
Low-Overhead Multi-language
Dynamic Taint Analysis on Managed Runtimes

through Speculative Optimization
Jacob Kreindl

Johannes Kepler University Linz
Austria

jacob.kreindl@jku.at

Daniele Bonetta
Oracle Labs
Netherlands

daniele.bonetta@oracle.com

Lukas Stadler
Oracle Labs
Austria

lukas.stadler@oracle.com

David Leopoldseder
Oracle Labs
Austria

david.leopoldseder@oracle.com

Hanspeter Mössenböck
Johannes Kepler University Linz

Austria
hanspeter.moessenboeck@jku.at

Abstract
Dynamic taint analysis (DTA) is a popular program analysis
technique with applications to diverse fields such as software
vulnerability detection and reverse engineering. It consists
of marking sensitive data as tainted and tracking its propa-
gation at runtime. While DTA has been implemented on top
of many different analysis platforms, these implementations
generally incur significant slowdown from taint propaga-
tion. Since a purely dynamic analysis cannot predict which
instructions will operate on tainted values at runtime, pro-
grams have to be fully instrumented for taint propagation
even when they never actually observe tainted values. We
propose leveraging speculative optimizations to reduce slow-
down on the peak performance of programs instrumented for
DTA on a managed runtime capable of dynamic compilation.
In this paper, we investigate how speculative optimiza-

tions can reduce the peak performance impact of taint prop-
agation on programs executed on a managed runtime. We
also explain how a managed runtime can implement DTA
to be amenable to such optimizations. We implemented our
ideas in TruffleTaint, a DTA platformwhich supports both dy-
namic languages like JavaScript and languages like C andC++
which are typically compiled statically. We evaluated Truf-
fleTaint on several benchmarks from the popular Computer
Language Benchmarks Game and SPECint 2017 benchmark
suites. Our evaluation shows that TruffleTaint is often able

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MPLR ’21, September 29–30, 2021, Münster, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8675-3/21/09. . . $15.00
https://doi.org/10.1145/3475738.3480939

to avoid slowdown entirely when programs do not operate
on tainted data, and that it exhibits slowdown of on average
∼2.10x and up to ∼5.52x when they do, which is compara-
ble to state-of-the-art taint analysis platforms optimized for
performance.

CCS Concepts: • Security and privacy → Information
flow control; • Software and its engineering → Soft-
ware performance; Runtime environments; • General
and reference→ Performance.

Keywords: Dynamic Taint Analysis, GraalVM, C/C++, Java-
Script, Performance
ACM Reference Format:
Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder,
and Hanspeter Mössenböck. 2021. Low-Overhead Multi-language
Dynamic Taint Analysis onManaged Runtimes through Speculative
Optimization. In Proceedings of the 18th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes
(MPLR ’21), September 29–30, 2021, Münster, Germany. ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3475738.3480939

1 Introduction
Dynamic taint analysis [46] (DTA), often also referred to
as dynamic taint tracking, is a popular program analysis
technique in which sensitive data is marked as tainted and
the propagation of this tainted data and any data derived
from it is tracked while the analyzed program is executed.
Applications of DTA cover many fields including software
vulnerability detection [15, 36, 42], software testing [16, 17],
debugging [20] and reverse engineering [21, 48]. DTA has
been implemented for programming languages such as Java-
Script [26, 31, 33] and for native code [12, 14, 15, 19, 22, 32, 44]
compiled from, e.g., C/C++ programs. However, DTA com-
monly imposes a significant run-time overhead on programs
instrumented for taint propagation [39, 46], with even taint
tracking engines optimized for performance incurring slow-
down of up to several orders of magnitude. Our work aims
to address this issue.

70

https://doi.org/10.1145/3475738.3480939
https://doi.org/10.1145/3475738.3480939
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3475738.3480939&domain=pdf&date_stamp=2021-09-29

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

Previous approaches to address this run-time overhead of-
ten try to avoid run-time taint propagation. Some approaches
switch between instrumented and uninstrumented versions
of the same program depending on whether the currently
executing code needs to propagate taint[22, 28, 44]. These
approaches exploit the observation that tainted data often
only spreads to a limited part of the program [44], but in-
cur overhead from continuously checking at runtime which
version to execute and fail to reduce slowdown for actually
occurring taint propagation. Other approaches apply static
analysis to predetermine the flow of tainted data where pos-
sible and thus reduce the amount of instructions required
for run-time taint propagation [30, 52]. However, since it
lacks access to run-time information, static analysis cannot
remove taint propagation for instructions that could theo-
retically be reached by tainted data, but in practice are not.
Other approaches that optimize taint propagation instruc-
tions to leverage specific characteristics of the underlying
platform [14, 32] are by design platform-specific and cannot
always be applied to other platforms. We propose the use
of speculative optimization to gain the benefits of all these
approaches in a managed runtime without suffering from
their drawbacks.

Managed runtimes use run-time profiling to optimize and
dynamically compile frequently executed code. They con-
sist of an interpreter, which collects profiling information,
and a dynamic compiler which can use this information
for optimization. We propose leveraging both speculative
and non-speculative optimization to reduce the slowdown
which programs incur from taint propagation. The main in-
sight behind this approach is that if we know at compile
time whether an input of a particular statement is tainted
or not, common optimizations such as inlining [43] and par-
tial evaluation [50] can be applied to simplify or optimize
away the corresponding code performing taint propagation.
Our approach leverages this insight by directing the com-
piler to perform these optimizations speculatively, i.e., under
assumptions for each input whether its value is tainted or
not. Such optimized code contains run-time checks whether
these assumptions are still valid. When they become invalid,
it is deoptimized and recompiled with the new knowledge.
The benefits of our approach increase with the size of the
compilation unit since run-time assumption checks can be
merged if they appear in multiple places or optimized away
when, e.g., one assumption trivially holds if another does.

We identified speculative assumptions that can be made
based on profiling information and are suitable for enabling
the simplification or removal of taint propagation code by
applying common compiler optimizations. Additionally, we
propose strategies for efficiently verifying these assumptions
at runtime. These strategies involve optimizing how run-time
data structures like objects and arrays of dynamic languages,
native allocations of lower-level languages and local or global
variables, can store taint labels of values they contain. Our

optimization strategies are language-independent and can be
applied to any managed runtime capable of dynamic compi-
lation and speculative optimization. They can support both
dynamic languages like JavaScript and languages like C and
C++ that are typically compiled statically. They only require
that both the code implementing taint propagation and the
instrumented program are expressed in a program represen-
tation which the compiler can perform optimizations on.
We implemented our optimization strategies in Truffle-

Taint [34], a dynamic taint analysis engine based on the
GraalVM platform [51], which supports tracking taint both
in and between code of multiple languages such as JavaScript,
C and C++.We additionally optimized the techniques Truffle-
Taint uses for propagating taint labels to be amenable to opti-
mization by GraalVM’s dynamic JIT compiler. We evaluated
TruffleTaint using both JavaScript and C/C++ implementa-
tions of benchmarks from the Computer Language Bench-
marks Game [1], the SPECint 2017 benchmarks suite [9] and
a hand-crafted multi-language benchmark implementing a
real-world workload for taint tracking based on the HTTP
header parser of the Node.js framework [7]. Our evaluation
shows that TruffleTaint can avoid any impact of dynamic
taint analysis on peak performance of programs it executes
if they do not operate on tainted data, and that for some
benchmarks it can also avoid such impact even when they
do operate on tainted data. The evaluation further shows
that TruffleTaint exhibits an average slowdown of ∼2.10x for
our benchmarks, with the highest observed slowdown being
∼5.52x. Though this slowdown is significant, these results are
still in range of other state-of-the-art platforms for general,
purely dynamic taint analysis optimized for performance.

This paper makes the following contributions:
• We identify opportunities for using language-agnostic
speculative optimization techniques to avoid or reduce
the overhead of dynamic taint analysis on peak per-
formance of analyzed applications. (Section 3)

• We describe how run-time data structures of multiple
languages can store taint labels of contained values in
a manner amenable to these speculative optimizations.
(Section 3)

• We provide an implementation of our ideas in a dy-
namic taint analysis platform supporting multiple lan-
guages, including C/C++ and JavaScript. (Section 4)

• We evaluate our proposed optimization techniques
and their implementation using several well-known
benchmark programs and show that they can avoid
peak performance slowdown incurred from redundant
taint propagation. (Section 5)

2 Background
In dynamic taint analysis, all values that originate from so-
called taint sources (e.g., functions that read data from the

71

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

file system or otherwise produce data of interest to the anal-
ysis) are marked as tainted by attaching a taint label to them.
When a tainted value is used as input to an expression, its
taint label is propagated to the result of that expression. To
this end, a propagation semantics defines for each kind of ex-
pression supported by the targeted programming language,
whether a value that is written or produced by such an ex-
pression is tainted depending on whether its input values
were. For example, propagation semantics commonly define
that the sum of an addition is tainted if any of its operands are.
A propagation technique defines how a taint label is attached
to a value. In addition to taint sources, an implementation of
dynamic taint analysis also defines taint sinks, i.e., program
locations at which analysis-defined actions should be taken
if they observe tainted inputs.

2.1 GraalVM
The GraalVM platform is an ecosystem for compiling, ex-
ecuting [51] and instrumenting [23] programs of various
programming languages. GraalVM is based on the Java Vir-
tual Machine. At its heart is the Truffle [11] framework for
implementing language runtimes that are based on abstract
syntax tree (AST) interpretation. To this end, Truffle defines
the interfaces for AST nodes, which can be implemented
by individual runtimes with concrete language semantics. A
Truffle-based language runtime parses code of its targeted
language into such a Truffle AST for execution. GraalVM’s
included JIT compiler has special knowledge of Truffle ASTs
which enables it to specifically optimize them in order to
produce more efficient machine code. Truffle also provides
API for language implementers to provide speculative as-
sumptions to this compiler. This API includes setting and
manually invalidating speculative assumptions and for pro-
filing run-time values such as condition checks. Furthermore,
Truffle AST nodes can specialize themselves to observed run-
time conditions, which means that they can replace their
implementation with one specifically optimized for these
conditions. Specialized nodes check at runtimewhether these
conditions still apply and, if not, deoptimize the compiled
code and rewrite themselves to a more generic version. Truf-
fle AST nodes can also dispatch between multiple active
specializations of the same node at runtime.

2.2 TruffleTaint
All optimization techniques discussed in this paper have
been implemented targeting a real-world taint tracking sys-
tem called TruffleTaint. TruffleTaint [34] is implemented on
top of Truffle’s framework for instrumenting Truffle ASTs.
This framework enables TruffleTaint to insert Taint Nodes,
which are special AST nodes that implement taint propa-
gation according to a user-defined propagation semantics,
into the AST. For example, Figure 1 depicts a Truffle AST for
a statement which adds 1 to the value of a local variable x
and stores the result in the local variable y. The AST nodes

Taint Node
<read>

+

literal 1

Taint Node
<literal>

» "y":
 (3, tainted)

read "x"

(2,<tainted>) 1

12

3

(3,<tainted>)

write "y"

<
ta

in
te

d>

» "x":
 (2, tainted)

<
no

t t
ai

nt
ed

>

Local Scope

Taint Node <write>

Taint Node
<add>

unbox:
TNread.value = 2
TNread.taint = tainted

TNliteral.value = 1
TNliteral.taint = null

a = TNRead.taint
b = TNLiteral.taint
c = a || b
box if tainted:
TNadd.value =

(3, c)

Figure 1. Taint propagation with TruffleTaint for the state-
ment var y = x + 1. The current value of x is 2 and it is
tainted. Edges between AST nodes are annotated with the
values the respective child nodes produce. Taint nodes and
taint labels are depicted in purple, other nodes belong to the
Truffle AST for the statement.

depicted with a black border correspond to this statement.
They consist of a node to read the current value of x, a node
which returns the literal 1, a node for adding these values,
and a node to write the resulting sum to y. Each of these
nodes is the only child of a taint node, which intercepts the
values returned by the respective nodes, determines the taint
labels of these values according to the propagation semantics
for the action implemented by the node, and performs the
appropriate actions to propagate these taint labels.

