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Abstract

Time series data, i.e data indexed by time is common place in
workloads such as IoT and DevOps. Timeseries databases are a type
of database which is specialized to be able to deal with this type of
information. In this work we investigate the current state of the lit-
erature regarding timeseries databases. We identify four core pillars,
ingestion, storage, querying, and processing, which together build time-
series databases which in turn we investigate each. This investigation
has enabled us to identify the problems and challenges associated with
these pillars.

1 Introduction

As the amount of data generated by the human race keeps increasing, there
is a large benefit to using specialized databases. Specialized databases can
better keep pace with the velocity of the data generated [1]. Specialized
databases utilize a specific focus on a type or feature of data they are storing
[2]. Timeseries databases are an example of databases which focus on a spe-
cific type of data, and provides optimizations based on the inherent features
that accompany this type of data. Timeseries databases are databases where
data is stored in pairs of timestamp and value(s). This type of database pro-
vides optimizations for workloads where data needs to be indexed according
to these timestamps. While storing this type of data in a traditional rela-
tional database is certainly possible [3], timeseries databases actively opti-
mize for this workload.

The databases are mainly queried along their time axis. This leads to
queries like: “what is the cpu usage for server X between 09:00 and 12:00”,
or “what was the maximum memory usage between 15:00 and 16:00 across
all servers”.
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While there are many data generating workloads which can be handled
by timeseries databases, in this paper we focus on two of them, as most
literature falls within one of these two workloads. The first is DevOps. When
deploying a large fleet of servers, system reliability engineers will want to
closely monitor these servers, and not just the servers themselves, but also the
applications they host. This means in practice that these engineers monitor
a set of counters which indicate the health of the system. These counters are
generated using a predefined set of queries, which often run on a scheduled
basis. Timeseries databases are able to provide for such workloads, engineers
can monitor recorded statistics, execute queries to investigate problems, or
setup notifications to warn on of anomalous behavior. One can image that
running 50 servers, which each generate and report a 100 metrics every 5
seconds, ends up being a lot of data.

The second workload is related to IoT data. Here we see that deploying
a large number of sensors can lead to a large amount of data [4]. This follows
a similar pattern as in the previous example, deploying say a 1000 sensors
which each report 5 readings every 5 seconds leads to the same amount of
data as in the previous example. The main differences here are how the
end users look at the data. Companies might use this data for analytical
workloads, such as analyzing the performance of a large scale factory. [5]
shows a larger factory where machines report their operations and health to
a control center where engineers monitor the facility. This data can also be
used to find possible areas of optimizations.

Figure 1: An overview of different systems interacting with timeseries
databases.

Being able to efficiently store, index, query, and process this much data
quickly becomes a non-trivial task when scaling the amount of data. The
storage needs quickly become a challenge when not employing workload-
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optimized compression to reduce size. When having to store 16 bytes per
measurement, at 1000 measurements/second (as in the earlier example), for
up to 6 months, uses ∼ 250 GB of storage. If we scale this up to 150,000 mea-
surements/second the storage requirements grow up to 23TB. While these
figures are here for illustrative purposes, these ingestion rate figures are not
unheard of, as demonstrated in [6]. Such is that even with a sufficient storage
back-end, searching for a specific range of time with this much data becomes
challenging to do in a reasonable amount of time, without some data struc-
ture which has indexed the data. Such a data structure would also enable
faster queries. Finally, there is the problem of ingesting this at this data
rate. An indexing data-structure also needs to allow for such high insertion
rate.

Other scaling problems have to do with the processing of data. Users will
likely want to do some form of processing [7], such as finding the maximum
value or creating a histogram. In our earlier example we discussed system
reliability engineers wishing to find abnormal behavior in systems, or an IoT
company wishing to see how well an update performs, in both cases the
engineers need to process data before analysis can take place.

There already exist a number of timeseries databases which attempt to
provide a solution to these workloads [8] [9] [10] [11]. Most of these have
variations which makes it hard to see which database is able to fulfill which
role. Which is able to be a good fit for a system reliability engineer? An-
other problem is that it can be difficult to compare performance. Different
databases have different limitations which do not show up easily unless we
have a form of standardized benchmarking which can test different aspects
of databases.

This report will serve to investigate the current state of timeseries databases
by analyzing the existing literature and attempting to answer the research
questions. We first look determine exactly how we wish to conduct our re-
search, after which we investigate a couple of areas which we found to be the
core pillars of this type of database.

2 Study design

This section will detail the goal of this study, and the method, such that it
can be reproduced.
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2.1 Research goal

This survey aims to get an overview of the existing timeseries databases, and
how they solve different problems as well as how they can be integrated into
different data analytical workloads.

In order to accomplish this goal we formulate the following main question
for this survey: “What optimizations do timeseries databases use to provide
for workloads which use data indexed by time?”. From this main question
we define the following sub-questions:

• RQ1: What roles do timeseries databases serve? While we have
stated a couple of roles which are fulfilled by timeseries databases (i.e
DevOps and IoT), the literature we find during this investigation might
provide insight into more roles which a timeseries database can fulfill.

• RQ2: What techniques are used to process data stored in
timeseries databases?

We described in section 1 how it is not uncommon to store large quan-
tities of data. We wish to find storage techniques which would help us
deal the large amounts of data. Such as having statistical values ready
when queries arrive which make use of these statistical values.

• RQ3: What indexing techniques are used to index the stored
timeseries data? In section 1 we also mentioned how it could be a
problem to index the large amount of data. This indexing is used to
retrieve data more quickly during a query after storing.

• RQ4: How does data get inserted into timeseries databases?
Data needs to get inserted into the database, is this done using tradi-
tional SQL, or are there different methods which might provide extra
benefits.

• RQ5: What storage back-ends are commonly supported by
timeseries databases? There might be different storage back-ends
in use. Which can we find?

• RQ6: What forms of compression are used on timeseries data?
With the amount which could possibly be stored, we should use com-
pression to lessen the storage requirements. What forms and methods
are in use in the literature?

• RQ7: How do stream processing techniques interact with
timeseries databases? Data which is retrieved from a timeseries
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database might need to be processed before the user wishes to view
the result. Or data might need to be processed before it is inserted,
this sub-question attempts to find different techniques for either stages.

• RQ8: How does one properly benchmark and evaluate differ-
ent timeseries databases? What benchmarking techniques can we
find in the literature? Different authors might design different bench-
marks, what factors are common and which do we need to test the
databases?

2.2 Scope

This work attempts to cover recent contributions, which we define as work
published between 2010 and 2022. We will look at contributions towards
storage techniques, data processing, and usability. We will have a focus on
performance, for both ingestion and querying. Based on this we can setup
the following criteria:

• I.1: This work has a focus on time indexed data storage or processing.

• I.2: This work is from between 2010 and 2022, papers from before 2010
are only included if they are fundamental work. Meaning that they are
only relevant for historical context.

