
Persistent Memory File Systems:
A Survey

Wiebe van Breukelen
Vrije Universiteit Amsterdam

Abstract
Persistent Memory (PM) is non-volatile byte-addressable

memory that offers read and write latencies in the order of
magnitude smaller than flash storage, such as SSDs. This sur-
vey discusses how file systems address the most prominent
challenges in the implementation of file systems for Persistent
Memory. First, we discuss how the properties of Persistent
Memory change file system design. Second, we discuss work
that aims to optimize small file I/O and the associated meta-
data resolution. Third, we address how existing Persistent
Memory file systems achieve (meta) data persistence and
consistency.

Keywords. Persistent Memory, Storage Class Memory
(SCM), Byte-addressable Memory, Memory-Aware File Sys-
tems, Intel Optane, Direct Access (DAX)

1 Introduction

Over the past several decades, data storage has become an
indispensable part of modern society. However, modern stor-
age had its origins in the early twentieth century. Charles
Babbage, who is considered by some to be the "father of the
computer", introduced a simplistic form of storage in his An-
alytical Engine: a general-purpose computer that could be
programmed by punch cards [19]. With the emergence of
faster and more advanced computers in the 1960s, storage
demand grew exponentially. As a result, magnetic storage,
where data is stored on rotating platters, like on a hard disk
drive (HDD), quickly gained traction. Until now, this growth
has not slowed down.

As storage demands and processing power increased, a new
bottleneck emerged. In demanding environments, such as data
centers, data access time could not keep up with CPU speed.
This speed gap between CPU and storage continues to grow,
so faster storage devices are necessary [28, 27].

A Solid-State Drive (SSD), a form of flash storage, offers
lower read and write latencies than an HDD, especially in
a workload that involves a lot of random data accesses [41].

Like HDDs, SSDs exchange data by the smallest unit of ac-
cess: a block [81]. Exchanging these blocks between the
computer (or host) and storage efficiently is an ongoing chal-
lenge. Compared to CPUs, storage devices are an order of
magnitude slower in terms of latency [33].

Operating systems strive to minimize the impact of high
device latency on application speed. For example, the Linux
kernel reduces the performance impact as much as possible by
maintaining a page cache: a chunk of memory where the OS
caches chunks of a file for later use. Based on access patterns,
disk blocks can be loaded into memory proactively, allowing
substantially lower access latencies [14].

Such mitigations are due to the view we had on storage over
the past 50 years. We assumed a two-level storage hierarchy:
a fast primary memory (e.g., DRAM) and slow secondary
memory (e.g., HDD). Both memories have their own unique
properties, for example, the access interface, location within
the computer architecture, and access latencies. This has a
large influence on the overall design of the Operating Sys-
tem. An alternative scheme, the one-level storage hierarchy,
changes how we view storage as a whole. Instead of a hier-
archy in which we combine the strengths of multiple storage
devices, we switch to a hierarchy in which we combine stor-
age and memory into a single device. Persistent Memory
(PM) enables the use of such hierarchy [2]. It is a form of stor-
age that is very related to DRAM in terms of access latency,
the most significant difference being that PM is non-volatile
while DRAM is volatile. A well-known example of Persistent
Memory is Intel’s Optane Memory [36].

To better illustrate the position of PM in the storage hierar-
chy, consider Figure 1. PM is located between an SSD and a
DRAM module in terms of access latencies and is accessed
through CPU load and store instructions at cache line gran-
ularity; 64 bytes for the x86-64 architecture [74]. Note that
the capacity and cost scale with the access latencies; storage
located at the top (e.g., CPU caches) of the pyramid is scarce
and costly compared to storage at the bottom of the pyramid,
e.g. HDDs. In terms of data bandwidth, DRAM outperforms
PM by quite a margin, see Table 1.

1

Figure 1: Overview of storage devices and their position
within the Modern Triangle of Storage Hierarchy

DRAM Intel Optane PM % slower
Read Bandwidth 30 GB/s 7 GB/s 76.6%
Write Bandwidth 20 GB/s 2.2 GB/s 89%

Table 1: Intel Optane 256 GB single DIMM bandwidth (4
threads) ntstore-based benchmark performed by Yang et.
al [80]

In addition to lower latencies, the byte-addressable prop-
erty of persistent memory introduces even more opportuni-
ties. Byte-addressable storage has been around for decades,
for instance, in BIOS chips. Persistent memory introduces
this concept to storage, allowing applications to define their
own persistent data structures in memory. Another advan-
tage is rapid recovery: a rollback can be performed, even if
the application is not aware that the memory is non-volatile.
Application-critical data structures are transparently made per-
sistent, so no expensive backup/snapshot run is required [83].
The emergence of PM brings exciting new possibilities but
also new challenges:

(1) Traditionally, file blocks are accessed through a system
call. Within the kernel, this request is passed to the Virtual File
System (VFS), which performs a metadata lookup, resolves
the physical location of the file on the disk or page cache, and
finally copies the data into a user-allocated buffer.

In the case of slow block devices, the overhead of trapping
into the kernel is negligible, as the latency of the device is
much higher than the time of the kernel trap. However, this
does not apply to PM, as it can perform storage operations in
which the latencies are magnitudes smaller than a kernel trap.
Consequently, the overhead shifts from the device to the host
I/O stack [43].

(2) A closely related challenge is indexing overhead. For
example, suppose that an application wants to change the per-
missions for the file /foo/bar/a.txt, located on a mounted
ext4 file system. It performs a chmod() call. This call is then

forwarded to the kernel’s VFS, which in turn performs a so-
called file path walk by walking the directory tree to locate
file metadata [9]. Then, a metadata operation is performed; in
this case, a file permission change.

The major overhead in this example boils down to this
path walk. The total time spent is linear to the number of
subdirectories in the file path, in the aforementioned example,
two. In the case of slow block storage devices, I/O latency
dominates, so this delay is acceptable. On the contrary, PM
latencies are an order of magnitude smaller and, therefore,
such software overhead is unacceptable [9, 38].

(3) The third challenge is related to the persistence of the
data. Modern operating systems use hardware and software
caches for performance benefits. Recall that in PM, data is
accessed using CPU load and store instructions, like DRAM.
In the event of a system crash, this may cause data loss, as
the data in the caches may not yet be flushed to disk [4].
A closely related issue is write ordering. If write ordering
is enforced, a rollback is trivial, as storage transactions are
temporally ordered. However, the Memory Controller, also
known as the Memory Management Unit (MMU), can bypass
this constraint, as it can violate the order of writing in favor
of performance [77].

This survey discusses the changes proposed to solve these
challenges. First, we cover the design choices and data struc-
tures of existing PM file systems at a high level, i.e., the differ-
ences in various file system designs, their position within the
OS ecosystem, and their respective strengths and weaknesses.

Second, we discuss work that aims to optimize small file
I/O and the associated metadata resolution. Finally, we discuss
how PM file systems achieve data crash consistency.

2 Study Design

This section discusses the setup of the literature study. First,
we define the survey goal, resulting in one research question
and three sub-questions. Subsequently, the scope of the re-
search is defined and, finally, the methodology used for the
selection of related literature.

2.1 Research Goal

As mentioned in section 1, the goal of this survey is to investi-
gate the changes required to deal with the three challenges in
persistent memory, namely: OS overhead, indexing overhead,
and data persistence. Therefore, the main research question
is: Which file system design changes are needed to cope with
the challenges that arise when using Persistent Memory?

In order to answer this question, we have defined three
sub-questions. Each sub-question covers one of the three
challenges relevant when designing persistent memory file
systems:

2

RQ1. How have the properties/features of Persistent Mem-
ory led to changes in file system design?

RQ2. Which optimizations help to decrease file indexing
overhead in small I/O workloads?

RQ3. How can Persistent Memory file systems guarantee
data crash consistency?

2.2 Scope
In this study, we focus on the challenges in implementing
file systems for Persistent Memory. Papers in related fields,
such as Persistent Key-Value (KV) stores/databases, are only
included if they explicitly aim to exploit PM advantages for
better FS performance. Note that this assessment is based on
the impression of the paper’s abstract and conclusion, unless
stated otherwise.

We can illustrate this with an example. RocksDB, a persis-
tent KV store, uses the advantages of NOR or NAND Flash
SSDs to store associative arrays efficiently. It achieves sig-
nificant space efficiency and better write throughput while
achieving acceptable read performance [22, 24].

Recent work has shown that RocksDB can be adapted to
work with PM, although this implementation is very experi-
mental and poorly documented [61]. In such cases, we opt to
exclude RocksDB from the literature study.

In conclusion, we limit this survey to the available literature
that specifically aims to address the challenges, opportunities,
or future work when implementing PM-based file systems.

2.3 Methodology
In this survey, we use the Snowball sampling [75] methodol-
ogy to find relevant papers. In this search methodology, one
starts by reading the so-called seed papers. These papers are
then used to find other relevant articles. The seed papers used
for this study are listed in Table 2. In order for a paper to be
selected, it must adhere to the following inclusion criteria,
and none of the exclusion criteria:

• I.1 - The work proposes a new file system, or is a contin-
uation/improvement of an existing file system;

• I.2 - The work especially targets Persistent Memory
or related terms: Storage Class Memory (SCM), Phase
Change Memory (PCM), or Non-Volatile Main Memory
(NVM/NVMM). One or more of these terms must be
present in the paper’s abstract;

• I.3 - The work is released after 2005. We selected this cut-
off date because this year Intel announced PCM modules
that could replace traditional flash cards [66];.

• E.1 - The work proposes a new data storage paradigm
built on top of an existing file system, for example, a

key-value store or hash table. Papers that propose using
such paradigms to improve file systems are exempted
from this criteria;

• E.2 - The work is classified as a literature study;

Note that in rare cases, we might violate constraints, e.g.,
when discussing relevant background theory.

In addition to Snowball Sampling, we also performed a
manual search. The most relevant keywords are listed in Ta-
ble 3. We prefer work that is well-cited (i.e, > 20 citations),
builds on well-established papers, and is published in the last
five years; 2017 - 2022. The names of the conferences con-
sidered are: USENIX (FAST), EuroSys, ODSI, ASPLOS, ACM
(SIGARCH, SIGOPS, SPAA), IEEE, SOSP, VLDB, SC, and
ISCA. In addition, we use ACM, Arxiv, and Google Scholar
search engines to find additional work and background theory.

Title Year

BPFS [18] 2009
SCMFS [77] 2013
Aerie [71] 2014
HiNFS [57] 2016
Strata [39] 2017
NOVA [79] 2017
SplitFS [37] 2019
HashFS [54] 2021
Kuco [15] 2021
FlatFS [9] 2022

Table 2: Seed Papers, shortened titles

Keyword Accepted Rejected

Persistent Memory File System 12 6
NVM(M) File System 1 35
Intel Optane File System 3 6
Direct Access/DAX File System 2 2
Persistent Memory Kernel Bypass 0 8

Table 3: Exploratory Keywords and Paper inclusion/exclusion
count

3 Background

Before going into the changes required to build fast PM file
systems, we provide the relevant background theory. First,
subsection 3.1 discusses the relevant hardware concepts de-
picted in Figure 2. Subsequently, subsection 3.2 shifts the
focus to the software components within the kernel, using Fig-
ure 4 as a guideline. Finally, subsection 3.3 discusses well-
established data structures used in modern file systems.

3

3.1 Persistent Memory Hardware Architecture
As mentioned in the introduction, persistent memories are
byte-addressable. Therefore, a CPU can issue read/write re-
quests using similar microprocessor memory instructions is-
sued when accessing DRAM. Figure 2 displays the position
of PM within the computer hardware architecture. When the
CPU issues a read request, it requests memory at a particular
memory address in DRAM/PM. Now, we have two options:
the data is in the cache and can be immediately transferred
to the CPU (cache hit, faster), or the data should be fetched
from DRAM/PM using the memory controller (cache miss,
slower).

Figure 2: Position of Persistent Memory within the CPU
hardware architecture

CPU cache: Modern CPUs use a hierarchical caching ar-
chitecture consisting of ‘levels’ to reduce the access latency to
main memory [67]. For example, for the x86-64 architecture,
the first cache level (L1) offers lower latencies than a level 2
(L2) or level 3 (L3) cache. On the contrary, an L3 cache offers
greater capacity than an L2 cache. For instance, CPUs based
on Intel’s Ice Lake architecture have 48 kB of L1 cache, 512
kB of L2 cache, and 6 MB L3 cache. In terms of latency, an
L1 cache line fetch takes approximately 5 CPU cycles, while
an L3 cache fetch costs ∼ 41 cycles 1 [11].

1In case of a cache hit. If requested data do not reside in the cache (i.e., a
cache miss), the access latency increases as the data must be fetched from
main memory [67].

In addition to latency and capacity, three properties are
especially important when considering PM [25, 77, 4, 44].
First of all, data resident in the cache may be shared between
cores, allowing better multiprocessing performance. Second,
in contrast to PM, the cache may not be byte-addressable. In
the case of the x86-64 architecture, the cache stores data in
fixed fragments of 64 bytes, also known as a cache line. As
this is the smallest unit of access, the data is fetched or written
in 64 byte chunks.

Third, in shared memory systems, where memory is shared
between multiple cores, caches need to confirm to a cache co-
herence protocol. This protocol ensures that each core always
has access to the most up-to-date version of a memory loca-
tion contained in the cache [8]. However, adhering to such a
protocol at the price of performance, as it requires additional
CPU cycles to perform the necessary consistency checks. To
amortize this impact, CPUs may reorder writes [50]. Although
this might be beneficial for DRAM performance, it has a big
implication for PM which we demonstrate by the example
provided in Figure 3.

In this example, the CPU memory controller is instructed to
perform four DRAM/PM writes in total. For instance, at t = 0
a file system commits the value ‘56’ to address 0x20010000
in PM and the value ‘201’ to DRAM. Note that these requests
are not processed immediately; instead, they are buffered at
the CPU memory controller. At t = 2, the memory controller
decides to delay the writes at t = 0 in favor of two other writes
posted at t = 1. Just after processing these two writes, the sys-
tem crashes. Consequently, both the PM and DRAM writes at
t = 0 are lost forever. Due to the non-volatile property of PM,
the file system ends up in an inconsistent state. The file system
(falsely) assumes that file changes are committed to PM in
chronological order [44], therefore, it assumes that the value
56 is present at the location 0x20010000. Instead, this loca-
tion now contains the value ‘19’ due to the aforementioned
write reordering.

