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Permissionless reputation-based distributed ledger technologies (DLTs) have been proposed to overcome blockchains’

shortcomings in terms of performance and scalability, and to enable feeless messages to power the machine-to-machine

economy. These DLTs allow machines with widely heterogeneous capabilities to actively participate in message generation

and consensus. However, the open nature of such DLTs can lead to centralization of decision-making power, thus defeating

the purpose of building a decentralized network.

In this paper, we introduce Healthor, a novel heterogeneity-aware low-control mechanism for permissionless reputation-

based DLTs. Healthor formalizes node heterogeneity by deining a health value as a function of its incoming message queue

occupancy. We show that health signals can be used efectively by neighboring nodes to dynamically low control messages

while maintaining high decentralization. We perform extensive simulations, and show a 23% increase in throughput, a 76%

decrease in latency and four times increased node participation in consensus compared to state of the art. To the best of our

knowledge, Healthor is the irst system to systematically explore the ramiications of heterogeneity on DLTs and proposes a

dynamic, heterogeneity-aware low control. Healthor’s source code (https://github.com/jonastheis/healthor) and simulation

result data set (https://zenodo.org/record/4573698) are both publicly available.
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1 INTRODUCTION

With its inception in 2008, Bitcoin has sparked awhole newworld of distributed ledger technologies (DLTs) [48, 61].

DLTs are gaining popularity ever since, especially for trustless money transactions and code execution1 enabling

the recent trend towards decentralized inance with stablecoins, decentralized exchanges, and decentralized

lending [33].

Conceptually, a distributed ledger is an immutable, replicated, and shared data structure that keeps track

of ledger state entries, e.g., monetary transactions, in a distributed system without the need for a centralized

authority but instead utilizes a distributed consensus mechanism [22, 61]. Ledger state updates are disseminated

using a peer-to-peer (P2P) network between ledger participating nodes [24, 51, 59]. Theoretically, a permissionless

DLT is open for anyone to join and keep track of the ledger and participate in consensus [59].

1Trustless code execution is usually referred to as smart contracts and enables decentralized applications to be built.
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Fig. 1. Comparison of nodes participating in consensus and ledger only in proof of work based DLTs (let) and reputation-

based DLTs (right). In proof of work based DLTs practically only high-end nodes and specialized hardware can participate

in consensus whereas in reputation-based every node because participation in consensus is not dependent on processing

capabilities. Connections between nodes are not pictured out of brevity. The size of nodes describes their processing

capabilities.

However, in practice traditional DLTs present limitations in terms of not only decentralization but also

scalability, performance, and energy eiciency [27, 28, 57]. Hence, a number of alternatives have been proposed

in the last few years [25, 29, 67].

1.1 Heterogeneity in Permissionless DLTs

In this paper, we focus on permissionless reputation-based DLTs [7, 34, 50, 51, 54, 63], which achieve consensus

through voting instead of expensive mining races. Reputation-based DLTs can enable a wide range of new

application domains, such as machine-to-machine economy for the Internet of Things or public transparent

supply chains [7, 50, 51], by overcoming Bitcoin’s limitations: network throughput is not constrained at the

protocol level, feeless messages are possible, low-power devices can participate in the consensus, etc. This class

of DLTs adds design complexity to the original Bitcoin’s blockchain, and faces a number of challenges which we

describe and address throughout the paper.

One of the primary challenges in the Bitcoin network is the centralization of power. Miners typically use

specialized hardware to compute a cryptographic puzzle faster than other nodes and add messages into the

blockchain. This mechanism creates a costly ilter formed by an elitist network (Figure 1 (left)) [57]. Conversely,

the permissionless nature of the DLTs considered in this paper allows nodes with widely heterogeneous capabilities

to participate in consensus and message generation (Figure 1 (right)). Such heterogeneity can be manifold:

• Bandwidth, latency, availability, and processing capabilities can vary between multiple orders of magnitude, as

in traditional peer-to-peer (P2P) networks [55].

• Unsteady processing rates of a node due to competing tenant applications and performance variability, especially

in the public cloud environment [23, 40, 65].

• Protocols, geographical locations, node freshness, and software versions can difer widely in DLTs [37].

1.2 Challenges

Heterogeneity is a key feature of permissionless reputation-based DLTs, but also introduces multiple challenges [7,

51]. First, who can vote? In order to start the voting procedure, a supermajority of nodes must have received the

most recent messages necessary to construct and verify the ledger state. In these DLTs, a score (reputation) is
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assigned to each node to determine nodes’ reserved throughput shares andweights used during voting. ManyDLTs

assign reputation by linking it to a constrained resource, such as stake (e.g., Proof-of-Stake (PoS) DLTs [26, 54]

or IOTA’s Mana [51]); more sophisticated technologies try to evaluate whether nodes are well-behaving and

contributing to the security of the network [63]. A good reputation system should prevent Sybil attacks, where

colluding nodes can gain disproportionate inluence to manipulate the ledger state.

Second, unlike in Bitcoin, reputation-based DLTs require an explicit distributed low-control mechanism. If

powerful nodes issue new messages too fast without any low control, then only high-end nodes will be able to

keep up with the message processing and with the latest ledger updates. Hence, only few nodes, the ones with an

updated ledger, can vote, thus increasing undesired DLT centralization.

Lastly, maintaining maximum decentralization with high performance. In DLTs, nodes are required to process

all messages generated. Hence, to avoid any loss of synchronization or message drop, the network must operate

at the speed of the slowest node, which can lead to low throughput. An additional challenge is given by the fact

that the node’s processing speed is not static as it varies based on the operating environment and performance

luctuations [23, 40, 65].

Though eforts have been put to tackle the issue of voting [26, 51, 54], limited attention has been paid to

tackle decentralization and performance due to heterogeneity in DLTs. Such heterogeneity-related challenges

are reminiscing of the early 2000s research in P2P content distribution systems [3, 13, 14, 39, 55], but the need

for quality of service, and node reachability requirements sets modern DLTs apart from their P2P predecessors.

We take inspiration from these works and recent networking research [47], and make a case for a dynamic

low-control protocol to react to the changing heterogeneity (i.e., computational capabilities) for maximizing

throughput without sacriicing DLT decentralization.

1.3 Our Contributions

In this paper we present Healthor2, a novel heterogeneity-aware, lightweight low-control mechanism for

permissionless reputation-based DLT networks. Healthor captures heterogeneity by deining a node’s health as a

function of its processing power and the current network activity. The health updates of neighboring nodes are

then used to calculate the message forwarding rates, thus dynamically adjusting the low control per node. This

basic mechanism allows high-end nodes to bufer messages for unhealthy nodes, thus protecting weaker nodes

from being overwhelmed with wasted processing and rapidly adapting network load and bursts. With such a

low-control design more nodes are able to keep up with the ledger updates and participate in DLT consensus,

thus increasing decentralization and network performances. Unlike protocol-level solutions such as TCP, which

operate independently of the applications, in this work we target an application level low-control protocol.

Our key contributions in this work include:

• We identify challenges (high centralization, poor performance, security) due to lack of heterogeneity-aware

low control in permissionless reputation-based DLTs (Section 3).

• We propose Healthor, a lightweight distributed low-control mechanism that leverages a node’s health as a

proxy of its heterogeneity and processing capabilities. We present its design choices, implementation, and

trade-ofs. In comparison to other DLTs, which use leader election or ixed computation, we are among the irst

to introduce networking concepts and optimizations to DLTs (Section 4). Healthor’s source code is publicly

available on GitHub (https://github.com/jonastheis/healthor).