TruffleTaint supports two propagation techniques, which
can be seen in Figure 1. The first technique is applied to inter-
mediate expressions, which are expressions that only compute
values from their inputs rather than storing them into mem-
ory or returning them to another function. A taint node that
provides a value for such an expression stores that value’s
taint label into a so-called taint slot, i.e., a container within
the node. The taint node instrumenting the intermediate ex-
pression loads the taint labels of its input values from there.
In Figure 1, both 𝑇𝑁𝑟𝑒𝑎𝑑 , i.e., the TaintNode instrumenting
the read operation, and𝑇𝑁𝑙𝑖𝑡𝑒𝑟𝑎𝑙 propagate the taint labels of
the values they produce by writing them to such taint slots.
The second propagation technique is applied when a taint
node produces an input value for an expression which would
make that value available to other statements by writing it
to a scoped variable, storing it into allocated memory such
as an object or array, returning it to a calling function, using
it as argument to a function call, or throwing it as an excep-
tion object. When such an input value is tainted, that taint
node replaces that input value with a boxed value, which is a
container storing both the original value and its taint label,
so that they can be stored together in memory. In Figure 1,
boxed values are represented as tuples of value and taint
label. Taint nodes that instrument the corresponding read
operations may then unbox these values again. In Figure 1,

72

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

the value of x is tainted, and so the local variable stores it
as a boxed value with a taint label. Since 𝑇𝑁𝑟𝑒𝑎𝑑 produces
an input value for an intermediate expression, it intercepts
this boxed value, unboxes it, and stores the corresponding
taint label into its taint slot before returning the unboxed
value. 𝑇𝑁𝑎𝑑𝑑 loads that taint label from this taint slot and
determines the sum to be tainted since one of its operands
was. Since 𝑇𝑁𝑎𝑑𝑑 provides an input to an expression that
writes to memory, it propagates this taint label by placing it
into a boxed value and returning that boxed value instead.
That boxed value is then stored into the frame. While our
previous work [34] introduced a naive implementation of
these techniques and evaluated them on a functional level, in
this paper we describe how we optimize this implementation
for peak performance.
TruffleTaint currently supports GraalVM’s Truffle-based

JavaScript and LLVM language runtimes. The GraalVM Java-
Script runtime is an ECMAScript-compliant engine for run-
ning JavaScript and Node.js programs [3]. The GraalVM
LLVM runtime supports the execution of LLVM-based lan-
guages such as C and C++ [4]. TruffleTaint only supports
its managed mode, in which all memory allocated by user
programs is backed by Java objects on the managed heap
rather than by native memory [8].

2.3 Speculative Optimization
Speculative optimization describes the concept of optimizing
code during dynamic compilation under speculative assump-
tions that the values the code operates on exhibit certain
properties. The goal behind these assumptions is to enable
opportunities for applying further, non-speculative optimiza-
tions. Since these assumptions cannot be proven already at
JIT compile time, the compiled code needs to include instruc-
tions for checking whether the actual values observed at
runtime do, in fact, exhibit these properties. If such a check
fails and the corresponding assumption is thus disproven,
the compiled code is deoptimized [51] and the same code
can be recompiled under the new assumptions. Speculative
optimization is only possible in a runtime capable of dynamic
compilation, i.e., of deoptimizing and recompiling code when
run-time conditions change. Managed runtimes, as we de-
fine them, further include an interpreter capable of collecting
profiling information.

Value profiling [41] is a speculative optimization technique
which consists of observing whether a particular expression
always returns the same value during interpreted execution.
If so, the compiler assumes for further optimizations that
the expression always returns that value. To ensure correct
execution, code compiled from this expression includes a run-
time check which invalidates that profile and deoptimizes
that code should the expression ever return another value. If
lower and upper bound of a counted loop are profiled to be
known constants, that loop may be unrolled [37] in order to
avoid checking the loop condition at runtime. Similarly, if

a conditional expression is profiled to be a constant value,
the branch that is not taken need not be compiled and any
side-effects of that branch need not be considered in further
optimizations.
Specialization, as explained for Truffle AST nodes in Sec-

tion 2.1, is another speculative optimization technique.
Speculative assumptions can create additional opportu-

nities for applying common compiler optimizations such
as partial evaluation [50], i.e., to partially evaluate expres-
sions at compile time if at least one of their input values is
known. Partial evaluation in turn can create opportunities
for applying constant propagation [40], i.e., replacing accesses
to a variable known to contain a constant value with that
value. Together, such optimizations can significantly reduce
the amount of code to be executed. Our approach is to use
speculative assumptions to leverage this effect for Truffle-
Taint’s expression-level instrumentation code for run-time
taint tracking.
To give an example for our approach, consider the state-

ment illustrated in Figure 1 which reads a variable x, incre-
ments its value, and writes the result to a local variable y.
Without using static analysis, each expression in the program
under analysis needs to be instrumented to perform taint
propagation at runtime. This propagation involves checking
whether any of the expression’s inputs are tainted, deciding
based on that whether its output value is also tainted, and,
if so, propagating that taint label to the instrumentation of
its parent expression. Expressions that read from or write to
memory also need to maintain shadow storage, i.e., a record
of which regions of memory currently contain tainted val-
ues. For our example, instrumentation could intuitively be
simplified to just copying the value from the shadow storage
for x to that for y. However, automating this intuition typ-
ically requires static analysis. In Section 4 we explain how
we instead implement expression-level instrumentation for
taint tracking such that by applying generic optimizations,
a compiler can achieve the same simplification. However,
speculative assumptions about the instrumented program
could enable further optimizations. For example, assuming
that x never holds a tainted value, maintaining or access-
ing shadow storage for y would not be necessary since the
value of y is anyway never tainted. Any statements that
read from y before any other expressions write to it could
instead be optimized to consider values stored in y to be not
tainted without checking the shadow storage. In Section 3
we explain how we leverage this insight.

3 Speculative Optimizations for Taint
Propagation

The goal of our research is to reduce the impact of taint
tracking on the peak performance of programs executed on
a managed runtime. To this end we extend the instrumenta-
tion code which implements taint propagation, i.e., the taint

73

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

Specialization & Profiling:
Shadow Storage Update

Write Element / Field /
Native Memory

Read Element / Field /
Native Memory

Specialization:
Shadow Storage

Call with / Return /
Throw Value

Read
Call Argument / Return

Value / Exception

Read Local /
Global Variable

Profiling: Taint Label

Intermediate Expressions

Write Local /
Global Variable

1

2

3

4

Assumption & Profiling:
Shadow Storage Presence

Figure 2. Speculative optimization of taint propagation.

tracking code, to maintain speculative assumptions on how
and where the instrumented program stores and propagates
taint labels. These assumptions create additional opportuni-
ties for the compiler to simplify the taint tracking code by
applying further optimizations to it. At runtime, compiled
code checks whether these assumptions are still valid and
is deoptimized when they become invalid. We thereby en-
able the compiler to optimize away redundant run-time taint
propagation, which translates into increased peak perfor-
mance. Ideally, when a program does not operate on tainted
data, all taint tracking code can be optimized away and the
program reaches the same peak performance as if it were
not instrumented. As our evaluation in Section 5 will show,
this can indeed be achieved with our approach.

Figure 2 gives an overview of the speculative optimization
techniques we apply. For each memory location, such as an
array or a local variable, the taint tracking code needs to
maintain a corresponding shadow storage, i.e., a data struc-
ture which can store a taint label for each value stored in
that location. When an expression in a statement reads from
such a memory location, the taint tracking code for that
expression has to load the taint label of that value from the
corresponding shadow storage. Using assumptions and value
profiling, we enable the compiler to speculatively optimize
this access away if the memory location previously never
held a tainted value (1○, Section 3.1). If reading from shadow
storage becomes necessary, we optimize that read operation
by specializing the corresponding code to run-time proper-
ties of that shadow storage (2○, Section 3.2). When an expres-
sion produces a value, the corresponding taint tracking code
propagates either a taint label or a null-value, depending
on whether that value is tainted. For any expression which
produces input values for a statement, we use value profiling
to determine whether these values are always tainted, never
tainted, or sometimes tainted. Except in the latter case, the
propagated value is treated as a constant for further opti-
mization (3○, Section 3.3). Beside memory reads, such input

expressions also include function calls, function parameter
reads and expressions which catch a thrown exception object.
Themore propagated values our optimizations canmake con-
stant for compilation, the more this code can be simplified
by partial evaluation and other optimizations. When an ex-
pression writes to memory, the corresponding taint tracking
code has to update shadow storage. We specialize this code
to run-time properties of that shadow storage and profile
whether the value to write is tainted (4○, Section 3.4).

3.1 Optimized Storage for Taint Labels
As Figure 2 indicates in 1○, we leverage both speculative
assumptions and value profiling to optimize reading from
shadow storage. To enable this approach, we create shadow
storage only on-demand when a memory write expression
first stores a tainted value to the corresponding memory
location. When an expression reads a value from a memory
location for which no shadow storage has yet been created,
the corresponding taint tracking code thus knows this value
to not be tainted. Using a speculative assumption or, as a fall-
back, value profiling we inform the compiler when this code
never observes shadow storage and thus reduce the value it
propagates to a constant null for further optimization. We
also propose specialized shadow storage for various kinds
of memory locations.

3.1.1 MemoryReadAccessOptimization. To avoid com-
piled code having to check for the presence of shadow stor-
age at runtime we maintain speculative assumptions for the
compiler that none has yet been created. For scoped vari-
ables, i.e., local and global variables, we can maintain one
assumption per variable since their number is known at com-
pile time. For dynamically allocated memory locations such
as arrays, objects and native allocations we instead maintain
one assumption per kind of location. While these assump-
tions are valid, taint tracking code for expressions that read
from the corresponding memory locations does not check for
the existence or content of shadow storage at runtime. The
compiler instead assumes this code to propagate a constant
null-value. Also as long as such an assumption is valid, taint
tracking code for an expression that writes to the correspond-
ing (kind of) memory location checks whether it writes a
tainted value and, if so, invalidates that assumption. This
invalidation triggers all code compiled under the assumption
to be deoptimized to ensure proper taint propagation. For
programs not operating on tainted data, the compiler can
often safely optimize these checks away during JIT compi-
lation. When statements do not have tainted inputs, they
typically do not produce tainted values. Consider the exam-
ple in Figure 1. If the local variable x is assumed to not hold
a tainted number, then by partially evaluating the check for
whether the addition has a tainted operand, the compiler
can determine that the sum is not tainted. In turn, the com-
piler can optimize away the check whether the value to be

74

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

» shadow["x"]: <label>

» "x": 1

...

a) Local / Global Variable

» data:
» length: 2

b) Array Value

<label>
<label>

c) Object Value

» field["a"]: 2

» field["b"]: 3.0

» field[shadow]: » field["a"]: <label>

» shadow:

Scope:

» data:
» granularity: 8

d) Native Allocation

<label><label>» shadow:

<granularity>
Bytes...

<granularity>
Bytes

Fields Added Dynamically

...

