MASSIVIZING COMPUTER SYSTEMS

MASSIVIZING GRAPH PROCESSING: THE SCIENCE, DESIGN, AND ENGINEERING OF A COMPLEX ECOSYSTEM

@Large Research Massivizing Computer Systems

http://atlarge.science

Sponsored by:

Prof.dr.ir. Alexandru

IOSUP

bit.ly/AtLargeGraphSys22

Massivizing = Rich challenge of computer science
high societal impact!

Contributions from the MCS/AtLarge teams. Many thanks! Many thanks to our collaborators, international working groups, authors of all images included here. Also thanks to Gabriela Ciocârlie, UTSA AI Consortium for Human Well-Being.

OL USIN 1 MINUTE WE'RE MASSIVIZING COMPUTER SYSTEMS!

VU AMSTERDAM < SCHIPHOL < THE NETHERLANDS < EUROPE

http://atlarge.science

WE ARE HIRING A NEW ASST. PROF.!

Alumni

WE ARE A FRIENDLY, DIVERSE GROUP, OF DIFFERENT RACES AND ETHNICITIES, GENDERS AND SEXUAL PREFERENCES, AND VIEWS OF CULTURE, POLITICS, AND RELIGION. YOU ARE WELCOME TO JOIN!

WHO AM I? PROF. DR. IR. ALEXANDRU IOSUP

- Education, my courses:
 - > Honours Programme, Computer Org. (BSc)
 - > Distributed Systems, Cloud Computing (MSc)
- Research, 15 years in DistribSys:
 - > Massivizing Computer Systems
 - > About 30 young researchers in the team

• About me:

- > Worked in 7 countries, NL since 2004
- > I like to help... I train people in need
- > VU University Research Chair + Group Chair
- > NL ICT Researcher of the Year
- > NL Higher-Education Teacher of the Year
- > NL Young Royal Academy of Arts & Sciences
- VU > Knighted in 2020

WE ARE ALIGNED WITH COMMUNITY CONCERNS...

The Manifesto on

Computer Systems and Networking Research Clear vision for the field in the NL, 2021-2035

Signed 50+ PIs / Leads 7 universities 5 relevant societal stakeholders

Available

Full version (40+ pages) https://arxiv.org/pdf/2206.03259 Who's Who in CompSysNL? https://bit.ly/CompSysNLWhosWho

© 2022 Alexandru Iosup. All rights reserved.

ONE PROJECT TO MENTION...

Big Graph Processing: Used in AI/ML, FinTech, Sci/Pharma Industry 4.0, Energy Mgmt.*, etc.

Vision: Massivizing computer systems approaches are key to enable big graph ecosystems

contributed articles

CACM Cover/Featured article, Sep 2021

(*) Digital twin for datacenters, with partners CINECA, UniBo, etc.

Sakr, Bonifati, Voigt, Iosup, et al. (2021) The Future Is Big Graphs! CACM.

@L THSISTHE GOLDENAGE OF COMPUTER 1 ECOSYSTEMS

THIS IS THE GOLDEN AGE OF MASSIVE COMPUTER ECOSYSTEMS

THE ECONOMIC IMPACT OF MASSIVE COMPUTER ECOSYSTEMS

DIVERSE SERVICES FOR ALL

EVERY $eqref{eq:expansion} 1 \rightarrow eqref{eq:expansion} 15 \text{ added value}$

Impacting <u>>60%</u> of the NL GDP (1 trillion EUR/y)

Attracting <u>>20%</u> of all foreign direct investments in NL

Sources: Iosup et al., Massivizing Computer Systems, ICDCS 2018 [Online] / Dutch Data Center Association, 2020 [Online] / Growth: NL Gov't, Flexera, Binx 2020. Gartner 2019. IA 2017.