• We evaluate Healthor in OMNeT++ simulations for up to 5,000 nodes. Our results demonstrate that Healthor

increases the degree of decentralization by 78%, improves throughput by 23%, and 95 percentile message

2Union of the word health and the Germanic god Thor who is amongst other things associated with great strength and the protection of

mankind.
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Fig. 2. Permissionless DLTs comprise three main components: a P2P overlay network (let), an immutable data structure

(center), and a consensus mechanism (right) are deeply fused via game-theoretic and economic incentives.

latency by 76% while staying resilient against attacks (Section 5-6). The simulation result data set is publicly

available on Zenodo (https://zenodo.org/record/4573698).

2 BACKGROUND: A SHORT INTRODUCTION TO DLTS

In 2008 the inconspicuous Bitcoin paper [48] written by the anonymous entity Satoshi Nakamoto sparked a

revolution and ignited distributed ledger technologies. Though the underlying technologies were not novel [12, 18,

21, 32, 46], Bitcoin combined them in an ingenious way and created something that had been deemed impossible:

consensus of replicated, shared, and synchronized data without a central entity in a permissionless and trustless

setting where anyone can join and participate [48, 59]. Since then many lavors of DLTs have emerged, not only

to enable monetary transactions but more so to enable trustless code execution and thus paving the way for many

more use cases and a distributed, trustless Internet, enabling parties to interact without trusting anyone [22, 35].

DLTs broadly can be distinguished into permissioned, i.e., a central authority grants permission to participants,

or permissionless, i.e., open access to anyone where participants do not know each other but cooperate through

game-theoretical incentives [44]. The latter systems pose more challenges due to their open nature. In this paper,

we focus on permissionless DLTs.

Generally, a DLT integrates three main components joining them together via its protocol and deeply ingrained

game-theoretic and economic incentives as depicted in Figure 2. First, a P2P overlay network is utilized to

disseminate state updates (Section 2.1). Second, every node keeps track of a shared, replicated, and immutable

data structure (also called ledger) which is based on cryptographic primitives (Section 2.2). Lastly, nodes use a

consensus mechanism to agree on a state in a distributed manner (Section 2.3).

2.1 P2P Overlay Network

Most DLTs build an unstructured decentralized P2P overlay network, either with manual peering, i.e., node owner

are required to exchange connection details, or some form of automatic peer discovery and peer selection. Ledger

state updates are disseminated in the form of messages (also called transactions) via epidemic broadcast so that

every node eventually receives all ledger state updates [24, 51, 59].

2.2 Data Structure

The ledger state in a DLT is derived from an immutable data structure, that can be compared with an append-only

log. Every node in the network has a copy of the ledger state and can thus verify the validity of new updates
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Fig. 3. Data structures in DLTs. A blockchain groups messages into blocks and links blocks together (let). The Tangle consists

of messages that reference 2 other messages (right), thus forming a DAG.

locally. Newly joining nodes can bootstrap by simply downloading the ledger from their neighbors, and then

make sure that the ledger state is valid locally [7, 22, 50, 59, 61].

Blockchain. A blockchain is a linked list of blocks where each new block contains a cryptographic hash of

its predecessor’s content as shown in Figure 3 (left). A block mainly consists of a number of state updates, e.g.,

in the case of Bitcoin monetary transactions. This essentially creates an immutable chain of blocks where any

change to a block invalidates all future blocks as well. The longer the chain, the harder it is to change any content

because all future blocks would be invalidated, hence it is tamperproof. A blockchain is totally ordered: blocks

are issued, e.g., with consensus on the longest chain, at regular intervals and state updates within a block are

deterministic [22, 59, 61].

Directed Acyclic Graph (DAG). A directed acyclic graph (DAG) is a graph without directed cycles, i.e., it

grows in one direction. IOTA’s Tangle [50] is a DAG where messages are linked together via their cryptographic

hashes instead of being grouped into blocks. Figure 3 (right) shows this data structure. Similar to a blockchain,

linking messages together via their cryptographic hashes makes the data structure immutable and tamperproof.

The Tangle is not totally ordered as messages can be attached simultaneously by multiple users which promises

better scalability compared to blockchains. However, there is added complexity for nodes to verify the ledger state

and come to consensus. For example, before a message can be veriied it needs to be solid, i.e., its entire history

needs to be known to the node. In case a node is missing a message it can ask its neighbors via solidiication

request [22, 50].

2.3 Consensus Mechanism

The consensus mechanism is at the core of every permissionless DLT. It is a set of rules that combines the P2P

overlay network, data structure as well as some form of leader election, e.g. to select a block producer, and

(virtual) voting with game-theoretical incentives and bakes the results into the immutable ledger. In this way,

the data structure does not only serve as an immutable ledger database but also as a veriiable instrument of

consensus. It enables a Byzantine Fault Tolerant P2P network of anonymous nodes that are free to join and leave

at will [10, 64].
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Name Date Size Hosting Top Providers

Bitcoin
(Bitnodes [66])

21/11/2020 11,122 4,195 (38%)

Tor Network: 2,827 (25%)†
Hetzner: 1,049 (9%)
Amazon: 803 (7%)
OVH: 490 (4%)
DigitalOcean: 455 (4%)
Google: 360 (3%)

Bitcoin
(Mariem et al. [43])

07/05/2019 9,476 6,159 (65%)

Hetzner: 1,042 (11%)
Amazon: 805 (8.5%)
DigitalOcean: 616 (6.5%)
OVH: 550 (5.8%)
Comcast: 351 (3.7%)

Ethereum
(ethernodes.org [9])

21/11/2020 9,517 5,855 (62%)

Amazon: 1,778 (19%)
Alibaba: 1,106 (12%)
Hetzner: 541 (6%)
Google: 385 (4%)
DigitalOcean: 326 (3%)

Ethereum
(Kim et al. [37])

08/05/2018 8,309 3,722 (44.8%)∗

Amazon
Alibaba
DigitalOcean
OVH
Hetzner
Google

IOTA
(thetangle.org [58])

21/11/2020 302 202 (69%)

Contabo: 66 (22%)
Hetzner: 63 (21%)
Netcup: 37 (12%)
Amazon: 10 (3%)
DigitalOcean: 6 (2%)

Table 1. DLT network size (publicly reachable) and distribution of nodes running on cloud hosting providers.

∗ Only top 8 ASes, no exact values published in [37].

† Not included in Hosting due to unknown service provider.

3 HETEROGENEITY IN DLTS: CHALLENGES AND OPPORTUNITIES

With the basic working model explained in Section 2 in mind, we now discuss what is the extent of the het-

erogeneity in contemporary DLT networks, what happens if heterogeneity is ignored, and what opportunities

present if we can leverage it.

3.1 The Nature of DLT Heterogeneity

To get an estimation of the level of heterogeneity and its impact, we analyzed recently published literature on

DLT deployments and decentralization [27, 37, 43]. Our analysis shows that (Table 1) a signiicant amount of

nodes in DLT networks run on only few big cloud hosting providers. For example, 62% of publicly reachable

Ethereum nodes are running on cloud hosting providers. In the IOTA network this is even more extreme with

69% of publicly reachable nodes running in the cloud.

