018 Survey 19 https://bit.ly/3qybX15
CNCF 2018 Survey 2400 https://bit.ly/2M2sjQz
GtST 2018 Survey 608 https://bit.ly/3biElxO

2. https://www.google.com/search?q=%28%22serverless%22%
20OR%20%22faas%22%29%20AND%20%28%22dataset%22%20OR%
20%22survey%22%20OR%20%22report%22%29%20after%3A2018-01-01

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4159

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/3bl2vHM
https://bit.ly/3iSX2gf ?
https://bit.ly/3diWZrY
https://bit.ly/37p56j4
https://bit.ly/2ZsIVUM
https://bit.ly/3dnViJH
https://bit.ly/3dpcJd6
https://bit.ly/3qybX15
https://bit.ly/2M2sjQz
https://bit.ly/3biElxO
https://www.google.com/search?q=%28%22serverless%22%20OR%20%22faas%22%29%20AND%20%28%22dataset%22%20OR%20%22survey%22%20OR%20%22report%22%29%20after%3A2018-01-01
https://www.google.com/search?q=%28%22serverless%22%20OR%20%22faas%22%29%20AND%20%28%22dataset%22%20OR%20%22survey%22%20OR%20%22report%22%29%20after%3A2018-01-01
https://www.google.com/search?q=%28%22serverless%22%20OR%20%22faas%22%29%20AND%20%28%22dataset%22%20OR%20%22survey%22%20OR%20%22report%22%29%20after%3A2018-01-01

Serverless Community Study (SCS): This is an online sur-
vey among 583 participants from the serverless community,
conducted in April 2020. It mostly focuses on end-user con-
cerns, such as how far the end-user is in adopting serverless
and what challenges they experience.

Serverless in the Wild (SitW): In 2020, researchers at Micro-
soft published one of the first comprehensive characteriza-
tion studies of the workloads of a major (and closed-source)
serverless platform. For this, they release all function invo-
cations on the Azure Functions platform for two weeks.

Mixed-Method Study (MMS): The academic mixed-method
study combines semi-structured practitioner interviews
with 12 experts, a systematic review of 50 grey literature
articles, and a quantitative survey covering 182 responses to
investigate FaaS software development in industrial prac-
tice. Our study only compares against their web survey
results from early 2018.

The State of Serverless (TSoS): This study compiles usage-
data from the customer base of Datadog, a vendor of server-
less monitoring solutions. This data was published in early
2020 and focuses solely on AWS Lambda.

O’Reilly Serverless Survey (OSS): In June 2019, O’Reilly
surveyed over 1,500 participants from diverse locations,
companies, and industries on the adoption of serverless
computing.

Guide to Serverless Technologies (GtST): As part of the e-
book, ”Guide to Serverless Technologies”, The New Stack
surveyed 608 participants interested in serverless technol-
ogy. The survey participants were primarily recruited
through the company’s newsletter and their social media
reach-out.

For the Love of Serverless (FtLoS): New Relic, a vendor for a
serverless monitoring solution, analyzed serverless trends
in 2020, based on data covering a sample set of the trillions
of serverless events that their product processes.

Fastly Serverless Survey (FSS): Soon after the launch of the
beta version of Compute@Edge, Fastly conducted in the
beta community a survey about trends and challenges.

Dashbird Serverless Survey (DSS): In 2018, Dashbird sur-
veyed its customers on why they switched to serverless,
what problems they were trying to solve, and the biggest
benefits and drawbacks. The 19 companies in the survey
use Dashbird’s observability solution on AWS workloads.

CNCF Survey (CNCF): The CloudNative Computing Foun-
dation regularly surveys its community about the adoption of
cloud-native technologies. The 2018 survey includes some
questions on serverless adoption and platforms.

4.1.2 Mapping the Results to our Framework

Because the related studies (identified in Section 4.1.1) offer
different answer-options than our study, we map their
options to ours. In many cases, this is straightforward, e.g.,
when mapping “HTTP” to “HTTP Request”.

When the granularities of offered options differ between
studies, we aggregate lower-granularity options to match
the higher-granularity. In case the lower-granularity options
include multiple answers, we select only the highest value
instead of aggregating values, to avoid counting a single
study participant multiple times. We provide a detailed
account of the mapping for each characteristic and related
study as part of our replication package.1

4.1.3 Quantifying the Degree of Agreement

For many studies, some information required for traditional
meta-analysis techniques [52], such as cohort size, is unavail-
able. This prevents the direct application of these meta-anal-
ysis techniques.

We propose an agreement metric, a total that equally
weighs the agreement of the reported ranking and the
agreement of the reported percentage values

At ¼ 0:5�Ap þ 0:5�Ar;

where At represents the total agreement, Ap the agreement
of the reported percentage values, and Ar the agreement of
the reported ranking, with Ap and Ar defined in the
following.