$(\mathcal{O} \mathsf{L})$ BUT WE CANNOT TAKE THIS TECHNOLOGY FOR GRANTED (So, this is why I am giving this talk) 2 Golden Age

This talk >

GRAPH DATA EVERYWHERE, AT UNPRECEDENTED SCALE

NEED TO MASSIVIZE GRAPH PROCESSING

Social / gaming network

~1 billion vertices ~100 billion connections

Sources: Smith, CHI'10; Blog webpage; Gigandet et al., PLoS ONE 3(12)]

Your network is so large...

Sorry, but your network is too large to be computed, we are working to increase the limit, stay tuned!

PHENOMENON: FAILURES IN COMPUTER ECOSYSTEMS

UNCOVERING THE PRESENCE OF FAILURES

PHENOMENON: PERFORMANCE IN CLOUD SERVICES

UNCOVERING THE PRESENCE OF PERFORMANCE ISSUES, EVEN LEADING TO CRASHES

Polygon

Source: http://bit.ly/EveOnline21Crash

NEWS

Players in Eve Online broke a world record — and then the game itself

Developers said they're not 'able to predict the server performance in these kinds of situations' By Charlie Hall | @Charlie_L_Hall | Jan 5, 2021, 2:54pm EST

PHENOMENON: IT SUSTAINABILITY

UNCOVERING THE USE OF ENERGY AND WATER, THE IMPACT ON CLIMATE

Power consumption of datacenters: >1% of global electricity

Source: Nature, 2018 [Online]

Power consumption of datacenters in the Netherlands: <u>1→3%</u> of national electricity

Source: NRC, 2019 [<u>Online]</u>

Water consumption of datacenters in the US: **>625Bn. l/y** (0,1%)

Source: Energy Technologies Area, 2016 [Online]

Other greenhouse emissions: Largely unknown

Source: Nature Climate Change, 2020 [Online]

Source: NASA Earth Observatory

PHENOMENON: FEW CAN OPERATE COMPLEX IT ECOSYSTEMS

THE WORKFORCE GAP, IN THE NETHERLANDS & IN EUROPE

VU

THIS TALK: MASSIVIZING = LET'S THINK ECOSYSTEMS!

WE TAKE A HOLISTIC VIEW, BASED ON COMPUTER ECOSYSTEMS

Technology not ready, many issues* A Why does this* happen? R What to do about it*?

* In modern computer systems, issues are often linked.

Source: Alexandru's personal library.

Idea: Meaningful discovery requires a mix of experimental science, design, and engineering.

LEONARDO'S APPROACH: ADDRESS COMPLEXITY WITH MIX OF SCIENCE, DESIGN, AND ENGINEERING (AND ART, BUT HE WAS PEERLESS!)

Source: Leonardo da Vinci (15th-16th century), Jean Paul Richter (1883) The Literary Works of Leonardo da Vinci.

© 2022 Alexandru Iosup. All rights reserved.

ENGINEERING COMPLEX WORKFLOWS

THE NEED FOR SPEED IN GRAPH PROCESSING FOR COVID-19 PREVENTION

Social network Epidemiology

Who is a super-spreader? Where? Why? How would the spreading evolve? Which measures/policies can curb spreading?

Biological network
Drug synthesis

Which diseases are similar? Which genes are related to this disease? Which inhibitors could work? Which drugs could be targeted/synthesized to cure COVID-19?

Source: Sakr, Bonifati, Voigt, Iosup. The Future is Big Graphs! A Community View on Graph Processing Systems. Dagstuhl Seminar 19491 Big Graph Processing Systems and CACM article.

COMPUTER SCIENCE IMPACTING SCIENCE

MANY GRAPH DATASETS, MANY ALGORITHMS 🗌 10S OF SPECIALIZED PLATFORMS

How well do graph processing platforms perform?

EXPERIMENTAL METHODS OF DISCOVERY

UNIQUE OPPORTUNITY: WE DRINK OUR OWN CHAMPAGNE (IN VIVO)!

There is More to Understanding Performance

The Graphalytics Ecosystem

AUTOMATED TESTING FOR DISTRIBUTED ECOSYSTEMS?

