
Stratus: Clouds with Microarchitectural Resource Management

Kaveh Razavi∗

ETH Zürich
kaveh@ethz.ch

Animesh Trivedi∗

VU Amsterdam
a.trivedi@vu.nl

Abstract
The emerging next generation of cloud services like Granu-
lar and Serverless computing are pushing the boundaries of
the current cloud infrastructure. In order to meet the perfor-
mance objectives, researchers are now leveraging low-level
microarchitectural resources in clouds. At the same time these
resources are also a major source of security problems that
can compromise the confidentiality and integrity of sensitive
data in multi-tenant shared cloud infrastructures. The core of
the problem is the lack of isolation due to the unsupervised
sharing of microarchitectural resources across different per-
formance and security boundaries. In this paper, we introduce
Stratus clouds that treat the isolation on microarchitectural
elements as the key design principle when allocating cloud
resources. This isolation improves both performance and se-
curity, but at the cost of reducing resource utilization. Stratus
captures this trade-off using a novel abstraction that we call
isolation credit, and show how it can help both providers and
tenants when allocating microarchitectural resources using
Stratus’s declarative interface. We conclude by discussing the
challenges of realizing Stratus clouds today.

1 Introduction

We are in the midst of a fundamental shift in cloud computing
as researchers are pursuing the next-generation of services
and infrastructure projects [12, 81, 97]. For example, cloud
functions (FaaS, Serverless) enable developers to build bursty,
highly-parallel and scalable applications [23,24,39]. Granular
computing [51] proposes a new computing fabric consisting
of large numbers (1k-1M) of small tasks at scale for a short
burst of activity (1-10ms). Traditional monolithic services are
now being broken down into hundreds of microservices [27].
Overall, these next-generation services aim to push the per-
formance of current clouds by another order of magnitude.

To meet such performance demands, our computing plat-
forms have also evolved, taking advantage of emerging hard-

∗Equal contributions.

ware in commodity computing. Devices such as GPUs [73],
FPGAs [71, 82], SmartNICs [22, 41], and programmable stor-
age [17, 74] are now being used in cloud services and ap-
plications. Traditionally, these devices are managed by an
operating system and a cloud-scale resource manager at the
exposed architectural interfaces (e.g., number of cores, GPUs,
DRAM, etc.). However, as the demand for high performance
increases, the attention has gradually been shifting to reason
about and even manage (directly or indirectly) microarchi-
tectural resources1 as well [21]. As an example, contention
on the last level cache (LLC), a microarchitectural resource,
can lead to sub-optimal performance in high-speed networks
when building distributed applications [20,94]. Similarly, mis-
management of various on-chip microarchitectural resources
inside SmartNICs [18, 40], or unintentional cross-talk inside
Non-Volatile Memories (NVM) devices [11, 45], can lead to
significant performance degradations.

Performance, however, is not the only issue. Recent high-
profile security attacks show that these microarchitectural
resources can also be exploited by attackers to leak sensi-
tive information [16, 46, 53, 58, 87, 88, 98] or inject faults
in the data [72, 93]. Broadly speaking, these attacks break
hardware isolation boundaries in shared microarchitectural
resources like DRAM, caches, and instruction execution units
to compromise systems. Beyond the CPU, researchers have
also demonstrated significant attacks on/using storage [49],
FPGA [48], and GPU [25, 103]. More worryingly, as seen
recently, these attacks are also possible remotely over the net-
work [50, 85, 86]. With the emergence of faster and diverse
hardware, these issues will only worsen.

The core of the problem is the lack of isolation due to the
unsupervised sharing of microarchitectural resources across
different performance and security boundaries. The response
from the community has been reactive: microarchitectural
resources are currently managed in an ad hoc manner using a
mix of techniques to improve either performance [13,40] or se-
curity [31,47,55], but never both. For example, Apache Crail,

1We collectively refer to internal (transparent) resources of the CPU as
well as other modern devices as microarchitectural resources.



Resource Microarchitectural
CPUs Caches, TLBs, Hyperthreads, ALUs
SmartNICs [40, 41] Caches (memory, requests, connection),

TLBs, RMT pipelines, DMA engines
NVM Storage [1, 10, 11] Blocks, pages, intenral r/w ports, pro-

grammable cores, SRAM
GPUs [5, 59, 101] Memories, caches, execution units
Switches [70, 75] SRAM and TCAM memories, Match-action

Unit processors, ALUs

Table 1: Architectural and associated microarchitectural resources.

a distributed data store, which is designed for high perfor-
mance with NVM and RDMA devices [83], has been shown
to suffer from low-level microarchitectural attacks [86].