Papers which do not adhere to these requirements might still be included,
however when done so, it will be explicitly mentioned as to why we’ve done
so.

2.3 Methodology

This survey will follow the snowball method [12]. We start with a small
collection of seed papers, from which we attempt to find more relevant papers
by looking at the sources and the papers which have cited these seed papers.
By looking at the sources we can go backwards in time and find papers which
have served as the foundation for the seed paper, while by looking at the
citations we can see which papers have been build from these seed papers.
All papers in this survey have been discovered through Google Scholar.

Listed below are the seed papers used for this survey:
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Paper name Source Publication year
Gorilla USENIX 2015
BTrDB ACM 2016
Monarch ACM 2020
Druid ACM 2014

For the seed papers we have limited the scope to the following confer-
ences: USENIX, VLDB, and ACM SIGMOD. However, even though these
works have served as good basis for this survey, they have not been able to
serve as a basis for answers on all the questions. Thus we have also con-
ducted a search through Google Scholar in order to find more. The following
list of keywords have been used to find more relevant works for this survey:

• Timeseries database benchmarking

• Stream processing

for this survey, 40 papers were considered, 20 have been used, and 5 were
discarded as they did not adhere to the criteria.

3 Background

This section will contain background information on what we define as time-
series databases and their usecases. We will go on to list and define some of
the more well known existing implementations.

3.1 Timeseries databases

Timeseries databases are not a new type of database, they have been around
for a long time. One of the earliest successful tools is [8]. These databases at-
tempt to deliver an optimized environment for storing data which is indexed
by timestamps. These databases are optimized to deal with the defining
characteristics of timeseries data. One such characteristic is how the amount
of writes vastly overshadows the amount of reads. Compared to what tra-
ditional relational database management systems (henceforth RDMS) such
as MySQL are optimized for, timeseries databases can outperform those in
terms of insertion rate [1]. Other characters are:

• The data is append-only. There are no random writes.

• Data is immutable after it has been inserted. There are no operations
to support modifications.
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Timeseries databases are a type of NoSQL database. NoSQL databases
are one which do not have the tabular relation between data as found in
RDMS’s. While the concept is not new, the term is relatively recent [13].

When returning to our original examples this quickly becomes clear. If we
consider the example of the 50 servers it is easy to imagine that the amount
of data quickly grows beyond the amount required for simple queries. Such
as returning a cpu usage metric for the last 6 hours, without applying any
filters or statistical functions. The same holds for the IoT example, as the
number of deployed sensors grows, so does the amount of data generated.

Databases in general have, over the years, come up with different methods
of scaling. One example is horizontal scaling where a database instance is
ran on multiple nodes at the same time. An example of how this can be
accomplished is through sharding, meaning that a subset of data is directed
towards a specific node and that all queries for that subset end up at that
node. Timeseries sharding could for example be accomplished by taking the
name of the series (e.g server_a/cpu_usage), hashing the name, and map
the hash to one of the database instances.

The main goal of databases is to store data in a structure manner such
that the data can be retrieved later on. With timeseries database this re-
trieval is going to involve a range of time, we call these range queries. We
proposed a quick example in section 1 on what these queries look like. They
query the database for a range of time.

3.2 Data storage

After being inserted into the database, the data needs to be stored some-
where. The data can be stored either in main memory (in-memory database)
or on persistent media (on disk database). For the disk based storage there
exits a multitude of different back-ends. Two examples of such back-ends
are filesystems and block stores [14].

We define a filesystem as a system in which files are stored and referenced
by name, they can be archived into folders, which also have unique names.
Block stores are data stores in which data is stored in blocks of data. These
blocks can then be referenced by a unique id, this id is generated for by the
storage layer, and is unique to the data which the user has stored.

3.3 Data compression

When storing large amounts of data, it is beneficial to have compression
techniques. These can help reduce the amount of data which needs to be
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stored. There are two distinct types of compression, lossy and lossless. With
lossless compression we do not lose any information after we have compressed
it down. With lossy however, we do lose raw data, however some schemes are
able to get away with this as they still retain a close enough approximation
of the original data.

Timeseries data has a few unique properties which can be used in order
to aid in compression. The first property is that a lot of data gets ingested
at periodic intervals. An example of compression making use of this fact
is delta-compression [15], where instead of storing the raw values, only the
difference between those values is stored. For example, instead of storing 2,
8-byte timestamps, delta-compression would enable one to store 1, 8-byte
timestamp, followed by a 2-byte delta, resulting in a ∼ 60% reduction.

3.4 Data processing

Storing timeseries data is always with the intention of processing it at a later
point in time. When site reliability engineers for example want to monitor
the latency of a service they be more interested in the 99th percentile latency
than just the raw latency figures. Thus it is very useful for engineers to be
able to apply different transformations on the data they are reviewing.

These transformations are done through queries which can be written in
a querying language such as SQL. Such a language provides built-in func-
tions such as min, max, and avg. These languages fall under the category of
domain-specific language (DSL). A DSL is used for specific tasks and cannot
be used for general purpose computing. An example of such a DSL is SQL
(structured query language). This language is used by databases in order to
specify a query on the data that is stored in the database.

There might also be cases where data has to be processed before be-
ing inserted into the database. This processing is be done to, for example,
summarize data or calculate the aforementioned statistics. This is what we
define as down-sampling. It is the practice of summarizing data using a
function to create a new timeseries.

Previous survey’s have investigated areas such as stream processing [16]
and data mining [17]. We define stream processing as the act of transforming
data while it is in transit, while we define data mining as the processing of
attempting to extract information from a pool of data. Both stream pro-
cessing and data mining are an important part of how users interact with
timeseries databases. Through these interactions is how users find informa-
tion stored in the data beyond simple statistical information. Such as the
example given in 1.
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3.5 Benchmarking

In order to find differentiate different databases in terms of performance we
need proper benchmarking. Differentiation is complicated by the fact that
different databases might excel in different workloads or under different sce-
narios. As also stated in the conclusion of [18] where baderSurveyCompar-
isonOpen2017 present an overview of existing timeseries database. They
note that the lack of a standardized benchmarking framework as they could
no long differentiate different databases which have feature parity, so they
attempted to differentiate on the basis of performance.

[19] discuss two different benchmarking datasets which can be used to
measure the performance of different relational databases under different
scenarios and workloads.

For example the YCSB ([20] and [19]) benchmark includes generators
which can simulate differently skewed workloads, such as update heavy or
read only.

4 Ingestion

In this section we will discuss the different methods databases use for inges-
tion. This relates back to RQ4 (How does data get inserted into timeseries
databases? ), we wish to explore the different ingestion methods used.

We have found different ingestion methods, which can roughly be divided
into two different categories. One where the database contains a subsystem
which retrieves information from specified targets (Pull based ingestion),
and one where data is streamed to the database by the applications (Push
based ingestion).