We calculate the percentage agreement as the weighted
mean absolute percentage error (MAPE), with the reported
percentage value of each answer as the weight

Ap ¼
XN

i¼1

Minð1; uiÞ � jui � tij
ui

;

where N denotes the number of answer-options; and ui=ti
are the percentage value reported for option i in our study
and the related study, respectively. The formula caps the
MAPE for each option at 100%, as otherwise options with
very low percentage values would dominate the MAPE [53].
In some cases, one of the studies allows a participant to select
multiple options, while the other study only allows for a sin-
gle option. To compare these results, we calculate a scaling
factor based on the percentage difference of the largest
reported values by both studies and scale the results from
the studywithmultiple answers per participant accordingly.

We calculate the agreement regarding the reported rank-
ing as following:

Ar ¼ Sðu; tÞ þ 1

2
:

We use Spearman’s rank correlation coefficient Sðu; tÞ, a
common metric to quantify the similarity of two rank-
ings [54]. As the Spearman’s r value ranges from [-1, 1], we
scale it to [0,1] so it has the same scale as Ap. Therefore, the
resulting At also lies in the range [0, 1].

Finally, we categorize scores in the range [0.8, 1] as very
high agreement, [0.6, 0.8) as high agreement, [0.4, 0.6) as medium
agreement, [0.2, 0.4) as low agreement, and [0, 0.2) as very low
agreement. We acknowledge that these categories are some-
what arbitrary. However, based on amanual inspection of the
results, they seem to capture the individual studies’ level of
agreement quite well. Our replication package1 includes the
mapped data alongside the resulting scores, to enable readers
to conductmanual inspections of the degree of agreement.

4.2 Results of Consensus Analysis

We analyze here the degree of agreement between the results
from our study and from other studies. This meta-analysis
can identify meaningful corroboration between the different
studies: For the characteristics that appear both in our study
and in others, a high degree of agreement with the existing
studies would increase the credibility of these results. A high
degree of agreement can also suggest that the results for

4160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

characteristics that have not yet been investigated by any
other study are also credible.

Table 2 summarizes the results; degrees of agreement are
defined in Section 4.1.3. We find that 8 characteristics are
also investigated by other studies, as indicated by rows
where very low to very high items appear. Among these
characteristics, platform, language, and motivation are ana-
lyzed by 4–6 other studies. For 6 characteristics, we are the
first to investigate them in peer-reviewed material. For the
remaining 2 characteristics, external services and execution
pattern, our study uses options incomparable with other
studies that considered the aspect.

In general, we find a high degree of agreement with the
existing studies. For each characteristic where we observe
only low or medium level of agreement with another study,
we also observe high or very high agreement with another
study, pointing towards differences between these studies.
Only for the motivation characteristic, there are multiple
studies relatively to which we observe low and medium
level of agreement, suggesting there might be some infor-
mation that our study missed.

In the following, we provide a qualitative comparison of
the results from our study and the comparison studies for
the eight characteristics analyzed by one or more of the
comparison studies. Here, we focus on points of agreement
and disagreement between the studies to obtain corroborat-
ing evidence for our findings and identify characteristics
that require further investigation.

4.2.1 Platform and Programming Language

Consensus 1. AWS is the most popular serverless pro-
vider with an over 50% market share, followed by Micro-
soft Azure and Google Cloud. (See Finding 2.)

Consensus 2. JavaScript and Python are the most popular
programming languages. Different studies find next a
mix of Java, C#, and C/C++. (See Finding 2.)

Five independent studies indicate that AWS is the most
popular serverless provider, followed by Microsoft Azure
and Google Cloud. All five studies report a relative share of
applications per respondent above 50% for AWS, as shown
in Fig. 17. Azure comes second in all studies except CNCF,
where Google Cloud is slightly more popular. Google
Cloud is ranked third in all studies except ours, which
reports IBM Cloud to be more popular. IBM Cloud is the
last major public serverless provider mentioned by all stud-
ies. CNCF, GtST, and SCS mention many other serverless
platforms such as Cloudflare Workers, Twilio Functions, or
Huawei FunctionStage. However, we excluded these hosted
platforms due to low popularity (<5%) and only being men-
tioned by few studies. SCS and our study grouped instal-
lable platforms into the private cloud category, including
Apache OpenWhisk, Knative, Kubeless, and OpenFaas. For
the other studies, the private cloud category could not be
calculated due to incompatible reporting.

Fig. 18 shows six studies agreeing that JavaScript and
Python are the dominant programming languages in server-
less applications, followed by Java and C#. The tie between
JavaScript and Python in our study highlights that both lan-
guages are similarly popular across all six studies, with a
minor trend towards JavaScript being more popular. Com-
pared to broadly distributed surveys, Java appears to be
more popular among enterprise newsletter respondents
from GtST and the enterprise-focused survey and interview
study MMS. The .NET platform with C# is also present in
all six studies but generally less popular than Java. Four
studies report Go as a strong contender for catching up
with C#. Ruby remains a niche language listed by only three

TABLE 2
Degree of Agreement With Existing Studies

A - denotes that the study did not investigate this characteristic and a (-) denotes that the results are incomparable due to differences in the question or answer options.