Figure 3. Taint label storage optimized for the common case
of no data being tainted.

stored in y is tainted in the same manner. As a result of this
optimization, the code compiled from this example need not
contain any instructions for checking or propagating taint
labels or for invalidating an assumption.
We maintain separate speculative assumptions for differ-

ent memory locations to access shadow storage only in those
parts of the program that actually operate on tainted data.
For example, if a program propagates tainted values only
through local variables, then only the assumptions regard-
ing these specific variables become invalid. For expressions
which read from other variables, shadow storage still does
not need to be accessed.

Our evaluation in Section 5.2 shows that our taint tracking
engine can often avoid deterioration of peak performance in
programs that never operate on tainted data, which is solely
the effect of this first optimization. To leverage this effect,
a program need not lack taint sources. Consider a program
which introduces tainted values only in a conditional branch.
If that branch is never executed in practice, none of our spec-
ulative assumptions are invalidated. Dynamic compilation
enables the program to be recompiled if that branch is even-
tually executed, hence our optimizations do not sacrifice
correctness of dynamic taint analysis for performance.

When a speculative assumption about shadow storage for
a kind of dynamically allocated memory location is invali-
dated, we use value profiling as a fallback optimization. By
profiling whether a specific memory read expression ever
observes shadow storage to access, the value propagated by
the corresponding taint tracking code can still potentially
be reduced to a constant null-value for further optimiza-
tion. To enable this strategy we represent shadow storage
for various kinds of dynamically allocated memory locations
as shown in Figure 3. The Figure shows that we strictly
separate the data structures used for representing memory
allocations from the shadow storage. The former data struc-
tures each contain a field that stores a pointer to potential
shadow storage. In taint tracking code, we profile for each

memory read expression whether the value of this field in
the memory locations it reads from is null. As long as it is,
this code can be compiled under the assumption that it will
always be, and thus that the value it propagates is a constant
null-value as well. When such compiled code is executed,
it checks whether the expression still only reads from mem-
ory without corresponding shadow storage. If such a check
finds shadow storage present, the compiled code is deopti-
mized. When that taint tracking code is later recompiled, the
compiler does not assume the propagated value a constant
anymore, and the newly compiled code dynamically accesses
shadow storage as necessary.
Shadow storage must be visible and accessible only to

instrumentation code in order to prevent the instrumented
program from detecting or manipulating taint propagation.
Another reason for separating it from value storage is that
managed runtimes can specialize the latter to the actually
stored values to improve performance [25, 49]. The sepa-
ration leaves this ability unaffected by whether values are
tainted, and allows for separate optimizations specific to
shadow storage.

3.1.2 Shadow Storage Representation.

Shadow Variable. Shadow storage for a scoped variable,
i.e., a local or global variable, is allocated in the form of a
shadow variable in the same scope. In Figure 3a, the scope
contains both a variable x and a corresponding shadow vari-
able, named shadow[x], which holds a taint label for the
value stored in x.

Shadow Array. Shadow storage for an array value, as
Figure 3b shows, takes the form of a separate array, a so-
called shadow array, of the same length. Managed runtimes
typically represent array values as special objects that store
metadata such as the array length or element type in ad-
dition to a pointer to the actual array storage. We extend
this metadata with a pointer to the shadow array. Figure 3b
shows this pointer held in a field named shadow.

Shadow Object. For storing the taint labels of the values
that are stored in the fields of an object, as Figure 3c shows,
we allocate a separate object value, which we refer to as a
shadow object. If the language runtime supports adding fields
to objects dynamically, the reference to a corresponding
shadow object can be stored in such a dynamically added field
if that field can be hidden from the instrumented program.
In Figure 3c, the reference to the shadow object is stored in
such a dynamic field, which is named shadow. The shadow
object in that example only contains a field named a, but the
corresponding object also has a field named b. This is because
fields of a shadow object are also allocated on-demand, i.e.,
when the equally named field in the corresponding object
first receives a tainted value. The object shown in Figure 3c
never stored a tainted value in its b field, and thus no such
field was added to the shadow object.

75

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

Shadow Allocation. Native allocations are regions of al-
located memory that can be accessed at byte-level, but ac-
cesses to it typically involve multiple bytes. For example, all
data structures created by C code can be cast to and accessed
as byte arrays. However, accesses to them are typically per-
formed at a higher granularity. An array of long values will
typically only be accessed at intervals of 8 bytes, i.e., the
size of a long value, and each time also 8 bytes will be ac-
cessed simultaneously. In order to avoid having to store the
same taint label multiple times, and thus having to check
whether any of the multiple bytes are tainted in a read ac-
cess, we specialize the shadow storage for a native allocation,
which we refer to as a shadow allocation, to the granularity to
which the respective allocation stores data at runtime. This
approach is especially suitable to managed runtimes like the
one implemented by Rigger et al. [45] which already track
metadata for each allocation. For such runtimes, a link to the
shadow allocation and its current granularity can simply be
added to that metadata, which the runtime anyways needs
to retrieve upon each access to a native allocation. Other
analysis platforms need to maintain a mapping between allo-
cations and metadata manually. Previous research, e.g., Lam
et al. [35], has described ways of doing so efficiently.

The granularity to which a shadow allocation stores taint
labels is initially determined as the highest power of 2 that
evenly divides both the size in bytes of the tainted value
and the byte offset used by the memory store operation that
required the creation of the shadow allocation. Figure 3d
shows a shadow allocation with a granularity of 8 for an
allocation representing a two-element array of long values,
i.e., one taint label is stored for every 8 bytes of data. If this
array is only accessed as an array of long values, each access
thus requires only a single load or store operation for the
taint label of the written value, rather than 8.
When a shadow allocation is accessed at a byte offset

or with a byte-size which is not evenly divided by its cur-
rent level of granularity, the shadow allocation needs to be
transitioned to a finer granularity, namely the next coarsest
granularity that would support the access. For example, if
one were to cast the array of long values from Figure 3d to
an array of byte values and proceed to overwrite each allo-
cated byte individually, the corresponding shadow allocation
would be transitioned to storing taint labels at a granular-
ity of one taint label per allocated byte. Granularity is not
immediately reduced to byte-level per default to account for
different sizes of the fields of structured values. Consider,
for example, a struct value in C code which contains both
long and int fields. If a long field is stored a tainted value
first, the shadow allocation would specialize to a granularity
of 1 taint label per 8 bytes. When an int field then receives
a tainted value, the shadow allocation is transitioned to a
granularity of 1 taint label per 4 bytes, which requires storing
2 taint labels for each long field. An access to a long field
then still needs to access only 2 taint labels rather than 8.

3.2 Specialized Access to Taint Label Storage
An expression that reads from an object or native allocation
needs to access shadow storage to determine if a value that
was read is tainted. We optimize such expressions by special-
izing the code for accessing shadow storage to the properties
of the objects, native allocations and corresponding shadow
storages they access. During interpreted execution, such ex-
pressions collect information about these properties. Code
compiled from these expressions is optimized as discussed
in the following paragraphs. This code checks whether the
storages and shadow storages it reads from still exhibit these
properties before a such optimized expression is executed.
If such a check fails, the compiled code is deoptimized and
replaced with an unspecialized version to guarantee correct
taint propagation.

3.2.1 Shadow Objects. Managed runtimes for languages
such as JavaScript, which support dynamically adding fields
to objects, often optimize field read expressions by specializ-
ing them to the layouts of the objects they read from [49].
For example, consider an expression that reads the value
stored in a field named b. If that expression always reads
from objects with the same layout, this expression is spe-
cialized to objects of that layout. When this expression is
compiled at runtime, it is known at which offset in such
objects b is located, so the compiled code need not deter-
mine this offset at runtime. Instead, the compiled code only
needs to check that the objects it reads from still have the
same layout, which typically only involves a single pointer
comparison [49]. When an object with a different layout is
observed, the compiled code is deoptimized and replaced
with a version that determines the offset at runtime.

We leverage the runtime’s ability to optimize object lookups
to speed up accessing shadow objects. To determine whether
a value stored in a field of an object is tainted, an expression
reading from that field first has to check if that object refer-
ences a shadow object. As stated in Section 3.1, we store this
reference in a special field, which is allocated on-demand.
In Figure 3c, this field is named shadow. If an expression
reading from a field b is anyways specialized to a layout, it
can be determined at compile time whether objects of that
layout contain a shadow field. If not, then for the purpose
of further optimizations any value returned from this read
expression is known to not be tainted. It is thus not neces-
sary to access shadow storage at runtime, and the taint label
to propagate can be a constant null-value. The field read
expression is anyways deoptimized if it encounters an object
with a different layout.

If an expression reading from a field b is specialized to a
layout which does include a shadow field, we additionally
attempt to specialize the code for reading from the shadow
objects to their layouts. If at runtime all these shadow objects
have the same layout, and if that layout does not contain a
field named b, as is shown for the shadow object in Figure 3c,

76

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

then values read from that expression can still be assumed
to not be tainted. Code compiled from such an expression
checks at runtime that the actually observed shadow objects
still have the same layout, and is deoptimized when this
check fails. Code compiled from a specialized field read ex-
pression thus only loads a dynamic taint label from shadow
storage if it both reads from objects with associated shadow
objects and those shadow objects also have a field named b.

3.2.2 Shadow Allocations. Accessing a native allocation
requires computing the number of slots in the shadow al-
location and their offsets that are affected by the access de-
pending on the shadow allocation’s current granularity and
the offset and byte size of the value access. Additionally, the
access may require transitioning the shadow allocation to
a finer granularity. To alleviate this cost, we specialize read
operations to the native allocations they observe at runtime.
In each specialization, the granularity to which these shadow
allocations store metadata and the size and offset of the corre-
sponding access to the native allocation is assumed constant.
During optimization, slowmath operations for, e.g., checking
whether the current granularity supports a particular read
operation can thus be partially evaluated at compile time. For
example, since the granularity is always a power of 2, math
operations to check whether an offset or byte-size is evenly
divided by a constant granularity value can be replaced by
the compiler with faster bit-wise operations.

3.3 Profiling Taint Labels of Statement Inputs
We extended taint tracking code for each kind of expression
that introduces external data to a statement to profile the
values it propagates. Such input expressions include read-
ing from memory or function parameters, calling another
function for a value and catching an exception. If such an
expression never produces tainted values, the corresponding
taint tracking code always propagates null. Similarly, when
the produced values are always tainted, the taint tracking
code always propagates the same taint label. In these cases,
the propagated value is effectively constant, but the compiler
cannot know that. Profiling this value discovers these cases
and, if they occur, instructs the compiler to speculatively
assume the propagated value to be that constant to enable
additional opportunities for applying further optimizations.
To verify this assumption, the compiler inserts a run-time
check into the compiled code to verify whether each value
to propagate is still that constant. Note that if the optimiza-
tions of Sections 3.1 and 3.2 already reduced the propagated
value to a constant null, this check is trivially optimized
away during partial evaluation. If a different value than the
profiled constant has to be propagated, the compiled code is
deoptimized. When the corresponding expression is later re-
compiled, no more assumptions about the propagated value
will be made.

1 v = g();

2 for (i = v; i > 0; i--) /* large body */

3 return v;

Figure 4. Example for an optimization opportunity.

Advanced compilers such as GraalVM’s JIT compiler have
advanced data- and control-flow optimization capabilities,
which we leverage to speedup taint tracking. Such a compiler
can use insights derived from our speculative assumptions
for one statement to further optimize others. In Section 3.1,
for example, we explained how these insights enable the
compiler to optimize away run-time checks for the validity
of our speculative assumptions in some cases. By profiling
whether the inputs of statements are tainted, we achieve a
similar effect. Consider the code shown in Figure 4. It stores
the number returned from calling function g into a local
variable v. After executing this number of iterations of a loop
with a large body, the value of v is returned from the current
function. If the values returned by g are always tainted, then
by profiling we reduce their taint label to a constant for
further optimization. During this optimization, the compiler
can propagate that constant to the taint tracking code for
the expressions initializing the loop variable i and returning
the value of v. This code thus needs to neither load it from
shadow storage at runtime nor check whether it matches
a profiled value. Since the shadow variable of v does not
escape the compilation unit, the compiler can also remove
the write access to it since there is no more code that would
read the written value. The same constant propagation can
be applied to the shadow variable of i since after partial
evaluation both the initialization and decrement assign only
the same constant taint label to it. As a result, the loop body
can be compiled knowing the taint label of i, which also
avoids having to load that taint label from shadow memory
each time the loop body is executed.