In this paper, we propose Stratus2, a cloud framework to
reason about the sharing of microarchitectural resources in a
multi-tenant cloud in a principled manner. We approach this
challenge by identifying microarchitectural isolation as the de-
sired property on which security and performance properties
can be built. Stratus proposes a declarative interface for ten-
ants to specify their isolation constraints, which are evaluated
by a cloud provider during resource allocation. Constraint-
driven allocation is aided by Cloud Knowledge Base (CKB),
which is a data store for storing and querying microarchi-
tectural knowledge in a declarative fashion (similar to SKB
in Barrelfish [7, 77]). The simultaneous evaluation of secu-
rity and performance constraints ensures that an optimization
does not open a security vulnerability. In order to capture the
value and effort of providing such microarchitectural-level
isolation, we introduce the concept of isolation credits. Cloud
providers can charge tenants in credits for satisfying their
constraints in resource allocation, thus encouraging tenants
to only specify the relevant constraints. From the provider’s
point of view, the cost of fulfilling a constraint helps them
differentiate from competitors by innovating in building ap-
propriate mechanisms. In comparison to previous efforts (mi-
croarchitectural management [2,4,13,28,52,89,90,94], declar-
ative approaches [7, 54, 56, 63, 76, 92, 100], and performance
profiling [15,16,21]) our proposal differs in (i) scale - not just
a single application or machine, but for an entire datacenter;
(ii) granularity - not just high-level architectural and oper-
ating system-level resources, but microarchitectural from a
diverse set of on/off-CPU and in-network devices; (iii) scope -
security and performance properties in an end-to-end manner.

Threat model. We assume a generic threat model against
microarchitectural attacks that do not require physical access
to the target. Examples include cache attacks [66,98], specula-
tive execution attacks [87,88] and Rowhammer [14,26,72,93].
These attacks often assume co-residency with a victim process
or VM, but recent advances have also made them practical
against servers over the network [50, 79, 85]. Stratus aims to
address these attacks by providing abstractions that enable
isolation on microarchitectural resources.

2Stratus is a type of cloud which is found at very low levels.

NIC

LLC
CPU

Server
Client 1 Client 2

NIC

CPU

NIC

CPU

Figure 1: LLC sharing between two clients with DDIO [35].

2 The Case for Stratus

There are three primary trends that are pushing for a more
principled approach towards fine-grained microarchitectural
resource reasoning. The first trend is increasing diversity.
With the push for heterogeneous computing, a diverse set
of ISAs, accelerators, switches, programmable storage and
smart networking devices have entered into mainstream com-
puting [32]. Naturally, these devices also bring associated
diverse microarchitectural resources (see Table 1) into the
shared cloud computing paradigm. The second trend is the
push for multi-tenancy on modern devices. After having devel-
oped single-tenant applications, now modern devices (RDMA,
NVMs, FGPAs) are being deployed in a shared, multi-tenant
cloud setting [36, 43, 44, 62, 70]. Consequently, they require
careful attention towards resource sharing, which can have un-
intended performance implications [13,20,102]. The last trend
is the evolving security threats. As many of recent high-profile
security attacks have demonstrated that an unsupervised or
misguided sharing of microarchitectural resources can lead to
information leaks, and full system compromises. Such attacks
become possible because (a) there is a misplaced trust in the
hardware to deliver safe sharing through isolation [33]; (b) a
system software lacks any direct visibility to reason about the
sharing and isolation at the microarchitectural level.

One could argue that it should be the operating system
(OS) on each node that is tasked for the management of mi-
croarchitectural resources. While this argument holds for ap-
plications that run on a single node, cloud services such as
replication [43, 84], storage [96], machine learning [37], and
even OSes [80] run on a number of different nodes with a
variety of accelerator devices. Furthermore, in-networking
resources such as SRAM and processing elements from pro-
grammable switches are now also being used for building
datacenter services [38, 70]. Hence, reasoning about security
and performance properties in an end-to-end manner requires
looking beyond end-points, and instead taking a more holistic
and distributed approach towards microarchitectural resource
management.

LLC Sharing - A Motivating Example In order to sustain
data rates of high-performance networks, modern Intel CPUs
directly place network data in its LLC [34] (Figure 1). This
design immediately raises the question of how a remote LLC
(i.e., a microarchitectural resource) should be managed to
avoid cross-talk and maximize the performance of multiple
competing tenants. Current technologies such as Intel DDIO,



Stratus 
Resource 
Allocator

serversserversservers

ISOLATE(CPU.LLC, 1, *);

CKB 
Database

Tenant 2

constraints_1
constraint_2
...

Maximum Isolation 
Credits = 1000 

Server allocations 
+

Credit charges
Tenant 1

Figure 2: The design of Stratus with CKB.

simply share the LLC slice that is dedicated to I/O traffic
among all clients. Such a default policy (with low isolation)
not only delivers sub-optimal performance [20, 94], but more
worryingly enables side-channel attacks over the network
to leak information [50]. The core of both performance and
security problems, in this example, is the unsupervised sharing
of the LLC. Is it possible to share the remote LLC to improve
performance while preserving security?

