
Empirical Characterization of
User Reports about Cloud Failures

Sacheendra Talluri1, Leon Overweel2, Laurens Versluis1, Animesh Trivedi1, Alexandru Iosup1

1Vrije Universiteit Amsterdam, The Netherlands 2Dexter Energy, The Netherlands Corresponding author: s.talluri@vu.nl

Abstract—Cloud services are important for healthcare, bank-
ing, communication, and other purposes. Inevitably, such services
fail, harming the processes and disturbing the people that depend
on them. Understanding failure in cloud services is challenging,
but important to help preventing them. Much work has studied
failure logs and reports provided by infrastructure operators.
However, there is a paucity of information about how users
perceive the failures of cloud services. In this work, we collect
user-reported failures and characterize them empirically. We
collect failures reported by users to the trusted aggregator
Outage Report for 12 cloud services over 16 months spread
across 2019 and 2020. We show evidence that user-reported
failures not only capture major failures also self-reported by
cloud operators, but also provide information about additional
failures. We count and analyze time patterns in these reports.
We make 6 main observations about how users perceive failure
in cloud services. We find over 10x differences in request failure
rates across microservice structures when using user reported
traces compared to using a constant failure distribution. Overall,
our study provides the first long-term characterization of user-
reported cloud failures.

Index Terms—failure, availability, cloud service, cloud, char-
acterization, crowdsourcing

I. INTRODUCTION

Cloud computing is one of the main computing paradigms
for many business and other societal applications. We expect
cloud services to embody the results of decades of research
on building dependable distributed systems [1]–[3]. However,
as the scale and diversity of cloud services increase, we
expect the presence of failures in these services to also
increase [4]. Thus, it is important to study the presence of
failures in cloud services. This has implications for how client
and server applications are designed, the guaranties users of
cloud services can expect, and the direction of fault-tolerance
research. Previous work focuses on failures self-reported or
logged by cloud operators [5]–[7]. In contrast, in this work we
conduct the first long-term study on cloud failures as reported
by users.

Information about cloud-service failures is already consid-
ered important. Amazon, Microsoft, Google, Facebook, and
others offer status updates for many of their cloud services.
However, preliminary evidence from common users indicates
cloud operators do not report all failures [8] and also choose
to report some failures only when media takes notice [9].

Cloud operators have to balance two sets of incentives.
On the one hand, cloud operators want to report all failures
that reach the news, so they are perceived as competent
and transparent. On the other hand, cloud service providers
may not want to display many, possibly hundreds, of failures

on their status page, as someone who is not an expert can
misinterpret this to mean that the provider is unreliable. In
practice, failure reporting on the status page is a manual
process, and the employees who approve making a failure
report public may be disincentivized to report failures and even
get negative performance reviews [8].

In this study, rather than self-reports by cloud providers,
we consider failure reports from the new vantage point of
user reports. When a cloud service does not work, its users
search the Internet to understand if this is a problem only
for them or if it affects other people. The first search results
in Google, Bing, and other major search engines, tend to be
websites of large aggregators of user-reported failures, e.g.,
Outage Report, Down Detector, and Down Right Now. Some
users further report the problem they observed to the same
aggregators; this study focuses on these reports.

The crowdsourced aggregators of cloud-service failures
provide an important vantage point, a valuable source of data
which complements what is reported by other sources. For
example, our dataset indicates a failure on 7th May 2019 with
952 user reports. The actual number of users affected is likely
much higher, because the users who report are more than an
order of magnitude fewer than the total number of visitors
to the crowdsourcing website. There is no indication of this
failure on the Facebook status page and general Internet search
does not reveal more.

Collecting and characterizing user-reported failures in cloud
services is challenging. First, the data collection is hampered
by the lack of persistence in data published by crowdsourced
aggregators; most of the data remains available for less than
a day. Even if such data becomes available, to evaluate its
quality we further need to compare the crowdsourced data
to trusted sources. Second, user reports do not necessarily
amount to cloud-service failures, and new methods are needed
to derive failures from (sets of) user reports. Third, as a data-
driven process, the characteristics of user-reported failures are
currently not known. Finally, we lack open-access data about
user reports of cloud failures over long periods of time which
inhibits the study of failures from this new perspective and the
use of user-reported failures for experiments.