Thus in this section we will look at two different databases which each use
one of the two methods, namely Prometheus and InfluxDB. Both of these are
heavily used by in the industry [21], and should such serve as good examples
of the different ingestion methods.

2 shows the different methods of ingestion in a single and simplified
overview. What is important to note is that sources, MQ, and databases
do not have to represent singular entities, they could represent a distributed
setup, however, for illustrative purposes these complexities are left out.

4.1 Pull based ingestion

Prometheus is a heavily used example of a pull based system [21]. This
database consists of a couple of distinct components, one of which is called
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Figure 2: The different methods of ingestion. (A) shows pull based ingestion,
(B) and (C) show push based ingestion. (C) ingestion is routed through a
message queue (MQ), e.g Kafka.

the Scrape Manager [9]. This service retrieves statistics and other metric
data from different third-party systems. The retrieval is done through HTTP
GET requests to the third party system. The third-party system exposes an
HTTP endpoint such as http://service:6900/metrics and replies to the
GET request with a list containing pairs of metric names and values. These
metrics get forwarded to the storage layer of Prometheus.

The scrape manager collects metrics from the targets which have been
configured. The targets are discovered through the Discovery Manager,
which identifies possible targets as they are defined in the configuration files.

With this pull based configuration, Prometheus is more suited towards
acting as a metric based alert system. It can be very useful for system
administrators to collect data and be notified in the case of some unexpected
behavior. Due to the pull based ingestion design a timeseries database is able
to detect a complete failure of a particular service or server due to the fact
that during such a complete failure it is no longer able to retrieve metrics.

The alerting system is also why pull based ingestion might be more useful
in a DevOps/system reliability setting. In that case the database itself can
act as the supervisor and push notification out to the responsible engineers.
The obvious downside is that scaling becomes harder as now IO is a signif-
icant part of the ingestion pipeline. A database has to go out and gather
metrics itself instead of waiting for them to arrive.

Another example of a pull based timeseries database is VictoriaMetrics.
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During our survey, we have not been able to find more examples.

4.2 Push based ingestion

InfluxDB is another commonly used timeseries databases which can ingest
data in a fairly straightforward way. This database exposes a UDP port
which is then used by applications to push data into the database. The data
is structured according to a wire-format which is parsed by InfluxDB and
written to the specified database. The port which is exposed is used by all
applications wishing to write data into the database, and can thus be seen
as a point of congestion.

Writes to the database are collected into batches. These batches are
then compressed and written to the write-ahead-log (WAL). Batches are
also written to an in-memory cache, making them immediately available for
querying, and the cache is periodically written to disk.

Other examples of push based ingestion are databases which are sub-
scribed to a topic on a message queue ((C) in figure 2). This topic streams,
for example, cpu usage statistics. A good example of such a database is Druid
[22]. In this database the authors propose a design in which the different
components are more separated, meaning that the different components are
different processes, and could for instance run on different nodes. One of
these components is a Real-time node. This node is responsible for ingesting
the new data and forwarding it to the rest of the system. With the differ-
ent components running as different processes a zookeeper instance is used
to provide for communication between the different components. The main
upside to this distributed architecture is that individual components can fail
without rendering the entire system unavailable.

This method for ingestion is very useful when databases have to collect
a larger amount of data. Using multiple Real-time node instances, ingestion
can be spread across the nodes in order to spread the load. Another benefit
of this setup is that the Real-time nodes can batch the incoming data, leading
to higher network throughput, when, for example, recording IoT sensor data
where the latency is not a primary concern.

4.3 Data insertion

Using the previous two sections we can answer RQ4 (How does data get
inserted into timeseries databases? ). We have defined three distinct methods
for inserting data into timeseries databases. The first is pull based ingestion,
this is where the database itself has a component which retrieves data from
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pre-configured targets. The second is where data gets written or streamed to
the database by the different applications wishing to write to the database.
The third and final method is a combination of the previous two. Using a
message queue data is streamed from the writers to the database through
a queue, where the queue is read by the database. However, we have only
encountered this third method in one database.

5 Storage

Table 1: Questions answered in this section
Question number Research Question
RQ3 What indexing techniques are used to index the stored

timeseries data?
RQ5 What storage back-ends are commonly supported by

timeseries databases?
RQ6 What forms of compression are used on timeseries

data?
RQ8 How does one properly benchmark and evaluate dif-

ferent timeseries databases?

In this section we aim to provide answers to RQ3, RQ5, RQ6, and RQ8,
while the first three relate to either storing or indexing data, the last one
relates to the performance of the first three sub-questions. We start with an
investigation into in-memory and on-disk databases and follow this up with
different indexing structures and compression methods. Finally we close this
section with different benchmarking techniques found in the literature.

We define two different types of storage methods for timeseries data.
The first one is on disk storage, and the other is in-memory. While most
databases have an in-memory cache and staging area, in-memory databases
exclusively store and retrieve data from memory and use disk storage for
archival purposes.

5.1 In-memory

We define an in-memory database as one which primarily stores its data in
memory. The databases discussed in this section, while being classified as
in-memory databases, do use persistent storage for archival purposes.

In the Gorilla paper [23], Facebook introduces its in-memory timeseries
databases. Gorilla is build such that it could store the system metric values
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of servers, while also allowing for fast querying and high availability through
replication. The reason they chose to use memory as storage is two-fold, the
first is that they noticed that 85% of the queries that the previous system
processed involved data collected which had been collected in the preceding
26 hours. This meant that realistically only recent (newer than 26 hours)
data has to be ready to be queried. The second reason is the fact that the
database could serve as a cache for the persistent disk-based storage, due to
the database residing in-memory, meant that they could reach their targets
for insertion speeds (700 million datapoints per minute or ∼ 12 million per
second).

In Monarch [24] a workload was presented, similar to that of the one
for which Gorilla was designed: a distributed timeseries database geared
towards storing system metric values. The authors required strong consis-
tency, however, directly writing to a store such as Spanner [25] was deemed
to costly, however, the authors do not specify the cost figure. Spanner is
Google’s replicated and distributed database, however, writes to Spanner
incur a very heavy latency cost as those have to go through the replication
algorithm PAXOS [26]. This cost increases the mean-time-to-detection and
mean-time-to-migration, meaning that it takes longer for issues to be found
and mitigated. Combined with the requirement of a low number of depen-
dencies, the choice was made for in-memory storage. The added bonus of
data residing in memory was that alerts could be delivered promptly as there
would be no IO cost for first having to write to either a WAL (write-ahead-
log) or disk.

