
Sharing and Caring of Data at the Edge

Animesh Trivedi* 1, Lin Wang* 1,2, Henri Bal1, and Alexandru Iosup1

1VU Amsterdam 2TU Darmstadt

Abstract
Edge computing is an emerging computing paradigm where

data is generated and processed in the field using distributed
computing devices. Many applications such as real-time video
processing, augmented/virtual reality gaming, environment
sensing, benefit from such decentralized, close-to-user deploy-
ments where low-latency, real-time results are expected. As
with any distributed application, one of the key challenges
in the development of collaborative applications is how to
efficiently share data and state among multiple edge clients.
The dynamic and heterogeneous environment together with
diverse application’s requirements make data sharing at the
edge a challenging problem. Although there have been prior
efforts, a systematic understanding of the area is missing. In
this paper, we conduct a methodological study of different
edge applications, their data sharing needs, and designs of
state-of-the-art systems. In the process, we identify design
options, under-explored opportunities, and associated chal-
lenges. We then present Griffin, our edge data sharing service,
and seek feedback on its design.

1 Introduction

In recent years, we have witnessed a computing shift out-
wards from a data center to the network “edge”, incubating a
new paradigm called edge computing. In edge computing, a
large amount of data is generated and consumed in the field
(i.e., data locality) outside the data center by various edge
applications. While cloud computing infrastructure services
within a data center enabled flexible and economic pay-as-
you-go solutions with automatic resource management, edge
computing is growing due to its high potential to have imme-
diate real-world deployments and impact in everyday situa-
tions [94], such as driving, farming, manufacturing, logistics,
and monitoring. As a result, many frameworks are developed
that propose new edge-friendly abstractions and APIs for
applications [4, 43, 76, 81, 82, 95, 96].

*Equal contributions

Edge Site

Edge Node

Edge

4/5G

WiFi

End-devices

V2X

Shared application
data/state

Client

High capacity
Homogeneous
Low mobility

Low capacity
Heterogeneous
High mobility

Cloud

Synchronization

Figure 1: Data sharing at the edge.

One of the key challenges in the development of appli-
cations at the edge is how to efficiently share data1 among
clients. This data sharing is necessary to build applications
such as collaborative machine learning (ML) [87, 100, 101],
AR/VR gaming [23, 64, 117, 119], autonomous driving [18,
55,59,67,118], video analytics [44,51,52,70], and distributed
environment sensing [9, 38, 105, 113]. A hallmark of these ap-
plications is that multiple clients work on a shared dataset and
coorporate to achieve a common objective [62]. Data sharing
can be managed within individual application frameworks
or through an external storage service. The latter is a more
popular choice at the edge because it allows extending the
familiar RESTful/serverless abstraction from the cloud to the
edge [48, 75, 90]. The use of an external, shared data store
cleanly decouples compute from state management, leading
to a stateless, fault-tolerant computation framework [14, 104].

The separation of state and compute is not a new idea.
Within data centers there has already been a push to maintain
ephemeral data and application-specific state in first-class
storage services [57, 89, 99]. There exists more than half a
dozen key-value storage, file systems, and database services

1Here, sharing refers to both data and application-specific state.

that cater to various shared state and data storage needs [3, 5,
41,42,77]. In comparison, platforms for edge storage services
are still in their infancy. Furthermore, edge infrastructure
presents new challenges (§1.1) for efficient data sharing.

In this paper, we present a first-of-its-kind systematic study
of data sharing requirements at the edge (§2) and how pro-
posed systems (fail to) fulfill them (§3). We then identify
under-addressed concerns (e.g., heterogeneity, mobility), an-
alyze trade-offs, present the design of Griffin, our edge data
sharing service (§4), and conclude with discussion points (§5).

1.1 Edge Environment and Challenges

We adopt a definition of “edge” similar to the one from
ETSI [36], where an edge platform consists of edge sites
which can be gateway node(s) [24, 28] and/or local server
machines (as done in Farmbeats [105]) that connect to the
Internet, or edge station(s) such as a cell tower, a base station,
or a roadside units (RSUs). An edge site can contain multiple
edge nodes. End-devices, such as mobile devices, wearable
sensors, IoT nodes, and smart cars, will connect to the edge
nodes for storage/compute services using 4/5G, WAN, and
WiFi (including V2X and IEEE 802.11p standards) technolo-
gies [88] as shown in Figure 1. We expect one or more edge
nodes will be involved between an end-device and the near-
est data center. We assume fixed edge sites, but with limited
resources that decrease as we move closer to end-devices:
small few-core CPUs, limited DRAM, and little permanent
storage [88]. In this environment, a data center state or stor-
age service (such as geo-distributed storage services) faces
multiple challenges because of the following properties [25]:
• Distributed. Edge sites are dispersed geographically and

do not have a centralized, equi-distant node to run the server
service (such as the namenode in HDFS). For more de-
centralized approaches, such as Cassandra [61], a previous
study has shown that the lack of a centralized administrative
node makes consistent metadata management (membership,
keyspace) in the presence of client mobility a challenging
task [25]. Furthermore, typical multi-RTT application-level
protocols (e.g., MySQL protocols) can diminish many edge-
related latency gains for applications [86].

• Heterogeneous. Edge sites/nodes can be heterogeneous
in terms of their storage and network capabilities. For ex-
ample, an embedded edge node (e.g., colocated at a WiFi
access point) with a Jetson board is typically equipped with
a 16/32 GB eMMC, while an edge site can host 10-100s of
servers with few TB storage capacities each. Edge network
links might be bandwidth constrained and not symmetric,
thus presenting challenges for cross-site traffic for achiev-
ing consistency. A large quantity of metadata to track re-
source heterogeneity is required, which needs to be handled
efficiently and in a scalable manner.

• Dynamic. The edge environment can be unpredictable (in-
terferences) and dynamic (changing conditions due to mo-

Domain Shared Data Type

Edge ML/DL [87, 100, 101] model parameters, training data
Gaming (AR/VR) [23, 64, 117, 119] user profiles, game world and state
Autonomous cars [18, 55, 59, 67, 118] LiDAR data, maps, ML models
Edge analytics [6, 10, 31, 34] aggregation states, ephemeral datasets
Video analytics [44, 51, 52, 70] frames, execution state, objects
Sensing [9, 38, 105, 113] environment, health, sensor data

Table 1: Overview of shared data types in edge applications.

bility, diurnal patterns) with multiple administrative do-
mains. Thus, keeping up-to-date information regarding the
infrastructure, its usage, and monitoring can be challenging.