Summarizing, write reordering may be beneficial for
DRAM reads/writes; however, it poses a threat to PM trans-
actions [77, 71, 43, 82]. First of all, the order data is being
written to PM may differ from the user’s intentions. Second,
in case of a system crash, the data could still be located in
the cache and not yet flushed to PM [4]. For now, it is im-
portant to understand the implications of CPU caches for
PM. The available solutions to fix this issue will be discussed
in section 6.

Memory controller: In the case of a cache miss, the data
must first be obtained from DRAM; therefore, the request is
sent to memory controller, also known as a Memory Manage-
ment Unit (MMU). An MMU serves two purposes: translation
and isolation [77]. Translation comes down to converting vir-
tual addresses into physical (device) addresses. An MMU
provides memory isolation for security and efficient memory
fragmentation between applications and the kernel. The in-
ternals of an MMU are quite complex; therefore, we refer

4

Figure 3: Implications of Write Reordering for Persistent
Memory

to the Linux kernel documentation [31], which we quickly
summarize.

An MMU uses a page table to map virtual addresses to
physical addresses. The x86-64 architecture uses a hierarchi-
cal structure in which virtual addresses have a length of 48
bits. The 16 MSB bits cannot be used. This tree structure con-
sists of four levels 2, where each level can accommodate for
512 mappings. At level 3, each mapping covers one 4 kB page,
so in total 2 MiB of physical memory as 4kiB∗1024 = 2MiB,
that is, the last 12 bits of a virtual address. At Level 2, each
mapping covers one 2 MB huge page, i.e., the last 19 bits
of the virtual addresses [34]. A key observation here is that
when the level decreases, the associated mappings become
coarse-grained, therefore, mapping larger regions of memory.

Persistence Domain: Another important concept is the Per-
sistence Domain (PD). As mentioned before, PM is non-
volatile memory. Therefore, if a crash occurs, persistence must
be preserved, unlike DRAM, where data loss is inevitable. A
persistent domain is a region within a computer system where
data is guaranteed to be persistent, even in the event of sys-
tem failure [55]. Figure 2 depicts two persistence domains,
namely, Asynchronous DRAM Refresh (ADR) and enhanced
ADR (eADR). The first guarantees data persistence within
the PM device, while the second extends this guarantee to the
CPU cache [62].

We now switch our focus to the internals of the PM device
depicted at the bottom right of Figure 2. Device commands
end up in a buffer queue, the Writing Pending Queue (WPQ).

2Since the Intel Ice Lake microarchitecture (released in 2017) the CPU
supports five-level page tables, extending the size of a virtual address to 56
bits, resulting in 128 petabyte addressable space [35].

This queue is part of both the ADR and eADR domains. In
case of a crash or power failure, this buffer is emptied and
written to storage using the remaining electrical charge in a
(super) capacitor.

After passing the WPQ, the writes end up at the PM con-
troller. This controller includes an Address Translation Table
(AIT), which maps physical addresses to device addresses and
performs wear leveling. Wear leveling prolongs the lifetime
of PM by spreading the Program and Erase (P/E) cycles over
the memory cells. This is important because flash cells can
only endure a finite number of cycles [36].

Eventually, the data is written to PM in fixed-sized chunks,
in the case of Intel Optane 256 bytes. As mentioned above,
the CPU accesses DRAM via 64 bytes load and store instruc-
tions. Consequently, writing less than 256 bytes will result in
write amplification: the difference between the actual amount
written and the amount of data intended to be written [59].

We can conclude that PM devices have interesting hardware
properties, especially issues related to write reordering and
the persistence domain. Both properties are fundamental in
evaluating the design of PM file systems.

3.2 Storage Software Stack

In order to utilize storage devices efficiently, software is essen-
tial. This subsection discusses software aspects relevant when
working with storage devices. More specifically, we discuss
the two most prominent forms of accessing storage from user
space: conventional system calls and Direct Address (DAX)
via the MMU. These techniques can be considered ‘building
blocks’ for more advanced PM file system designs which we
discuss later.

Figure 4: Software Architecture Persistent Memory

5

Figure 4 depicts the position of PM in the software stack.
We briefly elaborate on the most important components.

In conventional two-level file systems, applications in user
space request FS-related services through system calls. For
example, the open() system call can be used to open a file
handle, write() to write to a file, and close() to close a
file handle. In kernel space, these FS-related system calls are
directed to the Virtual File System (VFS). In order to support
multiple file systems, the VFS implements a generic software
interface that is independent of the actual file system, e.g.:
ext4, swap space, or a PM-optimized file system. Internally,
the VFS performs a path traversal, which recursively traverses
the file path, for example, "/foo/bar.txt", and informs the
corresponding file system of an incoming request. Now, the
file system looks up the corresponding file metadata and
performs the requested action [9].

As mentioned before, the Linux Kernel uses a page cache
to decrease the performance impact of slow device latencies.
As a result, file data may (partly) reside on the storage device
or in the page cache:

(1) The file is (partially) located in the page cache. In this
case, the requested data can be returned immediately at a very
low cost.

(2) The requested file blocks are not in the cache. A request
is sent to the corresponding device driver, which in turn sends
the actual command to the storage device.

The use of a page cache in the case of PM is controversial,
as the induced latency of the VFS is higher than the access
latency of PM [43, 77, 18, 15], as seen in Figure 4.

An alternative technique to access file data is Direct Access
(DAX). Using DAX, pages are directly mapped in user space
using the MMU, avoiding the performance-degrading VFS
and page cache [29]. Although this concept is very appealing,
it has one (potential) disadvantage: kernel and file system
guarantees are lost as one can access storage without kernel
interference.

In short, there are two prominent methods to access storage:
System Calls and DAX. DAX avoids the use of a page cache.

3.3 Traditional File System Structures

This subsection covers the most prominent data structures
found in file systems: metadata structures, B+ trees, LSM
trees, and extent/radix trees.

Metadata structures File systems rely on metadata to gain
insight into files and directories stored within the file system.
It is stored on the storage device alongside the actual data
blocks. The most important use of metadata is to enable file
mapping: the operation of mapping a logical file offset to
a physical location on the underlying storage device [54].
Generally, file systems map files at block granularity, in most
cases 4 kB, to constrain the amount of metadata required.

File systems can define any metadata structure to better
accommodate their requirements. For example, the ext2 file
system uses inodes. An inode is a per-file structure 3 that
contains elementary data fields such as file creation modifi-
cation date, file size, and permissions. Inodes are stored in
a inode table on disk. To accommodate file mapping for a
wide variety of file sizes, ext2 uses a scalable structure, more
specifically an extent tree, which we will discuss later. Nodes
within this tree represent logical to physical block mappings.

B+ tree A B tree is a self-balancing tree, which means that
the node keys are sorted in ascending order, enabling fast
sequential performance [16]. Compared to a B tree, a B+ tree
only stores values at the bottom of the tree using linked leaves.
The internal (non-leaf) nodes only contain keys [13].

LSM Tree A Log-Structured Merge (LSM) Tree is a disk-
optimized search tree for storing Key-Value (KV) pairs [56].
Figure 5 depicts a three-level LSM tree. Observe that in
this figure, level 0 is an unsorted append-only log located
in DRAM. If a level 0 log runs out of space, a compaction
routine is started in the background. This compact routine
performs Garbage Collection, which in essence iteratively
compacts KV pairs at level x into larger, sorted segments lo-
cated at level x+1. Subsequently, the segments are flushed to
disk.

An LSM tree avoids Write Amplification (WA) by perform-
ing sorting in the background; users can write directly to the
in-DRAM log.

Figure 5: Three-level Log-Structured Merge (LSM) tree

Extent and Radix Tree Both the Extent and Radix tree
are B-trees. An extent is a data structure that represents a
range of contiguous physical blocks, e.g., 11−30 in Figure 6a.
Together, the extents can form a tree that allows efficient
logical block to physical block number translation. Compared
to file offset, the offset from the beginning of a file, a logical
block number is defined in the OS as a multiple of the device
block size, usually 512 bytes. The physical block number
represents this location on the actual storage device [48]. In
Figure 6, the logical block 17 is translated into the physical
block 100. Indirect blocks are included to enable file growth
and shrinking operations.

3In ext2, a directory is considered a special type of file.

6

Radix trees use a different mapping scheme. Instead of
using the block number, it uses the corresponding binary rep-
resentation to perform the lookup. For example, we can map
every group of 9 bits to one Radix node, as shown by the
dotted arrows in Figure 6b.

An advantage of Extent trees is that they consume less
memory than Radix trees, as they grow slower over time.
However, Radix trees are computationally less expensive com-
pared to Extent trees as they only require simple arithmetic
offset operations for lookups [54].

Figure 6: Example of Extent Tree (a) and Radix Tree (b)
logical to physical block translation

3.4 Crash-Consistency Techniques
Crash consistency guarantees are essential for file systems.
Without these guarantees, a crash may cause data corruption
or, in extreme cases, leave the file system inoperable. Some
associate data persistence exclusively with the actual data
blocks stored on the device; however, data persistence must
be enforced in multiple areas [79]. For example, writing to a
file involves updating the corresponding data blocks, the last
modification date, and the file length. Therefore, in addition
to data consistency, metadata consistency is essential.

Generally speaking, modern crash consistency techniques
can be categorized into three areas: Journaling, Shadow Pag-
ing, and Log-Structuring [25, 18, 79]. We briefly discuss these
techniques below.

Journaling A journal is a data structure that keeps track
of changes in the file system, separated from the on-disk
data blocks. In essence, it is a chronologically ordered log of
(meta)data changes, i.e., transactions. A transaction consists
of operations that are idempotent, which means that they can
be repeated infinitely many times without side effects [72].

Figure 7: Crash-consistency techniques, (a): undo-log, (b):
shadow-paging

If a crash occurs, the file system can be restored to a consis-
tent state using a Write-Ahead Log (WAL): an append-only
disk-resident structure used for crash recovery. In journaling,
there are two types of WAL, namely undo logging and redo
logging [72].

In undo logging, a copy of the original data is inserted into
the log before a transaction starts. In the event of a rollback,
the modifications are restored using the data contained in the
log. This process is depicted in Figure 7a. In this example,
events are temporally ordered, just as in the journal log. At
t = 1, the transaction starts by pushing the original data to the
log: A′

0. At t = 2, this data is in stable storage, indicated by
the grey coloring. In-flight data can now be sent to the storage
device. When the transaction eventually commits (t = 5) and
the changes are in stable storage, the original data can be
erased from the log (t = 7).

In redo logging, transactions append data modifications to
the log. Only when the transaction commits the corresponding
data changes are stored in PM.

Undo/redo logging has its own (dis)advantages. The most
crucial difference observed is that redo logging outperforms
undo logging in transactions that update a large number of
different objects, while it underperforms in workloads with
intensive read operations [72]. As performance is heavily
affected by the type of workload, there is no consensus on
which form of logging is best. However, in the PM litera-

7

ture, there appears to be a slight bias towards ’undo log-
ging’, as it is easier to implement [25, 57]. Alternatively,
one can also use an operation log: a log that only stores
file/directory operations, for example, APPEND data, # num
bytes, filename, inode number [39, 15, 37].

Shadow Paging Shadow Paging is a consistency method for
file systems based on the Copy-on-Write (CoW) technique: a
technique that defers resource duplication to the last possible
moment, also known as lazy copying or implicit sharing [18].
Operating Systems use CoW to increase memory paging per-
formance. Memory paging is a technique to read/write data
in the smallest unit of data storage access (usually 512 bytes),
blocks, from a storage device for use in main memory [34].
An OS accesses main memory at page granularity, usually
4096 bytes. In CoW-based memory paging, a page copy ini-
tially refers to the original page (to save resources) and is
copied at the last moment, i.e., when a write comes in [7, 18].

File systems that use Shadow Paging use trees to structure
metadata and file blocks, see Figure 7b. In the event of a file
modification, the original block content is copied to a new
page. Then, file modifications are performed on this copied
block. When the transaction completes, the changes become
persistent by modifying the pointer to the new pointer block.
An example is provided in Figure 7b. In this example, a user
writes to the block b4, which triggers a CoW for the blocks
contained in the same pointer block. Data modifications are
made by modifying the corresponding copied blocks. Eventu-
ally, the transaction commits by changing the pointer value in
the pointer block located at the top of the tree [10, 25].

Log-Structuring In contrast to Journal-based file systems,
which keep track of changes in a separate log on the disk,
log-structured file systems store file system metadata and
data updates together. This implies that all file system data is
structured in the form of a log, also known as Log-structured
File Systems (LFSs) [1]. Originally, LFSs were designed to
improve HDD performance, as HDDs offer poor random per-
formance but high sequential performance [64]. Although
SSDs offer improved random performance, they still perform
better in sequential workloads [12], therefore, it is still benefi-
cial to use sequential accesses as much as possible.

In an LFS, random writes are buffered in DRAM and
merged into large sequential writes to the log. To avoid frag-
mentation, a periodic Garbage Collection (GC) run is per-
formed, in which the free blocks are coalesced to form new
contiguous free regions.

In summary, we have seen three file system crash-
consistency techniques: Journaling, Shadow Paging, and Log-
Structuring. Journal-based file systems maintain a chronolog-
ically ordered log of file transactions, stored separately from
the on-disk data blocks. Shadow Paging uses the Copy-on-
Write technique to ensure data durability. In Log-Structured

file systems, the disk becomes one long log, containing all
(meta) data transactions.

4 Persistent Memory File System Design

Unlike classic block devices, such as HDDs, which communi-
cate through a relatively slow ACHI controller, PM is placed
on the memory bus and accessed via processor load-and-store
instructions. This change shifts the main performance bottle-
neck from device to software.

Traditional file systems like ext2 perform expensive opera-
tions on the critical path, for example, logging file updates, file
metadata lookup, maintaining persistency, etc. Furthermore,
the hierarchical structure in ext2 introduces a high indexing
overhead; in the worst case, up to 45% of a simple 4 kB data
append [43, p. 37], and up to 4× write amplification [52].