Though, on the surface cloud hosting seems to ofer a more homogeneous environment, but it is not the case in

practice. First, cloud providers ofer a bewildering array of choices in terms of conigurations, capabilities, and cost

of systems resources like virtual machines (VMs), which has lead to a series of work in workload optimizations

for heterogeneous cloud resources [20, 38, 42, 52]. Such heterogeneous choices imply that there is no single ideal

VM that DLTs can choose to deploy. Moreover, even with the choice of a VM there is signiicant performance

luctuation over time [23, 40, 60, 65]. For example, we took cloud performance traces from [23], which has

collected the performance of CPU-intensive benchmarks (comparable with cryptographic signature veriication

widely used in DLTs [59]) over a period of 30 days from three cloud providers (AWS, Azure, and Dimension

Data), and normalized the performance to the mean value in the performance. We plot the performance variation
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Fig. 4. Processing variability in cloud providers. Data from [23] measured hourly over a period of 30 days. Normalized

(mean=1) to show relative performance variability on a single cloud provider.

time series (on the �-axis) with respect to time (on the �-axis) in Figure 4. The key observation from the igure is

that there exists more than an order of magnitude performance variability in hosted cloud providers. It is this

variability that leads to processing heterogeneity even for cloud-hosted DLTs.

3.2 What If We Disregard Heterogeneity in DLT Processing?

Disregarding heterogeneity leads to centralization of voting power. To quantify the impact of heterogeneity

on centralization, we run an experiment with 100 nodes in OMNeT++. In the experiment, the incoming rate

of new messages is set to 200 messages per second (MPS). The 100 nodes are modeled with a mean processing

rate between 90-350 MPS with their message processing rate modeled (Section 5.1 for details) after the traces

from Figure 4. During the experiment, we measure a metric called centralization value, which is calculated as a

ratio of nodes which are left behind and can not vote (due to their inability to process high rates of new ledger

update messages) and the total number of nodes (Section 5.2 for details). Hence, the lower the score, the higher

the participation in voting, thus, higher DLT decentralization (desired). We further investigate two network

scenarios: aided and unaided. In the aided setup, a DLT can enforce a ixed throughput rate (i.e., low control)

which is calculated keeping the slowest node(s) in mind (e.g., with a minimum DLT joining requirement), thus

ensuring a certain level of decentralization at the expense of resource utilization. The current IOTA 2.0 solution

proposes this [51]. In the unaided setup there is no network-level support for heterogeneity.

Figure 5 shows our results for aided and unaided cases. First, we look at the throughput (the �-axis) with time

(on the �-axis) of both cases as shown in 5a. As expected, the aided case leads to a stable throughput of 100

MPS while underutilizing the remaining processing capability of the network. In comparison, in the unaided

case the throughput increases until around 200 MPS (the orange line), thus proving that the network has spare,

underutilized capacity. However, when we analyze the centralization values of aided and unaided conigurations

we observe an opposite picture (Figure 5b). As the unaided coniguration delivers higher performance, it leaves a

large chunk of slow nodes out of sync (up to 40% by the time 30 seconds), i.e., the incoming rate of new messages

is greater than the processing capabilities of a node. These out-of-sync nodes can not participate in voting, thus,

allowing only faster nodes to have fully control of the consensus procedure. In contrast, the ixed-rate aided DLT

only leaves less than 10% nodes out of sync, though at the cost of poor, underutilized DLT network.

However, both previously shown scenarios are not optimal as they either statically trade throughput for

decentralization or decentralization for throughput. A desirable solution should deliver high throughput at

Distrib. Ledger Technol.
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Fig. 5. Comparison of aided and unaided heterogeneity in voting-based DLTs in a heterogeneous network with 100 nodes.

(a) Mean throughput (processed messages) of all nodes. Higher is beter. (b) Centralization value (Section 5.2). Lower score

indicates higher degree of decentralization (desired).

all times while guaranteeing a high degree of decentralization, and this is exactly what we propose with our

Healthor.

4 DESIGN OF HEALTHOR

Healthor is a distributed low-control protocol to improve the decentralization and performance in a heterogeneous

DLT network. Before we introduce the details of the Healthor protocol, we irst briely present the network model

and our assumptions in the following section.

4.1 Network Model and Assumptions

We denote the set of all nodes participating in the network as M, where each node� ∈ M has a set of inbound

and outbound neighbors denoted by N� ⊂ M. Figure 6 shows a node model and its neighbors. A node and

each of its neighbors are connected via bidirectional channels over which they exchange messages. A message

contains data, e.g., monetary transactions, and a hashed reference to a previous message as its parent, building

an immutable directed acyclic graph.

Network membership management and bootstrapping. Permissionless network membership implicitly

emerges through a multi-tiered bootstrapping process. First, the P2P overlay network needs to be established

so that nodes are able to communicate. We assume this to happen via reciprocal manual peering, meaning that

node owners exchange address information about their nodes oline and conigure their nodes to connect to

each other. An alternative to manual peering is a Kademlia-like [45] peering mechanism where initially trusted,

so-called entry nodes are contacted to provide a list of known nodes of the network. In that way nodes can

discover themselves automatically. Second, once the P2P overlay network is established, nodes need to agree on

the initial ledger state. Generally, this is done via a trusted genesis which contains all the necessary information

for a DLT to bootstrap. The genesis is decided upon by social consensus by the developers, community members

and participants of a DLT before it is started. After this step, nodes can then start exchanging messages. It is

important to note that the above items refer to any permissionless DLT. Conversely, Healthor does not need to

be bootstrapped speciically: due to the local nature of operations such as health propagation and low-control

decision-making, only depending on a node’s direct neighbors, and the periodical, adaptive mechanism, a special

bootstrap procedure is not necessary.

Distrib. Ledger Technol.
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Fig. 6. Model of a node� and its neighbors N� .

Node operations. A node can perform various operations, namely issuing, receiving, processing, and forward-

ing messages. We assume that a node can issue new messages at a recommended rate which is enforced by the

network congestion mechanisms [17]. In this work we focus only on the end-host low-control mechanism. On

receipt of a message, the node ilters out duplicates, thus preventing replay attacks, and pushes unseen messages

to its inbox, a bufer with limited size. Based on the message’s cryptographic signature, the node can identify

if it has processed all parent messages for a new message. In case of missing parent messages, it requests the

missing messages from its neighbors via an implementation-speciic synchronization mechanism like pull-action

in Gossip-based networks [56]. For any other message for which the node has all parent messages (i.e, entire

history), the message is scheduled for processing which includes cryptographic signature veriication, and then

writing ledger updates to persistent storage. After processing, the message is forwarded to the neighbors.

Network modes. We distinguish between two diferent operating modes of a network, aided and unaided

heterogeneity. In the aided case, we assume that an overall processing rate ���� (messages per second (MPS)) of

the network is deined. This is the message rate at which the network as a whole should operate (we will discuss

more about it in Section 5.4). Let �� be the variable message processing rate of a node�. Hence, node� would

be able to process and forward messages at rate min(���� , ��). Ideally, �� = ���� at any time, meaning that a

node� is able to operate at the overall network rate. However, operating conditions may lead to performance

luctuation, thus leading to accumulating messages at the inbox. In case the inbox runs full a tail drop policy is

used, i.e., new messages that would cause the bufer to overlow are dropped. In the unaided case, a node� is free

to forward messages at its rate �� . The current Healthor protocol design is for the aided case, but in Section 8 we

discuss how we can relax knowing about ���� and what implications it has.