3 Design of Stratus

Stratus is a cloud framework that aims to capture and rea-
son about microarchitectural isolation in a principled manner.
The key insight in building Stratus is that security and per-
formance are the two sides of isolation. This isolation is
expressed by constraints which are predicates attached to re-
sources that a provider must satisfy when allocating those
resources. Currently these isolation constraints are hidden un-
derneath various resource allocation strategies for a large spec-
trum of computing abstractions offered by cloud providers
(e.g., functions, containers, VMs IaaS). One point on this
spectrum is FaaS-like clouds, where tenants only provide
“functions” (without any constraints) and providers are free to
optimize their utilization objectives when allocating resources
for the function execution [91]. Another extreme can be imag-
ined as a cloud which exposes all of its resources and their
status to its tenants, offering them full control over allocations.
In the middle, there are IaaS clouds where tenants provide con-
straints such as the number of cores or the amount of memory
encoded in the VM types that the cloud provider offers. With-
out limiting the current resource allocation strategies, Stratus
aims to complement them with microarchitectural constraints
to capture performance and security properties. In Stratus,
microarchitectural constraints (e.g., isolated LLC cache) are
in the majority of the cases decoupled from the more coarse-
grained architectural resources (e.g., a core). This allows Stra-
tus to support all existing resource allocation schemes while
satisfying tenant-provided microarchitectural constraints.

We envision that tenants provide a set of microarchitectural-
specific constraints to Stratus. Stratus then finds a set of suit-
able servers that can satisfy resource allocation constraints
by querying a database that captures available microarchitec-
tural resources. This database is, in essence, similar to the
database of architectural resources in popular cloud infras-

tructures such as OpenNebula [60]. After choosing servers,
Stratus uses available mechanisms on each machine to isolate
microarchitectural resources for a given tenant. In exchange
for these services, the provider can charge the tenant. The
amount depends upon the balance between the effort required
from the provider and the perceived value of satisfying the
given constraints for the tenant. We capture this balance using
a new abstraction called Isolation Credit.

In the following sections we show how Stratus captures
isolation constraints (§3.1), introduce isolation credit (§3.2),
discuss how Stratus evaluates a tenant’s constraints using our
proposal of a cloud knowledge base (CKB) (§3.3), and uses
existing mechanisms for enforcing isolation (§3.4). Figure 2
shows the overall interaction among these components in
Stratus for principled microarchitectural resource allocation.

3.1 Capturing Tenants Requirements
Stratus allows tenants to express their isolation requirements
in a declarative manner. An internal resource allocator uses
constraint-logic programming (CLP) to analyze and satisfy
the constraints. Constraints enable Stratus to reason in a prin-
cipled manner if any isolation requirements are violated. Ten-
ants specify isolation constraints using the following syntax:

Listing 1: Syntax of defining a constraint using ISOLATE

handle = ISOLATE(resource, scale, quantity);

A resource is a microarchitectural resource such as LLC, a
NIC packet processor, etc. There are two types of microar-
chitectural resources, hard and soft. Hard resources are the
ones that can be partitioned in space and used exclusively by
a single tenant such as the LLC. Soft resources are contended
in time, such as the DRAM bandwidth. The resources are
modeled as they appear in the system topology where the
top-level represents top-level architectural resources such as
CPU, DRAM, or NIC. scale is a scalar quantity between
{0,1} capturing the extent of the isolation requested. A zero
value, which is the default for all resources, indicates no iso-
lation constraints from a tenant and the provider is free to
optimize for the maximum utilization. Hard microarchitec-
tural resources can only take discrete values of 0 or 1, whereas
soft resources can take any value in between. quantity is
the minimum number of requested resources for which the
constraints must be satisfied. For example, a tenant might only
be interested in the first 64 requested cache sets of LLC for
network traffic, and not beyond that.

Isolating microarchitectural resources is alone not enough
to provide end-to-end isolation. Thus, Stratus allows attaching
isolated resources to each other using the ATTACH operator:

Listing 2: Combining (AND) constraints using ATTACH

ATTACH(handle1, handle2, ...);

This allows tenants of Stratus to properly isolate network
clients of a DDIO-enabled server shown in Figure 1 using the
following constraints:



Listing 3: labeled constraint, see Listings 1,2 for syntaxes

Tenanti_constraints :
h1 = ISOLATE(res=CPU.LLC, sc=1, qaunt=64);
h2 = ISOLATE(res=NIC.*, sc=0, quant=*);
ATTACH(h1, h2);

The wildcard expression (symbol *) enables Stratus to (i)
extend the isolation to all microarchitectural elements of a
given architectural resource; (ii) select any available parti-
tion of a given microarchitectural resource. The labeled con-
straints (e.g., Tenanti_constraints in the example above) can
be attached to a particular type of allocation such as virtual
machines, containers, or FaaS functions. A tenant can specify:

Listing 4: Using constraints and labels with ALLOCATE

ALLOCATE cloud_resources,...where
constraint,...or label;

Each microarchitectural resource has multiple properties.
For example, a CPU has a type (x86 or arm), and a vendor_id
(Intel or AMD). A tenant can also specify constraints on these
properties. For example, if a particular attack happens only
on Intel CPUs, and not on AMD (e.g., NetCAT [50]) then a
client can use a CPU specific allocation constraint as:

Listing 5: Example of Intel-only constraints CPU allocation

ALLOCATE VM where IF(CPU.type == Intel)THEN

Tenanti_constraints;

By providing these operations, Stratus offers an expressive
and declarative interface to enable selective isolation of mi-
croarchitectural resources. This design enables providers to
better utilize resources, and encourages tenants not to exces-
sively over-constrain resource allocations. Next, we discuss
how a new abstraction in Stratus captures the cost of isolation
for both providers and tenants while simplifying microarchi-
tectural resource management for tenants when desired.