Both of Gorilla and Monarch are distributed databases. Gorilla is dis-
tributed by the use of sharding [27]. Timeseries are distributed across shards
based on a key used to uniquely identify a timeseries (although it is unclear
whether this is a name or some identifier like a UUID). In the case of outages,
a ShardManager is used to reassign shards to different nodes. The ShardMan-
ager picks nodes such that it optimizes for resiliency. By maintaining two
independent nodes in two different datacenters, Gorilla is protected against
most forms of network partition and hardware failures.

The authors of Monarch take a more complex approach. Each datacenter
has ingestion routers which receive data from clients across the datacenter.
These routers find the correct leaves, which are the nodes which store the
timeseries data. Distribution is done using the aforementioned leaves, leaves
are always part of a much larger zone with multiple replicas. Ingestion per-
formance is maintained by offloading the replication to the ingestion routers.

During this survey these are the only papers we have found which fit the
requirements we defined earlier. For the papers we discussed in this section
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we could argue that they technically are not in-memory databases as they
are backed by persistent storage. Gorilla is backed by GlusterFS, as POSIX-
compliant distributed filesystem, while Monarch is backed by recovery log
files, however, the authors omit any details on what these are in order to save
space on the paper. What can be determined from both of these papers is
that in-memory databases can fulfill a large amount of requirements, ranging
from high availability through the use of replication, to high insertion rates.
We can offer a guess as to why memory is rarely used as primary storage, it
is very cost prohibitive. [28] shows this too, while the cost per GB has come
down, it is still orders of magnitude higher than that of traditional storage
media, such as HDD’s and SSD’s.

5.2 On disk

The databases covered in this section use persistent storage. While these
databases can still use memory structures for caching timeseries data, their
primary storage method is disk based. The databases covered in this section
use memory as either a staging ground in before flusing to disk or as a simple
means of caching.

During our investigation we identified two methods databases employ to
use persistent storage. The first is local storage, this could be local drives
or some local filesystem, while the second is remote block storage focused.
Stores such as S3 or MinIO are used as storage back-ends for these databases.

For the first method we find papers such as [29] and [30]. Both of these
databases first cache data temporarily in memory before flushing to disk.
For second method we find ones such as [31] and [22].

Whether one chooses local storage or remote block storage is a matter
of preference, both have their strengths and weaknesses. One such example
is that a block stores allow for easier access to the stored data. As chunks
or groups of data are collected and stored in a block store, only a single
address is required to retrieve this data again. This address can then be
stored in some sort of indexing structure. It also makes it so the user can
store relatively smaller chunks of data, instead of having to group into larger
blocks, which is beneficial as in that this lessens the overhead from the IO
stack of files having to be opened and read. A downside of block stores is
that the latency is a lot higher due to the extra overhead of the network.
[32] shows that SSD’s can do 4KB random reads with a latency of ∼ 20µs,
while a latency optimized store such as IndigoStore [33] shows latency’s two
orders of magnitude higher (∼ 2000µs).

With this we can answer RQ5 (What storage back-ends are commonly
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supported by timeseries databases? ), we have discovered the common stor-
age back-ends for timeseries databases. There are two types, the first of
which is using memory as a storage back-end, the second is using either lo-
cal storage such as a filesystem or a remote focused block storage. Using
memory as the primary storage mechanism boats higher performance, but
has a significantly higher cost associated, making it impractical for all but
the largest commercial entities.

5.3 Indexing structures

When storing large amounts of data, it becomes more difficult to efficiently
find data after it has been stored. Keeping track of possibly terabytes of
timeseries data is a hard problem and one for which multiple solutions have
been presented. What makes this particularly difficult is that keeping a direct
mapping from timestamp to value in memory is impossible when the size of
data grows beyond the amount of usable memory. Indexing structures are
data-structures which are used to index the data and be able to find data
in less than O(N) time complexity. Other than being able to find data,
indexing structures also help in accelerating queries. An indexing data-
structure might allow for fast range based queries, as in that it could point
to the start of the requested range and allow the database to quickly scan
for the relevant records. From this we aim to answer RQ3 (What indexing
techniques are used to index the stored timeseries data? ).

The authors of Gorilla present Timeseries Map (TSMap). While Go-
rilla uses memory as its primary storage, it still suffers from the problems
of scaling to possibly petabytes of data. Finding the queried ranges of time
in such a vast amount of data would lead to an unacceptable query la-
tency. Scanning linearly, even at the maximum theoretical bandwidth [34],
would take multiple seconds or minutes. TSMap is build from a vector
containing C++ shared-pointers to timeseries data and a case-insensitive,
case-preserving map from timeseries name to timeseries data. The vector al-
lows the authors to quickly scan the data for the queried range. The authors
claim to be able to scan in a few microseconds, this to make sure that the
flow of incoming data is not impacted by users performing queries on the
data.

The use of LSM (Log-structured merge) trees [35], or derivatives thereof,
is common practice for the indexing structures of timeseries databases which
use persistent storage. An LSM tree is a data structure which contains key-
value pairs. The structure maintains multiple data structures which are each
optimized for their respective underlying storage medium. oneilLogstruc-
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turedMergetreeLSMtree1996 propose two structures, where one which re-
sides in memory and the other on disk. In the version proposed by oneil-
LogstructuredMergetreeLSMtree1996 the values stored on disk are sorted by
their keys. This is very beneficial for timeseries data as this data could be
sorted on timestamp, making for easy range queries.

Examples of timeseries databases using LSM trees include InfluxDB,
OpenTSDB [10], and IoTDB [36]. LSM trees are used for their high write
performance and support for range based queries. An example of a database
using LSM trees is [37]. This database stores timestamp-value pairs together
with tags (tags are key-value pairs which can be assigned to timestamps and
can be used during querying as a filter, for example server_location=Dublin).
InfluxDB stores these LSM trees into files which are loaded into memory dur-
ing queries in order to improve performance.

Timon [29] uses LSM Trees directly in order to index the SSTable files.
SSTables [38] are ordered immutable maps which map keys to values, in the
case of Timon timestamps to metric values. Because these files are ordered
they allow for fast queries based on a range. When a range is queried, only
the starting point has to be found, then the rest of the range follows until
either the end of the range or the end of the file. The SSTable files contain
multiple timeseries and are compacted at regular intervals. The files consist
of a few different components, two of which form the DataZone and the In-
dex section. The index section provides a fast lookup for different blocks in
the DataZone. The DataZone is where the timeseries data is stored. cao-
TimonTimestampedEvent2020 state that the amount data in the DataZone
can be too large enough that a binary search is too expensive.

Figure 3: Simplified range query on LSM tree

Figure 3 shows a simplified LSM tree. Here we wish to view a range of
C up to and including G. This means with an LSM tree that, when we find
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C, we can simply continue to read from storage until we find G, as all keys
are stored in a sorted order, i.e by timestamp.