2 What Do Edge Applications Want

Edge applications are diverse, and so are their data sharing
needs. In this section we focus on distributed and collab-
orative edge applications and synthesize their shared data
types, sizes, mobility patterns, consistency and performance
requirements. Table 1 provides an overview.
Edge machine learning. Machine learning represents one
of the most popular applications between the cloud and
edge [87, 100, 101]. Here, the model parameters represent
the distributed shared state that is read and updated by mul-
tiple participants (typically) using the distributed parame-
ter server approach [19, 60, 63]. Further research has also
demonstrated the additional value of doing collaborative,
federated learning and transfer of knowledge between mul-
tiple nodes [69, 100, 110]. Typically, a model size would
be 10-100 MBs and would require 1-100 ms (depending
upon the network technology) of access and update laten-
cies [50, 54, 87, 100]. There is also a large body of work in
model compression, splitting, and network-efficient commu-
nication [17], which is orthogonal to this work. The expected
state mobility is low to medium based on the client mobility.
Real-time massively multiplayer online game (MMOG).
Collaborative, real-time MMOGs have multiple geo-dispersed
players that share and interact within a common game world,
potentially AR/VR augmented, e.g., Pokémon Go. An edge-
conscious deployment can help deliver a smooth gameplay
by meeting the strict latency and bandwidth requirements
for shared world accesses from players [23, 32, 64, 117, 119].
In a streaming based setup, the interaction events can be a
few kilobytes, with recommended streaming bandwidth in
1-10 Mbps and access delay tolerance of tens of millisec-
ond [66]. Furthermore, different shared state types in a game
environment can tolerate different consistency levels (strong,
causal, read-your-writes, or eventual) to deliver the best gam-
ing experience [29, 30, 109]. For example, a player-local view
data needs to be refreshed very quickly with a strong con-
sistency (within 20 ms [12]) in response to events, whereas
shared game/world state updates can tolerate higher latencies
(~100 ms) [117]. Based on the nature of the game (client mo-
bility, co-locating, load balancing) medium-to-high dynamic

Abstraction/API Locality Heterogeneity Mobility Failover Scalability App. Semantics

Generic edge storage
PathStore [80, 81] relational/CQL [7] 3 7 G G 3 session/eventual

FogStore [46] key-value 3 7 7 3 3 context-aware
DataFog [47] key-value 3 3 7 G 3 eventual

RedWedding [75] CRDT [97] 3 7 7 # 3 conflict-free
DPaxos [84] transactions 3 7 G 3 3 quorum-based

EdgeCons [49] events 3 7 7 3 3 quorum-based
Timeseries DBs [2, 115] timeseries 3 7 7 G 3 range, aggregate

App-specific edge storage
Cachier [34] objects, content 3 7 7 # # N/A

Vision-specific [91] key-frames, feature vectors 3 7 7 # # N/A

3: full support G: partial support 7: no support #: unknown

Table 2: Requirements analysis of existing edge storage systems.

state migration is needed. Mobile to cloud offloading of games
already exists [53]. Within the edge, the EC+ gaming architec-
ture models client mobility using a Markov decision process
and proactively moves the game state [117].

Cooperative autonomous driving. Autonomous driving
applications can be deployed in a collaborative manner where
federated learning between multiple cars can be possible to
mark hazards, predict traffic in real-time, share models, and
transfer learning about a driver’s profile [18,55,59,118]. High-
precision, environment condition maps and LiDAR data are
other datasets that can be maintained in a cooperative man-
ner between multiple vehicles [22, 114]. Depending upon the
volatility in the environment conditions, the dataset will be
frequently updated, shared, and needs strong consistency. As
autonomous vehicles have a strict time budget to make deci-
sions (100 ms@10 Hz [65]), it is important that datasets are
accessed in a predictable, low-latency manner. Depending on
the type of the dataset, we expect none (e.g., neighborhood
condition map) to high (e.g., a driver’s profile) mobility.

Others. Beyond these key domains, there is a large body
of work in analytics [6], stream processing [31], video ana-
lytics [44, 51, 52, 70], caching/CDN [33, 34, 108], etc. Stream
applications are developed to prevent DDoS attacks that uti-
lize malfunctioning/hacked IoT devices by sharing the mon-
itoring state [10]. Here, the edge represents the first line of
defense, but not a single edge site can observe all the traffic,
and deduce that there is a DDoS attack underway. Hence, it
is important that edge sites collectively maintain a shared net-
work patterns state that can be used to identify an attack. For
analytics, serverless has emerged as a popular choice (e.g.,
AWS IoT Greengrass, and others [48, 75, 90]). In the stateless
serverless functions, data is shared though an external data
store [57], which has unique properties [56]. Such a model is
also being proposed for stream processing systems [71, 73].

Summary. Edge applications are diverse, and have a wide
set of requirements for their state management. Instead of
letting each application have to reinvent the wheel, there is an
opportunity to build a common, unified shared data manage-
ment service for the edge.

3 Wishes vs. Reality

We synthesize eight storage requirements for the aforemen-
tioned edge applications and conduct a comprehensive analy-
sis (see Table 2) of the existing storage systems by focusing
on how well they fulfill these requirements.
RQ1: Abstractions and APIs. Edge applications deal with
different data types, e.g., text, images, and videos, with as-
sociated access and consistency semantics. Apart from the
traditional RDBMS with SQL interfaces [8,27,98], the simple
key-value interface (get/put) has been the most popular and
versatile interface used by many data center stores [11,46,61].
Some edge stores also use the key-value interface for its sim-
plicity [46,47]. There are others that adopt heavy transactional
semantics [49, 84]. However, works in other domains such as
ML have shown that having an expressive storage API is ben-
eficial to run common operations, like data reduce, close to
the state instead of always pulling/pushing raw values [13,68].
Such domain-specific data abstractions and APIs could make
edge applications more efficient by relieving both the com-
putation and the network traffic burden. Time series data is
also popular in edge applications like environment monitor-
ing/sensing. Cloud timeseries databases (TSDBs) such as
OpenTSDB [2] need support from backend storage services
such as HDFS. For edge-ready TSDBs [111, 115] the focus
has been on efficient index building, stream merging, and
range queries computations.
RQ2: Data locality. The proximity to data in edge comput-
ing helps reduce network latency, save network bandwidth
via data filtering, and protect privacy. Many existing edge
stores [75, 84] borrow ideas from geo-distributed storage sys-
tems such as Cassandra [61] and Spanner [27] that typically
achieve data locality by careful replica placement and request
dispatching across the distributed infrastructure [11, 112].
PathStore [81] adopts a hierarchical architecture that achieves
data locality by serving requests from the nearest edge node
by partially replicating data sets there. FogStore [46] and
DataFog [47] perform location-aware replica placement by
leveraging spatio-temporal encoding (e.g., ST-Hash [45]) to
partition the data. In essence, data partitioning and replica