4.2 Workings of Healthor

The basic idea behind the protocol is to rate-limit message forwarding in a DLT network based on neighbor’s

message processing capacity, termed as its health. Intuitively, the notion of health captures the dynamic het-

erogeneity of the DLT network, that might be changing over time. Figure 7 presents an example showing the

intuition behind the Healthor’s design at a high level. The igure shows a DLT network with 3 nodes (A, B, and

C). Node A has new messages to forward to nodes B and C. Before A calculates the forwarding rate, it receives

the health updates (0.5 for B, 1.0 for C), and then calculates the rate based on the updates. In this example, node

C gets all the messages, whereas B only gets half, while the other half is bufered by node A on behalf of node

B. This basic mechanism is the key insight in our low-control protocol where more capable nodes can bufer

messages to accommodate performance luctuations in weaker nodes.

Healthor operates at the application layer and maintains connections to neighbors in a group communication

setup. It is ineicient to rely on existing mechanisms such as TCP-based backpressure because (1) TCP-based

Distrib. Ledger Technol.
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Fig. 7. High-level design of Healthor. Nodes periodically send their health to their neighbors (let). A adjusts its rate according

to a neighbor’s health and bufers messages in an outbox per neighbor (right).

backpressure runs independently of the application level, andwould needmodiications to the TCP implementation

which is not feasible in public DLTs; and (2) TCP is a point-to-point protocol which cannot eiciently handle

group communication dynamics.

Figure 8 depicts an updated model of a node� with the new components from Healthor highlighted. Healthor

is a framework encompassing four separate engines, inspired by TIMELY [47], that uses local queue building and

health updates as a signal. Additionally, a node� has an ������� for every neighbor � ∈ N� where references

to messages for � are stored before forwarding. In the following section we introduce these new engines and

associated design decisions.

4.3 Health Measurement Engine

The Health Measurement Engine is at the heart of the mechanism. By introducing the notion of health ℎ� ∈ [0,∞),

a node � can express its itness regarding processing the maximum number of messages as deined by the

expected network’s processing rate ���� (in the aided case). A node periodically calculates its health based on its

inbox occupation ��
def
= ���(������) as following

ℎ� =

{

��
����

if �� < ���� (per second),

1 − ��
���������

otherwise.
(1)

where ��������� is the maximum size of the inbox, conigured on startup of node�. In (1) we can compare ��
(number of messages) with ���� (messages per second) because health measurements are done every second, thus,

making ���� the expected number of messages. However, if a diferent interval is used the calculation needs to be

adjusted according to the number of messages in this duration.

Choosing a signal. It is not trivial to ind a reliable signal for rate control in a distributed, permissionless

DLT setting. Relying on special hardware support such as Explicit Congestion Notiication or changes to the

operating system stack are infeasible in a public DLT. Due to the ever-changing nature of available computing

resource an initial announcement of capabilities is also not practical. Therefore, the solution must come from the

end-host’s application level and not from the protocol-level like TCP.

Recall that in a DLT all messages are delivered to all nodes eventually. If every node keeps track of received

messages in relation to ���� , every node knows the current health level of the network. Therefore, the inbox

occupation gives a reasonable assessment of how much a node is in sync, i.e., whether it is able to receive and

process state updates in a consistent and timely manner. A low inbox occupation signals a node being able to

process at the network’s pace, being healthy. Conversely, a high inbox occupation conveys that it is struggling to

keep up with network activities. Thus, the node is unhealthy.
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Fig. 8. Model of a node� with Healthor. New components compared to Figure 6 are highlighted in gray.

Diferent means to compute health. As health is such a central component of the mechanism, we experi-

mented with several approaches before concluding on the one described in Eq. (1). Firstly, only using the second

branch of Eq. (1) leads to ℎ� ∈ [0, 1] and a node � always being slightly unhealthy as soon as there is any

message in the inbox. Our initial simulation results showed consistently poorer performance than the ideal

aided case (i.e., �� = ���� ) as the ideal case represents the achievable theoretical maximum. By introducing the

condition �� < ���� a node can still be seen as healthy if its inbox is occupied with a few messages as long as

they remain less than the maximum messages expected at the network rate, the performance was equal to the

aided case. Lastly, allowing a health rate greater than 1 enables nodes to temporarily go faster than ���� , which

we adopted as our inal way to compute ℎ� .

Health messages. A health message is very lightweight, containing simply the health of the node� as a

double precision loating point number. It therefore is only 64 bits of data. Additionally, in a real system, like any

message, it should contain a node signature to verify a valid origin of a message. If a health message is lost for

any reason, a neighbor � simply continues forwarding at its last known rate for a node� until it receives a new

health message.

4.4 Rate Computation Engine

On receipt of a neighbor �’s health data the node’s Rate Computation Engine calculates the message forwarding

rate for this neighbor � as shown in

�� = ���� · ℎ� . (2)

The node computes the forwarding rate �� linearly according to the neighbor’s health ℎ� . Therefore, it can even

go faster than the target network rate ���� if its neighbors can process messages at the forwarding rate of �� .

Nevertheless, a node can only forward as much as there is network activity (new messages are issued), and it is

able to process itself.

4.5 Outboxes

As in Figure 8 illustrated, a node� has an ������� for every neighbor � ∈ N� . When a message is processed, a

reference to it is added to every outbox. The original message is stored in the node’s local ledger. The Pacing

Engine takes care of forwarding messages to neighbors at their respective rates.

Drop policy. Similar to the inbox, an outbox is a bufer of limited size, deined on node startup. In case an

outbox runs full, a tail drop policy is used (Figure 9 top), i.e., new messages that would cause the bufer to overlow

are dropped while message requests are prioritized as shown. We also experimented with random (Figure 9

bottom) and head drop (Figure 9 center) policies. However, these turned out to be unfavorable due to the fact that
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Fig. 9. Drop policies of outboxes.

messages are generally forwarded in order. If messages from the beginning of the bufer are dropped, the receiver

needs this already dropped message to process later messages. It, therefore, needs to request these dropped

messages adding even more overhead.

4.6 Pacing Engine

The Pacing Engine fetches messages from an ������� for a neighbor � and forwards them at the rate calculated

by the Rate Computation Engine. It essentially controls each low of messages to every neighbor to achieve the

given forwarding rate �� . A possible implementation in a real-world system could make use of one thread per

������� that pulls messages from the outbox and forwards them while inserting delays to match �� .

4.7 Defense Engine

It is essential to protect nodes against exploitation and adversarial behavior in a permissionless DLT setting.

Therefore, the Defense Engine locally monitors a node’s neighbors behavior and initiates appropriate actions if

a protocol violation is suspected. Fundamentally, it provides incentives, hardens the low-control mechanism,

and makes nodes resilient against attacks. There are two main attack vectors on Healthor, namely exceeding the

allowed forwarding rate and manipulation of health updates.

Exceeding the allowed forwarding rate. The basic idea is that, in the aided case, the expected network

rate ���� is known to all the nodes in the network. Hence, a node’s neighbor � calculates the forwarding rate as

deined in Eq. (2) and its pacing engine forwards out messages at this rate (i.e., the allowed rate). However, a

neighbor may diverge from this rate because of being unhealthy itself, connection issues, or adversarial behavior.

In any case, an extremely large divergence of the allowed rate cannot be tolerated. Therefore, every node� keeps

track of the rates of every neighbor � by simply counting the received messages per neighbor. The Defense Engine

of a node� periodically creates a moving average of the allowed rate within the time window �� as well as a

moving average within the same window for every neighbor’s receive rate. If a neighbor exceeds the allowed

rate �-times in a row, the neighbor is dropped. Likewise, if a neighbor falls below the rate �-times.