In [31] andersenBTrDBOptimizingStorage2020 propose an indexing struc-
ture which allows them to ingest data from a smaller amount of sensors at a
higher frequency, calling it BTrDB. They found that existing databases such
as Druid did not allow them to record data at a high frequency with times-
tamps accurate to 100 nanoseconds. This forced them to create their own
write optimized tree structure. A time-partitioning copy-on-write version-
annotated k-ary tree is what they designed as a solution. The most notable
difference between this tree and the LSM trees from Timon is that this tree
does not split the tree according to the key space, but it splits according to
the time space. What this means is that each child is a subset of the time
range represented by its parent. In order to further improve ingestion per-
formance, BTrDB uses batching. This means that a larger batch of values
is first collected in memory before being written into the indexing structure.

Figure 4: Simplified overview of the BTrDB indexing structure

Figure 4 shows a simplified overview of the tree data-structure used in
BTrDB. It is important to note here that the leaf nodes contain the actual
data points and that the tree nodes contain the intermediate figures such as
min, mean, and max.

The authors of Timon present two different benchmarks for showing the

17



performance of both Timon and BTrDB. They show both ingestion rates
as well as query latency. While both of these do not directly equate to the
performance of the indexing structure (there are also IO costs to consider,
like writing to disk and receiving values over the network), they give a good
indication of the effectiveness as the performance both ingestion and querying
is reliant on the indexing structure being fast. For ingestion this means
that data needs to be inserted fast, and for querying this means that range
lookup’s need to be fast. Figure 15 and 19 of the Timon paper show the
performance of ingestion and querying. From this we can see Timon has
lower (800ms vs 2100ms) query latencies, while BTrDB has higher (36 million
vs 20 million at a batch size of 50000) ingestion performance when increasing
the batch size.

The databases discussed in this section use different methods for index-
ing timeseries data. We described a distinct difference in how in-memory
databases index data compared to databases which use disk based storage.
In-memory databases make use of a more direct mapping where timestamp-
value pairs are stored directly in memory pages, while on-disk databases opt
for the use of tree structures.

Considering all of this information, we can answer RQ3. All databases
which we have found during this survey use on-disk storage use some form of
a tree structure, while the in-memory database s use a more direct mapping,
such as presented in Gorilla with TSMap.

5.4 Compression

Compression is very useful for timeseries databases as we previously pointed
out in section 1. Luckily timeseries data provides some characteristics which
can be exploited for the sake of compression. Such characteristics often
relate to subsequent data being either the same of similar. The goal is to
provide as high a ratio of bytes compressed to bytes stored as possible without
compromising the ingestion performance of the database. Compression adds
overhead to the ingestion performance as the compression operations require
computational resources. With this section we aim to address RQ6 (What
forms of compression are used on timeseries data? ).

Gorilla [23] popularized two types of lossless compression. The first type
being delta-of-delta compression. This is an alteration of delta-compression,
where the periodic nature of timeseries data is exploited further by realizing
that that most timestamp-value pairs are inserted at a specific rate. By
taking the delta of the delta of the timestamps, the authors capture not
the delta between timestamps but the jitter in delta between timestamps.
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As most values are inserted at a set interval this value should be small,
capturing, at most, small variations. See figure 5 for an example of both
delta-compression and delta-of-delta compression.

Figure 5: Example comparing delta compression and delta-of-delta compres-
sion

Figure 5 shows an example where 4 timestamps are compressed using
both delta-encoding and delta-of-delta. What is important to note is that
using delta-of-delta encoding we can store the values using far fewer bits as
the values themselves are smaller.

The second type the authors introduced is XOR compression. This type
exploits the situation where a floating point value is close to or the same
as the previous value. XOR compression exploits the IEEE-786 [39] repre-
sentation, in that when subsequent values are very similar, then the XOR
of the two shows which bits have changed and most likely fall within the
same range, making for an encoding scheme where only the required bits
are stored. This way the authors were able to identify three different cases.
The first is where the values are equal and can thus be stored as a single
bit, the second is where the values are similar enough that the value can be
compressed into a couple of bits, preceded by two control bits, and the last
case is where the values differ enough that more data has to be stored, also
preceded by two control bits.

The authors point out in figure 5 of the paper that 51% of the values is
reduced to a single bit (values are the same). 30% of the values fell into the
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first case of the second option (values are very similar), and the remaining
19% of the values are compressed with the ’11’ control bits, meaning that the
values differ greatly. The authors further go on to show that for a two-hour
block of values, the average compression ratio came out to be 1.37 bytes per
datapoint.

This scheme is further evaluated in [30] where the authors of Heracles
note that a starting value can have a noticeable effect on the effectiveness
of XOR compression. As such they chose to use 25th and 75th percentile.
However, the authors also seem to have made no effort back up their claims
of improved efficiency, either through a source or through measurements.

The authors of Heracles present their database as a fork of Prometheus.
The main features of this paper are an encoding scheme and a memory
management system. The encoding scheme is able to save extra bytes by
grouping metrics with the same timestamps such that a single timestamp
does not have to be repeated as seen in e.g Gorilla where each metric value
is stored together with a timestamp. In Heracles metrics are grouped into
tuples with the first item being the timestamp, this is more akin to what is
found in classical RDBM’s such as MySQL.

Other lossless options we find in different databases are one such as
Snappy [40], ZigZag encoding [41] for converting singed integers to unsigned,
and bitpacking. Snappy is used for string encoding, InfluxDB specifically
mentions that they pack strings together and compress them as one block in
order to achieve a higher compression ratio. Zigzag encoding is an encoding
scheme which maps signed integers to unsigned integers, these can be more
easily encoded using for example simple8b [42].

While the compression methods detailed here are fairly simple, none of
the aforementioned papers, with the exception of Heracles go into detail into
the computational costs associated. Neither in terms of what would happen
to the ingestion performance when compression is not present or how much
time in the hotpath is spend on compression.

wangHeraclesEfficientStorage2021 compare their implementation across
different performance characteristics, such as throughput, cpu usage, query
latency, and memory usage. In all metrics, Heracles is shown to either match
or out perform Prometheus. Prometheus is tested using different storage
back-ends, however, Heracles still outperformed Prometheus. For example,
the p99.99 and maximum query latencies are shown to be 70% and 64%
lower respectively. Data size reduction is shown to be 12% in-memory and
13% and 50% on average for on disk storage.

For lossy compression we can look at other papers. [29] is an example
where the authors make the explicit choice to remove the accuracy of raw
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data and retain only statistical values. The loss of accuracy was found to
be bearable when compared to the gains found in efficiency due to being
able to support blind-writes. Blind-writes are writes such that they require
no strict ordering, allowing for out-of-order writes. Blind-writes hinge on a
couple of mathematical assumptions about the operators they use, namely
associativity and commutativity. This means in short that the order of
operations does not change the outcome, e.g a × (b × c) = (a × b) × c.
Another important benefit to supporting blind-writes is that out-of-order
ingestion becomes a lot more cheaper, due to the commutative property.
Here we define out-of-order as the scenario where metric values do not arrive
in the same order in which they are recorded.