3.2 Isolation Credit
There is an inherent tension between tenants and providers
when it comes to providing isolation. Strong isolation leads
to better performance (e.g., 99.9th percentiles) and security,
which are desired properties by tenants. In contrast, providers
typically aim for high utilization by co-hosting tenants on
shared infrastructure (minimum isolation) to maximize their
profits. To capture this tension, we introduce the isolation
credit, a currency that represents the amount of effort required
from a provider to satisfy a tenant’s isolation constraints as
well as the value derived by the tenant for their workloads.

The cost of providing isolation is not the same across dif-
ferent resources. For example, isolating an entire LLC cache
may require other cores on the same processor socket not
to be utilized by other tenants. A provider, hence, asks for a
certain amount of isolation credits for satisfying an isolation
constraint. Tenants can buy credits from their cloud provider

and spend them on their isolation requests. The abstraction of
isolation credit quantifies and monetizes the effort required for
isolation. It forces a tenant to make sensible isolation requests
(the ones that generate the maximum value), and pushes a
provider to innovate in low-overhead isolation mechanisms.

Spending isolation credits. Isolation credit can further be
used as an abstraction for simplifying the low-level constraint
interface of Stratus. For some tenants, microarchitectural con-
straints might be too low-level and detailed to enumerate.
Instead, a tenant can simply provide Stratus with a credit bud-
get that they are willing to spend, and Stratus will explore
a strategy to simultaneously optimize performance, security,
and utilization properties for the given budget. This strategy
incentivises cloud providers to find solutions with efficient iso-
lation mechanisms to offer differentiating services. If another
cloud provider offers a better way to charge less isolation
credits, the tenant is tempted to run on the second provider.

3.3 Evaluating Constraints
The overall goal of constraints evaluation is to allocate re-
sources on machines that can satisfy all microarchitectural
constraints specified by a tenant, while maximizing the uti-
lization (or any other metric) for the cloud provider. To model
information and solve constraint allocation, we take inspira-
tion from the System Knowledge Base (SKB) component of
the Barrelfish operating system [7, 77]. SKB is a service in-
side Barrelfish for storing and querying hardware knowledge
to solve resource allocation constraints. We propose building
a distributed version of SKB, called Cloud Knowledge Base
(CKB) where we will gather data, model cloud resources, and
query for allocations. CKB will manage data gathered from
two primary sources. First, factual information from literature
and manuals such as the number of TLB entries on a CPU, the
number of DRAM banks, or the number of parallel processing
units in a SmartNIC. The number of such resources defines
how many fully isolated discrete allocations Stratus can do.
Second, online measurements to monitor utilization, occu-
pancy, latencies and bandwidths of interconnects, etc. This
information is used for soft resource allocation.

Naturally, one key concern is the performance of the con-
straints evaluation as the system scales. For a VM, a few
seconds for allocation time could be fine, but it is not accept-
able to launch FaaS functions where allocations must be done
in 10s of milliseconds. General constraint solving (SAT solv-
ing) to find a solution is a NP-hard problem. However, Stratus
has to check satisfiability for a given set of possible alloca-
tion solutions. Satisfiability checks of Stratus’s constraints,
which are in the CNF form, scale linearly with the number
of constraints. For a given set of solutions (i.e. the list of
servers), which can satisfy given constraints, a cloud provider
can choose the one that maximizes its utilization or any other
objective using existing mechanisms. Looking beyond server



resources, in-network resources on all involved switches must
also be evaluated, if defined. For example, given a set of in-
switch constraints, connections between servers need to be
routed differently, or it may be necessary to migrate or refresh
previous allocations. In all cases, the space exploration is
bounded by the isolation credits provided by a tenant.

3.4 Building on Available Mechanisms
A research question that Stratus addresses is to what extent
microarchitectural resources can be isolated between different
tenants. Microarchitectural resources by definition are not
directly exposed to tenants and there is no explicit API for
managing them. However, there are mechanisms that can be
built to indirectly ensure that microarchitectural resources are
allocated and used under given constraints.

As for the CPU resources, there are mechanisms for iso-
lating microarchitectural resources in the memory hierarchy.
For example, LLC allocation and sharing is a well-studied
problem [20] and there are mechanisms such as page col-
oring [99] or explicit partitioning [55] that can be used to
satisfy Stratus’s isolation commands. Partitioning computa-
tional resources such as ALU ports inside a core is much
more challenging and would require an entire core allocation
for satisfying their isolation when needed [3, 9, 30].