placement on edge nodes/sites should be carefully chosen and
continuously adapted following client mobility.
RQ3: Heterogeneity. Edge nodes can have very diverse
hardware specifications, as do edge sites hosting different
numbers of edge nodes. Unfortunately, existing edge stores
mostly run under the infinite-homogeneous-resource assump-
tion and only rarely draw attention to the implications of
heterogeneity [46]. One exception is DataFog [47], which ex-
plicitly addresses resource scarcity at the edge through TTL-
based data eviction and data aggregation and compression.
The design of PathStore inherently handles heterogeneity by
caching only partial replicas on edge nodes at the expense
of high fetching cost in case of cache misses [81]. However,
none of these systems explicitly consider the load, capacity,
and processing power available at the edge in their replica
placement decision. Such constraints can be very dynamic
due to frequent capacity reclamation or client movements.
RQ4: Mobility. Similar to heterogeneity, mobility is a
unique feature of the edge environment, which mainly comes
from the movement of end-devices such as smartphones
and autonomous vehicles. Existing edge storage systems are
mostly mobility-agnostic [46,47,49,75,81,84]. DPaxos treats
client mobility as a non-imminent issue and relies on reactive
data migration [84]. PathStore partially supports client mo-
bility by tracking state changes (logging CQL queries) and
reactively updating the replica when a client reestablishes the
network connection to a new replica with session consistency
guarantees [80]. There are generally two ways of address-
ing mobility: (1) Reactive methods constantly monitor the
client’s movement through the wireless network connection
by tracking the real-time signal strength (e.g., RSSI) [83,120].
(2) Proactive methods try to build a model for the client mo-
bility pattern and then take precautionary actions according
to model-generated predictions [16, 117].
RQ5: Failure, partitions, and limited connectivity. We
expect limited and high cost of communication between edge
nodes, hence building a conventional peer-to-peer system
would not be useful as (1) all edge peers do not have equal
storage, network and processing capabilities and (2) peer pairs
may have limited connectivity. Such a setup also necessi-
tates a careful placement of centralized components of data
management protocols (e.g., Paxos leaders, primary backup)
where one node has more responsibilities than others. Exist-
ing edge stores mostly rely on the default data replication
feature for fault tolerance and generally follow the CAP theo-
rem. PathStore handles temporary node failures by retrying
to propagate timestamped writes to node ancestors for merg-
ing [80, 81]. Under network partitions, PathStore keeps serv-
ing write requests with local replicas and also read requests
if the data is replicated in the local cache. FogStore handles
geographically correlated failures by placing the replicas out
of the context of interest (where end-devices are) far away
from the others [46]. DPaxos handles client-specified failure
rates at both the edge site level and the zone (a collection of

edge sites) level [84]. Konwar et al. explore the use of erasure
codes between edge nodes and cloud for a two-layered dis-
tributed edge store [58]. RedWedding leverages CRDT data
types to allow concurrent accesses in a partitioned state, and
then eventually reaches a common final state [97].
RQ6: Scalability and load balancing. A single edge store
can be deployed across hundreds of edge sites (e.g., cell tow-
ers within a large city) with small capacities, several thousands
of clients, with millions of objects. So far, scalability has been
considered as a first-class citizen in most edge store designs.
FogStore [46] and DataFog [47] adopt the spatio-temporal
hashing which balances requests across edge nodes. In addi-
tion, DataFog uses neighbor edge nodes for offloading when
hotspots are found in the system. PathStore [80, 81] scales
well with the hierarchical architecture, but it does not address
request load balancing issues. RedWedding store proposes to
create a storage instance along with every serverless function
invocation to achieve elastic concurrency [75]. An ideal edge
storage system should be able not only to scale to enormous
edge nodes/sites (needs efficient metadata management), but
also to handle the read/write requests imbalance.
RQ7: Application-specific semantics. As we saw before,
different edge applications have different consistency seman-
tics. These requirements might be contextual (game vs. player
data in online gaming), location-based (distance from a data
source), or state dependent (reading a configuration vs. train-
ing data). Most existing edge stores adopt a single semantic,
i.e., a single consistency model such as strong [49, 84] or
eventual consistency [47], for all target applications. Path-
Store provides session consistency on top of eventual consis-
tency [80]. FogStore allows applications to specify contexts
of interest and apply differential consistency based on the
context [46]. Ideally, an edge store would allow applications
to easily attach multiple consistency semantics on stored data
sets, thus dynamically trading performance with consistency
to match the dynamic nature of edge deployments.
RQ8: Monitoring infrastructure. Considering an edge
store is expected to operate in a highly dynamic environ-
ment, we expect the store to either leverage or provide good
monitoring capabilities to identify environment changes, node
mobility, or failures. So far, monitoring an edge store has been
overlooked in the literature. CloudPath provides a monitoring
module to collect statistics about CPU and memory metrics
from the edge system [81], but it is not clear how the system
leverages this information for data store optimization.

4 Griffin: Quest for an Ideal Storage Service

Having discussed requirements and various state-of-the-art
stores proposed in the literature, we now present our initial
design sketch for Griffin, a shared storage service for the edge,
and seek feedback on further work in §5.
Overview. Griffin is a multi-layered hierarchical distributed
storage service. It uses a client-server model where every

edge site and node runs a data storage daemon. Data creation
and placement decisions are taken in the cloud (centralized re-
source provisioning), and then read/write accesses are done by
the client. A client bootstraps by first contacting a well-known
service address in the cloud. Similar to DataFog [47], Griffin
ensures data locality (RQ2) and scalability (RQ6) by includ-
ing space-time labels to data items and employing spatio-
temporal encoding (e.g., the Hilbert’s curve [93]) for data
partitioning and load balancing. Griffin relies on data replicas
and careful replica placement for node and geographically
correlated failures, respectively (RQ5). In addition, Griffin’s
design aims to answer the following questions:

What are the right data storage abstraction (RQ1) and
consistency model (RQ7)? Griffin is a multi-consistency
storage system. However, defining the consistency and latency
trade-off can be a tedious job. We take inspiration from the
Pileus storage service [102] which supports multiple consis-
tency models with a declarative policy interface. Instead of
having to choose one consistency model at the development
time, a developer can specify their expected SLA latencies,
desired consistency models (multiple are possible, e.g., even-
tual consistency can also be satisfied with a monotonic read),
and their utilities in a declarative manner. The system dynami-
cally optimizes to deliver the best utility for every data access.
Building such a system at the edge presents challenges asso-
ciated with: (1) How to reliably predict loads and latencies
in the edge environment? Such information is necessary for
a client to determine which consistency model can be sat-
isfied under the current operational environment. There has
been a large body of work in data center sensing, monitoring,
and modeling congestion and RTTs [40, 78]. Our on-going
work is looking into validating and extending the work to the
edge. (2) Can we generate accurate timestamps for providing
ordering guarantees between concurrent accesses? Previous
research has shown that it is possible to build a bounded clock
abstraction in data centers [27,39]. Edge stores like PathStore
expect such abstractions to be available at the edge. D’souza
et al. have proposed Time-as-a-Service (TaaS) middleware
for sub-millisecond clock synchronization (using a mix of
NTP, PTP, and Huygens [39] protocols) at the geo-scale in-
frastructure [35]. However, it expects certain underlying in-
frastrucutre support (e.g., hardware timestamping, Zookeeper,
and pub/sub services). Mani et al. have shown that clock drifts,
stability, and errors at the IoT/Edge environment exhibit very
a different behavior than the server clock, thus needing a
new clock synchronization mechanism [72]. Their algorithm,
SPoT, can synchronize the clock of many heterogenous IoT
devices with a cloud server within an accuracy of ~15 ms.
We are investigating the use of SPoT in Griffin to generate
timestamps. (3) How to reduce high (de)serialization costs
associated with the key-value abstraction? Here we propose
to use lightweight in-memory data formats as the storage for-
mat (standardized Apache Arrow [1], or high-performance
formats like Albis [103]). This helps to reduce the cost of