The operators which enable the blind-writes are ones as sum, min, and
max plus a few others. In figure 13 caoTimonTimestampedEvent2020 show
that out-of-order writes are orders of magnitude faster using blind-writes,
namely 10x the performance of InfluxDB (23 million compared to 5 million
data points per second). While this method is shown to deliver vastly im-
proved performance statistics, even with out-of-order writes, as compared to
other timeseries databases, the authors make no mention of how close these
statistics come to the raw underlying values, and if they have since lamented
on their decision of getting rid of the raw values.

Coming back to RQ6, we can define two forms of compression, lossy
and lossless. However, the if this is a worthwhile trade-off can differ greatly
depending on the workload of the database. If the workload requires the
option to be able to query for individual datapoints lossy compression is not
going to be sufficient, however, if the workload only requires users to be able
to view statistical values based on the data which has been written to the
database, then lossy compression can suffice.

5.5 Benchmarking

This section will focus on the different benchmarking systems found in the
literature, in order to provide a partial answer to RQ8 (How does one prop-
erly benchmark and evaluate different timeseries databases? ). For now we
will focus on ingestion and storage performance, benchmarks for query per-
formance are shown in 6.2. Most papers have concrete performance figures,
but none appear to have standard benchmarking practices. The problem
with non-standardized benchmarking is that it makes it challenging to com-
pare across different paper. For example, the performance which Gorilla
shows is very good, query latency in the order of single milliseconds and
an insertion ratio of ∼ 12 million data points per second. However, the

21



authors provide neither the concrete dataset used nor the complete environ-
ment variables, such as the hardware specifications on which the benchmarks
were conducted.

Papers such as Gorilla or Monarch only show the performance measured
in production. Which, while showing good results, is neither transparent nor
repeatable for the scientific community at large. The lack of transparency is
most likely due to the commercial nature of the paper. Other examples of
creating benchmarks from real-world performance are [43], [44], and [45].

In [22], [29], and [23] the authors present performance figures using data
they recorded in production. While this style presents the real world per-
formance of their work, it does not present comparable results. For exam-
ple, pelkonenGorillaFastScalable2015 note the percentage of data were they
found that a value was the same as the previous value, which could very well
be false for different workloads.

The authors of [46] have addressed this problem by creating a framework
to test timeseries databases with. This framework abstracts the interface
of the databases and couples this with a data generation tool which can
emulate different forms of data generation workloads, and follows up with
different query workloads. We show a simplified overview of this in 6. This
method tests both ends of the timeseries database workload, both ingestion
and querying. However it provides no indication of storage efficiency or
compression ratios. With the different queries the authors attempt to show
queries which focus on, for example, data aggregation and down-sampling.

Figure 6: Simplified overview of the SciTS architecture

The ingestion and storage benchmarks of SciTS provide three different
focuses. The first is testing the effects of batching. This is the process of
grouping data points together before inserting, in order to improve perfor-
mance. The second is testing the effects of concurrent writing. This can test
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the effects of scaling the amount of clients writing to the database. The third
benchmarks scaling the amount of data inserted into the database, testing
the performance of the data when the size of the data keeps increasing.

mostafaSciTSBenchmarkTimeSeries2022 also make an example by com-
paring ClickhouseDB [47], InfluxDB, TimescaleDB [48], and PostgreSQL
[49]. Here they show that ClickhouseDB has the best scaling for ingestion,
1.2 million insertions per second for 48 clients. But also the lowest query
latency for the different queries, being, on average for the 95th percentile,
50% faster than the database ranked second for that query.

Another initiative to get a standardized benchmark for timeseries databases
is TSBS [50]. The goal is to emulate a couple of specific workloads, but at
the time of writing only DevOps and IoT have been implemented. TSBS has
implemented a lot more databases than SciTS has. TSBS contains a couple
of different scripts which can test various aspects. Data generations scripts
first generate data based on the aforementioned two workloads, using a seed
value, allowing for repeatable measurements. Query generations scripts gen-
erate queries to be executed on the databases, these also stem from a seed
value. The load scripts use the aforementioned generated data and queries
to actually test and measure the databases.

For this section we consider the data generation tool meant to test the in-
sertion and write performance. This tool generates a pre-configured amount
of data in before using native clients to insert this data into the databases
which the user is testing. The user is able to set the seed for the random
number generator, this allows for repeatable experiments.

As we have covered only storage in this section we will only provide a
partial answer for RQ8. We can see that there are multiple attempts are
designing benchmarks which attempt to provide a standardized benchmark.
Such a benchmark could be used by researchers to both test a timeseries
database as well as provide performance figures which allow for comparisons
between different timeseries databases. From the literature we have not been
able to conclude that one of them succeeded in providing such a standardized
benchmark, however TSBS does provide the highest number of integrations,
it has the highest number of supported databases.

6 Querying

Querying is the process of retrieving data from a database. These queries
can be enhanced with filters and different forms of processing. A filter makes
it so only a subset of the data is returned, while the processing allows for
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computing statistics in before returning them to the users.
In this section we attempt to complete our answer for RQ8 (How does

one properly benchmark and evaluate different timeseries databases? )

6.1 Query DSL’s

Databases providing their own query language instead of relying on some-
thing more traditional such as SQL is not uncommon, this is one of the
defining features of NoSQL databases [2]. These have either their own spe-
cial query language, or none at all and rely on simple operations such as get
and set in the case of key-value databases [51].

During our research we found several timeseries database which provided
their own query language. The common reasoning is that SQL is not er-
gonomic enough for the end users, such as reliability engineers. [24] mention
some of the problems they encountered using SQL, namely the lack of a dis-
tribution (i.e histogram) datatype. Such a datatype would allow engineers
to conduct more sophisticated statistical analysis. These new languages pro-
vide core constructs which were easier to use than SQL. These constructs for
example, made it easier to execute range queries, or made it easier to gather
statistics over a range of data such as p99 latency.

An example of such a DSL is Flux [52] for InfluxDB. The design language
is such that it models a stream of data which can be processed, see the
following example:

from(bucket:"telegraf/autogen")
|> range(start:-1h)
|> filter(fn:(r) =>

r._measurement == "cpu" and
r.cpu == "cpu-total"

)
|> aggregateWindow(every: 1m, fn: mean)

This example should be read top to bottom. It shows data being read
from a bucket, with the start being 1 hour before the time of the execution
of this query. This is then followed by a filter which filters on cpu statistics,
and is finally combined into an aggregate window.

During our research we have not found any paper which investigated
possible performance improvements using a custom DSL. We could image a
case where a custom query planner could take advantage known the exact
layout of the database.
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The problem for benchmarking is that these languages are really hard
to generalize. A general purpose benchmarking suite will have to adapt
its query benchmarks to the different querying DSL’s of different timeseries
databases.