Fig. 17. Comparison of results for used cloud provider.

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4161

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

studies. In contrast to other studies, our study found C/C++
to be similarly popular to Java and C#. We assume that
other studies mostly ignored this category because it refers
to C/C++ binaries running under another officially sup-
ported runtime (e.g., using shims to invoke C++ binaries
from JavaScript code). For GtST and TSoS, the share of pro-
gramming languages is derived from telemetry data of
deployed functions (rather than applications) based on their
runtime configuration for the cloud provider AWS.

4.2.2 Number of Functions

Consensus 3. Nearly two-thirds of serverless applications
have 10 or fewer functions. (See Finding 3.)

The number of functions per serverless application was also
investigated by GtST, MMS, and SitW. Fig. 19 shows a histo-
gram of the number of functions determined by each study.
The coarse binning used by the surveys prevents a detailed
analysis, but a clear trend is visible. Both GtST and MMS
find more functions than we do; the difference is larger for
MMS. We hypothesize that this is due to differences in sur-
vey methodologies. SitW finds more single-function appli-
cations than all other studies. As SitW is specific to Azure,
while the other studies predominantly cover AWS, we
hypothesize that serverless applications on AWS are larger
than on other platforms due to the higher maturity of the
AWS serverless ecosystem. Despite disagreements on the
exact distribution, all studies agree that at least 64% of serv-
erless applications have ten or fewer functions.

4.2.3 Trigger Types

Consensus 4. HTTP requests and cloud events are the
most common triggers for serverless functions. (See Sec-
tion 3.2.2.)

The only other study on how serverless functions are trig-
gered is SitW. Table 3 shows the results for the triggers
HTTP request, cloud event, and scheduled triggers. For
SitW, we aggregated the results for queue, storage, and
event trigger as cloud events, as our definition of cloud
event included those. Both studies agree that HTTP requests
and cloud events are the most common triggers for server-
less functions. However, SitW finds that scheduled triggers
are similarly common, whereas we find them less common
than HTTP and event triggers. SitW covers only functions
deployed on Azure and reports a larger share of single-
function apps than any other study. We hypothesize there
is a difference in serverless usage between the providers,
with serverless being used more for timer-based, single-
function utility applications at Azure than at, e.g., AWS.

4.2.4 Burstiness

Consensus 5. More than 50% of serverless applications
have potentially bursty workloads. (See Finding 4.)

The only other study that included information related to
burstiness is the SitW study. We note that there is no stan-
dardized way of characterizing burstiness [55], [56]. The
SitW study reports the coefficient of variation (cv) of the
inter-arrival times of application invocations, which we
used to derive burstiness levels B in terms of the cv follow-
ing the metric proposed by Goh and Barabasi [55]. The SitW
results are in high agreement with the results in our study:
both studies agree that more than half of the serverless
applications exhibit bursty workloads. Specifically, we
found 81% of the applications exhibit bursty workloads,
while 57% of the applications from the SitW study exhib-
ited bursty behavior.

4.2.5 Application Type

Consensus 6. There is no dominant application type, but
several types are common. (See Finding 5.)

Comparing the different application type studies is not
straightforward, as each study introduces its own classifica-
tion type. We, therefore, had to map the categorizations of
the other studies to match our taxonomy. The details can be
found in our replication package. Fig. 20 shows that GtST
and SCS agree with the observation that serverless tasks are
used for all areas of computing, including operations, batch
jobs, streaming or asynchronous data, or standard API oper-
ations. Although the individual percentages differ, e.g., GtST
and SCS both assign higher importance to API applications

Fig. 18. Comparison of results for used programming language.

Fig. 19. Comparison of function numbers per application. The long tail of
the distributions is not show (GtST: 10.3% > 25 functions, MMS: 16% >
20 functions, SitW: 0.25% > 20 functions, Us: 1.1% > 20).

TABLE 3
Comparison of Results for Trigger Types

Study HTTP Event Scheduled Manual Orchestration

SitW 0.641 0.363 0.292 - 0.094
Us 0.474 0.402 0.124 0.093 -

4162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

and less to stream operations, the overall picture is quite sim-
ilar. In fact, all studies agree that at least 20% of serverless
applications implement operations tasks, batch jobs, async
processing, andAPIs each.

4.2.6 Function Runtime

Consensus 7. At least 75% of the serverless functions run
for under 1 minute. (See Section 3.2.4.)