In this work, we broaden our understanding of cloud failures
by taking a unique, user-centric approach. We tackle the
aforementioned challenges with a four-fold contribution:

1) We propose a novel method to understand how users per-
ceive failures in client-facing cloud services (Section III).
Our method leverages crowdsourced data, long-term, to

enable a longitudinal study. To assess the quality of user
reports, we compare them to failure reports from cloud
service status pages.

2) We analyze when and how user-reports occur (Sec-
tions IV). Our analysis, which proposes the first char-
acterization of such failures based on crowdsourced data,
leads to important main observations. Among the types of
characterization, this study covers failure counts, symp-
toms, longitudinal trends.

3) We evaluate in simulation the impact of failures on
latency (Section V). We use user-reported failure traces
and compare with the constant failure rate used by prior
work. We find that using a constant failure rate over-
estimates the number of retries by over 10 times.

4) We provide a unique dataset of crowdsourced failure data
for 2019 and 2020, and the associated open-source soft-
ware framework to study such data. It covers 12 popular
SaaS services (e.g., Facebook, YouTube, and Skype), with
data sampled with 20-minute granularity. The dataset and
the framework are available online: https://github.com/
atlarge-research/outage report characterization.

II. OPERATION AND FAILURE OF CLOUD SERVICES
Cloud services are the digital services running largely in dat-

acenters. They cover a broad span of functionality, from user-
fronting services that provide meaningful (e.g., business) logic,
to deployment and orchestration of datacenter applications, to
continuous monitoring and feedback, to back-end services that
complete low-priority tasks.

In this work, we focus on Outage Report, which is unique
among crowdsourced failure aggregators by simultaneously
being popular, exposing detailed information about individual
reports, and having a favorable scraping policy. We collect
from it user reports for 12 services, chosen for the diverse
interests and use cases they represent. Apple services—
developer services provided by Apple, such as certificate
validation—and Github are primarily software developer ori-
ented services; they are used by a small niche of users
and usually for serious purposes, software development-
related. Skype and Gmail are typically used for mostly
non-entertainment communication. Facebook Messenger and
Whatsapp are mainly used for casual social communication.
A unique feature of Facebook Messenger and Whatsapp is that
their primary purpose is narrow and well defined—to send and
receive messages. Snapchat, Facebook, Twitter, and Instagram
are popular social media services. Users typically interact with
social media services multiple times a day, each time for short
highly engaging bursts. YouTube and Netflix are multimedia
entertainment services. Interaction with these services depends
on the length of the content.

A. Terms and Definitions
We define a failure as a period of time during which

the service is not operating as expected. Failures can be of
different types, such as unavailability of service, crash of client
application, message transmission problems, etc. We analyze
actual failures reported by users in Section IV.

TABLE I
DATASETS AND SUBSETS SUMMARIZED.

Use Dataset/subset # reports Date range

§IV Reports 783,253 14 Apr. 2019 - 31 Oct. 2020
§IV Detailed reports 174,170 14 Apr. 2019 - 31 Oct. 2020
§III-B Github comparison 2,974 14 Apr. 2019 - 31 Aug. 2020

A failure report is an explicit indication by the user to the
monitoring service about a cloud service failure. A detailed
report can include additional information such as the symptom
of failure the user experienced, the location of the user, and
time of reporting.

A failure symptom is the application behavior the user
observed due to the failure of the cloud service. Symptoms
include website not loading properly, mobile application crash-
ing, messages not being sent, etc.

III. METHOD FOR COLLECTING USER REPORTS
Understanding user reports begins with collecting them. In

this section, we describe the process of collecting, preparing,
and validating user reports about cloud service failures.

A. Data Collection and Extraction

In this work, we consider reports about multiple cloud
services, collected (scraped) from the crowdsourced failure
reporting website Outage Report. The scraped pages contain
the number of reports for the last 24 hours, aggregated in
20-minute intervals (quanta), and detailed information about
reports made in the last 20 minutes. To avoid stressing the
website, we scrape it only once every hour, so the scrapes
miss detailed reports added with between 20 minutes and an
hour before our scraping time. However, the sampled dataset
already includes a large number of samples (174,170 detailed
reports). Our scraper is hosted in Ohio, US, by Amazon AWS.