6.2 Benchmarking

Several papers have shown the performance of their database. In this section
we will compare the different performance figures related to query latency.

We have mentioned both SciTS and TSBS before. Both of these systems
also provide benchmarks for querying. For SciTS this is a collection of 5
predefined queries:

1. Fetch raw data

2. Query for the intervals where a sensor was acting abnormally

3. Aggregate a range of data into a single value

4. Down-sampling of data using a specific sampling function

5. Compare two down-sampled sensors using a comparison function

TSBS also provides querying benchmarks. Appendix 1 of [50] shows the
different queries which can be executed. As we mentioned before, the random
number generator can be seeded, this also effects the querying benchmarks.
The queries are predetermined in terms of what the range of data is being
queried, making the benchmarks fully reproducible.

With this we can complete the answer to RQ8. Earlier we covered
benchmarks regarding storage and ingestion, however, now we can also draw
conclusions regarding querying. SciTS provides the most complete model
for testing query latency. The different queries test various aspects of the
database, ranging from simple range-based queries to queries involving a lot
of processing.

7 Stream processing and modeling

This final section will focus on modeling, stream processing, and use cases
for timeseries databases. Stream processing is where a stream of data is
processed by a series of operations which are performed on each element in
the stream of data, before being forwarded to a different application, such as
a database or user application. Some use it for managing and monitoring IoT
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Table 2: Questions answered in this section
Question number Research Question
RQ2 What techniques are used to process data stored in

timeseries databases?
RQ7 How do stream processing techniques interact with

timeseries databases?

data while others make use of this type of database for large scale monitoring
of clusters and infrastructure. With this we hope to answer RQ2 and RQ7.

These can be seen as different as IoT can have a lower ingest frequency
(only measuring every few seconds [4]), but a high degree of cardinality, and
server monitoring can have a high ingest volume, but be fairly limited in
cardinality.

There are several options to modeling using timeseries data [17]. These
techniques and algorithms are agnostic to which database is used, so either,
for example, MySQL or MongoDB. The main goal of stream processing is
to extract some useful information from the data which is stored. In order
to accelerate this finding some databases already store down-sampled data,
such as averages. BTrDB [31] does this by storing min, max, and mean
in each node in the indexing structure. This storing of intermediate values
means that when a user queries the database, they can retrieve data at their
desired granularity and use these statistics as an intermediary for the desired
statistic.

[53] shows an example of using a combination of Apache Kafka [54]
Streams and TimescaleDB. In this paper the authors show how meteorolog-
ical data is collected into TimescaleDB, and is returned to the user through
Kafka Streams. Kafka is used to transform the query result from a single
large block of data to a stream which allows for the use of windowing (which
Kafka Streams supports). However, as this paper focuses on TimescaleDB
and not on Kafka, we are not able to see the added overhead of the Kafka
Streams.

[22] shows the opposite approach. yangDruidRealtimeAnalytical2014
make the case of using stream processing for ingestion. This ingestion
method has two main advantages. The first is fail-over, with a process-
ing framework such as Kafka, there is always a queue. This queue holds
messages and data which have not been processed yet. Using this queue
means that the timeseries database could go down, without losing any data,
as when the database is brought back up, then it could retrieve the unpro-
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cessed data from the message queue. The second is that of scalability. When
using a message queue, if the topics (i.e the name of the streams of data) can
be sharded over the different databases instances, there is almost perfectly
horizontal scaling.

This method of using a message queue is a shift in terms of respon-
sibilities. The setup yangDruidRealtimeAnalytical2014 describe, of having
separated processes, distributes the responsibilities across different nodes
and processes. They make it clear that they needed a highly reliable system
which could guarantee high query performance in an environment with a
1000+ users.

In Heron [55], kulkarniTwitterHeronStream2015 show the complexity
which can result from the use of stream processing. During their workload
they found that the existing solution was both inefficient and hard to de-
bug. The existing solution was too reliant on a zookeeper instance to manage
heartbeats from the worker nodes, which caused three major issues. The first
is that the workers could interfere with each other in terms of performance,
the scheduler managing workers did not support isolation and reservation.
This lack of support meant that workers from different topologies running
on the same machine could interfere with each other. This was mitigated by
dedicating entire machines to a single topologies, which was identified as a
waste of resources as the topology (a directed graph of inputs, i.e streams
of data, and computations which are applied to the inputs) would not make
use of all the resources available on that machine. The second was that the
zookeeper would become a single point of failure. If the zookeeper instance
would go down, then users would neither be able to submit any new topolo-
gies, or delete existing ones. Adding to this problem, when the zookeeper
would go down, then a topology which undergoes a failure, would not get
automatically detected and recovered. The third major issue was that the
amount of processing done caused the zookeeper instance to become a bot-
tleneck.

Heron is build from a design which is similar to the previous stream
processing framework (Storm), but the implementation is new. One method
which helps eliviate the aforementioned problems is the use of backpressure.
This is usefull for when one of the stages in a stream processing topology
is slower than other stages in the topology. A Stream Manager helps to
implement backpressure, this is a special control service which helps to route
data between the different processing stages. A topology is managed through
a Topology Master, this service is responsible for tasks such as allocating
machine resources, and serves as a gateway for topology metrics through an
endpoint. This solves the problems of having a zookeeper instance as a single
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point of failure. Another way in which Heron provides better performance
and a better use of resources is by having each processing stage as a separate
process, called a Heron Instance. This instance is a small process consisting
of 2 threads, one (the gateway thread) which handles communication with
the rest of the system and other Heron Instances, the other is the Task
Execution which handles the actual computation.

The performance problems show here could also apply to Druid as that
database also relies heavily on a zookeeper instance. kulkarniTwitterHeron-
Stream2015 opted to write a new processing system called Heron. What we
are trying to show here is that stream processing can be used to achieve the
same results as a query language can, as shown in 6.1. However, what a ded-
icated stream processing framework does allow for is the inclusion of more
varied external sources and more complex processing, such as presented by
kulkarniTwitterHeronStream2015. They presented the use of complex ma-
chine learning algorithms running on top of the incoming streams of data.

With this we can answer RQ2 and RQ7. For RQ2 (What techniques are
used to process data stored in timeseries databases? ) we can say that differ-
ent databases have opted for different ways of processing stored data. For
example BTrDB opts for storing intermediate values in the indexing struc-
ture. This allows for faster queries as the processing which is to be applied
during the query is partially completed, e.g “find the max value” can be com-
pleted using the intermediate values. For RQ7 (How do stream processing
techniques interact with timeseries databases? ) we can see that there are
many techniques, however, the research is rather unclear in how these inter-
act timeseries databases. We gave an example where Kafka Streams were
used to process data in before returning it to the user, but this research also
did not go deep into the effects this has on matters such as latency.