3.4 Specialized Storage Update
Similar to memory reads, we also use profiling and special-
ization to optimize taint tracking code for memory writes.

First, we aim to reduce the size of compiled code by spec-
ulatively excluding logic for allocating or updating shadow
storage from it. For scoped variables it is known at compile
timewhether corresponding shadow storage exists. For other
kinds of memory writes we use the speculative assumptions
discussed in Section 3.1 or, after these assumptions have
been invalidated, profiling to determine whether taint prop-
agation logic can be specialized to the target not having
shadow storage. When a memory write operation is special-
ized to the target not having shadow storage, we also profile
whether the value to write is tainted. If that value is never
tainted the logic for manipulating shadow storage need not
be optimized or contained in compiled code. A similar effect

77

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

is achieved if the memory write operation can be specialized
to the target having shadow storage, since the instructions
for allocating shadow storage need not be included in the
compiled code. Common compiler optimizations such as
code duplication [38] or inlining can significantly increase
the size of a compilation unit, so dynamic compilers apply
them only if the resulting compilation unit does not become
too large to process. Reducing the size of taint propagation
code reduces the threat that the compiler cannot perform
such optimizations and thus loses on peak performance.
Second, we optimize taint tracking code for writing to

object fields by profiling the layout of the accessed shadow
objects. When shadow objects do not yet contain the field
to be written, they need to be transitioned to a new layout.
Through our profiling, the base layout can become a con-
stant, which enables the compiler to compute the new layout
already at compile time, and to optimize the compiled code
for the transition between these known layouts. Similarly,
if taint tracking code needs to allocate new shadow objects,
we also compute their initial layout at compile time.

Third, we specialize taint tracking code for writing to na-
tive allocations to the byte size (𝑆) of the value to write and
the granularity (𝐺) at which the observed shadow alloca-
tions store taint labels. If both 𝑆 and the offsets to which
values are written are aligned to1 𝐺 , then no transitioning of
shadow allocations to finer granularity is required. In each
instance of these specializations we profile whether transi-
tioning is required to exclude the code for performing this
transition in specializations where it is not. If a write access
does require transitioning, the code for storing the taint label
performs this transition and then recursively invokes itself
in order to store the taint label to the transitioned shadow
allocation. The number of slots (𝑈) in the shadow allocation
that need to be updated is the quotient of 𝑆 and 𝐺 . Since
these numbers are constant in each specialization, 𝑈 can
be partially evaluated during compilation. Thus, the loop in
each specialization that iterates𝑈 times to update these slots
has a constant bound, which enables the compiler to unroll
it. Code that is compiled from a specialization in which 𝑆 is
equal to 𝐺 is thus reduced to only a single write access to
the shadow allocation after checking whether the offset that
is currently being written to is aligned to 𝐺 . This check can
be done efficiently with bit operations since 𝐺 is always a
power of 2 [2]. If the offset to write to is a constant, for ex-
ample when the native allocation contains an object whose
field is being accessed, this check falls away during partial
evaluation. Note that while the number of specializations
that can be active at the same time is usually limited, we do
not consider this to be an issue in practice since 𝑆 is typically
a constant and 𝐺 is restricted to powers of 2.

Taint Node
<read>

+

literal 1

Taint Node
<literal>

» "y":
 (int) ? + 1

read "x" +
shadow["x"]

(?,<tainted?>) 1

1?

?+1

(?+1,<tainted?>)

write "y" +
shadow["y"]

<tainted?>

» "x":
 (int) ?

» shadow["x"]:
 <tainted?>

<
ta

in
te

d>

Execution Frame
Taint Node <write>

Taint Node
<add>

» Taint Slot 1:
 <tainted?>

)(
» Taint Slot 2:
 <tainted>

» shadow["y"]:
 <tainted?>

1
2

3

4

Figure 5. Taint propagation with optimized TruffleTaint
for the example of Figure 1. Shadow variables for x
(shadow[“x”]) and y are allocated. The values stored in x
and its shadow variable are not known at compile time, but x
and y are known to store integers. Edges are annotated with
the values that flow along them when the AST is executed.
Encircled numbers indicate where the optimizations from
Section 3 are implemented.

4 Implementation in TruffleTaint
We implemented our optimizations in TruffleTaint and addi-
tionally optimized its techniques for taint propagation to be
amenable to the optimizations implemented by the GraalVM
JIT compiler. This required modifications in both the taint
tracking engine and the supported language runtimes. Fig-
ure 5 shows the instrumented Truffle AST of Figure 1 under
the optimized TruffleTaint and will serve as an example. In
the following, individual taint nodes in that Figure will be
referred to as 𝑇𝑁<𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛> .
We implemented and optimized shadow storage as dis-

cussed in Section 3.1. Shadow variables, as Figure 5 shows,
are allocated as entries of the frame, Truffle’s container for lo-
cal variables which is specially optimized by the GraalVM JIT
compiler. All frames of the same method share a common
layout. Changing this layout by, e.g., dynamically adding
a shadow variable triggers recompilation of all code that
uses it. At compile time it is thus known whether the frame
currently contains a shadow variable for a particular local
variable. We implemented shadow objects and shadow ar-
rays in GraalVM’s JavaScript runtime and we implemented
shadow allocations in GraalVM’s LLVM runtime in order to
support efficiently storing metadata in memory allocated by
each language.

Since TruffleTaint by design delegates the task of storing
boxed values to language runtimes, we also implemented the
speculative optimizations related to memory access there.
To this end we implemented shadow read nodes and shadow

10, equal to or a multiple of

78

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

write nodes, which extend the implementation of a runtime’s
existing read and write nodes, respectively, in order to read
from, allocate, or write to the appropriate shadow storage
with the optimizations introduced in Section 3. Some such
nodes only intercept the value that was read or is to be writ-
ten, respectively, in order to load or store the corresponding
taint label and reuse the existing nodes for reading or writing
the actual value. For other nodes, however, we found that
an efficient implementation required a more integrated ap-
proach, so we partly duplicated the existing code. Separating
extended nodes from the original ones enabled us to insert
modified nodes into the Truffle AST only when it is instru-
mented, which enabled us to collect an accurate baseline of
the peak performance of our benchmarks.

Figure 5 shows a shadow read node, which reads the cur-
rent value of x and loads its taint label from the correspond-
ing shadow variable. If a shadow read node finds a taint
label for a value it read, it allocates a boxed value containing
both that taint label and that value. The taint node for the
read operation, 𝑇𝑁𝑟𝑒𝑎𝑑 , profiles whether it receives boxed
values from the read node. If this condition is profiled to
be false, values returned from that node can be optimized
as constantly not tainted and the compiled code need not
contain instructions for propagating their taint labels. When
𝑇𝑁𝑟𝑒𝑎𝑑 receives boxed values, it unboxes them to extract the
taint label for further propagation. That taint label is also
profiled at that point as discussed in Section 3.3. The same
profiling is done also in taint nodes for, e.g., function calls
or argument accesses.

When shadow read nodes or taint nodes need to allocate
a boxed value for the first time they specialize themselves
to doing this allocation always, i.e., without checking. Do-
ing so enables them to benefit from partial escape analysis
(PEA) [47], an optimization in which the allocated object is
decomposed into its fields. All accesses to these fields are
replaced with accesses to the proper locations in the frame,
and the allocation of the object is removed2. For the exam-
ple in Figure 5, PEA removes the allocation of the boxed
value in the shadow read node and replaces the read access
to the taint label it stores in 𝑇𝑁𝑟𝑒𝑎𝑑 with a read access to
the location where that taint label was stored, namely the
shadow variable of x. Taint nodes further specialize them-
selves to receiving or not receiving boxed values in order to
exclude code corresponding to the respective other branch
from compilation.

Like shadow variables, taint slots are implemented as en-
tries in the frame, which the GraalVM JIT compiler has spe-
cial knowledge of to enable optimizations such as partial
evaluation and constant propagation across read and write
accesses to it. When the example AST in Figure 5 is compiled,
2The GraalVM JIT compiler can be configured to apply multiple iterations of
PEA [10] instead of its regular single iteration.We enabled this configuration
when running programs with TruffleTaint so that unboxed values were
escape analyzed like in uninstrumented execution.

the taint propagation logic for the intermediate expressions
is partially evaluated. During this process, the assignment
of the taint label to Taint Slot 1 and the subsequent reading
of that slot in the 𝑇𝑁𝐴𝑑𝑑 is removed by the compiler and
replaced by accessing the value returned from 𝑇𝑁𝑅𝑒𝑎𝑑 in
𝑇𝑁𝐴𝑑𝑑 directly. The taint label of the increment value is a
constant null value and it is moved into 𝑇𝑁𝐴𝑑𝑑 in the same
way. The implementation of 𝑇𝑁𝐴𝑑𝑑 checks if any of the ad-
dition’s operands had a taint label to determine whether
one needs to be placed on the sum as well. During partial
evaluation this determination is simplified to the taint label
of the left operand, i.e., whatever is currently stored in the
shadow variable of x, since the right operand is constantly
not tainted.
Each taint node clears the taint slots it reads from after

it has determined which value to propagate. This practice
restricts the range of code in which a taint slot can have
a value that is not known at compile time. Because of this
practice, JIT-compiled code can avoid keeping track of the
last stored value at runtime outside of that range, which it
would otherwise have to do so the state of the frame object
can be reconstructed during deoptimization.

As proposed in Section 3.4, shadow write nodes specialize
on both whether the value to write is tainted and whether
the target already has shadow storage. Figure 5 shows a
shadow write node, which writes the new value of y and
stores its taint label to the corresponding shadow variable,
whose existence and location is known at compile time.

TruffleTaint requires that taint nodes box tainted values
if their parent node, i.e., a shadow write node, implements
a write operation. We further optimized taint nodes so that
each specializes to returning boxed values after it had to
return a tainted value once. Each shadow write node also
checks at runtime whether the speculative assumption about
the target to which it writes not having shadow memory
(c.f. Section 3.1) is still valid. The compiler can remove this
run-time check if at compile time either the assumption
has already been invalidated or if the taint node has not
yet specialized to returning boxed values. A specialization
of the taint node would require deoptimizing the compiled
code, which in turn would reenable the check and thus en-
sure proper taint propagation. Similarly, the run-time check
within the taint node on whether to specialize can be op-
timized away as well if the value to write is known to not
be tainted, e.g., as a result of the other optimizations we
introduced in Section 3.
As explained previously, optimizations reduce the taint

label of the value to be stored into y to the value currently
stored in the shadow variable of x. Since x contains a tainted
value 𝑇𝑁𝐴𝑑𝑑 specializes on always returning boxed values,
and the shadow write node consuming those boxed values
immediately unboxes them to store the contained values into
y while storing the contained taint labels into the shadow
variable of y. Partial escape analysis removes the allocation

79

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

Figure 6. TruffleTaint Slowdown on Shootouts benchmarks.

of these boxed values, which causes the sum and its taint
label to be stored directly to y and its shadow variable, re-
spectively. Since the taint label of the sum is, due to partial
escape analysis, the value currently stored in the shadow
variable of x, the JIT compiler thus reduces the taint prop-
agation logic for this statement to a single copy operation
without TruffleTaint itself implementing any static analysis
or compiler optimization.