Manipulation of health updates. A node� sends the same health update to all its neighbors. Therefore,

health updates can be absent or manipulated by an adversary. If no health updates are received, a node� simply

uses the known previous health of a neighbor �. At startup every node considers all its neighbors to be healthy, i.e.,

ℎ� = 1,∀� ∈ N� . Generally, an adversary can only inluence its own view on the network traic by manipulating
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its health. For example, if she lies and sends diferent health messages to distinct neighbors, each neighbor will

send at diferent rates according to the protocol. However, this does not have any inluence on the neighbors.

On the other hand, an adversary could try to inlate outboxes of neighbors and to slow them down by

pretending to be unhealthy. Inlation of outboxes, however, is not possible due to their limited size and drop

policy. Nonetheless, a neighbor should not waste resources and therefore the Defense Engine implements a similar

strategy to the forwarding rate. A node� keeps track of the health of every neighbor � by simply recording the

outbox occupation. Recall that a node bufers messages for unhealthy neighbors. The unhealthier a neighbor �

the higher the occupation will be. If a neighbor � is unhealthy for too long, ������� will run full and eventually

the neighbor is dropped after � measurements.

5 EVALUATION

We evaluate Healthor at two diferent scales. First, we explore node properties such as throughput, latency and

individual load at a small scale. These microbenchmarks are conducted simulating a network of 10 nodes such

that tunable parameters of Healthor can be separately investigated. Second, we examine global network properties.

In macrobenchmarks we shift focus on the overall performance of the network and study decentralization,

throughput, and tail latencies. Along with this evaluation we discuss the following questions:

• Does Healthor take load away from unhealthy nodes and allow nodes to stay (longer) in sync? Our indings in

Section 5.3 suggest that Healthor reduces load on low-end nodes and allows nodes to stay in sync when they

could not with aided heterogeneity.

• What is the inluence of processing heterogeneity on decentralization and throughput? We observe in Section 5.3

that some nodes that fulill the network requirements nominally, i.e., �� is greater than ���� , fall out of sync

because of heterogeneity, thus increasing centralization.

• Can Healthor improve decentralization, throughput and/or latency? Our results in Section 5.4 demonstrate that,

indeed, Healthor can improve all three properties.

• Does Healthor provide the above improvements while staying resilient against attacks? We show in Section 6 that

nodes can detect protocol violations and protect themselves against attacks reliably.

5.1 Setup

We built a discrete-event simulator using OMNeT++ to simulate the permissionless, voting-based DLT modeled

in Section 4.1 and test our mechanism. In our experiments we employ small-world networks of various sizes

|M| where each node has between 2-4 random neighbors to model the properties real-world networks as such

random pairing is done in applications that adopt a Kademlia-like [45] peering mechanism such as Ethereum [24],

IPFS [8], BitTorrent [16], and Storj [62]. The distance between two randomly chosen nodes is in the order of

log |M| [45]. If a node gets out-of-sync, it goes oline and its neighbors repeer with other random nodes that

have less than 4 neighbors.

Why simulation? Design and development of a DLT needs a careful analysis of nature of decentralization,

performance, and node heterogeneity. Among a variety of potential consensus mechanisms available [36], voting-

based, public-permissionless is now gaining traction, but large-scale deployments (>1,000 nodes) are not yet

available [58, 68]. In this work, we use system simulation to evaluate Healthor. The use of simulation allows us to

explore the bounds of our design systematically, and perform in-detail sensitivity analysis on speciic coniguration

parameters. Nonetheless, we are aware of the limitation of such simulation studies. A practical deployment has

additional challenges such as bootstrapping overheads, monitoring data collection, and connectivity issues, which

we have not addressed in this study. As a next step, we will perform validation of our results on a small-scale

deployment to increase conidence in our results.
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Parameters. We adopt a Poisson process as the network processing rate ���� = 100 MPS for our experiments

with aided heterogeneity and Healthor. Theoretically, ���� is not deined for unaided. However, for simplicity we

assume ���� = 200 MPS for our experiments in this case. A random subset of nodes issues messages following a

Poisson distribution with parameter �� , so that
∑

� �� = ���� . Channels are assumed to have a delay between

50ms and 150ms uniformly at random to simulate real network conditions [27, 37].

The variable processing rate �� of a node� is modeled according to the cloud performance traces shown

in Figure 4. As a conservative approximation of real-world DLT P2P networks [9, 27, 37, 43, 66], we adopt a

distribution of 50% constant, 25% AWS, 15% Azure, and 10% Dimension Data. Every �� is randomly scaled between

0.9���� and 3.5���� (in the case of unaided, the original ���� value with which is compared is used). For example,

if a node� is of type AWS with 1.5���� its mean processing capabilities are �̄� = 150 MPS but vary over time as

pictured in Figure 4 where the �-axis is randomly shifted.

Every node’s Health Measurement Engine computes its health ℎ� and sends it to its neighbors every 1 second.

Since we do not consider message priorities, a node’s scheduler operates according to FIFO. A node’s Defense

Engine calculates allowed rates at an interval of 1 second and creates moving averages over a time window �� = 3

seconds. A neighbor is dropped after violating the protocol � = 5 times in a row.

5.2 Metrics

Centralization score: quantifying (de)centralization. In P2P networks, decentralization is the property of

not relying on any centralized component. DLTs work, by deinition, in a decentralized way. However, while

in theory no centralized components are present, to prevent Sybil attacks nodes have diferent inluence on

consensus. Hence, if a node assumes too much power (e.g., hashing power in Bitcoin [59], concentration on major

cloud hosting providers [27, 37, 43]), we can conclude it has exceeding control of the network. Decentralization

is a fundamental property of DLTs, and with the centralization score we introduce an easy way to compare the

degree of decentralization in a voting-based DLT with the ratio of nodes being able to participate in voting.

The centralization value is the number of nodes that are not able to process all messages within a deined time

window � normalized by the total number of nodes and is deined as

������ (�) =

∑

�∈M ������� (�)

|M|
, (3)

where

������� (�) =

{

1 if� processed all messages in [�, � + �],

0 otherwise.

As such, a lower value is better because more nodes in the network are able to participate in consensus. In our

evaluation we adopt a time window � = 5 seconds, i.e., a node is considered not being able to participate in

consensus if at least one message has been received by the node later than 5 seconds from the time the message

has been issued, also taking into account network delays. Considering that voting usually takes place in rounds it

is reasonable to assume that a node being a bit behind is still able to participate. In case of the IOTA 2.0 protocol

voting rounds are initiated every 10 seconds [51]. Recent PoS DLTs like Polkadot [63] adopt block times of around

5 seconds. Also in these systems a node needs to be able to receive and process a transaction within this bounded

time window in order to be able to produce or validate a block, thus taking part in consensus.

To show the evolution of centralization we plot the centralization value over time, which in simulation can be

easily determined and in real world scenarios can be inferred by the voting participation of nodes. Accordingly,

the centralization score is the mean of the centralization value over a given duration � and expresses the degree
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Fig. 10. Processing rates �� in a network with 10 nodes. A node’s mean processing rate �� ≥ ���� .

of decentralization in a single number. It is deined as

������ (�) =

∑�
�=0 ������ (�)

�
. (4)

Throughput: measuring network performance.We measure the processing time of messages on a node

and aggregate it by the granularity of one second. This constitutes the throughput of a particular node at a given

time. To evaluate the network’s mean throughput we sum up the throughput of all nodes divided by the count of

nodes. This calculation excludes out-of-sync nodes, i.e., only participating nodes contribute to the network’s

throughput.