conversion between multiple languages and frameworks [79].
How to handle heterogeneity at the edge (RQ3)? Griffin
incorporates a graph-based optimization engine for data repli-
cation and placement, taking into account the capability con-
straints of edge nodes/sites. Similar approaches have been
used for managing edge compute resources [20, 85, 106, 113].
Griffin assumes that edge sites are fixed and builds an anno-
tated graph of the edge infrastructure to capture the system
status. A vertex in the graph represents an edge site consisting
of a set of edge nodes, annotated with properties including
resource specification and utilization. A link in the graph rep-
resents a connection hop between edge sites, annotated with
properties such as per-hop network latency and bandwidth.
Note that some of the properties on the graph, such as the re-
source (CPU, DRAM, and storage capacity) specification, are
static, while others including real-time load, utilization, and
the number of connected clients are dynamic. Applications
will also be modeled through annotated graphs of data flow
with performance constraints (e.g., required storage capacity,
SLA latency) specified on both vertices and links. Essentially,
the task of data replication and placement can be transformed
into mapping the data flow graph of applications to the infras-
tructure graph. This problem is similar to the conventional
virtual network embedding problem [37] and we will leverage
its recent advancements [92] to solve this problem. Through
the graph-based models and optimization, the heterogeneity
of edge sites/nodes will be addressed inherently.
How to support system dynamics imposed by client mo-
bility (RQ4, RQ8)? Griffin includes an in-band monitoring
system which continuously collects and reports system statis-
tics for the optimization engine to build the graphs and then
adapts system configurations in response to system dynamics.
For the graph-based optimization engine to work properly,
at least the following system status information should be
gathered at runtime: (1) the current compute/storage utiliza-
tion on edge nodes, (2) the network bandwidth and latency
between edge nodes/sites, (3) the quality of the (wireless)
connection to the end-devices of users. The first two are to
be used directly in the graph-based optimization engine and
need to be measured constantly. However, achieving real-time
monitoring, especially when the system dynamic is very high
in application scenarios such as autonomous driving, is non-
trivial and our monitoring system will have to make sure that
both the time and traffic overhead are negligible [15]. The last
is used for proactively taking data management actions for up-
coming client movements and for delivering SLA guarantees
for data accesses. Existing approaches, like those based on
directly measuring the wireless channel RSSI, are typically
end-device centric. However, end-devices are out of the reach
of the storage system and thus, such approaches will not be
applicable. Griffin proposes to leverage indirect statistics in-
formation, such as the packet retransmission rate and queue
sizes, that are available at the cellular base stations for exam-
ple to derive the desired connection quality information [21].

5 Discussion Topics

Expected feedback and discussion points.
• Is it realistic to assume that developers can identify, often

manually, consistency and performance requirements of
different application datasets? We hope to hear opinions
from developers about what kind of abstractions are needed
to facilitate an easy (or automatic) state externalization.

• How should we benchmark a data sharing service at the
edge? Are there standard, open-source storage benchmarks
and data sets (similar to Cloud YCSB [26], DeFog [74],
CAVBench [107]) we can use to evaluate edge stores?

• We expect that a storage service will not be the only ser-
vice to be deployed on the shared edge infrastructure.
How should resources at the edge be provisioned and
(de)allocated to the storage service?

• More broadly, we seek to instill a discussion regarding what
it would take to completely automate the edge data man-
agement with the help of runtime, compiler, new storage
abstraction, and the deployment framework.

Controversial topics and open challenges.
• Is another data store needed at the edge right now?
• Modeling and monitoring any distributed system is a non-

trivial pursuit, especially at the edge. Is it realistic to model
the edge environment with all its complexities? There are
some precedents inside a data center2. Can we learn and
extend those ideas in an edge environment?

• We have not investigated edge client-side concerns related
to processing power, memory, and energy requirements to
access data. For example, we expect client-heavy proto-
cols where heavy states (network, storage, consistency) are
maintained at the client side to face challenges. Ideally,
a stateless thin-client protocol would be preferred where
most of the logic resides on the server-side. A systematic
exploration of client’s needs would be an interesting study.

When does the idea fall apart?
• Contrary to data centers, no single operator runs the whole

edge infrastructure. An edge operator/company may not
be willing to disclose topology, resources, and monitoring
information. So there has to be a clear value-addition to
their business cases for providers to share information and
build such a service.

• Applications may not externalize state due to security and
privacy concerns, e.g., health data stored on smart watches.
Can we integrate “end-devices” in the edge storage service
as well? Such a design will drastically change the current
proposal where we must then deal with unreliable connec-
tions, high churn rates, without having to deal with data
sharing for specific data sets (all accesses must be local).
We can envision storage solutions integrated with a light-
weight web-assembly function shipping to end-nodes to
support secure computation [116].

2Strymon - a platform for online modeling of enterprise data center
behavior, http://strymon.systems.ethz.ch/

Acknowledgments

Lin Wang was funded partially by the German Research
Foundation (DFG) under the joint Sino-German grant No.
392046569 (NSFC: 61761136014) and by the DFG Collabo-
rative Research Center (CRC) 1053 – MAKI.

References

[1] Apache Arrow: A cross-language development plat-
form for in-memory data. https://arrow.apache.
org/. Accessed: 2020-02-15.

[2] The Scalable Time Series Database. http://
opentsdb.net. Accessed: 2020-05-05.

[3] Amazon. Databases on AWS. https://aws.amazon.
com/products/databases/?nc2=h_ql_prod_db.
Accessed: 2020-02-15.

[4] Amazon. AWS IoT for the Edge. https://
aws.amazon.com/iot/solutions/iot-edge/. Ac-
cessed: 2020-02-15.

[5] Amazon. Overview of Amazon Web Services.
https://docs.aws.amazon.com/whitepapers/
latest/aws-overview/storage-services.html.
Accessed: 2020-02-15.