The example in Figure 5 would typically be part of a larger
compilation unit. Profiling the taint label of the value stored
in x adds a check to the compiled code whether the profile
is still accurate. However, it also enables other statements
that read from y before any other statement writes to it to
be partially evaluated knowing its taint label. This avoids
accessing shadow storage, which offsets the performance
cost of that additional check.

5 Evaluation
We evaluated our optimizations implemented in TruffleTaint
using benchmarks from the Computer Language Benchmarks
Game [1] (often called the Shootouts), the SPECint 2017 bench-
mark suite [9] and a multi-language benchmark based on
LLHTTP [5], i.e., the internal HTTP header parser used
by Node.js [7].3 Figures 6, 7 and 8 show how much peak
performance slowdown these benchmarks incur from taint
propagation with TruffleTaint relative to running them on

3We excluded benchmarks from these suites from our evaluation when, in-
dependent of TruffleTaint, GraalVM did not support compiling or executing
them.

GraalVM without instrumentation. The results show that
TruffleTaint can exhibit slowdown as low as 0% when bench-
mark programs do not operate on tainted data, and that it
exhibits up to ∼5.52x when they do. The absolute numbers
are given in Appendix A, important ones are also given in
this Section. We use these benchmarks to answer the follow-
ing research questions:
RQ1: Can TruffleTaint avoid slowdown when programs do

not operate on tainted data?
RQ2: How much slowdown does TruffleTaint incur when

programs do operate on tainted data?
RQ3: Does program size affect slowdown incurred by Truf-

fleTaint?
RQ4: Does the total amount of tainted data a benchmark

operates on affect slowdown incurred by TruffleTaint?
RQ5: Do implementation language or language boundaries

affect slowdown incurred by TruffleTaint?
To answer RQ1, RQ2, and RQ5 we instrumented imple-

mentations of the Shootouts benchmarks with TruffleTaint
and compared their peak performance to that of the same
benchmarks without this instrumentation. The Shootouts
benchmarks are comprised of several well-defined work-
loads exercising different properties and features of the im-
plementation language. We evaluated implementations of
these workloads in C or C++, in JavaScript, and in a version
where both languages interact. We extended these imple-
mentations to include taint sources and taint sinks which

80

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

introduce tainted values into the benchmarks’ main work-
loads and verify that taint labels are propagated correctly.4

5.1 Experimental Methodology
We collected the numbers for the Shootouts and LLHTTP-
based benchmark on a system with an Intel Core i7-3770
processor and 16GB RAM. The numbers for the SPECint
2017 benchmarks were collected on a system with an In-
tel Core i7-8700 and 32GB RAM to account for the higher
memory requirements of these benchmarks. In either case
the corresponding Linux systems were configured to collect
consistent benchmark results by, e.g., disabling CPU features
such as Intel Turbo Boost and Hyper-Threading as well as
using a performance-oriented CPU governor.
The collected numbers reflect the slowdown on the peak

performance of these benchmarks. To collect these num-
bers we executed each benchmark with enough warmup
iterations to allow the compiled code to stabilize, i.e., no
more compilation occurred during benchmark iterations.
The baseline for each number is the mean execution time
of the benchmark iterations of the corresponding bench-
mark on GraalVM without any instrumentation. We also
repeated each experiment multiple times to verify the results
we collected were reasonably stable and noise-free.

5.2 Slowdown without Tainted Data
To answer RQ1 we executed the Shootouts benchmarks on
GraalVMwith TruffleTaint’s instrumentation, but configured
all taint sources to mark the data they produce as not tainted.
Thus the benchmark programs were fully instrumented to
perform taint propagation, but the values they operated on
were never tainted. If the optimizations we introduced in Sec-
tion 3 were effective, then the code produced by the GraalVM
JIT compiler should not include any instructions for taint
propagation, since there is no taint to propagate. Our results
as given by Figure 6 show that TruffleTaint incurs a slow-
down of only up to 2% compared to execution on GraalVM
without instrumentation for 24 of the 33 individual bench-
mark programs when the Data they operate on is Never
Tainted. This compares favourably to DECAF++[22], which
to our knowledge is the dynamic taint analysis system with
the least slowdown on programs that do not propagate taint,
but still incurs at least 4% slowdown.

Out of all 33 benchmark programs of the Shootouts suite,
only 4 benchmarks showed a slowdown of over 7% (c.f. Fig-
ure 6), namely up to 40%. This slowdown, however, can also
be a result of the compiler making different optimization
decisions, rather than by taint propagation. Optimization
decisions made by the GraalVM JIT compiler are based on
timing and on various metrics of the code to be compiled.
As a result, modifying the code to invoke instrumentation

4The implementations are available at https://github.com/jkreindl/taint-
benchmarks

Figure 7. TruffleTaint Slowdown on Spec benchmarks.

callbacks can affect optimization decisions, leading to dif-
ferent compiled code for the same workload [23]. Figure 6
includes the Baseline Instrumentation Slowdown, which is the
slowdown incurred by instrumenting the program to invoke
empty callbacks whenever an expression is executed. This
data shows a slowdown of∼35.78% by such empty instrumen-
tations on the FannkuchRedux benchmark implemented in a
mix of C and JavaScript. This baseline slowdown is incurred
from Truffle instrumentation itself, not added by TruffleTaint.
On the other hand, the ReverseComplement benchmark imple-
mented in C++ exhibits ∼38.06% slowdown with TruffleTaint,
while instrumentation alone shows no slowdown. Increas-
ing the amount of code to compile for a particular method,
for example by adding taint tracking code or any other in-
strumentation code, can particularly impact the compiler’s
decisions on whether to inline a particular method at a spe-
cific call site, even if the taint tracking code in both methods
could be removed completely during subsequent optimiza-
tion. The MCF benchmark from the SPEC benchmark suite,
as shown in Figure 7, instead experiences a ∼14.87% speedup
under TruffleTaint when there is no taint to propagate. We
manually inspected compilation graphs to verify that our
optimizations, rather than external factors influencing com-
pilation decisions, were generally the main cause for a lack
of or reduction in slowdown from taint propagation in our
benchmarks.

5.3 Slowdown with Tainted Data
To answer RQ2 we executed our benchmarks with Truf-
fleTaint’s instrumentation enabled and tainting all values
originating from a taint source. Although taint sources are
not required to produce such Consistently Tainted Data, e.g.,
in case not all data returned from a particular system call
or only data read from specific files is sensitive, we believe
this to be the prevalent configuration. As explained in Sec-
tion 3.3, when the values propagated as taint labels of an
expression’s inputs are known constants, then the value
propagated for the expression’s output value is too. Since
statements consist of expressions and compilers perform
constant propagation, the same also holds true for state-
ments. Since compilers typically perform constant propaga-
tion also through assignments to local variables and other
memory writes, that concept can be extended to sequences
of statements too when each statement consumes only val-
ues produced by a preceding statement. Thus, if all inputs

81

https://github.com/jkreindl/taint-benchmarks
https://github.com/jkreindl/taint-benchmarks

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

to the first statement are each either consistently tainted or
consistently not tainted, the compiler can optimize away all
taint tracking code for those statements. The results of our
benchmarks suggest, and we verified this by manually in-
specting compilation graphs for select benchmarks, that due
to our optimizations GraalVM’s JIT compiler is indeed able
to optimize away such redundant taint propagation. Thus
benchmarks in which fewer statements operate on inconsis-
tently tainted data tend to incur less slowdown. 7 of our 33
Shootouts benchmarks even exhibit under 20% slowdown
despite heavily operating on tainted data. The average slow-
down across the Shootouts benchmarks is ∼2.10x, and the
highest slowdown we observed was ∼5.52x.
The benchmark which incurred the highest slowdown,

as Figure 6 shows, is the Pidigits benchmark implemented
in C++. This benchmark heavily relies on function calls in
which heap-allocated objects are passed as arguments. We
observed, in general, that higher slowdown corresponds to
data flowing into expressions not being consistently tainted,
tainted data traversing a call boundary and a higher number
of allocated memory with shadow storage.
In some programs, the main workload may operate on

both tainted and untainted data in the same statements to
a significant degree, which prevents our profiling for data
being consistently tainted. To evaluate TruffleTaint’s perfor-
mance in such programs we executed the Shootouts bench-
marks with TruffleTaint’s instrumentation enabled, but pre-
vented any specialization on data being consistently tainted
by only enabling taint sources and sinks in every other bench-
mark iteration. Specialization on inputs being consistently
not tainted, however, was not affected to account for the
insight that tainted data usually spreads to only a part of
the whole program. In this configuration, as illustrated in
Figure 6, our benchmarks exhibited a slowdown between 0%
and ∼6.76x.

Lack of consistency in whether data was tainted generally
lead to increased slowdown. However, the Pidigits bench-
mark implemented in JavaScript did not exhibit slowdown.
This benchmark, in contrast to its C++ implementation, con-
sists of a single compilation unit, which gave the compiler
access to the flag enabling taint sources and sinks during
optimization.

Figure 6 shows a high standard deviation in theData Incon-
sistently Tainted configuration for some benchmarks. While
code compiled from these benchmarks includes instructions
for allocating and accessing shadow storage on-demand,
these instructions only needed to be executed in iterations
with enabled taint sources. These iterations were thus consis-
tently slower, and the difference in slowdown between both
kinds of iterations is larger for benchmarks whose workload
is dominated by memory accesses.

Figure 8. TruffleTaint Slowdown on LLHTTP benchmarks.

5.4 Performance Impact of Program Size
To answer RQ3 we instrumented several programs of the
SPECint 2017 benchmark suite. In contrast to the smaller
Shootouts programs, SPECint includes real-world C/C++ ap-
plications consisting of several thousand lines of code which
perform common workloads. We adapted these benchmarks
to mark all input data as tainted and to make sure that this
taint is propagated. As Figure 7 shows, these benchmarks
incur slowdown ranging from 0% to ∼3.45x for consistently
tainted data, which confirms that our optimizations also
support larger programs. However, taint propagation itself
significantly increases the size of the code to be compiled,
which can become a problem for applications whose peak
performance depends on very large methods. To be able to
run all programs shown in Figure 7 we needed to increase
the compiler’s upper limit for the size of methods it would
compile by a factor of 20. We also increased the maximum
amount of memory available to the compiler to 24GB.

5.5 Performance Impact of Data Amount
To answer RQ4we implemented a benchmark based on llhttp,
the HTTP header parser of the Node.js framework. While
LLHTTP itself is implemented in C code, it is invoked by
JavaScript code via Node.js’ native interface. Parsers are of-
ten of interest for taint tracking applications, for example
when reverse engineering input formats or guiding Fuzzers,
so this is a realistic workload. Our benchmark assembles an
HTTP request in JavaScript code by writing a fixed number
of headers and corresponding values, which consists of ran-
dom characters, to a buffer allocated in native memory by
C code. The parser, which is implemented in C, parses this
request, converts the parsed headers and their values into
JavaScript String values and passes these String values back
into JavaScript code via a callback, which stores these Strings
into a JavaScript array. In this benchmark, the values of the
individual headers are tainted, so after the entire request has
been parsed, the String values stored in the JavaScript array
are checked to be tainted. By varying the amount of head-
ers per request we can illustrate the impact of the amount
of tainted data a benchmark processes on the slowdown it
incurs from taint propagation by TruffleTaint. Moreover, the
implementation of the benchmark utilizes both JavaScript
and C code, which validates our results for both languages.
The results of executing this benchmark multiple times with
a successively increasing number of headers per request are

82

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

shown in Figure 8, the concrete numbers are given in Ap-
pendix A. Running this benchmark with 50 or 500 headers
per request showed no significant difference in slowdown
for both runs, both when all headers were tainted and when
none were. Running the benchmark with only 5 headers per
request instead shows higher slowdown from instrumenta-
tion with TruffleTaint. The parser contains a separate, faster
code path for requests containing only a small number of
headers, which seems to incur more slowdown from taint
propagation. Since the GraalVM LLVM runtime aims to ex-
clude unexecuted branches from compilation, different code
paths being executed also lead to a different Truffle AST to
compile. The runs with the same branches taken, in contrast,
did not exhibit a significant difference in slowdown, which
indicates no direct correlation between the total amount of
tainted data a benchmark operates on and the slowdown it
incurs from taint propagation.