To some extent, this performance impact is mitigated by
using the page cache. However, in the case of PM, its byte-
addressable properties allow us to access data faster than the
I/O stack, making an expensive page cache redundant. There-
fore, an efficient design and accompanying data structures are
crucial for low-latency/high-throughput PM file systems.

Considering the design of the file system at a high level,
the relevant literature can be categorized into multiple distinct
areas, as shown in Table 4. To answer sub-question RQ1, we
focus on the challenges each design and its associated file sys-
tems intend to solve. Specific optimizations (e.g.: guarantee-
ing data persistence/atomicity, indexing overhead reduction)
will be addressed later in Sections 5 and 6, respectively.

4.1 Influenced by Traditional File Systems
This category of work adapts well-established data struc-
tures in file systems, such as the inode tree, to work with
PM. Such file systems benefit from upstream fixes/patches in
the Linux Kernel, which can then easily be integrated into the
PM-optimized file system.

BPFS BPFS, released in 2009, is, to the best of our knowl-
edge, the first file system adapted to work with PM. It main-
tains an indirect block tree similar to conventional file systems,
i.e., ext2. Its main contribution is a PM-optimized implemen-
tation of Shadow Paging (see subsection 3.4), Short-Circuit
Shadow Paging, which we now elaborate.

Although Shadow Paging is a well-proven feature for en-
suring consistency, the authors of the BPFS paper [18] name
a clear disadvantage: Write Amplification (WA). In tree-based
file systems, when new data is written in CoW-fashion, the
pointers in the parent blocks must also be updated [18, 25],
propagating tree node updates upwards the tree (see Fig-
ure 7b). The resulting WA is significant as the smallest
addressable unit of storage is, in most cases, 512 or 4096
bytes [21], while a pointer update is only 8 bytes in the case
of a 64-bit system.

8

High-level Design File System User/Kernel
Space

DAX POSIX-
compliant

Main Contribution

Influenced by Traditional
File Systems (e.g. ext2)

BPFS [18] Kernel ✗ ✓ POSIX-compliant file system that reduces write amplifi-
cation through adapted shadow paging

PMFS [25] Kernel ✓ ✓ Bypass OS page cache and generic block layer, avoid
extensive I/O stack modifications. Lightweight in-place
metadata updates

HiNFS [57] Kernel ✓ ✓ Elimination of double copy overhead in kernel
Ext4-
DAX [29]

Kernel ✓ ✓ Include DAX to PM in the existing ext4 file system

Contiguous File Alloca-
tion

SCMFS [77] Kernel ✗ ✗ Bypass the generic block layer and perform file mapping
via the MMU

SplitFS [37] Hybrid ✓ ✗ Introduces a hybrid architecture in which data operations
are handled in user space, while metadata operations are
processed in the kernel

Aerie [71] Hybrid ✗ ✗ Allow user space applications to update metadata directly
in user space

Kuco [15] User ✓ ✓ Address the poor scalability of existing PM hybrid file
systems (e.g., SplitFS)

ZoFS [23] User ✓ ✓ Like Aerie, allow user space applications to update meta-
data directly in user space, however, with less kernel in-
volvement

Log-Structured
NOVA [79] Kernel ✗ ✓ Per inode logs to allow massive parallelism, while provid-

ing strong consistency guarantees
Strata [39] Hybrid ✓ ✓ Capture unique properties of multiple storage devices in

one file system

Table 4: PM File Systems categorized by their high-level design

BPFS avoids this WA by performing in-place updates
within data blocks, taking advantage of PM’s unique byte-
addressable properties. As mentioned before, BPFS uses a
tree structure to store inodes. A significant difference is that
BPFS also includes the actual file blocks within this tree,
forming one giant tree consisting of inodes at the top and
the corresponding file data blocks at the bottom. Now, block
changes can be made by performing in-place updates, in-place
appends, or partial CoW. In-place updates/appends can be per-
formed in case the data block is located in a tree leaf. Partial
CoW is used when multiple (non-leaf) file blocks are affected.

At the time BPFS was released, the availability of PM was
very poor. Therefore, the benchmark results should be taken
with a grain of salt. Still, compared to Microsoft’s NTFS,
BFTS achieves significantly higher throughput in small I/O
workloads. However, for large I/O workloads (e.g., mov-
ing files between directories), this overhead is still substan-
tial [79].

PMFS PMFS is very similar to BPFS in the sense that
both implement a POSIX-compliant file system using sys-
tem calls. Like PMFS, the authors of BPFS acknowledge that
file system consistency imposes a major performance penalty.
However, compared to BPFS, there are three differences. First,
PMFS uses a B tree instead of the conventional indirect block
tree used in BPFS for faster file indexing. Second, PMFS
enables applications Direct Access (DAX, subsection 3.2) to
PM memory via a mmap interface, bypassing the expensive
OS page cache. Third, PMFS proposes a hybrid approach to
handle file (metadata) consistency. Recall that BPFS uses an
optimized version of Shadow Paging to ensure consistency.
Although this technique certainly decreased WA, the authors
of PMFS [25] found that PBFS fails to capitalize on PM’s
unique byte-addressable property. They observed that meta-
data updates are usually small (≤ 64 bytes). Therefore, PMFS
proposes an alternative methodology that performs writes at

9

cache-line granularity using atomic store instructions 4. For
metadata updates larger than a single cache line, PMFS re-
sorts to more expensive undo logging (subsection 3.3). For
larger data updates, PMFS falls back to Shadow Paging.

In short, PMFS performs atomic updates when possible,
as those are the cheapest operations. Only in cases where in-
place updates are not atomic, PMFS resorts to undo logging
and Shadow Paging [25].

HiNFS The PM file systems we discussed so far mainly
improve performance by adapting conventional file system
design to reduce Write Amplification. Although the related
optimizations certainly improved performance, the authors
of HiNFS suggest that there is still a performance bottleneck:
poor write latency due to double-copy overheads in the kernel.
To resolve this, HiNFS proposes two optimizations: extensive
latency hiding behind the critical path and elimination of
double copy overhead [57].

HiNFS achieves latency hiding by an NVMM-aware Write
Buffer policy. Using this policy, file writes are classified as
eager-persistent or lasy-persistent. In the former, the write
operation is performed immediately, without latency hiding.
In the latter case, HiNFS buffers the request by moving its
payload into a fast DRAM buffer. This 4 kB-sized DRAM
buffer uses the Least Recently Written (LRW) policy to order
writes in temporal order. DRAM blocks are indexed by build-
ing a B-tree per file. A per-core kernel thread writes data from
the DRAM buffer into PM, after which the DRAM blocks
can be reclaimed. Write consistency is maintained by reusing
PMFS’s hybrid consistency mechanism.

In the case of a read operation, HiNFS first checks if the
corresponding blocks are in DRAM. When this is the case,
the requested data can be returned immediately. If the data is
not in DRAM, it is fetched from PM and directly copied into
the user buffer. This avoids a double copy: device → kernel
→ user. Although this seems like a simple mechanism, it is
more subtle. Suppose that a block is partly in DRAM, which
may happen as PM is byte-addressable. In this case, HiNFS
consults the cacheline bitmap, which tracks the state of each
64 byte cache line in a DRAM block, to determine which
areas need to be fetched from PM.

The way HiNFS avoids double-copy overheads for write
operations is quite complex; therefore, we provide only a
brief explanation. Essentially, HiNFS uses multiple criteria
(e.g., DRAM and PM latencies) to decide whether coalescing
writes into one large write operation is beneficial. Periodically,
these coalesced writes are moved to persistent memory.

Ext4-DAX As we have seen in previous paragraphs, quite a
bit of effort has gone into pushing PM support into the existing
I/O stack. PMFS and HiNFS allow applications DAX to PM

4Intel’s atomic store instructions: Section 8.2.4 - Intel Architecture Soft-
ware Developer Manual [35]

via a mmap interface. Instead of making extensive changes to
the I/O stack, ext4-DAX only adds DAX support to the existing
ext4 file system [29]. We have already discussed DAX in sub-
section 3.2. In short, applications can access PM without the
interference of the kernel via CPU load and store instructions,
bypassing the expensive OS page cache and generic block
layer. In terms of throughput and latency, ext4-DAX performs
similarly to PMFS [25] and worse than HiNFS [57].

In this section, we have seen four PM file systems that
(extensively) modify the I/O stack to support PM. All four file
systems are POSIX-compliant (see Table 4), so applications
can access PM without rigorous code changes. PBFS and
PMFS introduced performant techniques to reduce Write Am-
plification: Short-Circuit Shadow Paging, and atomic meta-
data updates. Additionally, they bypass the expensive OS page
cache using DAX to PM. HiNFS addresses the double-copy
overhead in the kernel to improve access latency. Ext4-DAX
adds DAX support to the existing ext4 file system.

4.2 Design: Contiguous File Allocation

As mentioned before, file systems for block devices (e.g., ext4)
support large files using indirect blocks. An alternative is to
position the file system and some of its data structures in vir-
tual memory and take advantage of the hardware capabilities,
the Memory Management Unit, better known as the MMU.
This approach has three advantages. First, keeping track of
where a file is located is reduced to an operation involving
two numbers: the starting address of the VMA and the offset
within the file. Second, the number of seeks is minimized
since the entire file can be read in one operation, instead of
separate blocks [77]. Third, DAX gives the user much more
flexibility to design custom storage structures.

Now, we will discuss the relevant designs proposed in the
literature. We start by discussing SCMFS, a file system that in-
spires multiple modern PM file systems. Subsequently, we dis-
cuss file system designs that solve the limitations of SCMFS
or propose other novel techniques, as seen in Table 4.

SCMFS To the best of our knowledge, the SCMFS file sys-
tem [77] was the first to implement a contiguous file system
for Storage Class Memory (SCM), nowadays better known
as PM. It uses the MMU to map file addresses to physical
addresses. Figure 8 displays a high-level view of SCMFS.

The physical space contains the actual file system, its meta-
data, and a mapping table. This mapping table is used to
initialize the MMU by inserting entries that map user space
virtual addresses to physical addresses representing locations
on the PM device. Modifications to these data structures are
always transferred back to the PM device for consistency.
Please note that both virtual and physical addresses need to
be relative rather than absolute to account for randomiza-
tion techniques such as Address Space Layout Randomization

10

(ASLR) [46], which randomly arranges data in the virtual
address space for security purposes.

Figure 8: SCMFS physical and virtual memory layout

As depicted in Figure 8, the virtual space consists of three
parts: the super block, the inode table, and the actual files.
The super block serves the same purpose as in traditional file
systems: keeping track of block/inode counts, block size, etc.
[30]. The inode table stores file/directory metadata.

Recall that the translation from virtual to physical addresses
is done in hardware by the MMU. To speed up translation,
the MMU includes a cache, the Translation Lookaside Buffer
(TLB) [43]. The TLB has a fixed number of address transla-
tion entries, usually between 16 and 512. As this cache is quite
small, we should use it efficiently to avoid the so-called TLB
misses. Let us demonstrate this with an example. Consider a
2MiB file mapped in virtual memory by 512 conventional 4kB
pages, which may occupy all TLB entries 5. Now suppose
that we want to map multiple 2MiB files in the file system
space. In this situation, the number of cache misses increases
dramatically, as both files cannot be in the TLB at the same
time, increasing the latencies.

SCMFS reduces potential TLB misses for large files by
employing huge pages. Instead of mapping one 2MiB file
using conventional 4kB pages, it maps one 2MiB huge page.
This approach also avoids internal fragmentation; the amount
of allocated but unused space.

Although SCMFS has shown good speed-ups in both (ran-
dom) read and write workloads, it still has several limitations:

(1) In SCMFS, non-temporal data persistence and consis-
tency are enforced by the clflush and mfence instructions,
enforcing PM writes are temporally ordered. However, this
is done at the expense of exposing the suboptimal write la-
tency of PM devices to the critical path [57, 4]. (2) SCMFS
does not avoid the costs of trapping into the kernel frequently:
switching CPU protection modes, saving/restoring the trap
frame, invoking the scheduler, etc. [63, 3] (3) Li et. al [43]
note that SCMFS does not address the challenge of slow file
resizing (using appends) and external fragmentation.

We will address the issues related to consistency in sec-
tion 6. The other limitations are addressed by other PM file
systems, which we discuss in a moment.

5For simplicity, we ignore that modern operating systems perform exten-
sive software optimizations avoid poor TLB utilization [43, 25]

SplitFS SplitFS [37] resolves two limitations of SCMFS,
namely kernel trap overhead and append performance. To ac-
complish this, SplitFS proposes a hybrid design: a file system
design in which user and kernel space have distinct responsi-
bilities. A user space library (U-Split) services the data path,
that is, all data operations in virtual memory, e.g.: read(),
write(), or an append. Metadata-related operations, for ex-
ample, open() or rename(), are handled by a kernel library
(K-Split), i.e. the control path.

The main performance-degrading aspect of an append op-
eration is data copying in the kernel [37]. To mitigate this
issue, the authors of SplitFS propose the use of staging files.
Instead of appending to the actual file, the operation is redi-
rected to a temporary staging file in PM, managed by U-Split;
see Figure 9. Note that in this case file data may be spread
over two locations, the stage and actual files. Consequently,
U-Split maintains a collection of memory-mapped areas per
file for accounting purposes.

Eventually, all staged file modifications must be made per-
sistent. In U-Split, this flushing procedure is initialized after
capturing a POSIX fsync() using LD_PRELOAD. Then, a re-
link procedure is executed. This procedure logically moves
the PM blocks from the staging file to the target file by a
zero-copy operation: an operation that avoids unnecessary
data copies [70]. The relink procedure involves several steps,
as shown in Figure 9:

(1) In the first step, an append operation is performed. This
operation is redirected to a staging file. Note that each staging
file is mapped to a physical block, and the auxiliary translation
is performed by the MMU, as in SCMFS.

(2) Eventually, fsync() is invoked by the user, so the flush-
ing procedure starts. One block of the staging file is decoupled
from its corresponding physical block.

(3) & (4) This physical block is relinked with the target file
to form a new contiguous file in the VMA.

Note that in the aforementioned steps, data copies are
avoided. We modify only the virtual-to-physical page map-
ping in the page table, which is a relatively inexpensive oper-
ation.

In terms of performance, SplitFS achieves good throughput:
27% improvement in sequential reads and 7.85× speedup in
appends. Metadata-heavy workloads still introduce an over-
head of up to 13% due to the additional bookkeeping required
to manage the staging files.