[6] Muhammad Anwar, Shangguang Wang, Muhammad
Zia, Ahmer Jadoon, Umair Akram, and Syed Salman
Raza Naqvi. Fog computing: An overview of big iot
data analytics. Wireless Communications and Mobile
Computing, 2018:1–22, 05 2018.

[7] Apache. The Cassandra Query Language (CQL).
http://cassandra.apache.org/doc/latest/
cql/. Accessed: 2020-02-15.

[8] Jason Baker, Chris Bond, James C. Corbett, J. J.
Furman, Andrey Khorlin, James Larson, Jean-Michel
Leon, Yawei Li, Alexander Lloyd, and Vadim Yush-
prakh. Megastore: Providing scalable, highly available
storage for interactive services. In Biennial Conference
on Innovative Data Systems Research (CIDR), pages
223–234, 2011.

[9] Roshan Bharath Das, Marc Makkes, Alexandru Uta,
Lin Wang, and Henri Bal. Aves: A framework for
energy-efficient stream analytics across low-power de-
vices. In IEEE Big Data, 12 2019.

[10] Ketan Bhardwaj, Joaquin Chung Miranda, and Ada
Gavrilovska. Towards iot-ddos prevention using edge
computing. In USENIX Workshop on Hot Topics in
Edge Computing (HotEdge), 2018.

http://strymon.systems.ethz.ch/
https://arrow.apache.org/
https://arrow.apache.org/
http://opentsdb.net
http://opentsdb.net
https://aws.amazon.com/products/databases/?nc2=h_ql_prod_db
https://aws.amazon.com/products/databases/?nc2=h_ql_prod_db
https://aws.amazon.com/iot/solutions/iot-edge/
https://aws.amazon.com/iot/solutions/iot-edge/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/storage-services.html
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/storage-services.html
http://cassandra.apache.org/doc/latest/cql/
http://cassandra.apache.org/doc/latest/cql/

[11] Kirill Bogdanov, Waleed Reda, Gerald Q. Maguire Jr.,
Dejan Kostic, and Marco Canini. Fast and accurate
load balancing for geo-distributed storage systems. In
ACM Symposium on Cloud Computing (SoCC), pages
386–400. ACM, 2018.

[12] John Carmack. Latency mitigation strategies.
https://danluu.com/latency-mitigation/
(mirror). Accessed: 2020-02-15.

[13] Joao Carreira, Pedro Fonseca, Alexey Tumanov, An-
drew Zhang, and Randy Katz. A case for serverless
machine learning. In ACM Workshop on Systems for
ML and Open Source Software (MLSys), 2018.

[14] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless com-
puting. Communications of the ACM, 62(12):44–54,
2019.

[15] Roger Pueyo Centelles, Mennan Selimi, Felix Freitag,
and Leandro Navarro. A monitoring system for dis-
tributed edge infrastructures with decentralized coordi-
nation. ALGOCLOUD, 2019.

[16] Addison Chan and Frederick W. B. Li. Utilizing mas-
sive spatiotemporal samples for efficient and accurate
trajectory prediction. IEEE Transactions on Mobible
Computing, 12(12):2346–2359, 2013.

[17] Jiasi Chen and Xukan Ran. Deep learning with
edge computing: A review. Proceedings of the IEEE,
107(8):1655–1674, 2019.

[18] Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang,
and Song Fu. F-cooper: Feature based cooperative
perception for autonomous vehicle edge computing
system using 3d point clouds. In ACM/IEEE Sympo-
sium on Edge Computing (SEC), page 88–100, 2019.

[19] Yitao Chen, Kaiqi Zhao, Baoxin Li, and Ming Zhao.
Exploring the use of synthetic gradients for distributed
deep learning across cloud and edge resources. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge), 2019.

[20] Bin Cheng, Apostolos Papageorgiou, Flavio Cirillo,
and Ernoe Kovacs. Geelytics: Geo-distributed edge
analytics for large scale iot systems based on dynamic
topology. In IEEE World Forum on Internet of Things
(WF-IoT), pages 565–570, 2015.

[21] Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu
Sharma, Manu Bansal, Rakesh Misra, Marco Pavone,
and Sachin Katti. Cellular network traffic scheduling
with deep reinforcement learning. In AAAI Conference
on Artificial Intelligence (AAAI), pages 766–774, 2018.

[22] Hyunggi Cho, Young-Woo Seo, B.V.K. Vijaya Kumar,
and Ragunathan (Raj) Rajkumar. A multi-sensor fusion
system for moving object detection and tracking in
urban driving environments. In IEEE International
Conference on Robotics and Automation (ICRA), pages
1836–1843, 2014.

[23] Sharon Choy, Bernard Wong, Gwendal Simon, and
Catherine Rosenberg. A hybrid edge-cloud architec-
ture for reducing on-demand gaming latency. Multime-
dia Systems, 20(5):503–519, 2014.

[24] Cisco. Kinetic Edge and Fog Processing Module
(EFM). https://www.cisco.com/c/dam/en/us/
solutions/collateral/internet-of-things/
kinetic-datasheet-efm.pdf. Accessed: 2020-02-
15.

[25] Bastien Confais, Adrien Lebre, and Benoît Parrein. Per-
formance Analysis of Object Store Systems in a Fog and
Edge Computing Infrastructure, pages 40–79. 2017.

[26] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking
cloud serving systems with ycsb. In ACM Symposium
on Cloud Computing (SoCC), page 143–154, 2010.

[27] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Ra-
jesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szyma-
niak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford. Spanner: Google’s globally distributed database.
ACM Transactions Computer Systems, 31(3):8:1–8:22,
2013.

[28] Dell. Edge Gateway 3003 Specification.
https://topics-cdn.dell.com/pdf/
dell-edge-gateway-3000-series_
Specifications3_en-us.pdf. Accessed: 2020-02-
15.

[29] Ziqiang Diao. Consistency models for cloud-based
online games: The storage system’s perspective. In GI-
Workshop on Foundations of Databases (Grundlagen
von Daten-banken), volume 1020, pages 16–21, May
2013.

[30] Ziqiang Diao, S. Wang, E. Schallehn, and Gunter
Saake. Cloudcraft: Cloud-based data management
for mmorpgs. In Databases and Information Systems
VIII, volume 270, pages 71–84, January 2014.

https://danluu.com/latency-mitigation/
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/internet-of-things/kinetic-datasheet-efm.pdf
https://topics-cdn.dell.com/pdf/dell-edge-gateway-3000-series_Specifications3_en-us.pdf
https://topics-cdn.dell.com/pdf/dell-edge-gateway-3000-series_Specifications3_en-us.pdf
https://topics-cdn.dell.com/pdf/dell-edge-gateway-3000-series_Specifications3_en-us.pdf

[31] Marcos Dias de Assuno, Alexandre da Silva Veith, and
Rajkumar Buyya. Distributed data stream processing
and edge computing. Journal of Network and Com-
puter Applications, 103(C):1–17, 2018.