Outage Report embeds the data we collect in the webpage,
as JSON objects. We use regular expressions to extract the
data, constructed manually after careful inspection of these
webpages. We further compare the data we parse to the
visualizations made by Outage Report, to verify if we parsed
the data correctly.

We collect the data over a long period of time, from April
2019 to October 2020; for some services, such as Github, the
period is only May 2019 to August 2020. This allows us to
study long-term trends. The results of parsing this data are two
datasets, Reports and Detailed reports, stored in tabular form
using the Parquet file format and summarized in Table I.

B. Comparison between User- and Self-Reported Failures

To assess the usefulness of user reports in identifying
failures, ideally, we would compare them to the ground truth
of failures for all services we monitor. However, this is not
possible, as the operators rarely report publicly all the failures
experienced by their cloud services. Instead, we take as ground
truth the set of official updates about failures currently reported
on each cloud service’s status page. We have such information
from Github’s status page. This allows us show evidence
whether the failures reported by users are similar in nature to
the failures Github self-reports. Furthermore, this gives insight

https://github.com/atlarge-research/outage_report_characterization
https://github.com/atlarge-research/outage_report_characterization

00:00
06:00
12:00
18:00
24:00

H
ou

r
of

da
y

2019

1 box=1 hour
None Official Minor Official Major Official Critical Report without Overlap Report overlaps Official Minor Report overlaps Official Major

January February March April May June July August September October November December
Day of year (First day of month is labeled)

00:00
06:00
12:00
18:00
24:00

2020

NO DATA

Fig. 1. Failures reported by Github on their official status page compared to failure reported by users to Outage Report. The 3 official major failures that
overlap with user reported failures are indicated with red arrows.

into whether the metrics cloud services are tracking are what
users experience as failures or do users experience something
different. Our main findings are:

O-1: There is overlap between the major failures on
the Github status page and those reported by users.

O-2: There is little overlap between all the fail-
ures self-reported by Github and crowd-reported by
users.

Figure 1 depicts Github failures as (officially) self-reported
by Github and as reported by users to Outage Report. The
horizontal axis represents the days of the year. The first day of
each month is labeled. The vertical axis represents the time of
the day. A single box represents one hour of one day. There are
3 major and 1 critical issues officially reported by Github. All
3 major issues overlap user reports to Outage Report (O-1).
This is seen in the two red-colored (bright) events in April
2020 and one in July 2020. The critical event does not have
a match. Github describes the critical event as a problem
with notifications. We conjecture that the short duration of the
problem (20 minutes) and the subject of effect (notifications)
led to our dataset not recording reports about it. We further
find 13 official minor events that overlap with user reports.
This gives evidence the overlap cannot occur randomly, so
user-reported failures are consistent with the ground truth.

We also observe that many official minor reports have
no overlap (O-2). This suggests little overlap between what
users and GitHub perceive as important enough to report. The
difference between the sets of official and of user reports
stems from the different kind of failures they track. Minor
events reported by Github range from degraded performance to
problems with forking and accessing the website. In contrast,
the most popular reason for events reported to Outage Report
by far is “Website Down”, which accounts for about two-thirds
of the reports for Github. In line with similar conjectures about
software-developing companies [10], we conjecture the official
reports correspond to failures tracked by Github’s internal
metrics, whereas user-reports correspond to events with high
visibility for the (external) users.

The difference between officially reported and user-reported
failures suggests there is a gap in the definition of failures

TABLE II
NUMBER OF REPORTS AND DETAILED REPORT, PER CLOUD SERVICE.

Rank Cloud service Report count In detail In detail, %

1 Apple 3,208 2,566 79.99%
2 Github 4,432 1,062 23.96%
3 Skype 4,799 2,029 42.28%
4 FB Messenger 13,788 6,836 49.58%
5 Gmail 16,471 9,427 57.23%
6 Whatsapp 34,653 9,426 27.20%
7 Snapchat 68,863 8,118 11.79%
8 Netflix 74,631 20,211 27.08%
9 Facebook 79,880 25,886 32.41%

10 Twitter 136,672 20,252 14.82%
11 YouTube 152,169 26,783 17.60%
12 Instagram 193,687 41,574 21.46%

Total 783,253 174,170 22.24%

that are to be reported. On the one hand, as researchers and
expert users, we want detailed information when a service we
use is not functioning. On the other hand, a service cannot
publish thousands of small events as failures, because this
could fatigue the users and be misinterpreted as pervasive
unreliability.