Latency: assessing delays. Delays are important in every network where small delays correspond to quick

response times. In voting-based DLTs a small latency is crucial for nodes to be able to participate in consensus.

We measure latency of any given node� as the duration between message issuance time and processing time on

node�. When assessing latency as global network property, we consider the 95 percentile latency of all in-sync

nodes.

5.3 Microbenchmarks

We compare aided and Healthor in a network with 10 nodes. Figure 10 depicts that each node’s mean processing

rate �� is larger than or equal to ���� . It can be seen that node[2] (�̄2 = 170 MPS), node[4] (�̄4 = 130 MPS), and

node[6] (�̄6 = 170 MPS) sometimes fall below the network processing rate ���� = 100 MPS. Therefore, these

nodes are of special interest. Due to the limiting nature of aided the actual processing rates used are min(���� , ��)

and higher rates can not be leveraged.

Comparison of aided and Healthor. Figure 11a details the throughput of aided (top) and Healthor (bottom).

The �-axis shows the throughput in messages per second, and the �-axis the time in seconds. Each node’s

throughput can be directly related to its available processing rate as depicted in Figure 10. For aided, the

throughput is capped at a maximum rate ���� (���� = 97.51 MPS), while Healthor temporarily allows higher

throughput (���� = 99.86 MPS) which luctuates aroundÐinstead of being limited byÐthe value ���� . In aided,

node[4]’s throughput drops to 0 around second 55. Similarly, node[6]’s throughput falls to 0 at 120 seconds.

This indicates that both nodes are out-of-sync, i.e., their inboxes are illed up with too many messages without

their known history, so that no newly received message can be scheduled. node[4] and node[6] go oline from

this point in time and cannot participate in consensus anymore until a heavy re-sync operation is performed. In
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(c) Latencies.

Fig. 11. Experiment results in a network with 10 nodes with aided heterogeneity (let) and Healthor (right).

practice this could mean manual intervention and restart with a trusted, previously downloaded ledger state

snapshot.

Figure 11c shows the CDFs of the latencies for aided and Healthor, respectively. In aided, node[2] and node[6]

have by far the largest latency, exceeding 5 seconds at the tail. Recalling the deinition of centralization score

in Section 5.2, this indicates that these nodes are too far behind to participate in consensus for some messages.

Indeed, as shown in Figure 11a, node[4] and node[6] run out-of-sync. However, node[4]’s latency does not

exceed 5 seconds which implies that it got out-of-sync quickly. With Healthor, the network latency is signiicantly

lower by 73% compared to aided. Especially node[2]’s and node[6]’s 95 percentile latencies stand out with an

improvement of 91% and 89%, respectively.
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Inbox
������ MI node[4] MI node[6]

aided Healthor aided Healthor aided Healthor

100 0.14 0 100 100 100 90

250 0.11 0 250 120 250 98

500 0.08 0 500 120 400 115

1000 0.08 0 920 120 400 115

2000 0.08 0 920 120 400 110

Table 2. Diferent inbox sizes with aided and Healthor. MI=maximum measured inbox occupation.

A closer look at inbox sizes. Figure 11b shows the number of messages stored at each node’s inbox over

time, i.e., inbox occupation. Every node can store up to 250 messages. Generally, we observe that bufers have

higher occupation in aided, which leads to higher latencies and indicates higher memory load. Messages reside

longer in the inbox before they can be scheduled because of the enforced processing rate limit. node[4]’s and

node[6]’s inboxes run full around second 40 and 90, respectively. Once this happens for too long the node is

nonrecoverable out-of-sync and, simultaneously, its throughput drops to 0, hence it goes oline. Temporarily,

also node[2]’s inbox runs full at ∼ 120 seconds, but it does not go out-of-sync. Instead, it is able to recover via

pull action and its inbox occupation drops towards the end of the simulation. Inbox occupation with Healthor

follows a diferent pattern: none of the nodes’ inbox runs full, thus all nodes stay in sync. Furthermore, the inbox

ills and empties in a zigzag pattern reacting to health changes. Recall that a node gets unhealthier when its inbox

grows, and its neighbors forward at slower rate until the node gets healthier again.

Table 2 shows the centralization score and the maximum inbox occupation of node[4] and node[6] for various

inbox sizes. The centralization score captures when a node is not able to participate in consensus. Therefore, it is

a reasonable tool to assess the efect of various inbox sizes. On the one hand, a too small inbox can be easily

fulilled. Hence, new messages are dropped with high probability up to the point where the node falls out-of-sync.

On the other hand, a too big inbox size might consume too much memory while only increasing delays. Either

way a node is not able to vote.

We observe that node[4] and node[6] get out-of-sync in the aided case when the inbox size is 100, because

both nodes’ inboxes run full. With Healthor, the centralization score is 0 which signals that no nodes got out-of-

sync, even though node[4]’s inbox reached 100. In this case, node[4] could recover via a pull action and with

the help of its neighbor’s bufering while it is unhealthy. Larger inbox sizes seem to improve the centralization

score slightly for aided but the fundamental problem of node[4] and node[6] getting out-of-sync remains. With

Healthor this problem is already alleviated with an inbox size of 100, where every node can stay in sync. However,

node[4]’s inbox is at its maximum capacity, and the node needed to recover via pull actions. Inbox sizes larger

than 250 only let nodes look healthier, but cannot improve the centralization score (which is already 0). Therefore,

the maximum inbox occupation measured is slightly higher. Henceforth, we adopt an inbox size of 250 for all of

our experiments as a reasonable tradeof between memory consumption and storing capacity.

A closer look at outbox sizes with Healthor. Recall that a node� has an ������� for every � ∈ N� . It is

therefore important to establish a itting outbox size, so that enough messages can be stored, but no unnecessary

overhead is created. Table 3 shows the centralization score, maximum inbox occupation of node[4] and node[6]

as well as maximum outbox occupation of both nodes’ neighbors. Larger outboxes indicate less pressure on

an unhealthy node up to an outbox size of 250, as is evident by the higher inbox occupation of node[4] with

an outbox size of 100. However, this trend can only be observed until an outbox size of 250, where the outbox

occupation at node[4]’s neighbors and its inbox occupation stabilize. An outbox size of 250 seems to ofer a good
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Outbox ������ MI node[4] MON node[4] MI node[6] MON node[6]

100 0 160 100 98 100

250 0 120 200 98 100

500 0 120 200 98 100

1000 0 120 200 98 100

2000 0 120 200 98 100

Table 3. Outbox sizes with Healthor. MI=maximum measured inbox occupation, MON=maximum outbox occupation at

neighbor node.
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Fig. 12. Processing rates �� in a network with 10 nodes (additional scenario). A node’s mean processing rate �� ≥ ���� .

tradeof between decreasing load on an unhealthy node and creating overhead on its neighbors. We therefore

adopt an outbox size of 250 for our experiments.

Additional Scenario The previous analysis was done with the same network and node heterogeneity setup.

To gain a better intuition of Healthor’s behavior for diferent networks, we now take a look at the same set of

igures (Figure 13) for throughput, inbox occupation, and latencies for a diferent 10 node network setup. Figure 12

shows the nodes’ processing rates �� , where each node’s mean processing rate �� is larger than or equal to ���� .

The network’s parameter are as described in Section 5.1. We observe that the mean of �� for node[1], node[2],

and node[4] are equal to the network processing rate ���� = 100 MPS. Hence, these nodes are of special interest.