LDBC GRAPHALYTICS: BENCHMARKING LEADING TO DISCOVERY

The graph & RDF benchmark reference

Graphalytics

- > Benchmark, 7+ years engineering
- > Many classes of algorithms used in practice
- > Diverse real and auto-gen datasets
- > Diverse experiments, representative for practice
- > Renewal process to keep the workload relevant
- > Automated comparison of many platforms, community-driven and industrial
- > Automated global competition, manual auditing

Community endorsed:

Musaafir

graphalytics.org

• Surprising finding, selected:

Performance: orders of magnitude difference due to each of platform, algorithm, dataset, and hardware

28

[Iosup et al.] [Iosup et al.] [Guo et al. PVI DB'16 [Guo et al.] [Guo et al.] [Guo et al.] https://graphalytics.org

Sull support D Directed only U Undirected only

Graphalytics in a Nutsneu

Misc

(x) No support

- An LDBC benchmark
- Advanced benchmarking harness
- Many classes of algorithms ٠
- Diverse real and synthetic datasets •
- Diverse set of experiments ٠
- Renewal process to keep workload relevant •
- Enables comparison of many platforms, ٠ community-driven and industrial

Platform	Driver	BFS	CDLP	LCC	PR	SSSP	WCC
Giraph	€	\oslash	\bigotimes	\oslash	\odot	\oslash	\oslash
GraphX	€	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
PowerGraph	€	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
OpenG	€	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
GraphMat	€	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
nvGRAPH	Ő	\oslash	\bigotimes	\otimes	0	\oslash	\bigotimes
Gelly	€	\oslash	\oslash	\oslash	\oslash	\oslash	\oslash
GraphBLAS	€	\oslash	\otimes	\oslash	\oslash	\oslash	\oslash
GraphLab	€	\oslash	\oslash	\oslash	\otimes	\bigotimes	\otimes
Gunrock	Ő	\oslash	\bigotimes	\otimes	0	0	\otimes

Runtime: The Platform Has Large Impact

M. Capota et al., Graphalytics: A Big Data Benchmark for Graph-Processing Platforms. SIGMOD GRADES 2015

Runtime: The Dataset Has Large Impact

M. Capota et al., Graphalytics: A Big Data Benchmark for Graph-Processing Platforms. SIGMOD GRADES 2015

The Platform-Algorithm-Dataset (PAD) Triangle for Performance Engineering of Graph-Processing Systems

Algorithm

Ana Lucia Varbanescu.

Introduced by

In progress Algorithms for different data types and graphs

Overstudied

Performance is enabled Portability is disabled

Platform

Dataset

Capota et al.'15

A. Uta et al., Exploring HPC and Big Data Convergence. CLUSTER 2018 Understudied

No systematic findings yet (SW + HW) Must be correlated with the algorithm

LOCALIZATION OF BOTTLENECKS PERF. ISSUES

GRADE10: MODELING LEADS TO DISCOVERY

- Graphalytics Grade10:
 - > Automated bottleneck detection
 - > Automated identification of performance issues

• Without Grade10:

Tim Hegeman

No bottleneck at all

• With Grade10:

Always bottleneck Can explain causes: + Message queue full + Garbage collector + CPU + Others

Grade10 Result: Analysing a Giraph Job

VU VRIJE UNIVERSITEIT AMSTERDAM

Hegeman et al., Grade10: A

:=

Grade10 Result: Analysing a Giraph Job

Hegeman et al., Grade10: A

Eites the Diverse in the Constant in the second second second second second second second second second second

Grade10 Result: Analysing a Giraph Job

Hegeman et al., Grade10: A

Fighter and the second s
Grade10 Result: Analysing a Giraph Job

Hegeman et al., Grade10: A

Ewsweiter Con Developments

Grade10 Result: Analysing a Giraph Job

The interplay of experimental science, design, and engineering leads to important results (end Part I)