Implications: Our findings in this section motivate the need
to revisit current failure-reporting methodologies, to make
them identify and classify failures consistently with what the
users experience. We recommend reporting both global failures
and fine-grained, detailed failures per operational instance
(shard) of each service; for example, the Salesforce status-
page [11] offers already such reporting.

IV. ANALYSIS OF THE USER REPORTS

The number of failure reports and the symptoms behind
reveal information about the nature of users reporting failures
and the nature of the services themselves. In this section we
analyze the counts, symptoms, and the pattern in time of user
reports. Our main findings are:

O-3: Services with narrow functionality, such as
Whatsapp, receive fewer reports compared to ser-
vices with diverse functionality.

O-4: “Non-functional mobile application” and
“Website not working” are the major symptoms
that users report.

O-5: Users report more failures on specific days of
the week and hours of the day. Most failures were
reported during the evening.

A. Count of User Reports

We collected a total of 783,253 user reports. The number of
reports for different services in the dataset is summarized in
Table II. The ‘Report count’ column contains the total number
of reports we have for a particular cloud service. The ‘In
detail’ column contains the number of reports with additional
information such as the location of the reporting user and the
reason for the report.

The total number of reports range from 3,208 for Apple
to 193,687 for Instagram. The large number of failure reports
indicates that manual analysis of each report by engineers or
support staff is not possible. Using individual user reports
to help with failure identification and resolution requires
automated systems able to deal with thousands of reports.

B. Number of User Reports

Different services show different patterns of failure report-
ing based on their use case. Table II indicates that a service
like Instagram which has 500 million daily active users [12],
also has a lot of reports. In contrast, relatively niche services
like Github, which serve the software development community,
have much lower number of reports. Surprisingly, Whatsapp
and Facebook Messenger do not receive a lot of reports despite
their popularity. Whatsapp, for example, also has over 500
million daily active users [13] but only received 34,653 reports,
compared to Instagram’s 193,687 (6x less). We conjecture
that there are a couple of reasons for this. Whatsapp and
Facebook Messenger both have a narrow purpose and well-
defined feature set, to send and receive messages (O-3). Thus,
in this sense there is less of a chance for things to go wrong.
Another reason could be that most of the reports are from the
USA, where Whatsapp and Messenger might not be the most
popular applications.

Out of a total 783,253 reports, 174,170 (22%) reports have
additional detail about the symptom that lead to the report and
the location. For some services, such as Apple and Gmail,
we observe a high fraction of reports (79.99% and 57.23%
respectively) with detail. For others, such as Snapchat and
Twitter, we observe a low fraction of reports (11.79% and
14.82% respectively) with detail. The number of detailed
reports could reflect the temperament of users who use those
services, and the intention with which they use the services.
For example, we conjecture that frequent Gmail users use
it with a deliberate mindset and might be more willing to
report with additional information about the symptoms they
observe. In contrast, we conjecture that while using Snapchat
and Twitter, both of which involve short form content and
photos, a user is usually looking for instant gratification. The
user might not have the patience and motivation to detail
the symptoms. The same user could have different mindsets

0 0.05 0.10 0.15
Mean of fraction of reports per service

Videos won't play
Stream not working
Mobile app crashes

Message read problems
Message send problems

Can't login
Everything is down

Unknown
Website down

Mobile app not working

Re
as

on

Fig. 2. Mean fraction of reports of a service, per symptom, across all services.

while using Gmail and Twitter. An exception to this pattern
is Github: users typically do use Github seriously, but are
somehow reluctant to provide additional detail. A possible
cause is that Git itself is a decentralized system, so not being
able to open the website is not a problem.