Considering off-CPU devices, DRAM resources can be par-
titioned by the careful selection of memory pages [85]. Smart-
NICs (e.g., RDMA NICs) contain various on-NIC packet pro-
cessing units (PUs), co-processors, connection/queue pairs
(QPs) states, caches for work queue and memory translation
entries, and DMA engines [40, 69]. A careful management of
these resources is necessary to ensure high performance [40].
We expect that SmartNICs can either support resource isola-
tion via state/session tracking (like in RDMA QPs), or hard-
ware virtualization (PCI-e SRIOV RNICs), or software virtu-
alization [44,68]. Sharing of in-network computing resources
is an active area of research, where there are very limited
mechanisms for ensuring isolation between tenants [8].

For storage, Open-Channel SSDs can be used that expose
the microarchitectural resources behind the block abstraction
to a host for management [10, 11, 57] In such a design, a
host becomes responsible for data placement (thus, implicitly
controlling the mapping of a location to die, plane, and parallel
I/O ports), sharing (write buffers among tenants), and error
handling. We believe Stratus can use these mechanisms to
enforce isolation among multiple tenants [29].

4 Open Challenges

Realizing a Stratus cloud requires addressing a number of
challenges, three of which we discuss here:

Picking the Right Isolation Constraints. Stratus tenants
can either identify microarchitectural resources directly or

use isolation credits as the mechanism for achieving isolation.
In the former case, a tenant needs to know which microar-
chitectural resources require isolation, and in the latter case,
this task is given to Stratus. For achieving security, tenants or
Stratus can provide different isolation policies that mitigate
different attacks (e.g., avoiding the execution of other ten-
ants on sibling hardware threads mitigates certain speculative
execution attacks [87, 88]). These policies can also be pro-
vided by third parties as a collection of open policy libraries
that tenants can use. Building these security policies against
known attacks will be the first such attempt and it remains to
be seen whether the current interface of Stratus is expressive
enough for such a task. For achieving improved performance,
tenants can again directly ask for isolated microarchitectural
resources or provide Stratus the freedom to use isolation cred-
its for improving performance. We envision novel distributed
profile-guided tools that enable the tenants or Stratus to rea-
son about the benefits of isolating certain microarchitectural
resources versus the accrued cost via isolation credits.

Scalable Allocation. Resource allocation/selection lies in
the critical path for fast booting, scheduling, and execution
of components that make cloud-scale services. For example,
reducing the booting time (including resource acquisitions)
of FaaS functions is an active research area [65]. Not just
limiting to the latency, operating new computing frameworks
like Granular Computing require starting 10s of thousands of
small tasks in a few milliseconds [51]. Can Stratus evaluate a
tenant’s constraints for all of these instances in a reasonable
time, at scale? Furthermore, cloud providers may prefer to
satisfy these isolation constraints next to other desired con-
straints such as increasing per-server utilizations. It remains
to be seen whether these constraints from both providers and
tenants can be solved in an efficient and scalable manner.

Enforcing Isolation. Stratus requires the possibility of iso-
lating microarchitectural elements of any given architectural
device that is shared between tenants. While this has proven
to be possible for certain microarchitectural elements in CPU
and DRAM, the rest – network, storage, in-network comput-
ing – is subject to research exploration and development of
new hardware interfaces that allow the management of their
microarchitectural resources when necessary. The mitigation
of speculative execution attacks via the network may require
the isolation of speculation effects which is currently a sub-
ject of active research [42, 78, 95]. Another challenge is de-
veloping novel abstractions that simplify the deployment of
microarchitectural constraints. We envision Stratus to intro-
duce microarchitectural resource containers akin to resource
containers [6] that can be applied to a given tenant’s execu-
tion context. Building efficient support for such abstractions
and verifying their execution (e.g., using attestation) at the
operating system-level are other challenges that need to be
addressed in Stratus.



5 Contributions to Workshop Discussion

Expected feedback and discussion points
• What are we missing from an operational point of view?

Running cloud-scale services is a complex operation and
allocating resources is one of the many steps taken in a
long process. What are the implications of Stratus decision
making on end-to-end operational properties such as fault
tolerance, load balancing, etc.?

• Is isolation credit with a declarative interface the right
abstraction for reasoning about microarchitectural re-
sources? A declarative interface is a powerful and simple in-
terface which has been used to manage resources [54, 100],
explore configurations [63], manage heterogeneity [64, 92]
and in networking [56, 76]. Furthermore, a previous study
has shown that one-dimensional scalar quantities (similar
to isolation credits) can be effective in communicating a
tenant’s intention to its cloud provider [19]. Put together,
we believe the abstractions we choose are powerful. We
are, however, eager to hear counterarguments.

• What is the cost of building an efficient and scalable CKB?
Constraint solving at scale, in a bounded time budget is a
challenging problem. A recent work from Google shows
that it is possible to build an efficient distributed system
for solving graph reachability and membership evaluation
problems for ACL management [67]. We take inspiration
from such designs, but it remains to be seen what perfor-
mance and scale CKB can deliver.