5.6 Language Independence
Figure 6 shows that each implementation of the Shootouts
suite incurred slowdowns ranging from 0% to ∼6x in its
benchmarks and thus answers RQ5.

Differences in slowdown for the various implementations
of the same benchmark arise from the design of the indi-
vidual benchmark programs, rather than the choice of the
implementation language. Concretely, the more a bench-
mark accesses allocated memory with shadow storage the
more slowdown it incurs from TruffleTaint. This is because
the JIT compiler cannot remove read or write accesses to
shadow storage if it may escape the compilation unit, and
accessing shadow storage can involve multiple checks and
offset calculations. Another factor for increased slowdown
is propagating tainted values via function calls to another
compilation unit. This slowdown stems from partial escape
analysis not being able to remove the allocation of boxed
values, which we use to propagate the taint labels of function
arguments, when boxing and unboxing do not happen in
the same compilation unit. The more the performance of a
benchmark depends on these features, the more slowdown
it will incur from taint propagation. To give an example, the
JavaScript implementation of the Pidigits benchmark propa-
gates tainted data only through local variables within a single
compilation unit. Pidigits’ C++ implementation, in contrast,
incurs more slowdown since it frequently propagates tainted
values through memory allocations5 and through multiple
compilation units. The JavaScript and C implementations
of the NBody 2 benchmark, in contrast, both have the same
structure and both store tainted values into allocated mem-
ory, i.e., into a JavaScript array and a C native allocation,

5JavaScript provides a native data type for high-bit-width numbers, while
C++ code instead has to represent them by heap-allocated data structures.
The JavaScript benchmark is faster since it thus accesses only atomic values
rather than memory allocations.

respectively. These benchmarks exhibit only a ∼5.22% differ-
ence in slowdown from taint tracking between them.
The GraalVM LLVM runtime uses shadow allocations to

store taint labels, since all memory allocated by programs it
executes can be accessed at byte-level. In contrast, GraalVM’s
JavaScript runtime allocates shadow objects and shadow
arrays. However, Figure 6 shows the same range of slowdown
for both C/C++ and JavaScript benchmarks, which indicates
that neither is necessarily faster. This further indicates that
implementation language is not a dominant factor in how
much slowdown a benchmark exhibits.
Figure 6 also shows the language boundary to not be

a barrier to our optimizations. Namely, it shows that the
Shootouts benchmarks in which C/C++ code interacts with
JavaScript code incur the same range of slowdown as the
single-language implementations.

6 Related Work
In this section we compare our approach to related work.

6.1 Conditional Taint Propagation
DECAF++ [22], an optimized version of the DECAF [27]
whole-system taint tracking engine, switches between a
track mode, in which full taint propagation is performed,
and a check mode, in which the instrumentation only checks
whether memory loads or stores involve tainted data; if they
do, it switches to track mode. In check mode, DECAF++ in-
curs only 4% slowdown in addition to the 5x to 10x slowdown
incurred by the underlying emulator [22]. Track mode cor-
responds to the original DECAF, which incurs additional
slowdown of up to 8.15x [27]. Ho et al. [28] implement their
version of check mode on top of a fast hypervisor, while their
version of track mode is implemented on top of an emulator.
Their modified hypervisor is up to 90% slower than its origi-
nal implementation due to the need for checking whether to
switch to the emulator.

While Ho et al. and DECAF++ are based on whole-system
taint tracking, LIFT [44] relies on application-level taint
tracking. Before executing a block of instructions, LIFT checks
each memory location read or written by these instructions
and executes the block either with or without taint propaga-
tion depending on whether this memory currently contains
tainted data. LIFT also applies other optimizations, but still
incurs up to 7.9x slowdown. The Taint Rabbit [24] dynami-
cally creates separate versions for each basic block that are
each optimized for a specific combination of taint states of
the block’s inputs and outputs and dispatches between them.
TruffleTaint replaces run-time checks whether executed

code requires taint propagation in compiled code with spec-
ulative assumptions. When nothing in a program actually in-
troduces tainted data, these assumptions are never disproven,
and so TruffleTaint avoids slowdown from taint propagation
entirely for some programs. Moreover, TruffleTaint decides

83

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

for each individual input of a statement whether taint needs
to be propagated for it, while DECAF++, LIFT, and Ho et
al.’s approaches can only decide this for an entire sequence
of instructions. In contrast to the Taint Rabbit, TruffleTaint
does not require dispatching between different basic blocks
at each control flow decision. Unlike TruffleTaint, these ap-
proaches also do not optimize the taint propagation logic
itself, they only try to avoid executing it entirely.

6.2 Static Optimizations for Taint Propagation
Some dynamic taint tracking systems use static analysis to
avoid run-time taint propagation [30, 35, 52]. For example,
Kang et al. [30] and Zhang et al. [52] employ static taint
analysis in addition to dynamic taint analysis in order to
limit run-time taint propagation to those parts of an instru-
mented program where the static taint analysis cannot pre-
clude the presence of tainted data. Lam et al. [35] use an-
other static analysis technique, program slicing, to detect
all paths between taint sources and taint sinks, and only
perform run-time taint tracking there. These approaches
require a separate static analysis engine implementing the
same propagation semantics as the dynamic analysis engine.
TruffleTaint, in contrast, is a purely dynamic analysis, but
still achieves much of the same effect. Since TruffleTaint pro-
files for each location at which values enter a compilation
unit whether those values are tainted, it also avoids run-time
taint propagation where no tainted data arrives. It is also
more precise in doing so due to its knowledge of which op-
erations are reached by tainted data at runtime, while static
analysis only determines which operations could be reached.
Jee et al. [29] manually implemented common compiler

optimizations to apply them to just the instrumentation code
for taint tracking. We instead leverage an existing compiler
that is capable of these and other optimizations, and addition-
ally create further opportunities for speculative optimization.
Phosphor [13] is a taint tracking engine for Java that is

based on bytecode instrumentation and achieves an average
slowdown of 53%, but up to 2.2x, on the DaCapo benchmark
suite. Similar to TruffleTaint, Phosphor uses shadow arrays
and shadow variables. However, it allocates them eagerly
instead of on-demand. Phosphor also uses boxed values, but
limits this method of taint propagation to primitive values
and arrays thereof. However, Phosphor does not use specu-
lative optimizations to avoid slowdown in application runs
that do not propagate taint. Additionally, Phosphor man-
ually applies simplifications to the inserted taint tracking
code after instrumentation. While Phosphor is limited to
Java bytecode, TruffleTaint supports multiple languages.
Any implementation of DTA which modifies the source

code or the intermediate representation of an application
to analyze in order to perform taint propagation, e.g., the
LLVM Data-Flow Sanitizer [6] or Phosphor [13], can trivially
benefit from an optimizing compiler. TruffleTaint adds to this
by directing this compiler to make speculative assumptions

about the instrumented program in order to enable it to
perform additional optimizations for the taint tracking code.

libDFT [32] and Minemu [14] reduce slowdown from taint
tracking in native code to ∼3x by exploiting characteris-
tics of the x86 platform. The Taint Rabbit additionally per-
forms conditional taint propagation and achieves a slow-
down of 1.7x for some benchmarks when taint is propagated.
Our approach can achieve similar average slowdown, but is
platform-independent.
Chin et al. [18] add character-level shadow storage to

String values on-demand to be able to quickly check whether
a specific character could be tainted. We apply that same
concept more generally to dynamic objects, arrays and native
allocations and additionally specialize shadow storage to
how the corresponding data structures store tainted values
at runtime. DECAF++ also maintains a flag for each memory
page whether it contains tainted data, while our approach
maintains such flags on a finer per-allocation granularity.

7 Conclusion
In this paper, we presented how TruffleTaint, a polyglot
dynamic taint analysis platform, leverages speculative op-
timization in concert with dynamic compilation to achieve
low overhead taint propagation. We showed that our opti-
mization strategies are applicable to both dynamic, object-
oriented languages like JavaScript and languages like C and
C++ which are typically compiled statically. Our evaluation
showed that using these optimization strategies TruffleTaint
incurs a peak performance slowdown between 0% and 40%
when instrumented programs do not operate on tainted data.
Our evaluation further showed that TruffleTaint incurred up
to ∼5.52x slowdown, with an average slowdown of ∼2.10x,
when instrumented programs do operate on tainted data.

Acknowledgments
This research project was partially funded byOracle Labs.We
thank all members of the Virtual Machine Research Group at
Oracle Labs. Oracle, Java, GraalVM, and HotSpot are trade-
marks or registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.
We also thank all researchers at the Johannes Kepler Univer-
sity Linz’s Institute for System Software for their support of
and feedback on our work.

A Benchmark Results
Tables 1, 2, and 3 provide absolute numbers for the slowdown
measurements discussed in Section 5.

84

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

Table 1. TruffleTaint slowdown factor on the Shootouts benchmarks.

Empty TruffleTaint TruffleTaint TruffleTaint
Language Benchmark Instrumentation Never Tainted Consistently Tainted Inconsistently Tainted

BinaryTrees 0.98 ± 0.01 0.98 ± 0.01 1.43 ± 0.02 1.43 ± 0.02
FannkuchRedux 1.36 ± 0.01 1.38 ± 0.01 3.78 ± 0.02 3.53 ± 0.39
Fasta 1.01 ± 0.01 1.00 ± 0.01 1.05 ± 0.01 1.11 ± 0.04
KNucleotide 0.90 ± 0.07 0.87 ± 0.08 0.96 ± 0.10 1.04 ± 0.09
Mandelbrot 1.00 ± 0.01 1.00 ± 0.01 2.79 ± 0.02 3.58 ± 0.04

C/C++ & NBody 1 1.01 ± 0.02 1.00 ± 0.01 4.60 ± 0.04 5.42 ± 0.15
JavaScript NBody 2 0.92 ± 0.01 0.91 ± 0.01 2.13 ± 0.01 2.71 ± 0.06

NBody 3 1.00 ± 0.02 1.00 ± 0.01 1.62 ± 0.01 1.85 ± 0.15
Pidigits 1.02 ± 0.02 1.01 ± 0.02 1.01 ± 0.02 0.96 ± 0.02
ReverseComplement 0.94 ± 0.01 1.53 ± 0.01 1.70 ± 0.01 1.83 ± 0.06
SpectralNorm 1.00 ± 0.00 1.00 ± 0.00 1.73 ± 0.01 1.75 ± 0.20
BinaryTrees 0.99 ± 0.02 1.06 ± 0.01 1.34 ± 0.02 1.37 ± 0.03
FannkuchRedux 1.00 ± 0.00 0.98 ± 0.00 2.27 ± 0.01 2.32 ± 0.13
Fasta 1.00 ± 0.01 1.00 ± 0.01 1.61 ± 0.01 1.46 ± 0.19
KNucleotide 0.96 ± 0.03 0.95 ± 0.02 1.90 ± 0.05 2.09 ± 0.13
Mandelbrot 1.00 ± 0.01 1.00 ± 0.01 2.66 ± 0.02 3.91 ± 0.22