C. Pattern in Time Over a Week

We investigate the distribution of user reports over hours
of the week. We intend to find if users are more likely to
report failures during certain parts of a day and week than
others. Figure 3 depicts the normalized number of reports
per hour of week. The reports per hour are normalized by
dividing them with the maximum number of reports per hour
for that service. The maximum number of reports per hour for
a particular service is displayed in the panel above each plot.
The horizontal of each plot represents the hour of the week,
with the first hour of each marked with the name of the day.
The vertical axis represents the normalized reports per hour.
Each point on the plot represents the normalized number of
reports for a certain service in a certain hour of the week.

We observe a few well-defined peaks for all services (O-5).
Some services such as Netflix exhibit a diurnal pattern with
peaks at night in UTC. That would be evening in most of the
USA where most of the reports are from. Evening is when
people are likely to use Netflix. So, the failure reports corre-
spond to the typical usage pattern of the service. Instagram
also exhibits a slight diurnal trend from Tuesday to Thursday.
Apple exhibits a slight diurnal pattern. It is interesting to note
that peaks dominate the plots. Implications: The peaks either
imply that failures occur often on the same day at the same
time. They could also imply that a few failures receive such
a high number of reports that they dwarf all others.

V. USING TRACES OF USER REPORTS TO ESTIMATE THE
NUMBER OF RETRIES IN SERVICE-BASED APPLICATIONS
In this section, we demonstrate how user-reported failure

traces can be used in computer systems experiments, and how
they impact the results. Our main finding is:

O-6: A real trace leads to more than 10× less retries,
but 100× more failures compared to a constant
failure probability for applications composed of a
long chain of services.

Complex cloud applications such as e-commerce, social
media and banking are important to daily life. Latency is an
important metric for such applications. For example, increased

0
0.25
0.50
0.75

1

M
ax

. N
or

m
. F

ai
lu

re
s/

Ho
ur

Apple (max=133) Github (702) Skype (523) FB Msgr (1,679) Gmail (502) Whatsapp (3,935)

MoTuWeTh Fr SaSu
0

0.25
0.50
0.75

1
Snapchat (3,445)

MoTuWeTh Fr SaSu

Netflix (1,038)

MoTuWeTh Fr SaSu

Facebook (2,946)

MoTuWeTh Fr SaSu

Twitter (6,560)

MoTuWeTh Fr SaSu

YouTube (5,876)

MoTuWeTh Fr SaSu
Day of Week

Instagram (13,384)

Fig. 3. Distribution of failure reports by hour of the week. Middle of each day is marked. Number of failures per hour is normalized by the maximum number
of failures per hour of that service. Maximum number of failures per hour are displayed in the plot labels.

latency reduces the click-through rate of web search [14].
Complex cloud applications are composed of tens, or even
hundreds of (micro-)services, working together to perform a
task. The latency of the application depends on the latency
of each of service. It also depends on how often the services
fail. For example, additional latency appears when a service
failure leads to a request being retried. Existing work [15], [16]
considers constant failure probability or similar simple models
to estimate the additional latency. We show that using user-
reported failure traces produces different results. Specifically,
most requests succeed with fewer retries than if a constant
failure probability was assumed, but during failure periods, a
lot more requests fails.

We conduct experiments with multi-service apps, using
trace-based simulation. We interpreting the number of user
reports of a service as the probability that a request to the
service fails. We scale the number of reports by the number
of users of the service at that time. As we do not know the
actual number of users, we assume that the number of users
follows a diurnal pattern with peak usage in the evening; we
approximate this with a shifted sine wave. After scaling the
trace, we normalize it into probabilities [0, 1] by dividing each
data point by the maximum number of user reports in a single
time period (20 minutes in our case). We thus obtain a failure
probability associated with every 20-minute period in the trace.

We choose three app structures—for each, a number of
microservices and their interdependencies. Many microservice
applications are composed of simple structures [17] such
as (1) monolith (a single microservice called by a client),
(2) fanout (a client makes multiple requests to a microservice
all of which need to succeed), and (3) long chain (a client calls
a microservice, which calls another, and so in a long chain).
We simulate failures in each of these structures and measure
the impact on latency.