[32] Jesse Donkervliet, Animesh Trivedi, and Alexandru
Iosup. Towards supporting millions of users in modi-
fiable virtual environments by redesigning minecraft-
like games as serverless systems. In USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud),
2020.

[33] Utsav Drolia, Katherine Guo, and Priya Narasimhan.
Precog: refetching for image recognition applications
at the edge. In ACM/IEEE Symposium on Edge Com-
puting (SEC), 2017.

[34] Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi,
and Priya Narasimhan. Cachier: Edge-caching for
recognition applications. In IEEE International Con-
ference on Distributed Computing Systems (ICDCS),
pages 276–286, 2017.

[35] Sandeep D’souza, Heiko Koehler, Akhilesh Joshi,
Satyam Vaghani, and Ragunathan (Raj) Rajkumar.
Quartz: Time-as-a-service for coordination in geo-
distributed systems. In ACM/IEEE Symposium on Edge
Computing (SEC), page 264–279, 2019.

[36] ETSI. Multi-access Edge Computing (MEC):
Framework and Reference Architecture. https:
//www.etsi.org/deliver/etsi_gs/MEC/001_
099/003/02.01.01_60/gs_MEC003v020101p.pdf,
2019. Accessed: 2020-02-15.

[37] Andreas Fischer, Juan Felipe Botero, Michael Till
Beck, Hermann de Meer, and Xavier Hesselbach. Vir-
tual network embedding: A survey. IEEE Communica-
tions Surveys and Tutorials, 15(4):1888–1906, 2013.

[38] Julien Gedeon, Michael Stein, Jeff Krisztinkovics,
Patrick Felka, Katharina Keller, Christian Meurisch,
Lin Wang, and Max Mühlhäuser. From cell towers to
smart street lamps: Placing cloudlets on existing urban
infrastructures. In IEEE/ACM Symposium on Edge
Computing (SEC), pages 187–202, 2018.

[39] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
Exploiting a natural network effect for scalable, fine-
grained clock synchronization. In USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), pages 81–94, 2018.

[40] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Bal-
aji Prabhakar, Mendel Rosenblum, and Amin Vahdat.
SIMON: A simple and scalable method for sensing,

inference and measurement in data center networks.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 549–564, 2019.

[41] Google. Cloud storage products. https://cloud.
google.com/products/storage. Accessed: 2020-
02-15.

[42] Google. Google Cloud Databases. https://
cloud.google.com/products/databases. Ac-
cessed: 2020-02-15.

[43] Google. Google Cloud IoT. https://cloud.google.
com/solutions/iot. Accessed: 2020-02-15.

[44] Giulio Grassi, Kyle Jamieson, Paramvir Bahl, and Gio-
vanni Pau. Parkmaster: an in-vehicle, edge-based video
analytics service for detecting open parking spaces in
urban environments. In ACM/IEEE Symposium on
Edge Computing (SEC), pages 16:1–16:14, 2017.

[45] Xuefeng Guan, Cheng Bo, Zhenqiang Li, and Yaojin
Yu. St-hash: An efficient spatiotemporal index for
massive trajectory data in a nosql database. In Interna-
tional Conference on Geoinformatics, Geoinformatics,
pages 1–7, 2017.

[46] Harshit Gupta and Umakishore Ramachandran. Fog-
store: A geo-distributed key-value store guaranteeing
low latency for strongly consistent access. In ACM
International Conference on Distributed and Event-
based Systems (DEBS), pages 148–159, 2018.

[47] Harshit Gupta, Zhuangdi Xu, and Umakishore Ra-
machandran. Datafog: Towards a holistic data manage-
ment platform for the iot age at the network edge. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge), 2018.

[48] Adam Hall and Umakishore Ramachandran. An ex-
ecution model for serverless functions at the edge.
In ACM/IEEE International Conference on Internet
of Things Design and Implementation (IoTDI), page
225–236, 2019.

[49] Zijiang Hao, Shanhe Yi, and Qun Li. Edgecons:
Achieving efficient consensus in edge computing net-
works. In USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), 2018.

[50] Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska.
Couper: Dnn model slicing for visual analytics con-
tainers at the edge. In ACM/IEEE Symposium on Edge
Computing (SEC), page 179–194, 2019.

[51] Chien-Chun Hung, Ganesh Ananthanarayanan, Peter
Bodík, Leana Golubchik, Minlan Yu, Victor Bahl, and
Matthai Philipose. Videoedge: Processing camera

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf
https://cloud.google.com/products/storage
https://cloud.google.com/products/storage
https://cloud.google.com/products/databases
https://cloud.google.com/products/databases
https://cloud.google.com/solutions/iot
https://cloud.google.com/solutions/iot

streams using hierarchical clusters. In IEEE/ACM Sym-
posium on Edge Computing (SEC), pages 115–131,
2018.

[52] Si Young Jang, Yoonhyung Lee, Byoungheon Shin,
and Dongman Lee. Application-aware iot camera vir-
tualization for video analytics edge computing. In
IEEE/ACM Symposium on Edge Computing (SEC),
pages 132–144, 2018.

[53] M. H. Jiang, Otto W. Visser, I. S. W. B. Prasetya, and
Alexandru Iosup. A mirroring architecture for sophis-
ticated mobile games using computation-offloading.
Concurrency and Computation Practice and Experi-
ence, 30(17), 2018.

[54] Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. In International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), page 615–629, 2017.

[55] Gorkem Kar, Shubham Jain, Marco Gruteser, Fan Bai,
and Ramesh Govindan. Real-time traffic estimation at
vehicular edge nodes. In ACM/IEEE Symposium on
Edge Computing (SEC), 2017.

[56] Ana Klimovic, Yawen Wang, Christos Kozyrakis,
Patrick Stuedi, Jonas Pfefferle, and Animesh Trivedi.
Understanding ephemeral storage for serverless an-
alytics. In USENIX Conference on Usenix Annual
Technical Conference (ATC), page 789–794, 2018.

[57] Ana Klimovic, Yawen Wang, Patrick Stuedi, Ani-
mesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis.
Pocket: Elastic ephemeral storage for serverless ana-
lytics. In USENIX Conference on Operating Systems
Design and Implementation (OSDI), page 427–444,
2018.

[58] Kishori M. Konwar, N. Prakash, Nancy Lynch, and
Muriel Médard. A layered architecture for erasure-
coded consistent distributed storage. In ACM Sympo-
sium on Principles of Distributed Computing (PODC),
page 63–72, 2017.

[59] M. Kuderer, S. Gulati, and W. Burgard. Learning driv-
ing styles for autonomous vehicles from demonstration.
In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2641–2646, 2015.