C/C++ NBody 1 0.99 ± 0.01 1.00 ± 0.01 2.81 ± 0.02 3.59 ± 0.06
NBody 2 0.99 ± 0.01 1.00 ± 0.01 1.93 ± 0.02 2.21 ± 0.17
NBody 3 1.00 ± 0.01 1.02 ± 0.02 1.07 ± 0.02 1.95 ± 0.09
Pidigits 1.04 ± 0.02 0.99 ± 0.02 5.52 ± 0.07 6.76 ± 0.34
ReverseComplement 1.00 ± 0.01 1.38 ± 0.02 2.00 ± 0.02 1.91 ± 0.06
SpectralNorm 1.00 ± 0.00 1.00 ± 0.00 1.70 ± 0.01 1.57 ± 0.27
BinaryTrees 1.03 ± 0.01 1.01 ± 0.02 1.56 ± 0.02 1.58 ± 0.02
FannkuchRedux 0.99 ± 0.00 1.03 ± 0.01 2.87 ± 0.01 3.30 ± 0.37
Fasta 1.01 ± 0.01 1.01 ± 0.01 1.61 ± 0.02 1.70 ± 0.09
KNucleotide 1.01 ± 0.05 1.04 ± 0.06 1.13 ± 0.05 1.20 ± 0.05
Mandelbrot 1.02 ± 0.02 1.03 ± 0.02 3.40 ± 0.05 3.96 ± 0.77

JavaScript NBody 1 0.99 ± 0.01 1.00 ± 0.02 2.14 ± 0.02 3.26 ± 0.70
NBody 2 1.01 ± 0.01 0.99 ± 0.01 1.98 ± 0.01 2.58 ± 0.58
NBody 3 1.04 ± 0.01 1.05 ± 0.01 2.02 ± 0.01 2.66 ± 0.52
Pidigits 1.00 ± 0.03 0.98 ± 0.03 1.02 ± 0.03 0.99 ± 0.03
ReverseComplement 1.03 ± 0.05 1.08 ± 0.06 2.89 ± 0.12 2.86 ± 0.14
SpectralNorm 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.10 ± 0.08

Table 2. TruffleTaint slowdown factor on the SPECint 2017 benchmarks.

TruffleTaint TruffleTaint
Benchmark Never Tainted Consistently Tainted
DeepSjeng 1.09 ± 0.01 3.32 ± 0.01
Leela 1.07 ± 0.00 3.45 ± 0.00
MCF 0.85 ± 0.01 1.50 ± 0.03
SpecRand 1.01 ± 0.11 0.96 ± 0.06

Table 3. TruffleTaint slowdown factor on the LLHTTP benchmark.

Headers TruffleTaint TruffleTaint
Per Request No Headers Tainted All Headers Tainted
5 1.04 ± 0.01 1.15 ± 0.01
50 0.99 ± 0.01 1.05 ± 0.01
500 0.99 ± 0.00 1.06 ± 0.01

85

Low-Overhead Multi-language Dynamic Taint Analysis on Managed Runtimes through ... MPLR ’21, September 29–30, 2021, Münster, Germany

References
[1] 2021. The Computer Language Benchmarks Game. https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/index.
html. Accessed: 2021-05-09.

[2] 2021. GeeksforGeeks: Check if n is divisible by power of 2 without
using arithmetic operators. https://www.geeksforgeeks.org/check-n-
divisible-power-2-without-using-arithmetic-operators/. Accessed:
2021-05-22.

[3] 2021. GraalVM JavaScript Runtime. https://www.graalvm.org/
reference-manual/js/. Accessed: 2021-05-09.

[4] 2021. GraalVM LLVM Runtime. https://www.graalvm.org/reference-
manual/llvm/. Accessed: 2021-05-09.

[5] 2021. The LLHTTP parser for HTTP headers. https://github.com/
nodejs/llhttp. Accessed: 2021-05-18.

[6] 2021. LLVM Data-Flow Sanitizer. https://clang.llvm.org/docs/
DataFlowSanitizer.html. Accessed: 2021-05-17.

[7] 2021. Node.js. http://www.nodejs.org/. Accessed: 2021-05-09.
[8] 2021. Safe and Sandboxed Execution of Native Code.

https://medium.com/graalvm/safe-and-sandboxed-execution-
of-native-code-f6096b35c360. Accessed: 2021-05-09.

[9] 2021. SPEC CPU 2017 Benchmark Suite. https://www.spec.org/
cpu2017/. Accessed: 2021-05-13.

[10] 2021. Truffle Compiler Flags, Including –engine.IterativePartialEscape.
https://www.graalvm.org/graalvm-as-a-platform/language-
implementation-framework/Options. Accessed: 2021-06-04.

[11] 2021. The Truffle Framework. https://www.graalvm.org/graalvm-as-
a-platform/language-implementation-framework/. Accessed: 2021-
05-15.

[12] F. Araujo and K. W. Hamlen. 2015. Compiler-instrumented, Dynamic
Secret-Redaction of Legacy Processes for Attacker Deception. In 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015, J. Jung and T. Holz (Eds.). USENIX Associa-
tion, 145–159. https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/araujo

[13] J. Bell and G. E. Kaiser. 2014. Phosphor: illuminating dynamic data
flow in commodity jvms. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014, A. P. Black and T. D. Millstein (Eds.). ACM, 83–101.
https://doi.org/10.1145/2660193.2660212

[14] E. Bosman, A. Slowinska, and H. Bos. 2011. Minemu: The World’s
Fastest Taint Tracker. In Recent Advances in Intrusion Detection - 14th
International Symposium, RAID 2011, Menlo Park, CA, USA, September
20-21, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6961),
R. Sommer, D. Balzarotti, and G. Maier (Eds.). Springer, 1–20. https:
//doi.org/10.1007/978-3-642-23644-0_1

[15] J. Cai, P. Zou, J. Ma, and J. He. 2016. SwordDTA: A dynamic taint
analysis tool for software vulnerability detection. Wuhan University
Journal of Natural Sciences 21 (02 2016), 10–20. https://doi.org/10.
1007/s11859-016-1133-1

[16] J. Cai, P. Zou, D. Xiong, and J. He. 2015. A guided fuzzing approach
for security testing of network protocol software. In 2015 6th IEEE
International Conference on Software Engineering and Service Science
(ICSESS). 726–729. https://doi.org/10.1109/ICSESS.2015.7339160

[17] B. Chess and J. West. 2008. Dynamic taint propagation: Finding vul-
nerabilities without attacking. Inf. Secur. Tech. Rep. 13, 1 (2008), 33–39.
https://doi.org/10.1016/j.istr.2008.02.003

[18] E. Chin and D. A. Wagner. 2009. Efficient character-level taint track-
ing for Java. In Proceedings of the 6th ACM Workshop On Secure
Web Services, SWS 2009, Chicago, Illinois, USA, November 13, 2009,
E. Damiani, S. Proctor, and A. Singhal (Eds.). ACM, 3–12. https:
//doi.org/10.1145/1655121.1655125

[19] J. A. Clause, W. Li, and A. Orso. 2007. Dytan: a generic dynamic taint
analysis framework. In Proceedings of the ACM/SIGSOFT International

Symposium on Software Testing and Analysis, ISSTA 2007, London, UK,
July 9-12, 2007, D. S. Rosenblum and S. G. Elbaum (Eds.). ACM, 196–206.
https://doi.org/10.1145/1273463.1273490

[20] J. A. Clause and A. Orso. 2009. Penumbra: automatically identifying
failure-relevant inputs using dynamic tainting. In Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis,
ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, G. Rothermel and L. K.
Dillon (Eds.). ACM, 249–260. https://doi.org/10.1145/1572272.1572301

[21] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irún-Briz. 2008.
Tupni: automatic reverse engineering of input formats. In Proceed-
ings of the 2008 ACM Conference on Computer and Communications
Security, CCS 2008, Alexandria, Virginia, USA, October 27-31, 2008,
P. Ning, P. F. Syverson, and S. Jha (Eds.). ACM, 391–402. https:
//doi.org/10.1145/1455770.1455820

[22] A. Davanian, Z. Qi, Y. Qu, and H. Yin. 2019. DECAF++: Elastic Whole-
System Dynamic Taint Analysis. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang
District, Beijing, China, September 23-25, 2019. USENIX Association,
31–45. https://www.usenix.org/conference/raid2019/presentation/
davanian

[23] M. L. Van de Vanter, C. Seaton, M. Haupt, C. Humer, and T. Würthinger.
2018. Fast, Flexible, Polyglot Instrumentation Support for Debuggers
and other Tools. Art Sci. Eng. Program. 2, 3 (2018), 14. https://doi.org/
10.22152/programming-journal.org/2018/2/14

[24] J. Galea and D. Kroening. 2020. The Taint Rabbit: Optimizing Generic
Taint Analysis with Dynamic Fast Path Generation. In ASIA CCS ’20:
The 15th ACM Asia Conference on Computer and Communications Se-
curity, Taipei, Taiwan, October 5-9, 2020, H. Sun, S. Shieh, G. Gu, and
G. Ateniese (Eds.). ACM, 622–636. https://doi.org/10.1145/3320269.
3384764

[25] M. Grimmer, S. Marr, M. Kahlhofer, C. Wimmer, T. Würthinger, and H.
Mössenböck. 2017. Applying Optimizations for Dynamically-typed
Languages to Java. In Proceedings of the 14th International Conference
on Managed Languages and Runtimes, ManLang 2017, Prague, Czech
Republic, September 27 - 29, 2017. ACM, 12–22. https://doi.org/10.1145/
3132190.3132202

[26] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. 2014. JSFlow: tracking
information flow in JavaScript and its APIs. In Symposium on Applied
Computing, SAC 2014, Gyeongju, Republic of Korea - March 24 - 28, 2014,
Y. Cho, S. Y. Shin, S. Kim, C. Hung, and J. Hong (Eds.). ACM, 1663–1671.
https://doi.org/10.1145/2554850.2554909

[27] A. Henderson, A. Prakash, L. Yan, X. Hu, X. Wang, R. Zhou, and
H. Yin. 2014. Make it work, make it right, make it fast: building a
platform-neutral whole-system dynamic binary analysis platform. In
International Symposium on Software Testing and Analysis, ISSTA ’14,
San Jose, CA, USA - July 21 - 26, 2014, C. S. Pasareanu and D. Marinov
(Eds.). ACM, 248–258. https://doi.org/10.1145/2610384.2610407

[28] A. Ho, M. A. Fetterman, C. Clark, A. Warfield, and S. Hand. 2006.
Practical taint-based protection using demand emulation. In Proceed-
ings of the 2006 EuroSys Conference, Leuven, Belgium, April 18-21,
2006, Y. Berbers and W. Zwaenepoel (Eds.). ACM, 29–41. https:
//doi.org/10.1145/1217935.1217939

[29] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D.
Keromytis. 2012. A General Approach for Efficiently Accelerating
Software-based Dynamic Data Flow Tracking on Commodity Hard-
ware. In 19th Annual Network and Distributed System Security Sympo-
sium, NDSS 2012, San Diego, California, USA, February 5-8, 2012. The
Internet Society. https://www.ndss-symposium.org/ndss2012/general-
approach-efficiently-accelerating-software-based-dynamic-data-
flow-tracking-commodity

[30] M. Gyung Kang, S. McCamant, P. Poosankam, and D. Song. 2011.
DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propa-
gation. In Proceedings of the Network and Distributed System Security
Symposium, NDSS 2011, San Diego, California, USA, 6th February - 9th
February 2011. The Internet Society.