Aerie Aerie is another file system that implements the hy-
brid user/kernel space architecture. Compared to SplitFS,
Aerie shifts even more responsibility to user space, improving
metadata-heavy workloads. Applications can define their own
workload-specific file system interfaces in user space. This
design allows for higher performance than a single generic
interface, e.g., POSIX [37]. Aerie exposes two services in
user space: libFS and the Trusted File System Service, and the
SCM Manager in kernel space.

11

Figure 9: SplitFS U-Split relink procedure, partly based on
the figure made by Kadekodi et al. [37]

LibFS provides applications with the essential ability to
define a file system: the ability to map file names to file
metadata, and indexing, which translates a file offset into
a byte in memory. The Trusted File System Service (TFS)
handles the integrity of metadata updates and concurrency.
It runs as a Remote Process Call (RPC) service accessible
through a user-mode process. The SCM Manager multiplexes
physical PM allocations and maps backing pages into user
space. Note that for compatibility purposes, Aerie also defines
a POSIX-like interface, PXFS.

The performance of Aerie is evaluated using PXFS. Com-
pared to kernel-mode file systems (i.e., ext4), PXFS achieves
53%∼ 109% higher throughput in single-threaded workloads.
Unfortunately, the freedom Aerie provides comes at the cost
of poor multi-core scalability. PXFS do not scale linearly
beyond four threads due to contention in the TFS’s storage
allocator.

Kuco The authors of Kuco [23] find that multicore scal-
ability has not been well addressed by other file systems.
For example, Aerie relies on a centralized TFS to enforce
concurrency control, which becomes a bottleneck in high-
concurrency workloads. File systems that avoid the page
cache, e.g. SCMFS and SplitFS, still experience software
overhead due to kernel traps and the VFS.

Kuco’s high-level design is very similar to that of SplitFS,

in the sense that it proposes a client/server model in which
user (Ulib) and kernel space (Kfs) have their own responsi-
bilities. Kuco’s design shifts even more responsibility to the
user space to decrease the involvement of the kernel. To do
this, Kuco introduces three new techniques: collaborative
indexing, two-level locking, and versioned read.

Collaborative indexing: Kuco offloads most of the path
name resolution to a user space library, Ulib. Applications
communicate with a dedicated Ulib instance to perform meta-
data operations, e.g., chown(). An Ulib instance looks up file
metadata through the so-called partition trees. These data
structures are quite complex; therefore, we will not elabo-
rate on all the details here. For now, it is sufficient to un-
derstand that these complex tree structures maintain all the
file/directory inodes contained in a file system partition. When
a metadata operation is initiated, Ulib performs the required
pathname resolution by traversing the corresponding partition
tree. It looks up all related metadata items in user space and
includes the associated virtual memory pointers in the sys-
tem call payload. After performing the necessary consistency
checks, Kfs can perform the metadata operations directly by
writing to the corresponding virtual memory. Using this ap-
proach, expensive locking is avoided as only Kfs can perform
metadata updates.

Two-level locking is used to coordinate concurrent file
writes. Kuco introduces direct access range-lock to serial-
ize fine-grained concurrent writes by performing region lock-
ing. Using this lock, multiple threads can write different data
pages in the same file simultaneously.

The versioned read mechanism allows for user-level reads
without any kernel involvement, avoiding an expensive RPC
or system call. It ensures that readers never read data that is
out-of-date/incomplete by embedding a ‘version field’ in each
data pointer inside the block mapping table.

Combining these techniques, Kuco achieves up to one mag-
nitude higher throughput in small I/O workloads compared to
SplitFS, PMFS, and Ext4-DAX. In a 16-thread Filebench [49]
benchmark, Kuco outperforms PMFS throughput by 1.2×,
and Ext4-DAX by 1.9×.

ZoFS The last hybrid file system that we discuss is ZoFS.
Like Aerie, ZoFS gives the user space direct control over both
data and metadata, allowing applications to design their own
file systems. We already mentioned that Aerie’s multicore
performance does not scale linearly due to contention inside
the user space TFS. To improve parallel performance, ZoFS
proposes an alternative implementation in which applications
can access metadata without a user-space library.

In Aerie, applications must request permission from the
TFS every time it wants to access file data. In ZoFS, an
application only requests permission once, avoiding TFS’s
performance-degrading Remote Procedure Calls (RPCs). This
is done by issuing a system call directed to ZoFS’s kernel
module: KernFS. If permission is granted, KernFS assigns

12

the application an coffer: a range of PM pages that share the
same permission properties [23]. Protection and isolation of a
coffer are enforced in hardware through Intel’s Memory Pro-
tection Keys (MPK) [20, 35]. It allows the kernel to restrict
the permissions of memory regions mapped in user space. For
example, one could map a set of PM pages as read-only in
user space. This feature is supplemental to the MMU’s page
protection bits; both permission checks will be performed
during memory access. Once access is granted and associated
coffer PM mappings are inserted, applications can access the
associated memory region without any kernel interference
during the application lifetime.

Compared to other PM file systems, ZoFS achieves higher
throughput in workloads that affect a fixed set of file blocks,
e.g., constantly appending data to the same set of files. This
is because the number of context switches into the kernel is
significantly reduced. Workloads that involve a dynamic set
of files perform worse due to an increase in coffer access
requests, resulting in a higher number of context switches.

To summarize, a contiguous file system design enables ap-
plications to access PM from user space, reducing kernel in-
volvement. These ‘hybrid’ file systems (SplitFS, Aerie, Kuco,
and ZoFS) allow the construction of application-tailored file
systems in user space, reducing the role of the kernel, which
ultimately results in better parallel performance and through-
put compared to PM file systems that extensively modify the
existing kernel I/O stack (see subsection 4.1).

4.3 Design: Log-Structured

This category of PM file systems mainly uses logs for storage.
As mentioned in subsection 3.4, log-structured file systems
optimize for sequential performance and are still relevant
today. Modern log-structured file systems for flash devices
are SFS [51] and F2FS [40]. SFS proposes the cost-hotness
policy, where blocks with similar ’hotness’ are assigned to
groups for faster Garbage Collection. F2FS introduces multi-
head logging: data blocks are categorized as "cold", "warm",
or "hot" and are located at separate physical zones on the
flash device. SFS and F2FS are designed to work with a
wide range of flash devices, e.g. conventional block SSDs or
Zoned Namespace (ZNS) devices. Therefore, they do not take
advantage of the byte-addressable properties of PM.

In this subsection, we discuss NOVA [79] and Strata [39],
log-structured file systems that take advantage of PM to create
faster log-structured file systems.

NOVA The log-structured NOVA file system [79] aims
to maximize PM performance while providing stronger
consistency guarantees than BPFS [18], SCMFS [77], and
Aerie [71]. As mentioned before, BPFS does not perform
well in certain operations, e.g. a directory move. Further-
more, SCMFS does not provide any consistency guarantees

for (meta) data. Another observation they make is that Aerie
does not support atomic data operations.

Conventional log-structured file systems store metadata
and actual data blocks in the log. NOVA deviates from this
design in three design choices.

First, it proposes a logging structure where each inode is
assigned a separate log to allow for parallelism. Synchroniza-
tion primitives, e.g., mutexes or locks, are avoided by only
allowing one open transaction at a time on each core. Logs
are stored as linked lists in PM, so they can grow or shrink in
length and do not need to be contiguous in memory.

Second, logs only store file metadata, so no data blocks.
The data blocks are divided into pools, one per CPU. Each
CPU maintains a red-black tree [53] in DRAM to keep track
of free blocks in ascending order of addresses to enable fast
merging and deallocation.

Third, NOVA uses journaling in cases where metadata up-
dates span multiple inodes. For example, changing file per-
missions is a metadata-only operation; however, truncating
a file updates the file data, file size, and modification date.
In such cases, NOVA first commits the data. Then, the up-
dated metadata is appended to the corresponding file inode
log. Finally, NOVA journals all affected log tails.

Figure 10: NOVA file system log-structure

Figure 10 graphically displays the layout of the NOVA file
system. As mentioned before, note that each CPU maintains
its own free list and inode table. Each table entry stores two
pointers; one for the inode log head and tail, respectively.
Additionally, NOVA stores a super block and a recovery inode.
The first has a purpose similar to that of conventional file
systems. The latter stores the page allocator state to allow
faster recovery after normal shutdown.

In case of an improper shutdown, NOVA performs a recov-
ery routine, consisting of two steps. First, NOVA rolls back
any uncommitted file system transactions to bring the file
system back into a consistent state. Second, each CPU recon-
structs its free list by scanning the inode table, also known as
a log scan.

13

Strata Another log-structured file system is Strata. The file
system model of Strata is fundamentally different compared
to the file systems we discussed before. These file systems
assume that each file system is linked to a single physical
device, in this case, PM. Strata, on the other hand, proposes a
file system that spreads data across different storage devices.
This enables Strata to capture the unique properties of mul-
tiple storage devices, such as PM, SSD, or HDD, in one file
system [39].

To implement such a storage model, Strata implements a
split architecture similar to what we have seen in SplitFS [37],
as displayed in Figure 11. We will elaborate the most impor-
tant components in this figure.

Figure 11: Strata file system log-structure and data digesting,
triggered by log occupancy

LibFS exposes a POSIX-compliant interface to applica-
tions in user space. To attach fast write performance, each
application is assigned a dedicated log for file system I/O
operations, stored in fast PM. Note that this multi-log design
differs from what we have seen in the NOVA FS; each log is
assigned a separate log, instead of one log per file.

Applications access Strata through POSIX calls. File writes
are transformed into transactions and appended to the log, as
depicted in Figure 11. File reads are handled with the help
of an inode-like data structure, which we will discuss in a
moment.

In the kernel space, KernelFS is responsible for garbage col-
lection and digesting: the process of aggregating file data into
sequential disk areas to minimize fragmentation [39]. This
means that in user space, where writes are not block-aligned,
digesting ensures that device-level write amplification is min-
imized by coalescing writes into block-aligned writes favor-

able for the selected ’level’. KernelFS maintains multiple
digest levels, where each level corresponds to a single storage
device, as illustrated in Figure 11. Digesting is performed in
the background and is initiated when the application log is
filled beyond a threshold, for example, 30%.

Due to digesting, the file’s data blocks may be scatted
over multiple digest levels, complicating file reads. Therefore,
Strata uses adapted inodes to structure file metadata. Each
inode contains one or more extent trees, each representing a
storage device. The tree nodes point directly to the file’s data
blocks.

Discussion In subsection 4.1, we discussed the first PM-
capable file systems released between 2009 and 2016 (Fig-
ure 12). These file systems adapt the existing kernel I/O in-
frastructure to support PM. Additionally, they use DAX to
bypass the OS page cache. Hybrid file systems use a different
approach. These file systems enable the construction of PM-
aware file systems in user space, allowing application-tailored
optimizations. In addition, they reduce kernel overhead by
offloading metadata management to user space, increasing
throughput and parallel performance. This class of PM-file
systems became mainstream, as seen in Figure 12.

Figure 12: PM file systems positioning: Metadata Manage-
ment and File Block Access

5 File Indexing Overhead

As discussed in the introduction (section 1), PM achieves
performance close to DRAM, shifting the overhead from
the device to the I/O stack. Multiple studies show that file
indexing has a significant impact on performance [43, 54, 73];
in extreme cases, up to 45% of the total runtime [9]. In this
section, we consider the two most prominent issues related to
file indexing when using PM: file mapping and the path walk
overhead in the Linux Virtual File System (VFS).

HashFS and ctFS aim to improve file mapping performance,
that is, the operation of mapping a logical file offset to a phys-

14

ical location on the underlying storage device [54]. HashFS
uses a hash table to extract more performance, while ctFS
proposes a design in which the translation is performed in
hardware using the MMU.

Afterward, we cover FlatFS and ByVFS, which decrease
VFS path walk overhead. In a path walk, the VFS traverses a
file path, for example, "/foo/bar.txt", to return informa-
tion about the file bar.txt.

5.1 Improving File Mapping Performance

The authors of HashFS [54] mention that multiple properties
negatively impact the performance of a PM file system. First
of all, file system fragmentation results in files being allocated
in non-contiguous PM regions, resulting in larger mapping
structures, which in turn causes poor search and insert perfor-
mance. Take PMFS’s B+ tree (section 4), for example. If a file
is heavily fragmented the tree grows rapidly in size, resulting
in slower tree traversal 6.

Another issue is related to the per-file mapping scheme.
Many traditional file systems optimized for slow block devices
(e.g. ext4) use a simple isolation mechanism: a read/write
lock covers the entire structure to enforce mutual exclusion.
Consequently, concurrent performance is limited; only one
thread may write to a file in any given time frame.

HashFS’ main contribution is to solve the aforementioned
issues by implementing hash-based file mapping. Compared
to Radix/Extent trees (see subsection 3.3), hash tables require
considerably fewer and smaller memory accesses, therefore,
are convenient to store in PM. It is important to understand
that HashFS should be seen as a standalone optimization; its
contributions can be used in unison with existing state-of-the-
art PM file systems that we discussed in section 4.

The HashFS paper describes two implementations. The
first implementation uses Cuckoo hashing; a form of hashing
in which each entry is hashed twice using two different hash
functions to avoid hash collisions [58]. Figure 13 displays an
example in which a Cuckoo hash table lookup is performed.
It consists of multiple steps:

(1) In the first step, two different hashing functions compute
the hash for the logical block number 15. (2) The first hash
points to the second entry in the hash table; however, its
logical block is not equal to 15. (3) The second hash points
to the correct entry as its logical block matches. (4) We find
the corresponding physical block number by consulting the
metadata structure stored in the hash table entry.

The second (final) HashFS implementation uses linear
probing: a hashing function that avoids hash collisions by
maintaining key-value pairs for each hash table entry that
contains conflicting hash values. Compared to Cuckoo hash-
ing, linear probing limits search overhead in the event of a
hash collision, as conflicting entries are stored in adjacent

6A B+ tree worst-case time complexity is logarithmic: O(log n) [6]

Figure 13: Cuckoo hash table lookup example

locations, which is beneficial for PM performance [68]. The
operation of mapping a logical file offset to a physical PM
location consists of multiple steps, as depicted in Figure 14:

Figure 14: HashFS file mapping operation using Linear Prob-
ing

(1) First, the logical block number 15 is hashed. (2) In the
second step, we jump to the corresponding entry in the hash
table. The logical block does not match, so a hash collision
must have occurred. (3) We iterate over the conflicting entries
in adjacent locations until we have found a match. (4) As the
hash table entries and the physical PM locations are mapped
one-to-one, the entry offset in the hash table is the physical
block number.