The runtime of serverless functions was not covered in any of
the surveys, only the datasets from Azure (SitW), Datadog
(TSoS), and New Relic (FtLoS) cover this information. Due to
our study methodology, we only estimated if the runtime of
any function of an application is less than a minute or if it is
likely to run longer. Thus, we can not compare our results to
the data from FtLoS, as they focus on the runtime distribution
below five seconds. As Table 4 shows, the studies agree that
most functions run for less than a minute, but SitW and TSoS
find that over 95% of serverless functions run for less than a
minute, compared to the 75% we found. The main reason for
this difference should be that SitW and TSoS analyze per func-
tion runtime, whereaswe analyze howmany applications con-
tain one or more functions that run longer than a minute, so
the results are not directly comparable. We note that even
though TSoS focuses on AWS and SitW on Azure, both agree
that over 95% of serverless functions run for less than aminute.

4.2.7 Motivation

Consensus 8. Cost, scalability, and NoOps are major driv-
ers of serverless adoption. Some studies also find
increased development speed as a major driver of server-
less adoption. (See Finding 6.)

Fig. 21 compares themotivations for building serverless appli-
cations. The studies had a wide range of possible and overlap-
ping options; we grouped the answers of the comparison
studies to fit the options that we identified in our study. This
means we compared the studies based on motivations for cost
reduction, scalability, performance, developer productivity

(DevSpeed), and reduced operational complexity (NoOps).
We find that cost reduction and scalability are common and
key motivations mentioned in all studies. A reason for this
could be that cost reduction and scalability are typical concerns
for serverless developers and operators. In contrast, the other
motivations—performance, developer productivity, and
reduced operational complexity—vary in relative share or are
even completely absent in some studies. We believe this is due
to the surveys providing options for participants to select
from; those options tend to be biased by what the survey is
focused on. One survey (GtST) focused heavily onmotivations
related to the developer productivity, whereas another (MMS)
targeted the operation of serverless applications.

5 THREATS TO VALIDITY

We discuss potential threats to validity and mitigation strat-
egies for internal validity, construct validity, and external
validity.

5.1 Internal Validity

Manual data extraction can lead to inaccurate or incomplete
data. To mitigate this threat, we established and discussed a
review protocol before reviewing, continuously discussed
upcoming questions during the review process, and per-
formed redundant reviews through multiple reviewers. Our
review protocol established an exhaustive list of potential
values for each characteristic and configured automated vali-
dation, which immediately highlighted deviations from
these values. For characteristics with thematic coding, we
continuously refined their values in regular meetings during
the review process. To address potential individual bias, we
performed two independent reviews for each application,
quantified the inter-rater agreement after an initial review
round through Fleiss’ kappa, and resolved each disagree-
ment in an extended discussion and consolidation phase.

The goal of this study is to capture and analyze the cur-
rent state of serverless applications. However, due to our
methodology, the collected sources can be several years old
and therefore possibly represent already overhauled sys-
tems and architectures. As we published all the underlying
data, follow-up studies can also focus on the development
of different characteristics over time.

5.2 Construct Validity

To align this study’s goal (i.e., comprehensive understand-
ing of existing serverless applications) with the data extrac-
tion, we compiled a list of 22 characteristics covering 6
different aspect groups. We conducted and discussed this
selection process in an international working group with
authors from 5 different institutions. This kind of effort

Fig. 20. Comparison of results for application type.

TABLE 4
Comparison of Results for Function Runtime

Study Function Runtime

<1 min >= 1 min

SitW 0.960 0.040
TSoS 0.965 0.035
Us 0.750 0.250

Fig. 21. Comparison of motivation for building serverless applications.

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4163

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

ensures that the construct has broad validity, but not neces-
sarily that is valid for the entire community: other research-
ers might consider different characteristics as relevant.

For the purpose of this study, we excluded Container-as-
a-Service, such as applications using AWS Fargate or Goo-
gle Cloud Run, which also fall under a broader definition of
serverless [57]. While analyzing these types of applications
could also yield interesting findings, we consider it outside
the scope of this work.

Serverless is an emerging technology, therefore it is possi-
ble and likely that the characteristics of serverless applications
change within the next five years. However, the goal of this
study is to provide a snapshot of the characteristics of server-
less applications at the time of writing. We include a detailed
replication package that enables the faithful replication of this
study at a later time, which will allow to draw conclusions
about how the state of serverless applications changed.

We analyzed consensus between our study and 10 related
studies, and found many points of consensus and good (often
high or very high) levels of agreement overall. However, to
determine the level of agreement with existing studies, we
could not use existing, established meta-analysis techniques,
as some related studies did not disclose essential information
(e.g., cohort size). Therefore, it is possible that the level of
agreement we compute does not correctly reflect the actual
degree of agreement between the studies. To account for this,
we included a detailed breakdown of the study results and
their comparison as part of our replication package1, enabling
the community to conduct other comparisons, independently.