• In general, we are aiming to spark a discussion of how
best to manage microarchitectural resources. Should we
invest more in developing better policies and abstractions
for the tenants to choose from or should we instead focus
on building more expressive and fine-grained mechanisms?

Controversial questions
• Is microarchitectural resource management really worth

it? In this paper we made a case for microarchitectural
resource management in shared clouds. However, we un-
derstand that beyond technology, operational costs and com-
plexities might put limits to the realization of this idea.

• Are hardware manufacturers willing to change hardware to
provide better microarchitectural interfaces? CPU vendors
already offer a limited form of mechanisms (Intel CAT, and
cache invalidation instructions) to control microarchitec-
tural resources. However, often policies are entangled with
mechanisms [61]. Is there an opportunity here to identify
the right interface for a variety of devices to expose their
microarchitectural resources in a principled manner?

• What is a principled approach for a new ISA to include mi-
croarchitectural resource management? Moving forward,
with a new ISA there is an opportunity to provide proper
abstractions for microarchitectural resource management.
There are many new trade-offs here: the interface can allo-
cate resources on the fly with added hardware complexity,
or the allocations can be reserved.

Acknowledgments

We thank our shepherd, Jon Howell, and the anonymous
reviewers for their constructive comments. This work has
been supported by NWO 016.Veni.192.262 and by Intel
Corporation through the Side Channel Vulnerability ISRA.

References

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.
Design Tradeoffs for SSD Performance. In Proceed-
ings of the USENIX 2008 Annual Technical Conference,
ATC’08, pages 57–70, Boston, Massachusetts, 2008.

[2] Jeongseob Ahn, Changdae Kim, Jaeung Han, Young-
Ri Choi, and Jaehyuk Huh. Dynamic Virtual Ma-
chine Scheduling in Clouds for Architectural Shared
Resources. In Proceedings of the 4th USENIX Confer-
ence on Hot Topics in Cloud Computing, HotCloud’12,
pages 19–19, Boston, MA, 2012.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib
ul Hassan, Cesar Pereida García, and Nicola Tuveri.
Port Contention for Fun and Profit. In 2019 IEEE
Symposium on Security and Privacy (S&P), pages 870–
887, 2019.

[4] Nadav Amit. Optimizing the TLB Shootdown Algo-
rithm with Page Access Tracking. In Proceedings of
the 2017 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’17, pages 27–39,
Santa Clara, CA, USA, 2017.

[5] Rachata Ausavarungnirun, Vance Miller, Joshua Land-
graf, Saugata Ghose, Jayneel Gandhi, Adwait Jog,
Christopher J. Rossbach, and Onur Mutlu. MASK:
Redesigning the GPU Memory Hierarchy to Support
Multi-Application Concurrency. In Proceedings of the
Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’18, pages 503–518, Williams-
burg, VA, USA, 2018. ACM.

[6] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul.
Resource Containers: A New Facility for Resource
Management in Server Systems. In Proceedings of the
Third Symposium on Operating Systems Design and
Implementation, OSDI ’99, page 45–58, New Orleans,
Louisiana, USA, 1999.

[7] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Tim-
othy Roscoe, Adrian Schüpbach, and Akhilesh Sing-
hania. The multikernel: A new os architecture for
scalable multicore systems. In Proceedings of the



ACM SIGOPS 22Nd Symposium on Operating Systems
Principles, SOSP ’09, pages 29–44, Big Sky, Montana,
USA, 2009. ACM.

[8] Theophilus A. Benson. In-Network Compute: Con-
sidered Armed and Dangerous. In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS
’19, page 216–224, Bertinoro, Italy, 2019. ACM.

[9] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi,
Mathias Payer, and Anil Kurmus. SMoTherSpectre:
Exploiting Speculative Execution through Port Con-
tention. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’19, page 785–800, London, United Kingdom,
2019. ACM.

[10] Matias Bjørling. Open-Channel Solid
State Drives. https://events.static.
linuxfound.org/sites/events/files/slides/
LightNVM-Vault2015.pdf. Accessed: 2019-10-24.

[11] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th Usenix Conference on File
and Storage Technologies, FAST’17, page 359–373,
Santa clara, CA, USA, 2017.

[12] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. A Cloud-scale Acceler-
ation Architecture. In The 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-
49, pages 7:1–7:13, Taipei, Taiwan, 2016. IEEE Press.

[13] Shuang Chen, Christina Delimitrou, and José F.
Martínez. PARTIES: QoS-Aware Resource Partition-
ing for Multiple Interactive Services. In Proceedings of
the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’19, pages 107–120, Provi-
dence, RI, USA, 2019. ACM.

[14] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida,
and Herbert Bos. Exploiting Correcting Codes: On the
Effectiveness of ECC Memory Against Rowhammer
Attacks. In 2019 IEEE Symposium on Security and
Privacy (S&P), May 2019.

[15] Christina Delimitrou and Christos Kozyrakis. Paragon:
QoS-aware Scheduling for Heterogeneous Datacenters.