8 Roles

Table 3: Questions answered in this section
Question number Research Question
RQ1 What roles do timeseries databases serve?

We dedicate this section to answering a single sub-question, namely RQ1.
What is difficult about RQ1 is that the same question can be asked about
any database.

Over the course of this paper we have seen several practical uses of time-
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series databases, such as [44], [45], [53], and [43]. We also discussed two more
general roles in section 1, namely the IoT and DevOps roles.

One more option we have not yet discussed throughout this work is stor-
ing financial data [56]. This type of data is time indexed by nature, for
example, stock market data is inherently tied to time.

From this we can conclude that the roles timeseries databases are best
able to serve is when a user has the requirement to store a large amount of
data for which queries need to be executed based on a range of time. For
which specific workloads to use a timeseries database is no conclusive answer.

9 Possibilities for future work

Over the course of this literature study we have identified two areas in which
we think there is room for a more through exploration.

The first is to better evaluate the queries and investigate possible per-
formance optimizations. No paper has made mention of, or provided details
for, a query planner [57]. Another option would be a just-in-time compiler
for SQL, as shown in [58]. This is an embedded compiler which takes the
querying code and produces machine instructions instead of an intermediate
representation. questdbHowWeBuilt shows a large improvement in perfor-
mance, especially using hot data.

QuestDB stores data in a column-based storage model [59]. Here each
column is stored in a separate file, and new data is appended to this file.
This is made extra efficient by mmap’ing data into memory, allowing for
machine instructions to write to memory, which result in writes to the column
files. This allows QuestDB to make use of the page-cache in the operating
system, allowing for high insertion speeds. What limited query performance
was that SQL was compiled into intermediary Java which did not allow for
optimizations, and that this intermediary code could not make use of SIMD
instructions. This meant that during a scan of a table, the table would
be scanned row-by-row. Using SIMD instructions, because the data was
mapped directly into memory, the authors could do operations on multiple
rows at the same time.

Using JIT the SQL code is converted into raw machine instructions,
which can operate directly on the data which is mapped into memory. What
made this easier is that the exact layout of the data in memory is known
as only a single column is stored per file, which means that only that single
column mapped into a page. This property is knowing the exact data layout
is something which we found to be unexplored in timeseries databases.
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The second area is to use raw flash storage. The databases using persis-
tent storage covered in this study all use either filesystems or block storage
as back-ends. However, we have not found any investigation into the use of
raw flash storage. Flash storage uses a translation layer which maps from
filesystem logical blocks to physical addresses on the flash device. Imple-
menting this layer in a database has been shown to provide performance
improvement [60].

We see an opportunity for the use of Zoned Namespace (ZNS) SSD’s [61].
This is because of the append only nature of timeseries databases. While
some (such as Timon) offer out-of-order writes, the writes to disk are all
sequential and immutable. What sets ZNS SSD’s apart from the traditional
SSD’s is that ZNS devices are divided into a number of zones. These zones
are append-only, this means that ZNS devices do not support random write
operations, only random reads and sequential writes (otherwise known as
appends).

The NB+ tree shown in [62] could be a good option for an indexing
structure. This data-structure already makes use of fixed size leaf nodes in
which the timeseries data is stored. This is something which needs to be
taken into account as all the previously presented databases have variable
sized chunks of data which are being written to storage. Apart from that,
this data structure does not have the overhead of having to do operations
such as compaction, which is something that LSM tree based databases need
to do.

10 Conclusion

Over the course of this study we have discussed the core pillars of timeseries
databases. We have discussed ingestion, storing, querying, and processing of
data. Using this we have answered research questions, and finally we have
presented two areas for which we think that more research is possible.

Now wish to present an answer for the main research question, “How do
timeseries databases optimize workloads which use data indexed by time? ”.
Timeseries databases optimize these workloads mainly through their index-
ing data structures, these allow the databases to accelerate both ingestion
and queries. Data processing is also optimized through these data struc-
tures. Examples of this are the tree structure from BTrDB, where statistics
are recalculated and are used during data processing.

To give more insight we also list all the answers for the individual sub-
questions:
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• RQ1 (What roles do timeseries databases serve? ): A role in which the
user has the requirement of storing a large amount of data which is
indexed by time, and upon which queries have to be executed which
operate on a range of time.

• RQ2 (What techniques are used to process data stored in timeseries
databases? ): different databases have opted for different ways of pro-
cessing stored data. For example BTrDB opts for storing intermediate
values in the indexing structure. This allows for faster queries as the
processing which is to be applied during the query is partially com-
pleted, e.g “find the max value” can be completed using the intermedi-
ate values.

• RQ3 (What indexing techniques are used to index the stored timeseries
data? ): All databases which we have found during this survey use on-
disk storage use some form of a tree structure, while the in-memory
databases use a more direct mapping, such as presented in Gorilla with
TSMap.

• RQ4 (How does data get inserted into the timeseries databases? ): We
have defined three distinct methods for inserting data into timeseries
databases. The first is pull based ingestion, this is where the database
itself has a component which retrieves data from pre-configured targets.
The second is where data gets written or streamed to the database
by the different applications wishing to write to the database. The
third and final method is a combination of the previous two. Using
a message queue data is streamed from the writers to the database
through a queue, where the queue is read by the database. However,
we have only encountered this third method in one database.

• RQ5 (What storage back-ends are commonly supported by timeseries
databases? ): There are two types, the first of which is using memory
as a storage back-end, the second is using either local storage such
as a filesystem or a remote focused block storage. Using memory as
the primary storage mechanism boats higher performance, but has a
significantly higher cost associated, making it impractical for all but
the largest commercial entities.

• RQ6 (What forms of compression are used on timeseries data? ): Com-
ing back to RQ6, we can define two forms of compression, lossy and
lossless. However, the if this is a worthwhile trade-off can differ greatly
depending on the workload of the database. If the workload requires
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the option to be able to query for individual datapoints lossy compres-
sion is not going to be sufficient, however, if the workload only requires
users to be able to view statistical values based on the data which has
been written to the database, then lossy compression can suffice.

• RQ7 (How do stream processing techniques interact with timeseries
databases? ): we can see that there are many techniques, however, the
research is rather unclear in how these interact timeseries databases.
We gave an example where Kafka Streams were used to process data
in before returning it to the user, but this research also did not go deep
into the effects this has on matters such as latency.

• RQ8 (How does one properly benchmark and evaluate different time-
series databases? ): There currently exists no standardized benchmarks
for timeseries databases. There have been two attepts to create a gen-
eral purpose testing framework for timeseries databases, namely SciTS
and TSBS. Both benchmark the ingestion and query performance.

We presented two areas in which we find that there is more research to
be done. The first is in accelerating queries by analyzing them and running
them through a query planner. The second is using ZNS SSD’s. These could
provide performance benefits due to timeseries data being append only and
ZNS SSD’s having fast appends.
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