[60] Dhruv Kumar, Aravind Alagiri Ramkumar, Rohit
Sindhu, and Abhishek Chandra. Decaf: Iterative collab-
orative processing over the edge. In USENIX Workshop
on Hot Topics in Edge Computing (HotEdge), 2019.

[61] Avinash Lakshman and Prashant Malik. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[62] Zach Leidall, Abhishek Chandra, and Jon Weissman.
An edge-based framework for cooperation in internet
of things applications. In USENIX Workshop on Hot
Topics in Edge Computing (HotEdge), 2019.

[63] Mu Li, David G. Andersen, Jun Woo Park, Alexan-
der J. Smola, Amr Ahmed, Vanja Josifovski, James
Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 583–598, 2014.

[64] Y. Li and W. Gao. Muvr: Supporting multi-user mobile
virtual reality with resource constrained edge cloud. In
IEEE/ACM Symposium on Edge Computing (SEC),
pages 1–16, 2018.

[65] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt
Skach, Md E. Haque, Lingjia Tang, and Jason Mars.
The architectural implications of autonomous driving:
Constraints and acceleration. In International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), page
751–766, 2018.

[66] Yuhua Lin and Haiying Shen. Cloudfog: Leveraging
fog to extend cloud gaming for thin-client mmog with
high quality of service. IEEE Transactions on Parallel
and Distributed Systems, 28(2):431–445, 2017.

[67] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan
Wang, and Weisong Shi. Edge computing for au-
tonomous driving: Opportunities and challenges. Pro-
ceedings of the IEEE, 107(8):1697–1716, 2019.

[68] Yucheng Low, Danny Bickson, Joseph Gonzalez, Car-
los Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.
Distributed graphlab: A framework for machine learn-
ing and data mining in the cloud. Very Large Data
Bases (VLDB), 5(8):716–727, 2012.

[69] Sidi Lu, Yongtao Yao, and Weisong Shi. Collaborative
learning on the edges: A case study on connected ve-
hicles. In USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), 2019.

[70] Bing Luo, Sheng Tan, Zhifeng Yu, and Weisong Shi.
Edgebox: Live edge video analytics for near real-time
event detection. In IEEE/ACM Symposium on Edge
Computing (SEC), pages 347–348, 2018.

[71] Manisha Luthra, Sebastian Hennig, Pratyush Agnihotri,
Lin Wang, and Boris Koldehofe. Highly flexible server
agnostic complex event processing operators. In ACM

International Middleware Conference (Middleware),
pages 11–12, 2019.

[72] Sathiya Kumaran Mani, Ramakrishnan Durairajan,
Paul Barford, and Joel Sommers. An architecture for
iot clock synchronization. In International Conference
on the Internet of Things (IOT), 2018.

[73] Ovidiu-Cristian Marcu, Radu Tudoran, Bogdan Nico-
lae, Alexandru Costan, Gabriel Antoniu, and María S.
Pérez-Hernández. Exploring shared state in key-value
store for window-based multi-pattern streaming an-
alytics. In IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), page
1044–1052, 2017.

[74] Jonathan McChesney, Nan Wang, Ashish Tanwer, Eyal
de Lara, and Blesson Varghese. Defog: Fog comput-
ing benchmarks. In ACM/IEEE Symposium on Edge
Computing (SEC), page 47–58, 2019.

[75] Christopher Meiklejohn, Heather Miller, and Zeeshan
Lakhani. Towards a solution to the red wedding prob-
lem. In USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), 2018.

[76] Microsoft. Azure IoT Edge. https://azure.
microsoft.com/en-us/services/iot-edge/. Ac-
cessed: 2020-02-15.

[77] Microsoft. Azure products : Datbases and Storage cat-
egories. https://azure.microsoft.com/en-us/
services/. Accessed: 2020-02-15.

[78] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. Timely: Rtt-based congestion control for the dat-
acenter. ACM SIGCOMM Computer Communication
Review, 45(4):537–550, 2015.

[79] Philipp Moritz and Robert Nishihara. Plasma: A
High-Performance Shared-Memory Object Store.
https://arrow.apache.org/blog/2017/08/08/
plasma-in-memory-object-store/. Accessed:
2020-02-15.

[80] Seyed Hossein Mortazavi, Bharath Balasubramanian,
Eyal de Lara, and Shankaranarayanan Puzhavakath
Narayanan. Toward session consistency for the edge.
In USENIX Workshop on Hot Topics in Edge Comput-
ing (HotEdge), 2018.

[81] Seyed Hossein Mortazavi, Mohammad Salehe, Car-
olina Simoes Gomes, Caleb Phillips, and Eyal de Lara.
Cloudpath: A multi-tier cloud computing framework.
In ACM/IEEE Symposium on Edge Computing (SEC),
2017.

[82] Richard Mortier, Jianxin R. Zhao, Jon Crowcroft, Liang
Wang, Qi Li, Hamed Haddadi, Yousef Amar, Andy
Crabtree, James A. Colley, Tom Lodge, Tosh Brown,
Derek McAuley, and Chris Greenhalgh. Personal
data management with the databox: What’s inside the
box? In ACM Workshop on Cloud-Assisted Networking
(CAN), pages 49–54, 2016.

[83] A. B. M. Musa and Jakob Eriksson. Tracking unmodi-
fied smartphones using wi-fi monitors. In ACM Confer-
ence on Embedded Network Sensor Systems (SenSys),
pages 281–294, 2012.

[84] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi.
Dpaxos: Managing data closer to users for low-latency
and mobile applications. In ACM International Con-
ference on Management of Data (SIGCOMM), pages
1221–1236, 2018.

[85] José Leal D. Neto, Se-Young Yu, Daniel F. Macedo,
José Marcos S. Nogueira, Rami Langar, and Stefano
Secci. Uloof: A user level online offloading framework
for mobile edge computing. IEEE Transactions on
Mobile Computing, 17(11):2660–2674, 2018.

[86] Chanh Nguyen, Amardeep Mehta, Cristian Klein, and
Erik Elmroth. Why cloud applications are not ready
for the edge (yet). In ACM/IEEE Symposium on Edge
Computing (SEC), page 250–263, 2019.

[87] Samuel S. Ogden and Tian Guo. MODI: Mobile
deep inference made efficient by edge computing. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge), 2018.

[88] Quoc-Viet Pham, Fang Fang, Ha-Nguyen Vu, Mai Le,
Zhiguo Ding, Long Bao Le, and Won-Joo Hwang. A
survey of multi-access edge computing in 5g and be-
yond: Fundamentals, technology integration, and state-
of-the-art. CoRR, abs/1906.08452, 2019.

[89] Russell Power and Jinyang Li. Piccolo: Building
fast, distributed programs with partitioned tables. In
USENIX Conference on Operating Systems Design and
Implementation (OSDI), page 293–306, 2010.