This one-to-one mapping scheme makes it straightforward
to achieve good parallel performance: approximately a 4.5×
decrease in latency for 4 kB sequential reads, 5× decrease
for 4 kB random reads, and 10× decrease for 4 kB inserts
compared to Radix Trees.

ctFS takes a different approach by offloading file mapping
operations to the MMU [43]. In a Background section (sub-
section 3.2), we already mentioned the notion of a hierachical
page table: a tree structure that maps virtual addresses to phys-
ical addresses. Note that a hierarchical page table and a Radix
tree (see subsection 3.3) share a common feature; they both
use simple offset calculations to traverse the tree. A key dif-
ference is that the Radix tree walk is implemented in software,

15

whereas the faster page table walk is implemented entirely in
hardware. Therefore, offloading the file mapping operation to
the MMU could be very beneficial for performance.

ctFS introduces the notion of a Persistent Page Table (PPT):
a page table that can be stored in PM. Conventional page ta-
bles are volatile structures, which means that, at shutdown,
they are lost forever. In the context of performing a file map-
ping operation, this is undesirable behaviour, as logical to
physical block mappings would be irreversibly lost after shut-
down. Therefore, ctFS stores the page table entries used for
file mapping entirely in PM. During initialization, ctFS copies
PTT entries into the kernel’s DRAM page table, which is then
used by the MMU to perform fast address translation when
accessing PM. In the event of a page fault, ctFS allocates a
new persistent page, creates a new mapping in the PTT, and
finally copies the mapping to the kernel page table.

Like SplitFS, ctFS uses a hybrid architecture where user
and kernel space have distinct responsibilities. ctU manages
the structure of the file system. It maintains various partitions.
Each partition level contains blocks that are 8× the size of the
partitions in the previous level, for example, 32 kB in level 1,
since the partition size of level 0 is 8 kB. ctK makes sure that
the MMU can perform the address translation and that the
changes are persistent. It does so by ensuring that the kernel’
DRAM page table mappings are an exact copy of those stored
in the PPT in PM.

Figure 15 provides an example in which a file mapping
operation is performed. Observe that the entire file system
is mapped into user space. Suppose a user performs a read
operation at virtual address 0x80001222. To find the corre-
sponding physical location in PM, the MMU performs a page
table walk. More specifically, the MMU refers to the kernel
page table to find the corresponding PTT entry, which con-
tains the virtual-to-physical memory mapping, in this case
0x80001222 to 0x20008222.

Figure 15: ctFS file mapping operation example

In short, we have seen two techniques to improve file map-
ping performance. Hash tables are convenient structures to
store in PM and allow for fine-grained locking, resulting in

improved parallel performance. Offloading the translation to
the MMU is another promising technique.

5.2 Virtual File System Overhead
The Virtual File System (VFS) provides a software abstraction
that enables access to different file systems using a uniform
interface. In addition, it provides protection and concurrency.

The VFS caches multiple structures to improve perfor-
mance, namely: the super block, directory entries (dentry),
and file inode. The latter two are especially important for the
path walk. During the walk, the VFS inserts the correspond-
ing intermediate directory entries into a dentry cache [17].
This is beneficial for performance as applications are likely
to access the same file again in the near future [73, 9].

In traditional slow block devices, e.g. an HDD, disk laten-
cies are significantly higher than path walk latency. In such
cases, caching intermediate directory entries is the logical
thing to do. However, this claim does not apply to PM, as
the time spent retrieving the entry from the dentry cache is
greater than the latencies observed when writing/reading to
PM, decreasing overall performance.

Based on this insight, the authors of ByVFS [73] suggest
that removing the dentry cache would be beneficial for per-
formance, especially in small I/O workloads. They claim to
reduce the execution time by ∼ 48% for a stat call, using
NOVA as the underlying file system.

The authors of the FlatFS paper [9] identified another issue.
They acknowledge that ByVFS improves indexing perfor-
mance significantly; however, they point out another issue
related to the path walk. The files and directories contained
in the namespace tree are physically scattered throughout
the storage device, resulting in poor data locality and indi-
rect memory accesses [9]. Additionally, the namespace tree
traversal introduces random memory accesses as the directory
entries of different directories are scattered across the device.
Multiple studies [33, 80] have shown that such random access
patterns result in suboptimal PM performance.

To solve these problems, FlatFS proposes the novel coor-
dinated file path model. This model improves data locality
performance by introducing a ‘flat’ namespace structure in
which contiguous directory entries in a namespace are also
stored consecutively within PM. A path walk only involves a
single lookup, avoiding the aforementioned expensive names-
pace tree traversal.

The ‘coordinated file path model’ consists of two com-
ponents: the traditional component-at-a-time model and the
novel full-path-at-a-time model. The traditional walk model is
included to accommodate namespace switches. Such a names-
pace switch may occur when certain semantic path compo-
nents (e.g., dot-dot (..), a mount point change, or symbolic
links) are encountered.

The ‘full-path-a-at-a-time model’ first performs preprocess-
ing to speed up the lookup, e.g., dots, redundant slashes, or

16

semantic path elements are removed. After preprocessing,
this canonical path is passed to the semantic path component
finder. This component searches for the corresponding inode
in a persistent range-optimized Br tree, after which a permis-
sion check occurs. A Br tree is an adapted B tree that provides
faster range operations [9], speeding up file system operations,
such as a directory copy. Its tree nodes are 256 bytes aligned,
the optimal memory access granularity of Intel Optane DC
Persistent Memory [80]. A Br tree lookup is performed using
the Write-optimized Compressed (WoC) key as an index. In-
stead of using the full preprocessed path as an indexing key,
FlatFS uses the smaller WoC key to reduce storage consump-
tion. Every index key is divided into two parts, a prefix and a
suffix. All keys in the same tree node share the same prefix,
allowing for smaller index keys.

In addition, WoC keys use a complex caching layout to
avoid write amplification. Suppose that we insert a new key
into the Br tree. This insertion may cause prefix expansion of
other keys, leading to many small writes. Instead of storing the
entire prefix within each key, FlatFS caches prefixes in DRAM
and only adjusts the prefix size when necessary, avoiding write
amplification and costly cache line flushes.

Using the aforementioned techniques, FlatFS achieves sta-
ble path latency, regardless of the file path length. Moreover,
FlatFS outperforms a hot dentry cache, which strengthens the
claim that a directory cache imposes a performance penalty
when using PM.

To summarize, we have seen that a substantial amount of
VFS overhead comes down to caching and an expensive path
walk. Due to PM’s low read latency, some caching structures
inside the VFS serve no purpose, in particular the directory
cache. Path walk performance can be improved by a coordi-
nated file path walk model.

6 Data Crash-Consistency

In this section, we investigate how persistent memory file sys-
tems guarantee data crash consistency. First, we classify the
PM file systems, discussed in Sections 4 and 5, by the high-
level consistency technique(s) they employ, i.e., as shadow
paging, log-structuring, journaling, or more exotic/hybrid vari-
ants. We already provided the relevant background for the
conventional well-known persistence techniques in subsec-
tion 3.4. Therefore, we focus on more novel/innovative de-
signs that provide persistence guarantees while maintaining
good performance. Subsequently, we address the issue of
write reordering.

This combination of data consistency and enforced write
ordering allows PM file systems to support ACID transactions,
that is, transactions that adhere to the properties of Atomicity,
Consistency, Isolation, and Durability [32]. An operation is
atomic if and only if updates are committed in all or none
manner [25]. Data consistency implies that memory writes
must be performed in a strict format/order for correct recovery

in the event of a crash. Isolation ensures that transactions do
not affect each other. Durability ensures that the data affected
by a completed transaction must be persistent, even in the
event of system failure [44, 76].

6.1 Consistency Techniques

Table 5 provides an overview that relates different crash-
consistency techniques to the PM file systems we discussed
in previous sections. Based on this overview, we can derive
multiple interesting trends.

(1) First, note that several file systems (PMFS [25],
HiNFS [57], NOVA [79], ctFS [43], Kuco [15], ZoFS [23])
use a hybrid approach. In this approach, small (meta) data
updates are performed using atomic in-place updates, whereas
more performance-degrading techniques handle larger writes,
for example, journaling [18]. Suppose that we want to ap-
pend to a file. Instead of inserting a new log entry into the
journal consisting of all modifications performed, e.g. data
blocks, file modification date, file size, etc., we distinguish
between small and large writes. Small writes, such as modi-
fying the file modification date or size, can be performed us-
ing low-cost atomic instructions, e.g., Intel’s 64-byte atomic
store instructions 7. The atomicity and durability of larger
writes is enforced through the more performance-diminishing
crash-consistency techniques we discussed in subsection 3.4:
Journaling, Shadow Paging, Log-Structuring.

(2) Second, an emerging trend is that PM file systems use
operation logging (subsection 3.4) to record transactions.
Bhat et al. [5], authors of ScaleFS, have shown that an in-
memory file system, in combination with an operation log, re-
sults in reduced write amplification and improved concurrent
performance on slow disk devices compared to more conven-
tional undo/redo logging. These forms of logging involve ei-
ther a full copy to record data in the log (Ext4-DAX), perform
a lazy copy using Shadow Paging (BPFS), or require exten-
sive modification of file system metadata structures (PMFS,
HiNFS) [39]. SplitFS [37], Strata [39] and Kuco [15] bring
the concept of operation logging to PM file systems.

In SplitFS and Kuco, the log entries do not contain file data;
instead, they only contain a pointer to the staging file in mem-
ory [37]. Log entries persist by performing 64-byte atomic
writes. To ensure that log entries persist in the right order,
each log write is accompanied by a sfence memory barrier.
File systems that use redo/undo logging, such as NOVA or
PMFS, use the tail pointer to revert changes in case of failure;
hence, they update the tail pointer using expensive clflush
and sfence instructions. In SplitFS, the tail pointer can be
reconstructed in a crash, so there is no need to store it in
PM. It is stored in DRAM and is atomically advanced using
atomic Compare-and-Swap (CAS) operations, resulting in
better parallel performance.

7See Section 8.2.4 - Intel Architecture Software Developer Manual [35].

17

Method →
File System ↓ Atomic in-place updates Log-structuring Shadow Paging Journaling

BPFS ✓ Short-Circuit Shadow
Paging

PMFS ✓ Small Metadata
Updates

✓ Only for Data Blocks ✓ Undo Logging, for
Large Metadata Updates

HiNFS ✓ Small Metadata
Updates

✓ Only for Data Blocks ✓ Undo Logging, for
Large Metadata Updates

Ext4-DAX ✓ Redo Logging*
SCMFS
SplitFS ✓ Using relink

primitive
✓ Operation Logging to

record file operations
Aerie ✓ Redo Logging
NOVA ✓ Small Metadata

Updates
✓ Large Metadata

Updates
✓ Metadata Updates

spanning multiple inodes
Strata ✓ Operation Logging in

user space, Redo Log for
digest areas in kernel

space
ctFS ✓ Only for Data Blocks,

using pswap primitive
✓ Redo Logging for
Metadata Updates

Kuco ✓ Only for Data Blocks ✓ Operation Logging to
record file operations

ZoFS ✓ Small Metadata
Updates

HashFS ✓ Hash Table Insertions ** ** **

Table 5: PM file systems crash-consistency techniques. Orange cells represent hybrid implementations. *: optional, **: HashFS
only implements PM-optimized file mapping, file block consistency should be enforced through the PM file system [54].

The Strata file system uses a hybrid setup. In user space,
operation logging is performed like SplitFS, except that Strata
stores per-inode log pointers in PM. Eventually, the data con-
tained in PM gets digested into block updates, which are then
stored in redo logs located in the kernel digest areas.

(3) The last trend is related to Shadow Paging. Although
Shadow Paging avoids extensive in-place updates, it still
suffers from high write amplification due to write propa-
gation [18]. As discussed in section 4, BPFS avoids write
amplification by its Short-Circuit Shadow Paging. However,
it still incurs a large overhead when performing operations
that cover a large part of the file system tree [79].

Recent work aims to address this issue by introducing two
new primitives that perform Shadow Paging without data
movement. We already discussed the first primitive, relink,
in section 4. Using relink, contiguous data regions can be
moved atomically without any physical data movement, as
seen in Figure 9 [37]. The second primitive, pswap, is imple-
mented as a system call within ctFS’s kernel space library,
ctK. Atomically, it swaps the Page Table Entries (PTEs) cor-
responding to two same-sized contiguous virtual memory
regions in the Persistent Page Table (PPT).

We illustrate the purpose of pswap using an example. Sup-
pose that a user wants to append to a file x at offset z. First,

ctU (ctFS’s user space library) allocates a staging partition
P1 in the PTT and copies the data to the same offset z within
this partition. Then, ctU invokes pswap to atomically merge
the original data contained in partition P0 with the new data
in P1, persisting the data. Metadata updates are recorded in
the redo log.

In short, we have seen four consistency techniques used
in PM file systems: atomic in-place updates, log-structuring,
shadow paging, and journaling. Most PM file systems imple-
ment a hybrid approach, as they identified that storing both
data and metadata in a log results in poor performance. In the
hybrid approach, data blocks are made consistent by perform-
ing inexpensive shadow paging using relink or pswap di-
rectives. Metadata persistence is achieved through a low-cost
operation log: a log that only stores file/directory operations,
and not the actual data involved.

6.2 Enforcing Write Ordering

We already touched on the issue of write ordering in the In-
troduction and Background (Sections 1, 3). In short, the order
in which data is written to disk may differ from the user’s
intentions, as a CPU can reorder writes for performance, re-
sulting in data inconsistencies before entering the Persistence

18

Domain (PD). According to the relevant literature [18, 4, 35,
45], there are four options to enforce write ordering.

(1) The first option is to completely bypass the cache by
performing write-through caching: the cache and the actual
PM location are written at the same time. In 2011, Bhandari
et al. [4] mentioned that this form of ordering has a slight ad-
vantage in CoW-based PM file systems. However, this claim
should be taken with a grain of salt, as PM was not yet main-
stream, thus platform support was minimal.