Figure 13a details the throughput of aided (left) and Healthor (right). We show, for the former, the throughput

is capped at a maximum rate ���� , while the latter, temporarily allows higher throughput, which luctuates around

Ð instead of being limited by Ð the value ���� . In aided, node[2]’s throughput drops to 0 around second 45

which means that the node is out of sync and oline from this point in time and cannot participate in consensus

anymore.

In Figure 13b the inbox occupation is displayed. At the same time, we observed node[2]’s throughput dropping

to 0, i.e., getting out of sync, we can see its inbox becoming full for the aided case (left). Comparing to Healthor

(right), node[2]’s inbox does not grow larger than 145 and follows the zigzag pattern reacting to health changes,

as we have seen for the irst scenario already. Overall, inboxes do not grow as full with Healthor as in aided.

The CDFs of the latencies for aided (left) and Healthor (right) are shown in Figure 13c. In aided, node[2]’s

latency exceeds the 5s mark and indicates, once again, that this node is getting out of sync. With Healthor the
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(c) Latencies.

Fig. 13. Experiment results in a network with 10 nodes (additional scenario) with aided heterogeneity (let) and Healthor

(right).

latency for node[2] is lower and this is not the case. For all other nodes especially tail latencies are large in aided

whereas this is not the case with Healthor.

Overheads. In our evaluation we conigure Healthor to exchange health messages every 1 second. Naturally,

this adds message overheads compared to aided. The theoretical maximum overhead of a node for a simulation

of length � time can be calculated as ���� (�) = |N� |� . Assuming that a node has |N� | = 4 neighbors during

a simulation of 180 seconds results in ���� = 720 health messages sent and received. In a looding-based P2P

network with ���� = 100 MPS and the same coniguration the maximum number of sent and received messages is

72,000. It follows that, Healthor incurs a maximum overhead of 1% in the deployed coniguration. However, we

are aware that the overhead is a function of message rate and can be high with low throughput.
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Fig. 14. Experiment results in a network with 2,000 nodes.

Discussion. In two diferent scenarios, we have shown that Healthor enables lower latencies and reduces load

on low-end nodes compared to aided mainly by allowing temporarily higher throughput. It therefore unlocks

enormous potential: nodes can make use of resources when they are available, irrespective of network activity.

However, the mechanism does not come without overheads as our calculations show.
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|M|
aided unaided Healthor

������ L T ������ L T ������ L T

100 0.04 1.93 98.24 0.40 0.83 198.38 0.02 0.73 101.10

500 0.09 4.24 97.15 0.38 1.17 196.20 0.02 0.95 100.81

1000 0.07 4.47 97.82 0.38 1.45 195.20 0.03 0.99 100.12

2000 0.06 3.17 97.79 0.41 1.61 196.98 0.03 1.06 100.82

5000 0.07 4.26 97.00 0.40 1.73 197.21 0.03 1.19 100.60

Table 4. Decentralization vs. throughput experiment results. L=95 percentile latency, T=mean throughput.

5.4 Macrobenchmarks

In the previous section we investigated Healthor closely and established sensible default parameters for inbox

and outbox sizes. Following, we compare aided, unaided, and Healthor at a larger scale. We present overall

network-level results for heterogeneous networks with up to 5,000 nodes in line with the description provided in

Section 5.1.

Decentralization vs. throughput. Figure 14a shows the centralization value for aided, unaided, and Healthor

in a network with 2,000 nodes. Clearly, unaided is the least decentralized whereas aided is signiicantly more

decentralized and Healthor even more so. Figure 14b shows the throughput. As expected, aided is limited at

���� = 100, Healthor permits temporarily higher throughput around ���� , and unaided is only limited by demand

(here at ���� = 200). In Figure 14c, the CDF of 95th percentile delay of in-sync nodes details how delays are much

higher in aided than in unaided (∼ 2� higher) and Healthor (∼ 3� higher). Messages in aided stay much longer in

a bufer before being able to be processed and forwarded due to the limited rate. It is interesting to see that while

Healthor slightly increases throughput and makes the network signiicantly more decentralized compared to

aided, it still provides comparable latencies to unaided.

A similar trend can be observed in Table 4. In various network settings, unaided allows the highest throughput

and has low latency, but it is also the least decentralized. Aided guarantees a fair decentralization but has

poor latency and a maximum ixed throughput. Healthor ofers the best out of both worlds: almost complete

decentralization (78% improvement compared to aided), a slightly better throughput than aided and its latency is

on par with unaided.

Sensitivity analysis. Looking closer at the behavior of aided and Healthor with the same degree of decentral-

ization can reveal in which settings our mechanism improves throughput and latency. This is shown in Figure 15,

where throughput (Figure 15a) and latency (Figure 15b) are plotted on the �-axis and centralization score on the

�-axis. As expected, the throughput of aided converges towards ���� and cannot exceed it with increasing central-

ization scores. We basically observe the system breaking down, because there are more messages issued than the

ixed throughput ���� . With Healthor it looks decidedly diferent: the throughput correlates almost linearly with

the centralization score, hence is not limited at a ixed rate (desired). The network remains functional, however, it

is in a similar elitist mode as unaided, where only high-end nodes can continue to participate. In Figure 15b we

observe a correlation between rising latency and increasing centralization score in aided (undesired). Conversely,

with Healthor we see a lat latency, hovering around 1 second, regardless of increasing centralization scores.

Table 5 shows by how much Healthor improves latency and throughput compared to aided with the same

degree of decentralization for networks of various sizes. Again, we can observe much higher latencies with aided

and a signiicant improvement of up to 76% with Healthor. Similarly, Healthor improves the throughout by up to

23% compared to aided in a network with 500 nodes.
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|M| ������
Latency Throughput

aided Healthor Dec. (↓) aided Healthor Inc. (↑)

100 0.04 1.93 0.76 61% 98.24 105.45 7%

500 0.09 4.24 1.06 75% 97.15 119.51 23%

1000 0.07 4.47 1.08 76% 97.82 115.10 18%

2000 0.06 3.17 1.12 65% 97.79 108.96 11%

Table 5. Comparing throughput and latency in aided and Healthor with same degree of decentralization.
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Fig. 15. Sensitivity analysis of unaided compared to Healthor in a network with 100 nodes.

Discussion. Aided shows one side of the extreme and limits throughput to increase decentralization. In light of

processing heterogeneity, however, this is not very efective as our experiments have shown. The problem is that

nodes may experience temporary slowdowns below the network processing rate ���� . As long as the throughput is

close to ���� , these nodes lag behind further and further as they experience slowdowns creating higher latency. On

the other hand, the limit on throughput prevents these nodes from falling out-of-sync completely and therefore

provides decentralization.

With unaided nodes can simply operate at their own speed at all times. This clearly ofers lower latency, but it

creates an elite-network where only the strongest high-end nodes can participate, thus reduces decentralization.

Since throughput is only limited by demand, it is practically only limited by the processing capabilities of the

fastest participant(s) at the cost of excluding slower devices and becoming more centralized.

Healthor provides the best out of both worlds by embracing heterogeneity. It allows nodes to temporarily go

faster than ���� and hence ofers low latencies comparable to unaided, higher throughput than aided and most

importantly improves decentralization even more than aided.

6 ATTACK ANALYSIS

Permissionless P2P systems are required to face challenges posed by adversarial behavior. In the case of DLTs this

is exacerbated through inancial motives. Therefore, protocols in permissionless DLTs should be tamperproof and

resilient against exploitation. Healthor employs several inherent defense mechanisms as described in Section 4.7.