[90] Thomas Rausch, Waldemar Hummer, Vinod
Muthusamy, Alexander Rashed, and Schahram
Dustdar. Towards a serverless platform for edge AI. In
USENIX Workshop on Hot Topics in Edge Computing
(HotEdge), 2019.

[91] Arun Ravindran and Anjus George. An edge datastore
architecture for latency-critical distributed machine vi-
sion applications. In USENIX Workshop on Hot Topics
in Edge Computing (HotEdge), 2018.

https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/
https://azure.microsoft.com/en-us/services/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/

[92] Matthias Rost and Stefan Schmid. Virtual network
embedding approximations: Leveraging randomized
rounding. IEEE/ACM Transactions on Networking,
27(5):2071–2084, 2019.

[93] Hans Sagan. Space-filling curves. Springer Science &
Business Media, 2012.

[94] Mahadev Satyanarayanan. The emergence of edge
computing. 50(1):30–39, 2017.

[95] Mahadev Satyanarayanan, Paramvir Bahl, Ramón
Cáceres, and Nigel Davies. The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Com-
puting, 8(4):14–23, 2009.

[96] Enrique Saurez, Kirak Hong, Dave Lillethun, Umak-
ishore Ramachandran, and Beate Ottenwälder. Incre-
mental deployment and migration of geo-distributed
situation awareness applications in the fog. In ACM
International Conference on Distributed and Event-
based Systems (DEBS), pages 258–269, 2016.

[97] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types. In
International Conference on Stabilization, Safety, and
Security of Distributed Systems (SSS), page 386–400,
2011.

[98] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle
Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani
Apte. F1: A distributed SQL database that scales. Very
Large Data Bases (VLDB), 6(11):1068–1079, 2013.

[99] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of temporary storage in the nodekernel
architecture. In USENIX Conference on Usenix Annual
Technical Conference (ATC), page 767–781, 2019.

[100] Nisha Talagala, Swaminathan Sundararaman, Vinay
Sridhar, Dulcardo Arteaga, Qianmei Luo, Sriram Sub-
ramanian, Sindhu Ghanta, Lior Khermosh, and Drew
Roselli. ECO: Harmonizing edge and cloud with ml/dl
orchestration. In USENIX Workshop on Hot Topics in
Edge Computing (HotEdge), 2018.

[101] Zeyi Tao and Qun Li. esgd: Communication efficient
distributed deep learning on the edge. In USENIX
Workshop on Hot Topics in Edge Computing (Hot-
Edge), 2018.

[102] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna
Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and
Hussam Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In ACM Symposium on

Operating Systems Principles (SOSP), page 309–324,
2013.

[103] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle,
Adrian Schuepbach, and Bernard Metzler. Albis: High-
performance file format for big data systems. In
USENIX Annual Technical Conference (ATC), pages
615–630, 2018.

[104] Erwin van Eyk, Lucian Toader, Sacheendra Talluri,
Laurens Versluis, Alexandru Ut,ă, and Alexandru Iosup.
Serverless is more: From paas to present cloud com-
puting. IEEE Internet Computing, 22(5):8–17, 2018.

[105] Deepak Vasisht, Zerina Kapetanovic, Jongho Won,
Xinxin Jin, Ranveer Chandra, Sudipta Sinha, Ashish
Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
Farmbeats: An iot platform for data-driven agriculture.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 515–529, 2017.

[106] Lin Wang, Lei Jiao, Ting He, Jun Li, and Max
Mühlhäuser. Service entity placement for social virtual
reality applications in edge computing. In IEEE In-
ternational Conference on Computer Communications
(INFOCOM), pages 468–476, 2018.

[107] Yifan Wang, Shaoshan Liu, Xiaopei Wu, and Weisong
Shi. Cavbench: A benchmark suite for connected and
autonomous vehicles. In IEEE/ACM Symposium on
Edge Computing (SEC), pages 30–42, 2018.

[108] Gala Yadgar, Oleg Kolosov, Mehmet Fatih Aktas, and
Emina Soljanin. Modeling the edge: Peer-to-peer rein-
carnated. In USENIX Workshop on Hot Topics in Edge
Computing (HotEdge), 2019.

[109] Amir Yahyavi and Bettina Kemme. Peer-to-peer ar-
chitectures for massively multiplayer online games: A
survey. ACM Computing Surveys, 46(1), 2013.

[110] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin
Tong. Federated machine learning: Concept and appli-
cations. ACM Transactions on Intelligent Systems and
Technology, 10(2), 2019.

[111] Yang Yang, Qiang Cao, and Hong Jiang. Edgedb:
An efficient time-series database for edge computing.
IEEE Access, 7:142295–142307, 2019.

[112] Victor Zakhary, Faisal Nawab, Divy Agrawal, and Amr
El Abbadi. Global-scale placement of transactional
data stores. In International Conference on Extending
Database Technology (EDBT), pages 385–396, 2018.

[113] Daniel (Yue) Zhang, Tahmid Rashid, Xukun Li, Nathan
Vance, and Dong Wang. Heteroedge: Taming the het-
erogeneity of edge computing system in social sensing.

In ACM/IEEE International Conference on Internet
of Things Design and Implementation (IoTDI), page
37–48, 2019.

[114] Jun Zhang and Khaled B. Letaief. Mobile edge in-
telligence and computing for the internet of vehicles.
Proceedings of the IEEE, 108(2):246–261, 2020.

[115] Shuai Zhang, Wenxi Zeng, I-Ling Yen, and Farokh B.
Bastani. Semantically enhanced time series databases
in iot-edge-cloud infrastructure. In IEEE International
Symposium on High Assurance Systems Engineering
(HASE), pages 25–32, 2019.

[116] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the gap between serverless and its state
with storage functions. In ACM Symposium on Cloud
Computing (SoCC), page 1–12, 2019.

[117] Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and
Dipankar Raychaudhuri. Towards efficient edge cloud

augmentation for virtual reality mmogs. In ACM/IEEE
Symposium on Edge Computing (SEC), 2017.

[118] Xingzhou Zhang, Mu Qiao, Liangkai Liu, Yunfei Xu,
and Weisong Shi. Collaborative cloud-edge computa-
tion for personalized driving behavior modeling. In
ACM/IEEE Symposium on Edge Computing (SEC),
page 209–221, 2019.

[119] Xu Zhang, Hao Chen, Zhao, Zhan Ma, Yiling Xu, Hao-
jun Huang, Hao Yin, and Dapeng Oliver Wu. Improv-
ing cloud gaming experience through mobile edge com-
puting. IEEE Wireless Communications, 26(4):178–
183, 2019.

[120] Ying Zhang. User mobility from the view of cellular
data networks. In IEEE Conference on Computer Com-
munications (INFOCOM), pages 1348–1356, 2014.

	Introduction
	Edge Environment and Challenges

	What Do Edge Applications Want
	Wishes vs. Reality
	Griffin: Quest for an Ideal Storage Service
	Discussion Topics