(2) Another option is to flush the entire cache at each mem-
ory barrier. A side effect is that the performance of other
applications may degrade as its working set may be (partly)
evicted from the cache.

(3) Alternatively, we can perform a more fine-grained flush.
Instead of flushing the entire cache, we keep track of the cache
lines in use and only flush those that contain file system (meta)
data. Intel supports selective flushing by the clflush instruc-
tion. A mfence instruction ensures that all load and store
instructions issued before mfence are serialized in the order
they were performed. The sfence and lfence instructions
provide this guarantee solely for store and load instructions,
respectively [35].

Although this form of ordering does not degrade the perfor-
mance of the cache for other applications, it is still expensive.
Bhandari et al. [4] mention that one cache line flush takes
around 300 CPU cycles on an Intel(R) Xeon(R) E5620 @ 2.4
GHz processor with a total of 12 MB cache.

To improve performance, Intel added two new instruc-
tions, namely clflushopt and clwb. The first provides an
unordered version of clflush, allowing some concurrency
when running multiple PM load/store instructions back-to-
back. clwb behaves similarly to clflushopt, but does not
invalidate the cache line [60, 69, 45].

(4) The final option is to allow software to explicitly com-
municate ordering constraints to hardware. The CPU is free
to perform read and write caching, but must ensure that the
ordering constraints are satisfied. In 2009, BPFS [18] pro-
posed a new hardware extension called a epoch barrier: a
sequence of PM writes from the same thread delimited by
a memory barrier issued in software. In 2015, Intel released
this extension by introducing the PCOMMIT instruction. This
instruction ensures that a user-specified memory range is writ-
ten to persistent storage [45] 8.

Table 5 displays an overview that relates the ordering tech-
niques mentioned above to PM file systems. The file sys-
tems are ordered chronologically by their release date. One
trend we can observe is that more recent work tends to use
PM-specialized flush instructions, such as clflushopt, while
older file systems use a more conventional clflush approach.

In summary, we have seen multiple options to enforce
write ordering: bypass the cache entirely, coarse/fine-grained
flushing, and the epoah barrier. Flushing the cache at cache

8This instruction was later deprecated in favor of clflushopt and
clwb [62]

line granularity using clflushopt is the preferred method of
choice, as it allows for some concurrency when PM load/store
instructions are executed.

Applicable to →
File System ↓ Metadata Data Blocks

BPFS ✓ (4): epochs ✓ (4): epochs
PMFS ✓ (3, 4) ✗

HiNFS ✓ (3): clflush &
mfence

✗

Ext4-DAX ✗ ✗

SCMFS ✓ (3): clflush &
mfence

✓ (2)

SplitFS ✓ (3): clflush &
sfence

✓ (3): clflush &
sfence

Aerie ✓ (3): clflush &
sfence

✓ (3): clflush &
sfence

NOVA ✓ (3): clflushopt
& clwb

✓ (3): clflushopt
& clwb

Strata ✓ (3): clflushopt*
or clflush

✓ (3): clflushopt*
or clflush

Kuco Not Specified Not Specified
ZoFS ✓ (3): clflushopt

& clwb
✓ (3): clflushopt

& clwb

HashFS Not Applicable Not Applicable
ByVFS Not Applicable Not Applicable

Table 6: PM file systems ordering enforcing techniques. *:
preferred, if CPU support PMEM extensions

7 Open Problems and Future Work

Although Persistent Memory brings exciting performance im-
provements to applications, widespread adoption has not (yet)
been reached. There seems to be no consensus among appli-
cation developers about where to use PM and what benefits it
provides [26]. In addition, the best-performing file systems,
Kuco, ZoFS and ctFS, require massive application refactoring
as POSIX-like file semantics are not available. As a result,
there is a trade-off to be made between user convenience and
performance, which we have not covered in this work.

In July 2022, Intel discontinued the Intel Optane product
line. However, we do not expect software support to be discon-
tinued in the near future; hence, PM-related research will con-
tinue. There are already emerging alternative devices: Kioxia
and Everspin [65]. Another promising alternative is called the
Compute Express Link (CXL): a cache-coherent interconnect
running on top of PCIe [78]. The early file system prototypes
released by Microsoft [42] and Meta [47] show promising
results. Further work may include a study that looks at the
advantages and differences of this technology compared to
Intel’s Optane PM. Other studies can dive into the specifics
of implementing a CXL file system: “How CXL devices inter-

19

act with modern workloads?", “What is the position of CXL
memory inside the server micro-architecture?".

8 Conclusion

In this survey, we have discussed how file systems address
the three most prominent challenges when using Persistent
Memory (PM): the overhead shift from the device to the host
I/O stack, indexing overhead, and data persistence.

Before we answer the main research question, we first pro-
vide an answer for each of the subquestions:

• RQ1 - How have the properties/features of Persistent
Memory led to changes in file system design?

First, PM file systems bypass the page cache using Direct
Access (DAX) to allow the user to directly modify file
data in user space using MMU mappings. Other work
focuses on the role of the kernel. In older PM file sys-
tems, the kernel bears full responsibility for maintaining
metadata in a consistent state. More recent work shifts
more responsibility to the user (see Figure 12), which
in turn results in greater flexibility for applications to
design custom-tailored file systems and extract the full
potential of PM.

• RQ2 - “Which optimizations help to decrease file index-
ing overhead in small I/O workloads?":

The file indexing overhead is due to poor file mapping
performance and the expensive VFS path walk. The first
issue is addressed by the introduction of a PM-optimized
hash table. Another promising approach is to offload the
translation to hardware via the Memory Management
Unit. The performance impact of the VFS can be re-
duced by removing the redundant directory cache and
introducing an adapted file path walker.

• RQ3 - “How can Persistent Memory file systems guar-
antee data crash consistency?":

Data consistency must be enforced in software and
hardware. In software, most file systems use a hybrid
approach where data persistence is enforced through
inexpensive Shadow Paging and metadata persistence
through an operation log and atomic in-place updates.
At the hardware level, file systems use PM-optimized
flushing instructions to enforce data ordering.

Now, we can answer the main research question, “Which
file system design changes are needed to cope with the chal-
lenges that arise when using Persistent Memory?": We can
definitely conclude that significant changes to the existing
storage stack are necessary to extract the full performance po-
tential of PM storage. When possible, the page cache should
be avoided, as it serves no purpose in PM. Exposing device
control to user space allows applications to fully leverage

PM’s byte-addressable properties. Data persistence must be
enforced at the software and hardware level.

20

Glossary

ADR Asynchronous DRAM Refresh. 5

AIT Address Translation Table. 5

ASLR Address Space Layout Randomization. 11

CAS Compare-and-Swap Operation. 17

CoW Copy-on-Write. 8

CPU Central Processing Unit. 1

CXL Compute Express Link. 19

DAX Direct Access. 1, 5, 6, 9

eADR Extended Asynchronous DRAM Refresh. 5

HDD Hard Disk Drive. 1

KV Key-Value. 3, 6

LSM Log-Structured Merge. 6

MMU Memory Management Unit. 2, 4, 10

PD Persistence Domain. 5, 19

PM Persistent Memory. 1, 3, 20

PPT Persistent Page Table. 16, 18

PTE Page Table Entry. 18

RPC Remote Procedure Call. 12

SCM Storage Class Memory. 1, 10

SSD Solid State Drive. 1, 3

TLB Translation Lookaside Buffer. 11

VFS Virtual File System. 2, 6

WA Write Amplification. 6, 8

WAL Write-Ahead Log. 7

WoC Write-optimized Compressed Key. 17

WPQ Write Pending Queue. 5

ZNS Zoned Namespace. 13

References

[1] R. Agarwal. Journaling and Log-Structured File Sys-
tems. New York, NY, USA, 2020.

[2] Katelin Bailey et al. “Operating system implications of
fast, cheap, non-volatile memory”. In: Proceedings of
the 13th USENIX conference on Hot topics in operating
systems. HotOS’13. USA: USENIX Association, 2011,
p. 2. (Visited on 12/07/2022).

[3] Livio Baldini Soares and Michael Stumm. ““FlexSC:
Flexible System Call Scheduling with Exception-Less
System Calls,””. In: Jan. 2010, pp. 33–46.

[4] K. Bhandari, D.R. Chakrabarti, and H.-J Boehm. “Im-
plications of CPU caching on byte-addressable non-
volatile memory programming”. In: (Jan. 2012).

[5] Srivatsa S. Bhat et al. “Scaling a file system to many
cores using an operation log”. In: Proceedings of
the 26th Symposium on Operating Systems Principles.
SOSP ’17. New York, NY, USA: Association for Com-
puting Machinery, 2017, pp. 69–86. ISBN: 978-1-4503-
5085-3. DOI: 10.1145/3132747.3132779. URL: http:
/ / doi . org / 10 . 1145 / 3132747 . 3132779 (visited on
11/27/2022).

[6] Anastasia Braginsky and Erez Petrank. “A lock-free
B+tree”. In: Proceedings of the twenty-fourth annual
ACM symposium on Parallelism in algorithms and
architectures. SPAA ’12. New York, NY, USA: Associ-
ation for Computing Machinery, June 2012, pp. 58–67.
ISBN: 978-1-4503-1213-4. DOI: 10.1145/ 2312005.
2312016. URL: http : / / doi .org / 10 .1145/ 2312005 .
2312016 (visited on 12/12/2022).

[7] btrfs - A modern copy on write(CoW) filesystem for
Linux. en. Aug. 2021. URL: https:// iceberg988.github.
io/posts/btrfs/ (visited on 11/20/2022).

[8] Paul Caheny et al. “Reducing Cache Coherence Traffic
with a NUMA-Aware Runtime Approach”. In: IEEE
Transactions on Parallel and Distributed Systems 29.5
(May 2018). Conference Name: IEEE Transactions on
Parallel and Distributed Systems, pp. 1174–1187. ISSN:
1558-2183. DOI: 10.1109/TPDS.2017.2787123.

[9] Miao Cai. “FlatFS: Flatten Hierarchical File System
Namespace on Non-volatile Memories”. In: Usenix
(July 2022). URL: https:// www.usenix.org/ system/
files/atc22-cai.pdf (visited on 05/10/2022).

[10] Miao Cai and Hao Huang. “A survey of operating sys-
tem support for persistent memory”. en. In: Frontiers
of Computer Science 15.4 (Feb. 2021), p. 154207. ISSN:
2095-2236. DOI: 10.1007/s11704-020-9395-3. URL:
https://doi.org/10.1007/s11704-020-9395-3 (visited
on 11/20/2022).

21

https://doi.org/10.1145/3132747.3132779
http://doi.org/10.1145/3132747.3132779
http://doi.org/10.1145/3132747.3132779
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/2312005.2312016
http://doi.org/10.1145/2312005.2312016
http://doi.org/10.1145/2312005.2312016
https://iceberg988.github.io/posts/btrfs/
https://iceberg988.github.io/posts/btrfs/
https://doi.org/10.1109/TPDS.2017.2787123
https://www.usenix.org/system/files/atc22-cai.pdf
https://www.usenix.org/system/files/atc22-cai.pdf
https://doi.org/10.1007/s11704-020-9395-3
https://doi.org/10.1007/s11704-020-9395-3

[11] Saarland Informatics Campus. Cache Latencies. URL:
https://uops.info/cache.html (visited on 12/08/2022).

[12] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
“Understanding intrinsic characteristics and system im-
plications of flash memory based solid state drives”. In:
ACM SIGMETRICS Performance Evaluation Review
37.1 (June 2009), pp. 181–192. ISSN: 0163-5999. DOI:
10.1145/ 2492101.1555371. URL: http:// doi.org/ 10.
1145/2492101.1555371 (visited on 11/20/2022).

[13] Shimin Chen and Qin Jin. “Persistent B+-trees in non-
volatile main memory”. In: Proceedings of the VLDB
Endowment 8.7 (Feb. 2015), pp. 786–797. ISSN: 2150-
8097. DOI: 10.14778/ 2752939.2752947. URL: http:
// doi.org/ 10.14778/ 2752939.2752947 (visited on
11/24/2022).

[14] Shuo-Han Chen et al. “Enabling union page cache
to boost file access performance of NVRAM-based
storage device”. In: Proceedings of the 55th Annual
Design Automation Conference. DAC ’18. New York,
NY, USA: Association for Computing Machinery, June
2018, pp. 1–6. ISBN: 978-1-4503-5700-5. DOI: 10 .
1145/3195970.3196045. URL: http://doi.org/10.1145/
3195970.3196045 (visited on 11/14/2022).

[15] Youmin Chen. “Kuco: Scalable Persistent Memory
File System with Kernel-Userspace Collaboration”. In:
Proceedings of the 19th USENIX Conference on File
and Storage Technologies. (Feb. 2021). URL: https:
// www.usenix.org/ system/ files/ fast21-chen-youmin.
pdf .

[16] Douglas Comer. “Ubiquitous B-Tree”. In: ACM Com-
puting Surveys 11.2 (June 1979), pp. 121–137. ISSN:
0360-0300. DOI: 10 . 1145 / 356770 . 356776. URL:
http : / / doi . org / 10 . 1145 / 356770 . 356776 (visited
on 11/22/2022).

[17] Kernel Development Community. Pathname lookup
— The Linux Kernel documentation. Kernel version
6.1.0. URL: https://www.kernel.org/doc/html/ latest/
filesystems/path-lookup.html (visited on 12/13/2022).

[18] Jeremy Condit et al. “Better I/O through byte-
addressable, persistent memory”. en. In: Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles - SOSP ’09. Big Sky, Montana,
USA: ACM Press, 2009, p. 133. ISBN: 978-1-60558-
752-3. DOI: 10.1145/1629575.1629589. URL: http://
portal.acm.org/citation.cfm?doid=1629575.1629589
(visited on 10/05/2022).

[19] B. Jack Copeland. “The Modern History of Comput-
ing”. In: The Stanford Encyclopedia of Philosophy.
Ed. by Edward N. Zalta. Winter 2020. Metaphysics
Research Lab, Stanford University, 2020. URL: https:
/ / plato . stanford . edu / archives / win2020 / entries /
computing-history/ (visited on 11/14/2022).