5.3 External Validity

Our study was designed to cover applications from open
source projects, academic literature, and industrial literature,
but we cannot claim generalizability to all serverless applica-
tions. For open-source projects, we filtered non-trivial proj-
ects from the most popular open-source repository but
might havemissed projects published in other repositories.

Our academic literature collection is based on a curated
dataset on serverless literature and complemented with
articles known to the authors. Our comparison study uses a
similar methodology. Although we validated the resulting
collections against our knowledge and a small set of test-
articles, the methodology does not guarantee validity: we
might have missed more recent articles, or articles not
found by our process and unknown to all authors.

Applications from industrial literature mostly focus on
provider-reported case studies, an existing collection of
industrial applications, and sources known to the authors.
Our scientific computing applications are limited to institu-
tions in a single country, Germany. We only partially cover
applications in industry and science, as many of them
remain unpublished, and others provide insufficient details
to conduct a meaningful review. Other studies, e.g., on FaaS
platforms [20], suffer from the same limitations.

6 CONCLUSION

The impact of serverless applications on the society is
already large. Addressing a problem that could hamper fur-
ther adoption, the goal of this study is to understand the state
of serverless applications.

Building on open-access lists created by the community, we
collect systematically 89 serverless applications from open-
source projects, academic literature, industrial literature, and
from scientific computing domain. Ours is the largest collection
to date, by almost an order of magnitude over the next-largest.
We analyze this collection alongside 16 characteristics in 6
groups: (I) implementation, (II) architecture, (III) traffic patterns,
(IV) operational complexity, (V) usage scenarios, and (VI) moti-
vation for adoption. Last, but not least, we corroborate our find-
ings with 10 existing, mostly industrial, studies and data sets,
andwe investigate points of both agreement anddisagreement.

Our analysis spotlights 7 main findings, such as: (I) The
most commonly reported reasons for the adoption of server-
less include cost-savings for irregular or bursty workloads,
avoidance of operational concerns, built-in scalability, and
increased speed of development, (II) Typical scenarios
include short-running tasks with low data volume and bursty
workloads, but we also frequently found latency-critical,
high-volume core functionality as serverless applications,
and (III) Serverless applications are mostly implemented on
AWS, in either Python or JavaScript, and use BaaS.

We further investigate whether our study contributes to
the combined knowledge of the community. We identify
through a systematic process a set of 10 other seminal stud-
ies, whose focus is overlapping with ours. We analyze each
of these studies and compare their findings with ours, iden-
tifying in the process the overall level of agreement, main
points of consensus, and also some disagreements.

We see this study as a step towards community-wide
sharing of and discussion around serverless applications.
As future directions, this collection of serverless application
could help with the development of serverless applications
by showing best practices (and whether there is consensus
around them), with the identification of serverless design-
patterns, and with tuning and performance benchmarking
based on realistic characteristics.

REFERENCES

[1] IDC, “FutureScape: Worldwide IT industry 2019 predictions,”
2018. [Online]. Available: https://www.idc.com/getdoc.jsp?
containerId¼US44403818

[2] Research and Markets, “$7.72 billion function-as-a-service market
- Global forecast to 2021,” 2017. [Online]. Available: https://
bwnews.pr/2VBDBgC

[3] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau , “Serverless com-
putation with OpenLambda,” in Proc. 8th USENIX Conf. Hot Topics
Cloud Comput., 2016, pp. 33–39.

[4] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Uta, and A. Iosup,
“Serverless is more: From PaaS to present cloud computing,”
IEEE Internet Comput., vol. 22, no. 5, pp. 8–17, Sep./Oct. 2018.

[5] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” CoRR, 2019. [Online]. Available: https://
www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

[6] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Commun.ACM, vol. 62, no. 12, pp. 44–54, 2019.

[7] E. V. Eyk, A. Iosup, S. Seif, and M. Th€ommes, “The SPEC cloud
group’s research vision on FaaS and serverless architectures,” in
Proc. 2nd Int. Workshop Serverless Comput., 2017, pp. 1–4.

[8] E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann,
“A SPEC RG cloud group’s vision on the performance challenges
of FaaS cloud architectures,” in Proc. Companion Int. Conf. Perform.
Eng., 2018, pp. 21–24.

[9] J. M. Hellerstein et al., “Serverless computing: One step forward,
two steps back,” in Proc. 9th Biennial Conf. Innovative Data Syst.
Res., 2019. [Online]. Available: http://cidrdb.org/

4164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

https://www.idc.com/getdoc.jsp?containerId=US44403818
https://www.idc.com/getdoc.jsp?containerId=US44403818
https://www.idc.com/getdoc.jsp?containerId=US44403818
https://bwnews.pr/2VBDBgC
https://bwnews.pr/2VBDBgC
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
http://cidrdb.org/

[10] G. Adzic and R. Chatley, “Serverless computing: Economic and
architectural impact,” in Proc. 11th Joint Meeting Found. Softw.
Eng., 2017, pp. 884–889.