We use the metric number of retries as an indicator of
the tail latency experienced by the service. Tail-latency is
particularly important in cloud operations [18], where services
are possibly used by millions of users daily. We assume
each microservice and client comes with a retry oracle which
knows when to retry. Hedging [15] and failure detection
algorithms [19] have been studied extensively, and our results
complement that work. We also assume that cost of retry dom-
inates the latency, compared to the actual request-processing

0 1 2 3 4 Fail

Num ber of ret ries

10%

1%

0.1%

10 2%

10 3%

10 4%

10 5%

0

F
ra

c
ti

o
n

 o
f

re
q

u
e

s
ts

Workload

Instagram t race

Constant

10x

10x

100x

P(f) = 0.01

0 1 2 3 Fail

P(f) = 0.25
0 1 2 3 Fail

P(f) = 0.50
0 1 2 3 Fail

10%

0.1%

10 3%
P(f) = 0.01

Fig. 4. Distribution of retries for a long chain chain microservice structure
with 5 microservices. At the bottom are the distributions at different failure
probabilities indicating why the distribution for the trace looks like it does. In
particular, notice the large number of failed requests at high failure probability
and for the trace. The vertical axis is logarithmic.

time; this holds for short-running apps [20].
We evaluate the number of retries experienced by a long

chain workload structure comprised of 5 microservices. The
evaluation for other structures is in the technical report. At
each stage, we allow a maximum of 3 retries, which is
common in practise. Reaching the maximum number of retries
at a stage means that the previous stage has to retry again.
When the retries of the first stage are exhausted, the request
is considered to have failed. Figure 4 depicts the results. The
horizontal axis represent the number of retries with a special
marker for failed requests. The vertical axis is logarithmic
axis depicting the fraction of requests. A point on the plot
represents the fraction of requests that required a certain
amount of retries to succeed. We run the experiment with two
different workloads: (new) the Instagram use-reported failure
trace and (traditional) a constant failure trace. The constant
failure probability we chose is 1% (P(f) = 0.01). The arrival
pattern is diurnal, peaking in the evening; we approximate this
with a shifted sine wave.

We find that the number of requests that succeed is, in
total across all possible retry-counts and also individually for
retry-counts 1 and 2, more than 10× lower for the Instagram
trace compared to the constant failure probability (O-6).
Requests which require 4 retries are non-existent for the
Instagram trace, but they appear prominently with constant
failure probability. Significant differences appear also in failed
requests; 100× more requests fail with the Instagram trace
compared to the constant failure probability. The number of
requests which succeed with 3 retries is very close for both the
Instagram trace and constant failure probability. To understand
the unique shape of the failure distribution exhibited when
using the Instagram trace, we plot the retry distribution with
different failure probabilities found in the trace at the bottom
of Figure 4. Notice the flat line at 25% failure probability,
which is the likely cause of the high number of requests that
succeed with 3 retries for the Instagram trace. Similarly, at
50% failure probability, the number of failed requests becomes
very high. Such periods with high failure probability lead the
high number of failed requests for the Instagram trace.

VI. RELATED WORK
Closest to our work, Gunawi et al. [21] analyze cloud

failures over a multi-year period, using as input data news-
reports. Complementary to our time-related analysis, they
find that the distribution of failure duration in a bad year
skews higher than in an average year. Other work focuses on
hardware and software failure in clusters [5], HPC [6], and
Enterprise [22].

VII. CONCLUSION
Cloud computing has become a backbone of our modern

society, as the main computing infrastructure for many critical
services. With increased use of cloud services in the past
decade, it is important to understand their failures.

In this work, we proposed to focus on how clients perceive
the failures of cloud services, and conducted a systematic study
of failures reported by users over a period of 16 months. Our
study collects, uses, and shares failure data from a unique data
source, the crowdsourced failure aggregator Outage Report.
In our study, we have: (i) identified challenges associated
with failure data gathering and analysis, and addressed them
through a method focusing on user-reported data; (ii) charac-
terized patterns in how users perceive when and how cloud-
services fail; (iii) demonstrated the impact of using failure
traces on latency; and (iv) made available a unique long-
term failure dataset and associated analysis-code. We have
summarized our findings in 9 main observations.

The software and data artifacts are available online: https:
//github.com/atlarge-research/outage report characterization 1

REFERENCES

[1] Gärtner, “Fundamentals of fault-tolerant distributed
computing in asynchronous environments,” ACM
CSUR, vol. 31, no. 1, 1999.