- 1. Science, design, and engineering intertwined
- 2. Experimentation in vivo, in vitro, (in silico)
- 3. Benchmarking reveals graph processing has large design space & complex trade-offs
- 4. Remarkable finding: performance as function of hardware and software platform, data, algorithm
- 5. New systems through design and engineering, but there must exist a better way than bottleneck by bottleneck

A new science, of complex, smart computer ecosystems

4 (operational simplicity for the user) This talk

AN ANALOGY: MASSIVIZING CLIMATE SCIENCE

TAKE A HOLISTIC VIEW, BASED ON COUPLED NATURAL SYSTEMS

Can be understood only with coupled models

Climatologist Bjorn Stevens. Source: HPCM

* In climate science, issues are often linked. The same occurs in massive computer (eco)systems.

DISTRIBUTED ECOSYSTEMS, OUR DEFINITION

- 1. Set of 2+ constituents, often heterogeneous
- 2. Each constituent is a system or an ecosystem (recursively)
- 3. Constituents are autonomous, cooperative or in competition
- 4. Ecosystem structure and organization ensure responsibility
 - 1. Completing functions and providing services
 - 2. Providing desirable non-functional properties
 - 3. Fulfill agreements with both operators and clients, clients in the loop

-2:-

5. Long and short-term dynamics occur in the ecosystem

losup et al., Lecture Notes in Distributed Systems, Section 1.1.1

Iosup et al., Massivizing Computer Systems, ICDCS 2018. [Online]

ECOSYSTEM = SERVICES + COMPUTING + SMARTS + GOALS

43

Extreme Automation, Performance, Dependability, Sustainability

High-level, theoretical approaches

5

(our theories are often frameworks, designs, etc.)

A new science

Ref Archi >

Ref Archi, Sched >

RM&S Framework >

Metrics Framework >

CWL Framewor

A Reference Architecture for Big Graph Processing

Sakr, Bonifati, Voigt, Iosup, et al. (2021) The Future Is Big Graphs! CACM.

AUTOMATED AI/ML/DL OPERATIONS

AUTOMATED AI/ML/DL OPERATIONS

ISSUES: COMPLEXITY, NON-TECHNICAL

Actual ML app is a very small part!

Rest is systems, HW+SW, including HPC

Adapted from:

Granhs | CACM

Sakr, Bonifati, Voigt, Iosup, et al. (2021) The Future Is Big

DevOps 6

Data

sing

sovereignty

CLI

Spark

Spark

HDFS

YARN

Legend stage input iteration decision

Users XX

:=

HOW TO DO RM&S ACROSS THE ECOSYSTEM?

IT'S OPERATIONS!

REFERENCE VIEW ON OPERATIONAL TECHNIQUES

HOW TO REPORT PERFORMANCE?

THE COMPLEXITY CHALLENGE

REFERENCE VIEW ON OPERATIONAL METRICS

VU

N. Herbst, E. Van Eyk, C. L. Abad, A. Iosup, et al. (2018) Quantifying Cloud Performance and Dependability: Taxonomy, Metric Design, and Emerging Challenges. TOMPECS 3(4): 19:1-19:36

REPRODUCIBLE WORKFLOWS

High-level approaches

Take-Home >

(our practical approaches are often instruments and datasets)

First distributed & heterogeneous graph analytics system (we often try unusual ideas, be the first philosophy)

Early Graph-Processing Systems: *Either* Distributed *or* Heterogeneous

Distributed CPU-based systems cannot use additional computational power of accelerators

GPU-enabled systems are (mostly) single-machine systems, cannot handle large-scale graphs

Y. Guo, A. L. Varbanescu, D. Epema, and A. Iosup, "Design and Experimental Evaluation of Distributed Heterogeneous Graph-Processing Systems," Submission to *CCGrid*, 2016.

Our approach: 3 Families of Distributed *and* Heterogeneous (CPU+GPU) Graph-Processing Systems

Y. Guo, A. L. Varbanescu, D. Epema, and A. Iosup, "Design and Experimental Evaluation of Distributed Heterogeneous Graph-Processing Systems," Submission to *CCGrid*, 2016.