[11] E. Levinson, “Serverless community survey 2020,” 2020. [Online].
Available: https://bit.ly/SerComSurvey

[12] A. Eivy, “Bewary of the economics of ”serverless” cloud computing,”
IEEECloudComput., vol. 4, no. 2, pp. 6–12, Mar./Apr. 2017.

[13] P. A. Witte, M. Louboutin, C. Jones, and F. J. Herrmann,
“Serverless seismic imaging in the cloud,” CoRR, 2019. [Online].
Available: https://arxiv.org/abs/1909.01279

[14] R. Crespo-Cepeda, G. Agapito, J. L. Vazquez-Poletti, and M. Can-
nataro, “Challenges and opportunities of amazon serverless
lambda services in bioinformatics,” in Proc. 10th ACM Int. Conf.
Bioinf. Comput. Biol. Health Informat., 2019, pp. 663–668.

[15] M. Chan, “Containers vs. serverless: Which should you use, and
when?” Aug. 2018. [Online]. Available: https://bit.ly/3rwMqpx

[16] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud container
technologies: A state-of-the-art review,” IEEE Trans. Cloud Com-
put., vol. 7, no. 3, pp. 677–692, Third Quarter 2019.

[17] P. Maenhaut, B. Volckaert, V. Ongenae, and F. D. Turck, “Resource
management in a containerized cloud: Status and challenges,” J.
Netw. Syst. Manage., vol. 28, no. 2, pp. 197–246, 2020. [Online]. Avail-
able: https://doi.org/10.1007/s10922–019-09504-0

[18] A. Orfin, “How droplr scales to millions with the serverless
framework,” 2018. [Online]. Available: https://bit.ly/3ejIWTu

[19] V. Yussupov, U. Breitenb€ucher, F. Leymann, and M. Wurster, “A
systematic mapping study on engineering function-as-a-service
platforms and tools,” in Proc. 12th IEEE/ACM Int. Conf. Utility
Cloud Comput., 2019, pp. 229–240.

[20] E. van Eyk et al., “The SPEC-RG reference architecture for FaaS:
From microservices and containers to serverless platforms,” IEEE
Internet Comput., vol. 23, no. 6, pp. 7–18, Nov./Dec. 2019.

[21] T. Back and V. Andrikopoulos, “Using a microbenchmark to com-
pare function as a service solutions,” in Proc. Eur. Conf. Service-
Oriented Cloud Comput., 2018, pp. 146–160.

[22] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski,
“Performance evaluation of heterogeneous cloud functions,” Con-
currency Comput. Pract. Exper., vol. 30, p. e4792, 2018. [Online].
Available: https://doi.org/10.1002/cpe.4792

[23] H. Lee, K. Satyam, and G. Fox, “Evaluation of production server-
less computing environments,” in Proc. IEEE 11th Int. Conf. Cloud
Comput., 2018, pp. 442–450.

[24] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing
microservice performance,” in Proc. IEEE Int. Conf. Cloud Eng.,
2018, pp. 159–169.

[25] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in Proc. USENIX
Annu. Tech. Conf., 2018, pp. 133–146.

[26] M. Shahrad et al., “Serverless in the wild: Characterizing and opti-
mizing the serverless workload at a large cloud provider,” in Proc.
USENIX Annu. Tech. Conf., 2020, pp. 205–218. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/shahrad

[27] P. Leitner, E. Wittern, J. Spillner, andW. Hummer, “Amixed-method
empirical study of Function-as-a-Service software development in
industrial practice,” J. Syst. Softw., vol. 149, pp. 340–359, 2019.

[28] D. Taibi, N. El Ioini, C. Pahl, and J. Niederkofler, “Patterns for serv-
erless functions (function-as-a-service): A multivocal literature
review,” Proc. 10th Int. Conf. Cloud Comput. Services Sci., vol. 1,
Closer, pp. 181–192, 2020, [Online]. Available: https://www.scitepress.
org/Papers/2020/95785/, doi: 10.5220/0009578501810192.

[29] I. Pavlov, S. Ali, and T. Mahmud, “Serverless development trends
in open source: A mixed-research study,” Thesis, Dept. Comput.
Sci. Eng., Univ. Gothenburg, Gothenburg, Sweden, Nov. 2019.
[Online]. Available: http://hdl.handle.net/2077/62544

[30] J. Spillner and M. Al-Ameen , “Serverless literature dataset,” 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.1175423

[31] S. Eismann et al., “Serverless applications: Why, when, and how?”
IEEE Softw., vol. 38, no. 1, pp. 32–39, Jan./Feb. 2021.

