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ABSTRACT
Since the inception of computing, we have been reliant on CPU-
powered architectures. However, today this reliance is challenged
by manufacturing limitations (CMOS scaling), performance expec-
tations (stalled clocks, Turing tax), and security concerns (microar-
chitectural attacks). To re-imagine our computing architecture, in
this work we take a more radical but pragmatic approach and pro-
pose to eliminate the CPU with its design baggage, and integrate
three primary pillars of computing, i.e., networking, storage, and
computing, into a single unified CPU-free Data Processing Unit
(DPU) called Hyperion.We present our vision to make the Hyperion
DPU self-sufficient and self-hosting, hence not needing to attach it
to any host server, thus making it a genuinely CPU-free DPU. We
present our initial work-in-progress details and seek feedback from
the SPMA community.

1 INTRODUCTION
As proclaimed in their 2018 Turing Award lecture by Hennessy and
Patterson, we are in aNewGoldenAge for Computer Architecture [32],
as evident from the emergence of accelerators and domain-specific
computing devices in mainstream computing [15, 25, 37, 38, 47, 49,
62, 64, 65, 70, 75]. However, even in this Golden Age for domain-
specific accelerators, the CPU1 remains in the critical path to coor-
dinate operations and manage data flow orchestration (data copy-
ing, I/O buffers management [54]), executing code for accelera-
tor management (e.g. PCIe enumeration [69]), and translation be-
tween OS-level/POSIX abstractions [7] (network packets to ap-
plication requests [34] to file names and offset [76], to device-
level addresses [73]). In contrast to accelerators and I/O devices,
the CPU performance is not expected to improve by a radical
margin [55] (and is even dropping with the microarchitectural
fixes [13, 44]). Consequently, the CPU remains in the critical path
of end-to-end system building, thus not escaping the dynamics of
Amdahl’s Law [32]. We are not the first one to raise issues associ-
ated with the CPU-driven computing architecture [22, 55].

The first-principle reasoning suggests the solution: a system
where there is no CPU, i.e., a zero-CPU or CPU-free architecture. A
completely new computing architecture like zero-CPU will require
a radical and destructive redesigning of computing hardware (buses,
interconnects, controllers, DRAM, storage), systems software, and
applications. A classic example of this approach is the MSR BEE3
system [23]. In this work, we take a more pragmatic approach and
investigate the design of a self-contained, NIC-compute-storage
Data Processing Unit (DPU) called Hyperion. Hyperion aims to
establish end-to-end hardware control/data paths within the DPU

1referring to the CPU from the host (e.g. x86) as well as smart accelerators like ARM
SoC.
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What Examples

Network + Accelerator SmartNICs [4, 61], AcclNet [26], hXDP [18]
Network + GPU GPUDirect [56], GPUNet [42]
Storage + GPU SPIN [14], GPUfs [72], GPUDirect [57], nvidia

BAM [63]
Network + Storage iSCSI, NVMoF (offload [66], BlueField [4]),

i10 [35], ReFlex [43]
Storage + Accelerator ASIC/CPU [31, 46, 70], GPUs [14, 15, 72],

FPGA [36, 65, 68, 81], Hayagui [8]
Hybrid Systems with ARM SoC [2, 24, 50], BEE3 [23], hybrid

CPU-FPGA systems [19, 21]

DPUs Hyperion (stand-alone), Fungible (MIPS64 R6
cores) DPU processor [27], Pensando (host-
attached P4 Programmable processor) [59],
BlueField (host-attached, with ARM cores) [4]

Table 1: Related work in the integration of network, storage,
and accelerators (GPUs, FPGAs) devices.

without any CPU involvement. The unique design of Hyperion
allows us to consider building a standalone, self-contained DPU,
where no host system is needed to run it, thus reducing the cost
of operation, packaging density, and energy requirements. This
directly, network-attached FPGA model has been used before as
well [62, 71, 77]. Figure 1 shows the overall architecture.

2 THE DESIGN OF HYPERION
Commercially, NICs and storage devices (e.g. NVM Express) are
available as separate PCIe devices. Communication between the
two requires control coordination with P2P DMA from the CPU
(if supported, e.g., NVMe CMB [12]) via the PCIe root complex,
which typically resides on the CPU complex (keeping it in the loop).
To make the DPU self-sufficient, Hyperion runs a PCIe root com-
plex with an NVMe controller on the FPGA board and connects
its PCIe lanes to off-the-shelf NVMe storage devices via a PCIe
bifurcation. Hence, all access to the storage is funneled through the
FPGA. With such a design, Hyperion now has an end-to-end hard-
ware path from network to storage devices without involving the
CPU. The end-to-end hardware path can be leveraged to optimize
the network transport (TCP, UDP, RDMA, HOMA [58]), storage
accesses (NVMoF, i10 [35], ReFlex [43], or customized interface
like KV-SSDs [16]) with any arbitrary storage functions on the
FPGA (compression, encryption, pointer chasing, deduplication,
I/O scheduling, or application-defined codes). Closest to Hyperion’s
design is LeapIO [50], which integrates an ARM SoC with NVMe
storage and RDMA NIC as a single DPU, which is still attached to
a host x86 CPU.
Why FGPA: Two key factors drive the selection of FPGAs. First,
the use of FPGAs has been shown to be highly energy and per-
formance efficient (not necessarily for a serialized single flow ex-
ecution) [18, 50, 65]. The primary challenge for managing FPGAs
comes from carefully managing the pipelined execution of the
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Figure 1: Hyperion architecture and layout.