Promising Results for Distributed and Heterogeneous Graph-Processing Systems

Modern systems follow this hybrid approach

First elastic graph analytics system

A (we often try unusual ideas, be the first philosophy)

Modern Metrics: Elasticity

= Degree to which a system adapts to workload changes by provisioning and de-provisioning resources autonomically, s.t. the supply (the provisioned resources) matches the demand

Auto-scaling = system tries to provision exactly as many resources as the user workload demands

. Ilyushkin, A. Ali-Eldin, N. Herbst, A. Bauer, A. V. Papadopoulos, D. H. J. Epema, A. Iosup (2018) An Experimental Performance Evaluation of Autoscalers for Complex Workflows. TOMPECS 3(2).

JoyGraph EGAP vs. State-of-Art

A. Uta et al., Elasticity in Graph Analytics? CLUSTER 2018

2022 Alexandru Iosup. All rights reserved.

JoyGraph EGAP vs. State-of-Art

R4(S)

Modern systems increasingly follow this hybrid approach

A. Uta et al., Elasticity in Graph Analytics? CLUSTER 2018 2022 Alexandru losup. All rights reserved.

First serverless analytics system

Serverless computing = Extreme automation + fine- grained, utilization-based billing

(we often try unusual ideas, be the first philosophy)

SERVERLESS: DECOMPOSING CLOUD APPLICATIONS

GRAPHLESS = SERVERLESS GRAPH PROCESSING

SERVERLESS ARCHITECTURE, API, SCHEDULER

Send messages % Get messages % **Get vertices %** Database BFS Graphless is a (S3)Pull graph proof-of-concept SSSP Loader Function CDLP Load graph into memory Memory-as-a-Service WCC Get/Set vertex values Send messages Load active vertex ids PR and superstep metadata Static Orchestrator

Modern systems will likely follow this hybrid approach

- Detect end of superstep
- Send messages
- Vote to halt
- Detect end of superstep
 Send messages
 Vote to halt
- Detect end of superstep
 Send messages
 Vote to halt

sages t SSUP. All rights reserve

<u>LIVAUEL EL</u>

~1 /101

Lucian Toader

GraphMassivizer

High-level approaches <

Take-Home Message

(all our knowledge and capability in one project)

Computational Continuum $DC \rightarrow Endpoint-edge-cloud$

Vision: Massivizing computer systems approaches enable holistic understanding and management in the computational continuum

Caring of Data at the Edge, HotEdge

APPROACH: WITH BROAD PARTICIPATION, UNIFY CURRENT COMPUTING MODELS, FORM A COMPUTATIONAL CONTINUUM

for the Edge Continuum, CoRR abs/2207.04159

ONE PROJECT TO MENTION...

GraphMassiziver

Big Graph Processing: Used in Al/ML, FinTech, Sci/Pharma, Industry 4.0, Energy Mgmt.*, etc.

Prodan et al (2022) The GraphMassivizer project: Towards Extreme and Sustainable Graph Processing

for Urgent Societal Challenges in Europe. IEEE Cloud

Summit.

Data Center and HPC Resources

© 2022 Alexandru Iosup. All rights reserved.

Goal: Design massive datacenter graph-baseds models capturing spatiotemporal dependencies between computation, nodes, and cooling equipment. Conduct analytics to predict, e.g., the impact of the spatial power distribution on cooling efficiency and cost.

© 2022 Alexandru Iosup. All rights reserved.

About our team

<<

TAKE-HOME MESSAGE

Massivizing \Box computer ecosystems with good functional and non-functional properties, for all

Golden Age<</th>...but<</td>This talk<</td>A new science<</td>High-level
approaches<</td>Detailed
approaches>>

The graph processing ecosystem is vast, challenging: many apps, many platforms, may goals. We lead many (first) approaches related to performance, RM&S.

Many modern, open challenges: resource management and scheduling, telemetry, analysis, simulation, experimentation, etc. GraphMassivizer to help.