[32] S. Eismann et al., “A review of serverless use cases and their charac-
teristics,” SPEC RG, Jun. 2020. [Online]. Available: https://
research.spec.org/fileadmin/user_upload/documents/rg_cloud/
endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf

[33] J. Walter, “Systematic data transformation to enable web coverage
services (WCS) and ArcGIS image services within ESDIS cumulus
cloud,” 2019. [Online]. Available: https://earthdata.nasa.gov/
esds/competitive-programs/access/arcgis-cloud

[34] J. Blomer, G. Ganis, S. Mosciatti, and R. Popescu, “Towards a serv-
erless CernVM-FS,” in Proc. EPJ Web Conf., 2019, vol. 214, Art. no.
09007.

[35] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep
learning models in a serverless platform,” in Proc. IEEE Int. Conf.
Cloud Eng., 2018, pp. 257–262.

[36] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “BARISTA: Efficient and scalable serverless serving
system for deep learning prediction services,” in Proc. IEEE Int.
Conf. Cloud Eng., 2019, pp. 23–33.

[37] Z. Tu, M. Li, and J. Lin, “Pay-per-request deployment of neural net-
workmodels using serverless architectures,” inProc. Conf. North Amer.
Chapter Assoc. Comput. Linguistics: Demonstrations, 2018, pp. 6–10.

[38] A. Coffey and P. Atkinson, Making Sense of Qualitative Data: Com-
plementary Research Strategies. Newbury Park, CA, USA: Sage Pub-
lications, Inc, 1996.

[39] G. Guest, K. M. MacQueen, and E. E. Namey, Applied Thematic
Analysis. Newbury Park, CA, USA: Sage Publications, 2011.

[40] K. L. Gwet, Handbook of Inter-Rater Reliability: The Definitive Guide
to Measuring the Extent of Agreement Among Raters. Piedmont, CA,
USA: LLC, 2014.

[41] J. R. Landis and G. G. Koch, “The measurement of observer agree-
ment for categorical data,” Biometrics, vol. 33, pp. 159–174, 1977.

[42] J. Scheuner and P. Leitner, “Function-as-a-service performance
evaluation: A multivocal literature review,” J. Syst. Softw., vol.
170, 2020, Art. no. 110708.

[43] Gartner, “Worldwide IaaS public cloud services market grew
31.3%,” 2018. [Online]. Available: https://bwnews.pr/2ZcI7o4

[44] N. Malishev, “AWS lambda cold start language comparisons, 2019
edition,” 2019. [Online]. Available: https://bit.ly/ColdStartComp

[45] S. Moellering and S. Grunwald, “Field notes: Optimize your Java
application for AWS lambda with quarkus,” 2020. [Online]. Avail-
able: https://amzn.to/3mqZYBg

[46] I. Baldini et al., “The serverless trilemma: Function composition
for serverless computing,” in Proc. ACM SIGPLAN Int. Symp. New
Ideas New Paradigms Reflections Program. Softw., 2017, pp. 89–103.

[47] J. Spillner, C. Mateos, and D. A. Monge, “FaaSter, better, cheaper:
The prospect of serverless scientific computing and HPC,” in
Proc. Latin Amer. High Perform. Comput. Conf., 2018, pp. 154–168.

[48] M. Laul, “Serverless case study - Netflix,” 2018. [Online]. Avail-
able: https://dashbird.io/blog/serverless-case-study-netflix/

[49] A. Eivy and J. Weinman, “Be wary of the economics of
”Serverless” cloud computing,” IEEE Cloud Comput., vol. 4, no. 2,
pp. 6–12, Mar./Apr. 2017.

[50] A. Williams, “Autodesk goes serverless in the AWS cloud,
reduces account-creation time by 99%,” 2017. [Online]. Available:
https://amzn.to/2Q3X0pV

[51] S. Fouladi et al., “From Laptop to lambda: Outsourcing everyday
jobs to thousands of transient functional containers,” in Proc. USE-
NIX Annu. Tech. Conf., 2019, pp. 475–488.

[52] S. E. Brockwell and I. R. Gordon, “A comparison of statistical
methods for meta-analysis,” Statist. Medicine, vol. 20, no. 6,
pp. 825–840, 2001.

[53] S. Makridakis, “Accuracy measures: Theoretical and practical con-
cerns,” Int. J. Forecasting, vol. 9, pp. 527–529, 1993.

[54] J. L. Myers, A. Well, and R. F. Lorch, Research Design and Statistical
Analysis. Evanston, IL, USA: Routledge, 2010.

[55] K.-I. Goh and A.-L. Barab�asi, “Burstiness and memory in complex
systems,” Europhysics Lett., vol. 81, no. 4, 2008, Art. no. 48002.

[56] A. Ali-Eldin, O. Seleznjev, S. Sj€ostedt-de Luna, J. Tordsson, and E.
Elmroth, “Measuring cloud workload burstiness,” in Proc. IEEE/
ACM 7th Int. Conf. Utility Cloud Comput., 2014, pp. 566–572.