In Proceedings of the Eighteenth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, pages
77–88, Houston, Texas, USA, 2013. ACM.

[16] Christina Delimitrou and Christos Kozyrakis. Bolt: I
Know What You Did Last Summer... In The Cloud.
In Proceedings of the Twenty-Second International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’17,
pages 599–613, Xi’an, China, 2017. ACM.

[17] Jaeyoung Do, Sudipta Sengupta, and Steven Swanson.
Programmable Solid-state Storage in Future Cloud
Datacenters. Commun. ACM, 62(6):54–62, May 2019.

[18] Aleksandar Dragojević, Dushyanth Narayanan, Orion
Hodson, and Miguel Castro. FaRM: Fast Remote Mem-
ory. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation,
NSDI’14, pages 401–414, Seattle, WA, 2014.

[19] Vojislav Dukic and Ankit Singla. Happiness index:
Right-sizing the cloud’s tenant-provider interface. In
11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), Renton, WA, July 2019.

[20] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire,
Jr., and Dejan Kostić. Make the Most out of Last Level
Cache in Intel Processors. In Proceedings of the Four-
teenth EuroSys Conference 2019, EuroSys ’19, pages
8:1–8:17, Dresden, Germany, 2019. ACM.

[21] Michael Ferdman, Almutaz Adileh, Onur Kocberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Aila-
maki, and Babak Falsafi. Clearing the Clouds: A Study
of Emerging Scale-out Workloads on Modern Hard-
ware. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XVII,
pages 37–48, London, England, UK, 2012. ACM.

[22] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chatur-
mohta, Matt Humphrey, Jack Lavier, Norman Lam,
Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw,
Gabriel Silva, Madhan Sivakumar, Nisheeth Srivas-
tava, Anshuman Verma, Qasim Zuhair, Deepak Bansal,
Doug Burger, Kushagra Vaid, David A. Maltz, and
Albert Greenberg. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In 15th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 18), pages 51–66, Renton, WA, 2018.

https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LightNVM-Vault2015.pdf


[23] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From Laptop to Lambda: Out-
sourcing Everyday Jobs to Thousands of Transient
Functional Containers. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), pages 475–488,
Renton, WA, 2019.

[24] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,
Karthikeyan Vasuki Balasubramaniam, William Zeng,
Rahul Bhalerao, Anirudh Sivaraman, George Porter,
and Keith Winstein. Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages
363–376, Boston, MA, 2017.

[25] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Grand Pwning Unit: Accelerating Mi-
croarchitectural Attacks with the GPU. In 2018 IEEE
Symposium on Security and Privacy (S&P), pages 195–
210, 2018.

[26] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Vic-
tor van der Veen, Onur Mutlu, Cristiano Giuffrida, Her-
bert Bos, and Kaveh Razavi. TRRespass: Exploiting
the Many Sides of Target Row Refresh. In 2020 IEEE
Symposium on Security and Privacy (S&P), May 2020.

[27] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Proceed-
ings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’19, page 3–18, Prov-
idence, RI, USA, 2019. ACM.

[28] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot
Heiser. Time Protection: The Missing OS Abstraction.
In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, pages 1:1–1:17, Dresden, Germany,
2019. ACM.

[29] Javier González and Matias Bjørling. Multi-Tenant
I/O Isolation with Open-Channel SSDs. Nonvolatile
Memory Workshop (NVMW), 2017.

[30] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert
Bos, and Kaveh Razavi. ABSynthe: Automatic Black-
box Side-channel Synthesis on Commodity Microar-

chitectures. In Network and Distributed Systems Secu-
rity (NDSS) Symposium 2020, NDSS’20, 2020.

[31] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and Ef-
ficient Cache Side-Channel Protection Using Hardware
Transactional Memory. In Proceedings of the 26th
USENIX Conference on Security Symposium, SEC’17,
page 217–233, Vancouver, BC, Canada, 2017.

[32] John L. Hennessy and David A. Patterson. A New
Golden Age for Computer Architecture. Commun.
ACM, 62(2):48–60, January 2019.

[33] Tyler Hunt, Zhipeng Jia, Vance Miller, Christopher J.
Rossbach, and Emmett Witchel. Isolation and Beyond:
Challenges for System Security. In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS
’19, page 96–104, Bertinoro, Italy, 2019. ACM.

[34] Intel. Intel Data Direct I/O Technology Overview.
https://www.intel.co.jp/content/dam/www/
public/us/en/documents/white-papers/
data-direct-i-o-technology-overview-paper.
pdf, 2012. Accessed: 2019-05-24.

[35] Intel Corporation. Intel data direct I/O tech-
nology (Intel DDIO): A primer. http:
//www.intel.com/content/dam/www/public/
us/en/documents/technology-briefs/
data-direct-i-o-technology-brief.pdf.
Accessed: 2019-05-25.

[36] Zsolt István, Gustavo Alonso, and Ankit Singla. Provid-
ing Multi-tenant Services with FPGAs: Case Study on
a Key-Value Store. In 2018 28th International Confer-
ence on Field Programmable Logic and Applications
(FPL), pages 119–1195, 2018.