workload. With the availability of high-quality DSLs [9, 40, 45, 67],
OS-shells [47], and HDL compilers (hXDP [18]), it has become
more affordable to generate a high-quality ISA for code execution
at high data rates (100+ Gbps) [26, 51]. Second, the use of FPGA
allows us to reconfigure hardware (deep pipelines, unrolled loops,
heavy parallelism, large caches) to the best possible implementa-
tion of application-specific logic. Application-specific ASIC can
also offer the same benefits but require high initial investment
and manufacturing costs. Furthermore, as there is an increasing
trend in compacting and packing thousands of processing elements
in close vicinity (e.g., Cerebras core [1], Telsa Dojo [5]), the dis-
tance between the processing units (PUs) and memories (SRAM,
DRAM, or HBM) is of critical importance. Here, an FPGA-based
design offers the best tradeoff in packaging density and hardware
reconfigurability.
Programming of FPGA: One of the primary challenges with
FPGA is programming it. While the standard for FPGA program-
ming has always been Hardware Description Languages, recently,
there has been a series of efforts to raise the hardware programming
abstractions [9, 40, 45, 67]. In this work, we make a case that the ex-
tended Berkeley Packet Filter (eBPF) language and toolchain [20, 53]
can be used as the language of choice for the Hyperion DPU for
three key reasons. First, despite it name, the eBPF instruction set is
not tied to a specific application-domain and it has already been
used in networking [33, 78], tracing [30], security [39], and stor-
age [11, 17, 48, 80]. Second, due to the simplified nature of the eBPF
instruction set, it is possible to verify the correctness and bounded
execution of programs. The Linux kernel already ships with an
eBPF verifier [74] (with simplified symbolic execution checks), and
multiple other prototypes are available [6, 28]. Lastly, eBPF can
support highly efficient code generation (via JITing) for multiple
hardware devices such as x86, ARM, or FPGAs, potentially posi-
tioning it as the unified ISA for heterogenous computing [18, 41].
We propose to use an eBPF-supported programming language such
as C that can be compiled to eBPF bytecode using the LLVM com-
piler, and then eBPF to VHDL using a novel compiler, built on
top of hXDP [18]. The use of eBPF for more complex applications
can be challenging [29], however, here we take a broader posi-
tion regarding eBPF where the Linux kernel implement is one of
many possible implementations of the BPF execution environment.
For example, there are userspace BPF VMs [6], checkers [28], and
application-specific ISA extensions [18]. Beyond the basic compi-
lation of application-provided code to HDL, there are challenges

associated with (i) secure multi-tenant execution [40, 79]; (ii) basic
OS-level services on the FPGA [47]; (iii) FPGA configuration, man-
agement, accessibility of data-center resources [71], which we plan
to tackle.
Application interfaces: The next big question in the design of
Hyperion is the choice of the application interface. Here we take
inspiration from Willow [70], which pioneered an RPC-powered,
programmable SSD interface where a user provides application-
and SSD-side RPC stubs. This design supports any desired combina-
tions of network transport and storage interfaces. For example, we
can build network-attached SSDs that can support Corfu-style con-
sensus protocol [10], block-level NVMoF accesses, NFS acceleration,
or bump-in-the-wire/near-data execution of application-provided
codes (B+/LSM tree search and insertions, FS walks, transactions).
We focus on three application classes for Hyperion. First, high
volume applications such as fail2Ban [3], inspecting and writing
network traffic and logs authentication/malicious data to attached
SSDs. Such applications must handle high volumes of packet data
under a tight time budget (100s of millions of packets/sec). Second,
a latency-sensitive application such as network pointer-chasing.
In a disaggregated storage, pointer chasing over B+ trees, extent
trees, LSM trees (used in many databases, file systems, and key-
value stores [60]) results in multiple network RTTs with significant
performance degradation [48]. Lastly, network-attached SSDs that
can export application-defined, high-level, fault-tolerant abstrac-
tions such as trees, lookup-tables, distributed/shared logs [10], and
transactional interfaces (similar to Boxwood [52]).

3 STATUS & SPMA FEEDBACK
We are prototyping Hyperion with a Xilinx Alveo U280 board
(which has 2x 100 Gbps QSFP onboard). We have designed a PCIe
cross overboard to attach NVMe devices to the Alevo U280 board
with power2. The board implementation is delayed due to the
COVID-19 related component sourcing issues. Meanwhile, we have
developed an XDP-compatible, eBPF B+ tree lookup implementa-
tion that can be run with the in-kernel Linux eBPF implementation.
We are in the process of compiling it to U280, and completing the
more complex tree insertion logic as well.

From the SPMA community, we seek feedback on issues such
as: (i) Is network-attached Hyperion-style DPU a pragmatic choice
for CPU-free designs? (ii) Can the additional complexity arisen
from the elimination of the CPU be justified by the potential per-
formance gains? (iii) Are FPGA-related toolchains ready to com-
pile and run complex application-defined workloads in a secure,
high-performance manner without significant manual effort? (iv)
Looking beyond hardware, what kind of application-level inter-
faces/abstractions required for building distributed CPU-free appli-
cations that can be executed over multiple DPUs? (v) How to ensure
secure, third-party, multi-tenant execution in the FPGA enclaves?
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