1https://doi.org/10.5281/zenodo.5153022

[2] Cachin et al., Introduction to Reliable and Secure
Distributed Programming (2. ed.) Springer, 2011.

[3] Dean, “Building software systems at Google and lessons
learned,” Distinguished Lecture Series (DLS), Stanford,
accessed: 2020-04-15, 2010.

[4] Gunawi et al., “What bugs live in the cloud? A study
of 3000+ issues in cloud systems,” in SOCC, 2014.

[5] El-Sayed et al., “Learning from failure across multi-
ple clusters: A trace-driven approach to understanding,
predicting, and mitigating job terminations,” in ICDCS,
2017.

[6] Javadi et al., “The failure trace archive: Enabling the
comparison of failure measurements and models of
distributed systems,” JPDC, vol. 73, no. 8, 2013.

[7] Birke et al., “Failure analysis of virtual and physical
machines: Patterns, causes and characteristics,” in DSN,
2014.

[8] Users of Hacker News, “Hacker news - users discussing
employee incentives to report failure - top comment
about a recent aws failure,” https://news.ycombinator.
com/item?id=25213817.

[9] T. Anderson, “Microsoft Office 365, Azure portals of-
fline for many users in Europe,” https://www.theregister.
com/2015 /12 /03 /office 365 goes offline/, Accessed:
2020-04-15, December 3, 2015.

[10] Bouwers et al., “Getting what you measure,” Commun.
ACM, vol. 55, no. 7, 2012.

[11] Salesforce, “Salesforce services status,” https://status.
salesforce.com/products/Salesforce Services.

[12] O. Agency, “Instagram by the numbers: Stats, demo-
graphics & fun facts,” https : / /www.omnicoreagency.
com/instagram-statistics/.

[13] Statista, “Number of daily active WhatsApp status
users, 2017–2019,” https://www.statista.com/statistics/
730306/whatsapp-status-dau/.

[14] Arapakis et al., “Impact of response latency on user
behavior in web search,” in SIGIR, 2014.

[15] Primorac et al., “When to hedge in interactive services,”
in NSDI, 2021.

[16] Vulimiri et al., “Low latency via redundancy,” in
CoNEXT, 2013.

[17] Eismann et al., “Serverless applications: Why, when,
and how?” IEEE Softw., vol. 38, no. 1, pp. 32–39, 2021.

[18] J. Dean and L. A. Barroso, “The tail at scale,” Commu-
nications of the ACM, vol. 56, pp. 74–80, 2013.

[19] Freiling et al., “The failure detector abstraction,” ACM
Comput. Surv., vol. 43, no. 2, 9:1–9:40, 2011.

[20] Shahrad et al., “Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider,” in USENIX ATC, 2020.

[21] Gunawi et al., “Why does the cloud stop computing?
lessons from hundreds of service outages,” in SOCC,
2016.

[22] Yin et al., “An empirical study on configuration errors
in commercial and open source systems,” in SOSP,
2011.

https://github.com/atlarge-research/outage_report_characterization
https://github.com/atlarge-research/outage_report_characterization
https://news.ycombinator.com/item?id=25213817
https://news.ycombinator.com/item?id=25213817
https://www.theregister.com/2015/12/03/office_365_goes_offline/
https://www.theregister.com/2015/12/03/office_365_goes_offline/
https://status.salesforce.com/products/Salesforce_Services
https://status.salesforce.com/products/Salesforce_Services
https://www.omnicoreagency.com/instagram-statistics/
https://www.omnicoreagency.com/instagram-statistics/
https://www.statista.com/statistics/730306/whatsapp-status-dau/
https://www.statista.com/statistics/730306/whatsapp-status-dau/

	Introduction
	Operation and Failure of Cloud Services
	Terms and Definitions

	Method for Collecting User Reports
	Data Collection and Extraction
	Comparison between User- and Self-Reported Failures

	Analysis of the User Reports
	Count of User Reports
	Number of User Reports
	Pattern in Time Over a Week

	Using Traces of User Reports to Estimate the Number of Retries in Service-based Applications
	Related Work
	Conclusion