86

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://www.geeksforgeeks.org/check-n-divisible-power-2-without-using-arithmetic-operators/
https://www.geeksforgeeks.org/check-n-divisible-power-2-without-using-arithmetic-operators/
https://www.graalvm.org/reference-manual/js/
https://www.graalvm.org/reference-manual/js/
https://www.graalvm.org/reference-manual/llvm/
https://www.graalvm.org/reference-manual/llvm/
https://github.com/nodejs/llhttp
https://github.com/nodejs/llhttp
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
http://www.nodejs.org/
https://medium.com/graalvm/safe-and-sandboxed-execution-of-native-code-f6096b35c360
https://medium.com/graalvm/safe-and-sandboxed-execution-of-native-code-f6096b35c360
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/Options
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/Options
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.graalvm.org/graalvm-as-a-platform/language-implementation-framework/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/araujo
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/araujo
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1007/978-3-642-23644-0_1
https://doi.org/10.1007/978-3-642-23644-0_1
https://doi.org/10.1007/s11859-016-1133-1
https://doi.org/10.1007/s11859-016-1133-1
https://doi.org/10.1109/ICSESS.2015.7339160
https://doi.org/10.1016/j.istr.2008.02.003
https://doi.org/10.1145/1655121.1655125
https://doi.org/10.1145/1655121.1655125
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1572272.1572301
https://doi.org/10.1145/1455770.1455820
https://doi.org/10.1145/1455770.1455820
https://www.usenix.org/conference/raid2019/presentation/davanian
https://www.usenix.org/conference/raid2019/presentation/davanian
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.22152/programming-journal.org/2018/2/14
https://doi.org/10.1145/3320269.3384764
https://doi.org/10.1145/3320269.3384764
https://doi.org/10.1145/3132190.3132202
https://doi.org/10.1145/3132190.3132202
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1145/2610384.2610407
https://doi.org/10.1145/1217935.1217939
https://doi.org/10.1145/1217935.1217939
https://www.ndss-symposium.org/ndss2012/general-approach-efficiently-accelerating-software-based-dynamic-data-flow-tracking-commodity
https://www.ndss-symposium.org/ndss2012/general-approach-efficiently-accelerating-software-based-dynamic-data-flow-tracking-commodity
https://www.ndss-symposium.org/ndss2012/general-approach-efficiently-accelerating-software-based-dynamic-data-flow-tracking-commodity

MPLR ’21, September 29–30, 2021, Münster, Germany Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter Mössenböck

[31] R. Karim, F. Tip, A. Sochurková, and K. Sen. 2020. Platform-
Independent Dynamic Taint Analysis for JavaScript. IEEE Trans. Soft-
ware Eng. 46, 12 (2020), 1364–1379. https://doi.org/10.1109/TSE.2018.
2878020

[32] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. 2012.
libdft: practical dynamic data flow tracking for commodity systems.
In Proceedings of the 8th International Conference on Virtual Execu-
tion Environments, VEE 2012, London, UK, March 3-4, 2012 (co-located
with ASPLOS 2012), S. Hand and D. Da Silva (Eds.). ACM, 121–132.
https://doi.org/10.1145/2151024.2151042

[33] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz.
2013. Information flow tracking meets just-in-time compilation. ACM
Trans. Archit. Code Optim. 10, 4 (2013), 38:1–38:25. https://doi.org/10.
1145/2541228.2555295

[34] J. Kreindl, D. Bonetta, L. Stadler, D. Leopoldseder, and H. Mössenböck.
2020. Multi-language dynamic taint analysis in a polyglot virtual ma-
chine. InMPLR ’20: 17th International Conference on Managed Program-
ming Languages and Runtimes, Virtual Event, UK, November 4-6, 2020,
S. Marr (Ed.). ACM, 15–29. https://doi.org/10.1145/3426182.3426184

[35] L. Lam and T. Chiueh. 2006. A General Dynamic Information Flow
Tracking Framework for Security Applications. In 22nd Annual Com-
puter Security Applications Conference (ACSAC 2006), 11-15 December
2006, Miami Beach, Florida, USA. IEEE Computer Society, 463–472.
https://doi.org/10.1109/ACSAC.2006.6

[36] S. Lekies, B. Stock, and M. Johns. 2013. 25 million flows later: large-
scale detection of DOM-based XSS. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, A. Sadeghi, V. D. Gligor, and Moti Yung (Eds.).
ACM, 1193–1204. https://doi.org/10.1145/2508859.2516703

[37] D. Leopoldseder, R. Schatz, L. Stadler, M. Rigger, T. Würthinger, and H.
Mössenböck. 2018. Fast-path loop unrolling of non-counted loops to
enable subsequent compiler optimizations. In Proceedings of the 15th
International Conference on Managed Languages & Runtimes, ManLang
2018, Linz, Austria, September 12-14, 2018, E. Tilevich and H. Mössen-
böck (Eds.). ACM, 2:1–2:13. https://doi.org/10.1145/3237009.3237013

[38] D. Leopoldseder, L. Stadler, T. Würthinger, J. Eisl, D. Simon, and H.
Mössenböck. 2018. Dominance-based duplication simulation (DBDS):
code duplication to enable compiler optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization,
CGO 2018, Vösendorf / Vienna, Austria, February 24-28, 2018, J. Knoop,
M. Schordan, T. Johnson, and M. F. P. O’Boyle (Eds.). ACM, 126–137.
https://doi.org/10.1145/3168811

[39] B. Livshits. 2012. Dynamic Taint Tracking in Managed Runtimes. Tech-
nical Report MSR-TR-2012-114. Microsoft Research.

[40] S. Muchnick. 1997. Advanced compiler design and implementation.
Morgan Kaufmann Publishers, San Francisco, Calif.

[41] R. Muth, S. A. Watterson, and S. K. Debray. 2000. Code Specialization
Based on Value Profiles. In Static Analysis, 7th International Symposium,
SAS 2000, Santa Barbara, CA, USA, June 29 - July 1, 2000, Proceedings
(Lecture Notes in Computer Science, Vol. 1824), J. Palsberg (Ed.). Springer,
340–359. https://doi.org/10.1007/978-3-540-45099-3_18

[42] J. Newsome and D. X. Song. 2005. Dynamic Taint Analysis
for Automatic Detection, Analysis, and SignatureGeneration of
Exploits on Commodity Software. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2005, San
Diego, California, USA. The Internet Society. https://www.ndss-
symposium.org/ndss2005/dynamic-taint-analysis-automatic-
detection-analysis-and-signaturegeneration-exploits-commodity/

[43] A. Prokopec, G. Duboscq, D. Leopoldseder, and T. Würthinger. 2019.
An Optimization-Driven Incremental Inline Substitution Algorithm

for Just-in-Time Compilers. In IEEE/ACM International Symposium on
Code Generation and Optimization, CGO 2019, Washington, DC, USA,
February 16-20, 2019, M. T. Kandemir, A. Jimborean, and T. Moseley
(Eds.). IEEE, 164–179. https://doi.org/10.1109/CGO.2019.8661171

[44] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. 2006. LIFT: A Low-
Overhead Practical Information Flow Tracking System for Detecting
Security Attacks. In 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-39 2006), 9-13 December 2006, Orlando,
Florida, USA. IEEE Computer Society, 135–148. https://doi.org/10.
1109/MICRO.2006.29

[45] M. Rigger, R. Schatz, R. Mayrhofer, M. Grimmer, and H. Mössen-
böck. 2018. Sulong, and Thanks for All the Bugs: Finding Errors
in C Programs by Abstracting from the Native Execution Model. In
Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, X. Shen,
J. Tuck, R. Bianchini, and V. Sarkar (Eds.). ACM, 377–391. https:
//doi.org/10.1145/3173162.3173174

[46] E. J. Schwartz, T. Avgerinos, and D. Brumley. 2010. All You EverWanted
to Know about Dynamic Taint Analysis and Forward Symbolic Exe-
cution (but Might Have Been Afraid to Ask). In 31st IEEE Symposium
on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA. IEEE Computer Society, 317–331. https://doi.org/10.
1109/SP.2010.26

[47] L. Stadler, T. Würthinger, and H. Mössenböck. 2014. Partial Escape
Analysis and Scalar Replacement for Java. In 12th Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
2014, Orlando, FL, USA, February 15-19, 2014, D. R. Kaeli and T. Moseley
(Eds.). ACM, 165. https://dl.acm.org/citation.cfm?id=2544157

[48] G. Wondracek, P. M. Comparetti, C. Krügel, and E. Kirda. 2008. Au-
tomatic Network Protocol Analysis. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2008, San Diego,
California, USA, 10th February - 13th February 2008. The Internet Soci-
ety. https://www.ndss-symposium.org/ndss2008/automatic-network-
protocol-analysis/

[49] A.Wöß, C.Wirth, D. Bonetta, C. Seaton, C. Humer, and H. Mössenböck.
2014. An Object Storage Model for the Truffle Language Implemen-
tation Framework. In Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the Java Platform: Vir-
tual Machines, Languages, and Tools (Cracow, Poland) (PPPJ ’14). As-
sociation for Computing Machinery, New York, NY, USA, 133–144.
https://doi.org/10.1145/2647508.2647517

[50] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton, G.
Duboscq, D. Simon, and M. Grimmer. 2017. Practical partial evaluation
for high-performance dynamic language runtimes. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017,
A. Cohen and M. T. Vechev (Eds.). ACM, 662–676. https://doi.org/10.
1145/3062341.3062381

[51] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. 2013. One VM to rule them
all. In ACM Symposium on New Ideas in Programming and Reflections
on Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN, USA,
October 26-31, 2013, A. L. Hosking, P. Th. Eugster, and R. Hirschfeld
(Eds.). ACM, 187–204. https://doi.org/10.1145/2509578.2509581

[52] R. Zhang, S. Huang, and Z. Qi. 2011. Efficient Taint Analysis with Taint
Behavior Summary. In Third International Conference on Communica-
tions and Mobile Computing, CMC 2011, Qingdao, China, 18-20 April
2011, D. Yuan, M. Cao, C. Wang, and H. Huang (Eds.). IEEE Computer
Society, 11–14. https://doi.org/10.1109/CMC.2011.76

87

https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1145/2151024.2151042
https://doi.org/10.1145/2541228.2555295
https://doi.org/10.1145/2541228.2555295
https://doi.org/10.1145/3426182.3426184
https://doi.org/10.1109/ACSAC.2006.6
https://doi.org/10.1145/2508859.2516703
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3168811
https://doi.org/10.1007/978-3-540-45099-3_18
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://www.ndss-symposium.org/ndss2005/dynamic-taint-analysis-automatic-detection-analysis-and-signaturegeneration-exploits-commodity/
https://doi.org/10.1109/CGO.2019.8661171
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1145/3173162.3173174
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://dl.acm.org/citation.cfm?id=2544157
https://www.ndss-symposium.org/ndss2008/automatic-network-protocol-analysis/
https://www.ndss-symposium.org/ndss2008/automatic-network-protocol-analysis/
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1109/CMC.2011.76

	Abstract
	1 Introduction
	2 Background
	2.1 GraalVM
	2.2 TruffleTaint
	2.3 Speculative Optimization

	3 Speculative Optimizations for Taint Propagation
	3.1 Optimized Storage for Taint Labels
	3.2 Specialized Access to Taint Label Storage
	3.3 Profiling Taint Labels of Statement Inputs
	3.4 Specialized Storage Update

	4 Implementation in TruffleTaint
	5 Evaluation
	5.1 Experimental Methodology
	5.2 Slowdown without Tainted Data
	5.3 Slowdown with Tainted Data
	5.4 Performance Impact of Program Size
	5.5 Performance Impact of Data Amount
	5.6 Language Independence

	6 Related Work
	6.1 Conditional Taint Propagation
	6.2 Static Optimizations for Taint Propagation

	7 Conclusion
	Acknowledgments
	A Benchmark Results
	References