[20] Jonathan Corbet. Memory Protection Keys. May 2015.
URL: https:// lwn.net/ Articles/ 643797/ (visited on
11/28/2022).

[21] Alvin Cox. “JEDEC SSD Specifications Explained”.
en. In: JEDEC Standard (). URL: https : / / www .
jedec . org / sites / default / files / Alvin _ Cox %
20[Compatibility%20Mode]_0.pdf .

[22] Biplob Debnath, Sudipta Sengupta, and Jin Li. “Flash-
Store: high throughput persistent key-value store”. en.
In: Proceedings of the VLDB Endowment 3.1-2 (Sept.
2010), pp. 1414–1425. ISSN: 2150-8097. DOI: 10 .
14778 / 1920841 . 1921015. URL: https : / / dl . acm .
org / doi / 10 . 14778 / 1920841 . 1921015 (visited on
10/31/2022).

[23] Mingkai Dong et al. “Performance and protection in
the ZoFS user-space NVM file system”. In: Proceed-
ings of the 27th ACM Symposium on Operating Sys-
tems Principles. SOSP ’19. New York, NY, USA: Asso-
ciation for Computing Machinery, 2019, pp. 478–493.
ISBN: 978-1-4503-6873-5. DOI: 10.1145/ 3341301.
3359637. URL: http : / / doi .org / 10 .1145/ 3341301 .
3359637 (visited on 11/28/2022).

[24] Siying Dong et al. “RocksDB: Evolution of Develop-
ment Priorities in a Key-value Store Serving Large-
scale Applications”. In: ACM Transactions on Storage
17.4 (Oct. 2021), 26:1–26:32. ISSN: 1553-3077. DOI:
10.1145/ 3483840. URL: http: / / doi .org/ 10.1145/
3483840 (visited on 10/31/2022).

[25] Subramanya R. Dulloor et al. “PMFS: System software
for persistent memory”. In: Proceedings of the Ninth
European Conference on Computer Systems. EuroSys
’14. New York, NY, USA: Association for Computing
Machinery, Apr. 2014, pp. 1–15. ISBN: 978-1-4503-
2704-6. DOI: 10.1145/2592798.2592814. URL: http:
/ / doi . org / 10 . 1145 / 2592798 . 2592814 (visited on
10/27/2022).

[26] Russell Fellows. The Future of Optane and Persistent
Memory. nl. Mar. 2021. URL: https:// www.linkedin.
com/pulse/ future-optane-persistent-memory-russell-
fellows-1e (visited on 11/30/2022).

[27] Steve Fingerhut. Does Storage break Moore’s Law? A
Look at SSD vs HDD. en-US. July 2014. URL: https://
blog.westerndigital.com/does-storage-break-moores-
law/ (visited on 12/07/2022).

[28] Robert E. Fontana and Gary M. Decad. “Moore’s law
realities for recording systems and memory storage
components: HDD, tape, NAND, and optical”. In: AIP
Advances 8.5 (May 2018). Publisher: American Insti-
tute of Physics, p. 056506. DOI: 10.1063/1.5007621.
URL: http: / / aip.scitation.org/ doi / 10.1063%2F1.
5007621 (visited on 12/07/2022).

22

https://uops.info/cache.html
https://doi.org/10.1145/2492101.1555371
http://doi.org/10.1145/2492101.1555371
http://doi.org/10.1145/2492101.1555371
https://doi.org/10.14778/2752939.2752947
http://doi.org/10.14778/2752939.2752947
http://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/3195970.3196045
https://doi.org/10.1145/3195970.3196045
http://doi.org/10.1145/3195970.3196045
http://doi.org/10.1145/3195970.3196045
https://www.usenix.org/system/files/fast21-chen-youmin.pdf
https://www.usenix.org/system/files/fast21-chen-youmin.pdf
https://www.usenix.org/system/files/fast21-chen-youmin.pdf
https://doi.org/10.1145/356770.356776
http://doi.org/10.1145/356770.356776
https://www.kernel.org/doc/html/latest/filesystems/path-lookup.html
https://www.kernel.org/doc/html/latest/filesystems/path-lookup.html
https://doi.org/10.1145/1629575.1629589
http://portal.acm.org/citation.cfm?doid=1629575.1629589
http://portal.acm.org/citation.cfm?doid=1629575.1629589
https://plato.stanford.edu/archives/win2020/entries/computing-history/
https://plato.stanford.edu/archives/win2020/entries/computing-history/
https://plato.stanford.edu/archives/win2020/entries/computing-history/
https://lwn.net/Articles/643797/
https://www.jedec.org/sites/default/files/Alvin_Cox%20[Compatibility%20Mode]_0.pdf
https://www.jedec.org/sites/default/files/Alvin_Cox%20[Compatibility%20Mode]_0.pdf
https://www.jedec.org/sites/default/files/Alvin_Cox%20[Compatibility%20Mode]_0.pdf
https://doi.org/10.14778/1920841.1921015
https://doi.org/10.14778/1920841.1921015
https://dl.acm.org/doi/10.14778/1920841.1921015
https://dl.acm.org/doi/10.14778/1920841.1921015
https://doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/3341301.3359637
http://doi.org/10.1145/3341301.3359637
http://doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/3483840
http://doi.org/10.1145/3483840
http://doi.org/10.1145/3483840
https://doi.org/10.1145/2592798.2592814
http://doi.org/10.1145/2592798.2592814
http://doi.org/10.1145/2592798.2592814
https://www.linkedin.com/pulse/future-optane-persistent-memory-russell-fellows-1e
https://www.linkedin.com/pulse/future-optane-persistent-memory-russell-fellows-1e
https://www.linkedin.com/pulse/future-optane-persistent-memory-russell-fellows-1e
https://blog.westerndigital.com/does-storage-break-moores-law/
https://blog.westerndigital.com/does-storage-break-moores-law/
https://blog.westerndigital.com/does-storage-break-moores-law/
https://doi.org/10.1063/1.5007621
http://aip.scitation.org/doi/10.1063%2F1.5007621
http://aip.scitation.org/doi/10.1063%2F1.5007621

[29] Linux Foundation. Direct Access for files. URL: https:
// www.kernel.org/ doc/ Documentation/ filesystems/
dax.txt (visited on 11/08/2022).

[30] Linux Foundation. ext4 Data Structures and Algo-
rithms — The Linux Kernel documentation. URL: https:
// www.kernel.org/ doc/ html/ latest/ filesystems/ ext4/
globals.html#super-block (visited on 11/06/2022).

[31] Linux Foundation. Page Table Management. URL:
https : / / www . kernel . org / doc / gorman /
html / understand / understand006 . html (visited on
11/23/2022).

[32] Jinyu Gu et al. “Pisces: a scalable and efficient per-
sistent transactional memory”. In: Proceedings of the
2019 USENIX Conference on Usenix Annual Technical
Conference. USENIX ATC ’19. USA: USENIX Asso-
ciation, July 2019, pp. 913–928. ISBN: 978-1-939133-
03-8. (Visited on 11/26/2022).

[33] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu.
“Understanding the idiosyncrasies of real persistent
memory”. In: Proceedings of the VLDB Endowment
14.4 (Feb. 2021), pp. 626–639. ISSN: 2150-8097. DOI:
10.14778/3436905.3436921. URL: http://doi.org/10.
14778/3436905.3436921 (visited on 10/27/2022).

[34] IAIK. Paging on Intel x86-64 – IAIK. en-US. URL:
https : / / www. iaik . tugraz . at / teaching / materials /
os / tutorials / paging- on- intel - x86- 64/ (visited on
11/23/2022).

[35] Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual. Apr. 2022. URL: https:// cdrdv2.intel.
com/v1/dl/getContent/671200.

[36] Joseph Izraelevitz et al. Basic Performance Measure-
ments of the Intel Optane DC Persistent Memory Mod-
ule. arXiv:1903.05714 [cs]. Aug. 2019. DOI: 10 .
48550 / arXiv.1903 .05714. URL: http : / / arxiv.org /
abs/1903.05714 (visited on 11/16/2022).

[37] Rohan Kadekodi et al. “SplitFS: reducing software
overhead in file systems for persistent memory”. en. In:
Proceedings of the 27th ACM Symposium on Operating
Systems Principles. Huntsville Ontario Canada: ACM,
Oct. 2019, pp. 494–508. ISBN: 978-1-4503-6873-5.
DOI: 10.1145/ 3341301.3359631. URL: https: / / dl .
acm.org/ doi/ 10.1145/ 3341301.3359631 (visited on
10/05/2022).

[38] Jinhyung Koo et al. “Modernizing File System through
In-Storage Indexing”. en. In: ODSI ’21. 2021, pp. 75–
92. ISBN: 978-1-939133-22-9. URL: https : / / www.
usenix.org/conference/osdi21/presentation/koo (vis-
ited on 11/14/2022).

[39] Youngjin Kwon et al. “Strata: A Cross Media File
System”. en. In: Proceedings of the 26th Symposium on
Operating Systems Principles. Shanghai China: ACM,
Oct. 2017, pp. 460–477. ISBN: 978-1-4503-5085-3.
DOI: 10.1145/ 3132747.3132770. URL: https: / / dl .
acm.org/ doi/ 10.1145/ 3132747.3132770 (visited on
10/05/2022).

[40] Changman Lee et al. “{F2FS}: A New File System
for Flash Storage”. en. In: 13th USENIX Conference
on File and Storage Technologies (FAST 15). 2015,
pp. 273–286. ISBN: 978-1-931971-20-1. URL: https:
/ / www. usenix . org / conference / fast15 / technical -
sessions/presentation/ lee (visited on 11/20/2022).

[41] Adam Leventhal. “Flash storage memory”. In: Com-
munications of the ACM 51.7 (July 2008), pp. 47–51.
ISSN: 0001-0782. DOI: 10.1145/ 1364782.1364796.
URL: http : / / doi . org / 10 . 1145 / 1364782 . 1364796
(visited on 11/14/2022).

[42] Huaicheng Li et al. “Pond: CXL-Based Memory Pool-
ing Systems for Cloud Platforms”. In: ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS ’23) ((Oct. 2022). arXiv:2203.00241 [cs]. URL:
http : / / arxiv . org / abs / 2203 . 00241 (visited on
11/30/2022).

[43] Ruibin Li. “ctFS: Replacing File Indexing with Hard-
ware Memory Translation through Contiguous File
Allocation for Persistent Memory”. In: 20th USENIX
Conference on File and Storage Technologies (FAST
22). FAST’ 22 (2022). URL: https://www.usenix.org/
conference/ fast22/presentation/ li.

[44] Youyou Lu et al. “Loose-Ordering Consistency for
persistent memory”. In: 2014 IEEE 32nd International
Conference on Computer Design (ICCD). ISSN: 1063-
6404. Oct. 2014, pp. 216–223. DOI: 10.1109/ ICCD.
2014.6974684.

[45] Dan Luu. CLWB and PCOMMIT. URL: https://danluu.
com/clwb-pcommit/ (visited on 11/27/2022).

[46] Hector Marco-Gisbert and Ismael Ripoll Ripoll. “Ad-
dress Space Layout Randomization Next Generation”.
en. In: Applied Sciences 9.14 (Jan. 2019). Number:
14 Publisher: Multidisciplinary Digital Publishing In-
stitute, p. 2928. ISSN: 2076-3417. DOI: 10 . 3390 /
app9142928. URL: https : / / www.mdpi . com/ 2076-
3417/9/14/2928 (visited on 11/06/2022).

[47] Hasan Al Maruf et al. TPP: Transparent Page
Placement for CXL-Enabled Tiered Memory.
arXiv:2206.02878 [cs]. June 2022. URL: http :
//arxiv.org/abs/2206.02878 (visited on 11/30/2022).

[48] Avantika Mathur et al. “The new ext4 filesystem: Cur-
rent status and future plans”. In: Proceedings of the
Linux Symposium (Jan. 2007).

23

https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/html/latest/filesystems/ext4/globals.html#super-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/globals.html#super-block
https://www.kernel.org/doc/html/latest/filesystems/ext4/globals.html#super-block
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://www.kernel.org/doc/gorman/html/understand/understand006.html
https://doi.org/10.14778/3436905.3436921
http://doi.org/10.14778/3436905.3436921
http://doi.org/10.14778/3436905.3436921
https://www.iaik.tugraz.at/teaching/materials/os/tutorials/paging-on-intel-x86-64/
https://www.iaik.tugraz.at/teaching/materials/os/tutorials/paging-on-intel-x86-64/
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.48550/arXiv.1903.05714
https://doi.org/10.48550/arXiv.1903.05714
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/3341301.3359631
https://dl.acm.org/doi/10.1145/3341301.3359631
https://dl.acm.org/doi/10.1145/3341301.3359631
https://www.usenix.org/conference/osdi21/presentation/koo
https://www.usenix.org/conference/osdi21/presentation/koo
https://doi.org/10.1145/3132747.3132770
https://dl.acm.org/doi/10.1145/3132747.3132770
https://dl.acm.org/doi/10.1145/3132747.3132770
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/1364782.1364796
http://doi.org/10.1145/1364782.1364796
http://arxiv.org/abs/2203.00241
https://www.usenix.org/conference/fast22/presentation/li
https://www.usenix.org/conference/fast22/presentation/li
https://doi.org/10.1109/ICCD.2014.6974684
https://doi.org/10.1109/ICCD.2014.6974684
https://danluu.com/clwb-pcommit/
https://danluu.com/clwb-pcommit/
https://doi.org/10.3390/app9142928
https://doi.org/10.3390/app9142928
https://www.mdpi.com/2076-3417/9/14/2928
https://www.mdpi.com/2076-3417/9/14/2928
http://arxiv.org/abs/2206.02878
http://arxiv.org/abs/2206.02878

[49] Richard McDougall. FileBench. 2004. URL: http :
/ / www. nfsv4bat . org / Documents / nasconf / 2004 /
filebench.pdf .

[50] Paul McKenney. “Memory Ordering in Modern Micro-
processors, Part I | Linux Journal”. In: Linux Journal
(June 2005). URL: https: / / www.linuxjournal .com/
article/8211 (visited on 11/16/2022).

[51] Changwoo Min. “SFS: Random Write Considered
Harmful in Solid State Drives”. en. In: 10th USENIX
Conference on File and Storage Technologies (FAST
12). 2012. URL: https://www.usenix.org/conference/
fast12/ sfs-random-write-considered-harmful-solid-
state-drives (visited on 11/20/2022).