MASSIVIZING COMPUTER SYSTEMS

https://atlarge-research.com/publications.html

- 1. Iosup et al. Massivizing Computer Systems. ICDCS 2018 ← start here
- 2. Andreadis et al. A Reference Architecture for Datacenter Scheduling, SC18
- Van Eyk et al. Serverless is More: From PaaS to Present Cloud Computing, IEEE IC Sep/Oct 2018
- 4. Uta et al. Exploring HPC and Big Data Convergence: A Graph Processing Study on Intel Knights Landing, IEEE Cluster 2018
- 5. Talluri et al. Big Data Storage Workload in the Cloud. ACM/SPEC ICPE 2019.
- 6. Toader et al. Graphless. IEEE ISPDC'19.
- 7. Jiang et al. Mirror. CCPE 2018.

FURTHER READING

- 8. Ilyushkin et al. Autoscalers. TOMPECS 2018.
- 9. Versluis et al. Autoscaling Workflows. CCGRID'18.
- 10. Uta et al. Elasticity in Graph Analytics? IEEE Cluster 2018.

- 11. Herbst et al. Ready for rain? TOMPECS 2018.
- 12. Guo et al. Streaming Graph-partitioning. JPDC'18.
- 13. Iosup et al. The OpenDC Vision. ISPDC'17.
- 14. Iosup et al. Self-Aware Computing Systems book.
- 15. Iosup et al. LDBC Graphalytics. PVLDB 2016.

Etc.

MASSIVIZING COMPUTER SYSTEMS

FURTHER READING

https://atlarge-research.com/publications.html

- 1. Crusoe, Iosup, et al. (2022) Methods Included: CWL. CACM
- 2. Sakr, Bonifati, Voigt, Iosup, et al. (2021) The Future Is Big Graphs! CACM
- 3. Andreadis et al. (2021) Capelin: Data-Driven Capacity Procurement for Cloud Datacenters using Portfolios of Scenarios. TPDS, under review.
- 4. Versluis et al. The Workflow Trace Archive: Open-Access Data From Public and Private Computing Infrastructures. TPDS 2020.
- 5. Uta et al. (2020) Beneath the SURFace: An MRI-like View into the Life of a 21st-Century Datacenter. login USENIX
- 6. losup, Hegeman, et al. (2020) The LDBC Graphalytics Benchmark. CoRR. <u>https://arxiv.org/abs/2011.15028</u>
- 7. Hegeman et al. (2021) GradeML. HotCloudPerf.

 Abad, Iosup, et al. An Analysis of Distributed Systems Syllabi With a Focus on Performance-Related Topics. WEPPE 2021. <u>https://arxiv.org/abs/2103.01858</u>
 Etc.

MASSIVIZING COMPUTER SYSTEMS

FURTHER READING

https://atlarge-research.com/publications.html

- Iosup et al. The AtLarge Vision on the Design of Distributed Systems and Ecosystems. ICDCS 2019 ← Start here
- 2. Uta et al. Is big data performance reproducible in modern cloud networks? NSDI 2020
- 3. Van Eyk et al. The SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless Platforms, IEEE IC 2019
- 4. Papadopoulos et al. Methodological Principles for Reproducible Performance Evaluation in Cloud Computing. TSE 2019 and (journal-first) ICSE 2020
- van Beek et al. Portfolio Scheduling for Managing Operational and Disaster-Recovery Risks in Virtualized Datacenters Hosting Business-Critical Workloads. ISPDC 2019
- van Beek et al. A CPU Contention Predictor for Business-Critical Workloads in Cloud Datacenters. HotCloudPerf19

 Iyushkin et al. Performance-Feedback Autoscaling with Budget Constraints for Cloud-based Workloads of Workflows. Under submission

Etc.

MASSIVIZING COMPUTER SYSTEMS

A LARGER VISION OF HOW COMPUTING WILL HELP OUR SOCIETY

74