[57] S. Kounev et al., “Toward a definition for serverless computing,” in
Serverless Computing (Dagstuhl Seminar 21201). SchlossDagstuhl – Leib-
niz-Zentrum f€ur Informatik, 2021, vol. 11, ch. Chapter 5.1, pp. 56–59.

Simon Eismann received the MS degree from
the University of W€urzburg, Germany, in 2017.
He is currently working toward the PhD degree
in the Chair of Software Engineering, Univer-
sity of W€urzburg, Germany. His research inter-
ests include cloud computing, serverless, and
performance analysis/modeling. Contact him at
simon.eismann@uni-wuerzburg.de.

EISMANN ETAL.: STATE OF SERVERLESS APPLICATIONS: COLLECTION, CHARACTERIZATION, AND COMMUNITYCONSENSUS 4165

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

https://bit.ly/SerComSurvey
https://arxiv.org/abs/1909.01279
https://bit.ly/3rwMqpx
https://doi.org/10.1007/s10922--019-09504-0
https://bit.ly/3ejIWTu
https://doi.org/10.1002/cpe.4792
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.scitepress.org/Papers/2020/95785/
https://www.scitepress.org/Papers/2020/95785/
http://dx.doi.org/10.5220/0009578501810192.
http://hdl.handle.net/2077/62544
https://doi.org/10.5281/zenodo.1175423
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf
https://research.spec.org/fileadmin/user_upload/documents/rg_cloud/endorsed_publications/SPEC_RG_2020_Serverless_Usecases.pdf
https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-cloud
https://earthdata.nasa.gov/esds/competitive-programs/access/arcgis-cloud
https://bwnews.pr/2ZcI7o4
https://bit.ly/ColdStartComp
https://amzn.to/3mqZYBg
https://dashbird.io/blog/serverless-case-study-netflix/
https://amzn.to/2Q3X0pV

Joel Scheuner received the MS degree in soft-
ware systems from the University of Zurich, Swit-
zerland, in 2017. He is currently working toward the
PhD degree in the Division of Software Engineer-
ing, Chalmers University of Technology, Sweden
and the University of Gothenburg, Sweden. His
research interests include cloud computing, perfor-
mance engineering, and software engineering.
Contact him at scheuner@chalmers.se.

Erwin van Eyk received the MSc degree from TU
Delft, the Netherlands, in 2019, for work on cloud
computing and serverless workflows. He is cur-
rently working toward the PhD degree at Vrije
Universiteit Amsterdam, the Netherlands, and the
chair of the SPEC-RG Cloud Serverless activity.
Contact him at e.vaneyk@atlarge-research.com.

Maximilian Schwinger received the diploma
degree in computer science from TU Munich,
Germany, in 2006. He is currently working toward
the PhD degree in the Chair for Software Engi-
neering, University of W€urzburg, Germany. Since
then, he is working for the German Aerospace
Center (DLR) as a software and systems engi-
neer. His research interest includes high-perfor-
mance computing and cloud-based computing in
the domain of satellite-based earth observation.
Contact him at maximilian.schwinger@dlr.de.

Johannes Grohmann received the MS degree
from the University of W€urzburg, Germany, in
2016. He is currently working toward the PhD
degree in the Chair of Software Engineering,
University of W€urzburg, Germany. His research
interests include serverless and cloud computing
and performance model learning and analysis.
Contact him at johannes.grohmann@uni-wuerz-
burg.de.

Nikolas Herbst received the PhD degree from
the University of W€urzburg, Germany, in 2018, and
serves as elected vice-chair of the SPECResearch
Cloud Group. He is a research group leader at
the Chair of Software Engineering, University of
W€urzburg, Germany. His research interests include
predictive data analysis, elasticity, auto-scaling,
resource management, performance evaluation of
virtualized environments. Contact him at nikolas.
herbst@uni-wuerzburg.de.

Cristina L. Abad received the MS and PhD
degrees in CS from the University of Illinois at
Urbana-Champaign, Champaign, Illinois. She is
currently an associate professor at Escuela
Superior Politecnica del Litoral, ESPOL, in Ecua-
dor, where she leads the Distributed Systems
Research Lab (DiSEL). Her research interests
include intersection of distributed systems and
performance engineering. Contact her at cab-
ad@fiec.espol.edu.ec.

Alexandru Iosup is currently the University
Research chair at Vrije Universiteit Amsterdam
and member of the Young Royal Academy of Arts
and Sciences of the Netherlands. He is the chair
of the Massivizing Computer Systems research
group at the VU and the SPEC-RG Cloud group.
His work in distributed systems and ecosystems
has received prestigious recognition, including
the 2016 Netherlands ICT Researcher of the
Year. Contact him at A.Iosup@vu.nl.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 10, OCTOBER 2022

Authorized licensed use limited to: Vrije Universiteit Amsterdam. Downloaded on December 17,2024 at 17:18:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