[52] Jayashree Mohan, Rohan Kadekodi, and Vijay Chi-
dambaram. Analyzing IO Amplification in Linux File
Systems. arXiv:1707.08514 [cs]. July 2017. DOI: 10.
48550/arXiv.1707.08514. URL: http://arxiv.org/abs/
1707.08514 (visited on 11/06/2022).

[53] John Morris. Data Structures and Algorithms: Red-
Black Trees. URL: https : / / www. cs . auckland . ac .
nz / software / AlgAnim / red _ black . html (visited on
11/21/2022).

[54] Ian Neal. “HashFS: Rethinking File Mapping for Per-
sistent Memory”. In: Proceedings of the 19th USENIX
Conference on File and Storage Technologies (Feb.
2021). URL: https:// www.usenix.org/ system/ files/
fast21-neal.pdf .

[55] NVM Programming Model (Version 1.2). June 2017.
URL: https : / / www . snia . org / sites / default /
files / technical - work / npm / release / SNIA - NVM -
Programming-Model-v1.2.pdf .

[56] Patrick O’Neil et al. “The log-structured merge-tree
(LSM-tree)”. en. In: Acta Informatica 33.4 (June
1996), pp. 351–385. ISSN: 1432-0525. DOI: 10.1007/
s002360050048. URL: https : / / doi . org / 10 . 1007 /
s002360050048 (visited on 11/24/2022).

[57] Jiaxin Ou, Jiwu Shu, and Youyou Lu. “HiNFS: A high
performance file system for non-volatile main mem-
ory”. In: Proceedings of the Eleventh European Con-
ference on Computer Systems. EuroSys ’16. New York,
NY, USA: Association for Computing Machinery, Apr.
2016, pp. 1–16. ISBN: 978-1-4503-4240-7. DOI: 10.
1145/2901318.2901324. URL: http://doi.org/10.1145/
2901318.2901324 (visited on 10/27/2022).

[58] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo
hashing”. en. In: Journal of Algorithms 51.2 (May
2004), pp. 122–144. ISSN: 0196-6774. DOI: 10.1016/ j.
jalgor.2003.12.002. URL: https://www.sciencedirect.
com/science/article/pii/S0196677403001925 (visited
on 11/22/2022).

[59] Ivy B. Peng, Maya B. Gokhale, and Eric W. Green.
“System evaluation of the Intel optane byte-addressable
NVM”. In: Proceedings of the International Sympo-
sium on Memory Systems. MEMSYS ’19. New York,
NY, USA: Association for Computing Machinery, Sept.
2019, pp. 304–315. ISBN: 978-1-4503-7206-0. DOI:
10.1145/ 3357526.3357568. URL: http:// doi.org/ 10.
1145/3357526.3357568 (visited on 11/16/2022).

[60] Persistent Memory Extensions - x86 - WikiChip. en.
May 2021. URL: https : / / en . wikichip . org / wiki /
x86 / persistent _ memory _ extensions (visited on
11/27/2022).

[61] RocksDB: A Persistent Key-Value Store for Flash and
RAM Storage Optimized (for PMEM). URL: https://
github.com/pmem/pmem-rocksdb.

[62] Andy Rudoff. Deprecating the PCOMMIT Instruction.
en. Sept. 2016. URL: https://www.intel.com/content/
www/us/en/developer/articles/ technical/deprecate-
pcommit-instruction.html (visited on 11/16/2022).

[63] Georg Sauthoff. On the Costs of Syscalls. Aug. 2021.
URL: https:// gms.tf/ on- the-costs-of- syscalls.html
(visited on 08/11/2022).

[64] Margo Seltzer et al. “An Implementation of a Log-
Structured File System for UNIX”. In: USENIX ’1993.
Jan. 1993, pp. 307–326.

[65] Simon Sharwood. “Last week Intel killed Optane.
Competing tech keeps coming”. en. In: The A Reg-
ister (Feb. 2022). URL: https://www.theregister.com/
2022/ 08/ 02/ kioxia_everspin_persistent_memory/
(visited on 11/30/2022).

[66] John G. Spooner. “Intel Previews Potential Replace-
ment for Flash Memory”. en-US. In: eWEEK (Sept.
2006). URL: https:// www.eweek.com/ pc-hardware/
intel - previews - potential - replacement - for - flash -
memory/ (visited on 11/29/2022).

[67] Chao Su and Qingkai Zeng. “Survey of CPU Cache-
Based Side-Channel Attacks: Systematic Analysis, Se-
curity Models, and Countermeasures”. en. In: Security
and Communication Networks 2021 (June 2021). Pub-
lisher: Hindawi, e5559552. ISSN: 1939-0114. DOI: 10.
1155/2021/5559552. URL: https://www.hindawi.com/
journals/scn/2021/5559552/ (visited on 12/08/2022).

[68] Steven Swanson. Early Measurements of Intel’s 3DX-
Point Persistent Memory DIMMs. en-US. Apr. 2019.
URL: https://www.sigarch.org/early-measurements-of-
intels-3dxpoint-persistent-memory-dimms/ (visited on
11/22/2022).

[69] Micheal Swift. Hardware Support for NVM Program-
ming. Istanbul, Mar. 2015. URL: https:// research.cs.
wisc.edu/sonar/ tutorial/03-hardware.pdf .

24

http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf
https://www.linuxjournal.com/article/8211
https://www.linuxjournal.com/article/8211
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://www.usenix.org/conference/fast12/sfs-random-write-considered-harmful-solid-state-drives
https://doi.org/10.48550/arXiv.1707.08514
https://doi.org/10.48550/arXiv.1707.08514
http://arxiv.org/abs/1707.08514
http://arxiv.org/abs/1707.08514
https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html
https://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html
https://www.usenix.org/system/files/fast21-neal.pdf
https://www.usenix.org/system/files/fast21-neal.pdf
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/2901318.2901324
https://doi.org/10.1145/2901318.2901324
http://doi.org/10.1145/2901318.2901324
http://doi.org/10.1145/2901318.2901324
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1016/j.jalgor.2003.12.002
https://www.sciencedirect.com/science/article/pii/S0196677403001925
https://www.sciencedirect.com/science/article/pii/S0196677403001925
https://doi.org/10.1145/3357526.3357568
http://doi.org/10.1145/3357526.3357568
http://doi.org/10.1145/3357526.3357568
https://en.wikichip.org/wiki/x86/persistent_memory_extensions
https://en.wikichip.org/wiki/x86/persistent_memory_extensions
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html
https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html
https://gms.tf/on-the-costs-of-syscalls.html
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.eweek.com/pc-hardware/intel-previews-potential-replacement-for-flash-memory/
https://www.eweek.com/pc-hardware/intel-previews-potential-replacement-for-flash-memory/
https://www.eweek.com/pc-hardware/intel-previews-potential-replacement-for-flash-memory/
https://doi.org/10.1155/2021/5559552
https://doi.org/10.1155/2021/5559552
https://www.hindawi.com/journals/scn/2021/5559552/
https://www.hindawi.com/journals/scn/2021/5559552/
https://www.sigarch.org/early-measurements-of-intels-3dxpoint-persistent-memory-dimms/
https://www.sigarch.org/early-measurements-of-intels-3dxpoint-persistent-memory-dimms/
https://research.cs.wisc.edu/sonar/tutorial/03-hardware.pdf
https://research.cs.wisc.edu/sonar/tutorial/03-hardware.pdf

[70] Liu Tianhua et al. “The Design and Implementation of
Zero-Copy for Linux”. In: 2008 Eighth International
Conference on Intelligent Systems Design and Appli-
cations. Vol. 1. ISSN: 2164-7151. Nov. 2008, pp. 121–
126. DOI: 10.1109/ ISDA.2008.102.

[71] Haris Volos et al. “Aerie: flexible file-system interfaces
to storage-class memory”. In: Proceedings of the Ninth
European Conference on Computer Systems. EuroSys
’14. New York, NY, USA: Association for Computing
Machinery, Apr. 2014, pp. 1–14. ISBN: 978-1-4503-
2704-6. DOI: 10.1145/2592798.2592810. URL: http:
/ / doi . org / 10 . 1145 / 2592798 . 2592810 (visited on
10/27/2022).

[72] Hu Wan et al. “Empirical study of redo and undo
logging in persistent memory”. In: 2016 5th Non-
Volatile Memory Systems and Applications Symposium
(NVMSA). Aug. 2016, pp. 1–6. DOI: 10.1109/NVMSA.
2016.7547178.

[73] Ying Wang. “ByVFS: Caching or Not: Rethinking Vir-
tual File System for Non-Volatile Main Memory”. In:
USENIX HotStorage ’18 (Sept. 2018). URL: https :
/ / www . usenix . org / system / files / conference /
hotstorage18/hotstorage18-paper-wang.pdf (visited
on 05/10/2022).

[74] Lukas Waymann. A Survey of CPU Caches. en. Oct.
2017. URL: https://meribold.org/2017/10/20/survey-
of-cpu-caches/ (visited on 12/07/2022).

[75] Claes Wohlin. “Guidelines for snowballing in system-
atic literature studies and a replication in software en-
gineering”. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software
Engineering. EASE ’14. New York, NY, USA: Associ-
ation for Computing Machinery, 2014, pp. 1–10. ISBN:
978-1-4503-2476-2. DOI: 10.1145/2601248.2601268.
URL: http : / / doi . org / 10 . 1145 / 2601248 . 2601268
(visited on 11/29/2022).

[76] Charles P. Wright et al. “Extending ACID semantics to
the file system”. In: ACM Transactions on Storage 3.2
(June 2007), 4–es. ISSN: 1553-3077. DOI: 10.1145/
1242520.1242521. URL: http: / / doi .org / 10 .1145/
1242520.1242521 (visited on 11/26/2022).

[77] Xiaojian Wu, Sheng Qiu, and A. L. Narasimha Reddy.
“SCMFS: A File System for Storage Class Memory
and its Extensions”. In: ACM Transactions on Storage
9.3 (Aug. 2013), 7:1–7:23. ISSN: 1553-3077. DOI: 10.
1145/2501620.2501621. URL: http://doi.org/10.1145/
2501620.2501621 (visited on 10/27/2022).

[78] Xinyang, Song and Sihang Liu. Persistent Memory –
A New Hope. en-US. Sept. 2022. URL: https:// www.
sigarch.org/persistent-memory-a-new-hope/ (visited
on 11/30/2022).

[79] Jian Xu and Steven Swanson. “NOVA: A Log-
structured File System for Hybrid {Volatile/Non-
volatile} Main Memories”. en. In: FAST ’16. 2016,
pp. 323–338. ISBN: 978-1-931971-28-7. URL: https:
/ / www. usenix . org / conference / fast16 / technical -
sessions/presentation/xu (visited on 11/03/2022).

[80] Jian Yang. “An Empirical Guide to the Behavior and
Use of Scalable Persistent Memory”. In: Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST ’20) (). URL: https://www.usenix.
org/system/files/ fast20-yang.pdf .

[81] Qing Yang and Jin Ren. “I-CASH: Intelligently Cou-
pled Array of SSD and HDD”. In: 2011 IEEE 17th
International Symposium on High Performance Com-
puter Architecture. ISSN: 2378-203X. Feb. 2011,
pp. 278–289. DOI: 10.1109/HPCA.2011.5749736.

[82] Yang Yang et al. “SPMFS: A Scalable Persistent Mem-
ory File System on Optane Persistent Memory”. In:
50th International Conference on Parallel Processing.
ICPP 2021. New York, NY, USA: Association for Com-
puting Machinery, Oct. 2021, pp. 1–10. ISBN: 978-1-
4503-9068-2. DOI: 10.1145/3472456.3472503. URL:
http://doi.org/10.1145/3472456.3472503 (visited on
11/01/2022).

[83] Yiying Zhang and Steven Swanson. “A study of appli-
cation performance with non-volatile main memory”.
In: 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST). ISSN: 2160-1968. May 2015,
pp. 1–10. DOI: 10.1109/MSST.2015.7208275.

25

https://doi.org/10.1109/ISDA.2008.102
https://doi.org/10.1145/2592798.2592810
http://doi.org/10.1145/2592798.2592810
http://doi.org/10.1145/2592798.2592810
https://doi.org/10.1109/NVMSA.2016.7547178
https://doi.org/10.1109/NVMSA.2016.7547178
https://www.usenix.org/system/files/conference/hotstorage18/hotstorage18-paper-wang.pdf
https://www.usenix.org/system/files/conference/hotstorage18/hotstorage18-paper-wang.pdf
https://www.usenix.org/system/files/conference/hotstorage18/hotstorage18-paper-wang.pdf
https://meribold.org/2017/10/20/survey-of-cpu-caches/
https://meribold.org/2017/10/20/survey-of-cpu-caches/
https://doi.org/10.1145/2601248.2601268
http://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/1242520.1242521
https://doi.org/10.1145/1242520.1242521
http://doi.org/10.1145/1242520.1242521
http://doi.org/10.1145/1242520.1242521
https://doi.org/10.1145/2501620.2501621
https://doi.org/10.1145/2501620.2501621
http://doi.org/10.1145/2501620.2501621
http://doi.org/10.1145/2501620.2501621
https://www.sigarch.org/persistent-memory-a-new-hope/
https://www.sigarch.org/persistent-memory-a-new-hope/
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/system/files/fast20-yang.pdf
https://www.usenix.org/system/files/fast20-yang.pdf
https://doi.org/10.1109/HPCA.2011.5749736
https://doi.org/10.1145/3472456.3472503
http://doi.org/10.1145/3472456.3472503
https://doi.org/10.1109/MSST.2015.7208275

	Introduction
	Study Design
	Research Goal
	Scope
	Methodology

	Background
	Persistent Memory Hardware Architecture
	Storage Software Stack
	Traditional File System Structures
	Crash-Consistency Techniques

	Persistent Memory File System Design
	Influenced by Traditional File Systems
	Design: Contiguous File Allocation
	Design: Log-Structured

	File Indexing Overhead
	Improving File Mapping Performance
	Virtual File System Overhead

	Data Crash-Consistency
	Consistency Techniques
	Enforcing Write Ordering

	Open Problems and Future Work
	Conclusion