We evaluate how the Defense Engine operates in targeted attacks.

Attack model. In the presented attacks we assume an omniscient adversary. Hence, the adversary is aware of

every node’s health, can intercept both messages and health messages. She is able to tamper with the aspects of
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Fig. 16. Node[3]’s outbox occupation. Node[1] atacks node[3] by pretending to be unhealthy.

Healthor’s protocol. Attacks on the network topology, such as eclipse attacks, and the underlying ledger are out

of scope of this paper. We use the same 10 nodes network and parameters of Section 5.3 for the attacks shown in

this section.

6.1 Manipulation of health updates

Not sending health updates. Recall that a node assumes a neighbor � to be healthy ℎ� = 1 when connecting to

each other. Further, it uses the last known health status if a neighbor does not report any health. Therefore, an

adversary cannot cause any harm by withholding health updates.

Lying about health. Since health is computed locally and then sent to the neighbors a node can lie about its

health and even send diferent health status to distinct neighbors. From the viewpoint of a neighbor � of such an

adversarial node�� , node�� behaves normally as long as no other protocol violations, such as being unhealthy

for too long, exceeding the allowed sending rate, or sending too little, are detected. In essence, an adversary has

only very limited capabilities which only afect itself.

Pretending to be unhealthy. An adversary could try to inlate outboxes on its neighbors by pretending to be

unhealthy. Healthor intrinsically averts this by employing limited lengths for bufers. However, an adversary

could make its neighbors waste resources up to this limited amount which is not favorable. The Defense Engine

implements a mechanism to detect whether a node is unhealthy for too long indirectly via its outbox occupation.

If the outbox of a neighbor � is full for too long, it is dropped. Figure 16 shows this scenario where node[1]

attacks node[3]. ���������� [1] grows rapidly up to the maximum capacity of 250. Eventually, node[3] drops

node[1] because the outbox has been full for too long. It can now repeer with another node.

6.2 Manipulation of forwarding rate

Forwarding more than allowed rate to neighbor. An adversary can choose to diverge from the allocated

forwarding rate by sending more and trying to overload a victim. This is displayed in Figure 17a where node[7]

attacks node[2] without Defense Engine. The igure shows the forwarding rates of node[2]’s neighbors as

recorded on receipt by node[2]. The blue line on top indicates the maximum allowed forwarding rate for any

neighbor. It is clear that node[7] exceeds this rate starting around second 15. As node[7] continues to send at

high rate, node[2] gets unhealthier. Thus, the maximum allowed forwarding rate drops and other neighbors of

node[2] reduce their rate accordingly. As a result, we can see that without the Defense Engine an attacker can

overload a node by forwarding above the allowed rate.
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(a) Disabled Defense Engine. Node[7] exceeds allowed forwarding rate.
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(c) Enabled Defense Engine. Slowing down substantially is quickly detected.

Fig. 17. Receiving rates of node[2]’s neighbors, measured locally. Node[7] atacks node[2].
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Figure 17b shows the same attack but with the Defense Engine enabled. Node[2] quickly detects node[7]

divergence and drops the connection to it around second 20. This results in node[2] staying healthy and being

able to process messages by other nodes until the end of the simulation.

Forwarding too little to neighbor.A node might receive none or very little messages from a speciic neighbor.

This could be due to a neighbor very unhealthy or a targeted attack to slow down and exclude the node from

participating. Exactly this attack is pictured in Figure 17c. At second 40 node[7] slows down its forwarding rate

to node[2] to 10 MPS which is shortly after detected by node[2]. The connection is dropped and node[2] can

peer with another node.

7 RELATED WORK

Flow control in the permissionless DLT setting builds on many topics from networking research such as P2P

systems, network security, and distributed low control. However, to the best of our knowledge Healthor is the

irst system to systematically combine a health-based, heterogeneity-aware distributed low-control protocol in

permissionless DLTs.

Congestion and low control in traditional networks and data centers is a deeply studied topic [1, 4, 11, 31, 47].

Generally, mostly end-to-end communication settings rather than group communication is considered. However,

with Healthor we focus on application-level message low control in a group communication setting. Congestion

control protocols employ speciic signals such as delay measurements or packet loss to detect congestion. Some of

which require switch support [1], NIC support [47], or are software-based [4, 11, 31]. In Healthor we use explicit

health messages from neighbors as a low-control signal without needing any hardware assistance. Its architecture

converting health to per-neighbor forwarding rates is inspired by TIMELY [47] (in contrast to window-based

TCP variants [1, 31]).

P2P systems and speciically content distribution systems such as Gnutella, KaZaA and BitTorrent were studied

widely in the early 2000s [3, 14, 39]. Similar to modern DLTs, these systems are highly heterogeneous [55] and

faced challenges with scalability and performance [3]. In [13, 41] Gia, a scaling approach for the Gnutella network,

is proposed that leverages heterogeneity. It dynamically changes the network topology and puts high capacity

nodes within short reach of most nodes. Additionally, an active low-control mechanism based on available

capacity is used to avoid overloaded hot-spots. Gia is similar to Healthor in spirit as both mechanisms leverage

heterogeneity to increase utilization. However, the way Gia is designed is unsuitable for permissionless DLTs as

topology changes can lead to cliques construction of powerful nodes, thus defeating the aim of decentralization in

DLTs. Also, in Gnutella it is not essential for nodes to retrieve every search query whereas in DLTs state updates

need to be propagated to every node eventually.

More recent research on DLTs [5, 6] focuses more on the aspects of consensus [30, 59], decentralization [27,

37, 43], and scalability [15], the networking aspect of DLTs has received only little attention [19]. As such, to the

best of our knowledge there is no low-control mechanism for DLTs similar to Healthor.

Scalability research in DLTs is mainly concerned with scaling consensus instead of the network layer [68].

There are some proposals to improve transaction and block dissemination such as Kadcast [53] and Erlay [49].

However, heterogeneity is often not considered at all and merely considered a by product caused by performance

variability of cloud providers [23, 40, 65]. With Healthor we provide a solution to this emerging problem. As an

alternative to permissionless public DLTs, there are also permissioned DLT designs [2] that can potentially give

more control over participants and their network activities.

8 CONCLUSION AND ON-GOING WORK

In this paper we have presented Healthor, one of the irst distributed low-control mechanisms to leverage

node heterogeneity to dynamically improve performance and decentralization in a permissionless DLT network.
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Healthor achieves this by rate controlling message forwarding rates based on a node’s health. Health is deined

as a function of a node’s message inbox occupancy. With extensive simulation of Healthor on DLT networks of

up to 5,000 nodes, we have shown that this simple health-based signal can increase the degree of decentralization

by 78%, improves throughput by 23%, and decreases 95 percentile message latency by 4×.

As next steps we are speciically investigating how to design a self-stabilizing mechanism for Healthor (without

a network target rate) to converge to an optimal equilibrium based on the current network load and health of

network participants. Furthermore, like early P2P designs, right incentives plays an important role for protocol

adherence in any open network. Currently, Healthor does not provide any hardened incentives for nodes to follow

the protocol except risking being dropped by a neighbor. One promising design is to incorporate Healthor’s

neighbor-assisting behavior into a DLT’s reputation system incentives. Another interesting research direction is

the detailed analysis of a colluding, malicious majority and its efects on the Healthor protocol.

Healthor’s source code (https://github.com/jonastheis/healthor) and simulation result data set (https://zenodo.

org/record/4573698) are both publicly available.
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