[37] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU Clusters
for DNN Training Workloads. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages
947–960, Renton, WA, July 2019.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP
’17, pages 121–136, Shanghai, China, 2017. ACM.

[39] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant
Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion

https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.co.jp/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf


Stoica, and David A. Patterson. Cloud Programming
Simplified: A Berkeley View on Serverless Computing.
CoRR, abs/1902.03383, 2019.

[40] Anuj Kalia, Michael Kaminsky, and David G. Ander-
sen. Design Guidelines for High Performance RDMA
Systems. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16), pages 437–450, Denver, CO,
2016.

[41] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. In Pro-
ceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, pages 67–81,
Atlanta, Georgia, USA, 2016. ACM.

[42] Khaled N. Khasawneh, Esmaeil Mohammadian Ko-
ruyeh, Chengyu Song, Dmitry Evtyushkin, Dmitry
Ponomarev, and Nael Abu-Ghazaleh. SafeSpec: Ban-
ishing the Spectre of a Meltdown with Leakage-Free
Speculation. In Proceedings of the 56th Annual Design
Automation Conference 2019, DAC ’19, Las Vegas, NV,
USA, 2019. ACM.

[43] Daehyeok Kim, Amirsaman Memaripour, Anirudh
Badam, Yibo Zhu, Hongqiang Harry Liu, Jitu Pad-
hye, Shachar Raindel, Steven Swanson, Vyas Sekar,
and Srinivasan Seshan. Hyperloop: Group-based NIC-
offloading to Accelerate Replicated Transactions in
Multi-tenant Storage Systems. In Proceedings of the
2018 Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’18, pages 297–312,
Budapest, Hungary, 2018. ACM.

[44] Daehyeok Kim, Tianlong Yu, Hongqiang Harry Liu,
Yibo Zhu, Jitu Padhye, Shachar Raindel, Chuanxiong
Guo, Vyas Sekar, and Srinivasan Seshan. Freeflow:
Software-Based Virtual RDMA Networking for Con-
tainerized Clouds. In Proceedings of the 16th USENIX
Conference on Networked Systems Design and Im-
plementation, NSDI’19, page 113–125, Boston, MA,
USA, 2019.

[45] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
ReFlex: Remote Flash = Local Flash. In Proceed-
ings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, pages 345–359,
Xi’an, China, 2017. ACM.

[46] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre Attacks: Exploiting Speculative Execution. In

2019 IEEE Symposium on Security and Privacy (S&P),
pages 1–19, 2019.

[47] Radhesh Krishnan Konoth, Marco Oliverio, Andrei
Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. ZebRAM: Comprehensive
and Compatible Software Protection Against Rowham-
mer Attacks. In Proceedings of the 12th USENIX Con-
ference on Operating Systems Design and Implemen-
tation, OSDI’18, page 697–710, Carlsbad, CA, USA,
2018.

[48] Jonas Krautter, Dennis R. E. Gnad, and
Mehdi Baradaran Tahoori. FPGAhammer: Re-
mote Voltage Fault Attacks on Shared FPGAs, suitable
for DFA on AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):44–68, 2018.

[49] Anil Kurmus, Nikolas Ioannou, Matthias
Neugschwandtner, Nikolaos Papandreou, and
Thomas Parnell. From random block corruption to
privilege escalation: A filesystem attack vector for
rowhammer-like attacks. In 11th USENIX Workshop
on Offensive Technologies (WOOT 17), Vancouver,
BC, 2017.

[50] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In 2020
IEEE Symposium on Security and Privacy (S&P),
2020.

[51] Collin Lee and John Ousterhout. Granular Computing.
In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems, HotOS ’19, pages 149–154, Bertinoro,
Italy, 2019. ACM.

[52] Arnaud Lefray, Eddy Caron, Jonathan Rouzaud-
Cornabas, and Christian Toinard. Microarchitecture-
Aware Virtual Machine Placement Under Information
Leakage Constraints. In Proceedings of the 2015 IEEE
8th International Conference on Cloud Computing,
CLOUD ’15, pages 588–595, Washington, DC, USA,
2015. IEEE Computer Society.

[53] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading Ker-
nel Memory from User Space. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 973–990,
Baltimore, MD, August 2018.

[54] Changbin Liu, Boon Thau Loo, and Yun Mao. Declar-
ative Automated Cloud Resource Orchestration. In
Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 26:1–26:8, Cascais, Por-
tugal, 2011. ACM.



[55] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen,
Carlos Rozas, Gernot Heiser, and Ruby B Lee. CAT-
alyst: Defeating Last-Level Cache Side Channel At-
tacks in Cloud Computing. In IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), HPCA’16, pages 406–418, 2016.

[56] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and
Raghu Ramakrishnan. Declarative Routing: Extensible
Routing with Declarative Queries. In Proceedings of
the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communi-
cations, SIGCOMM ’05, pages 289–300, Philadelphia,
Pennsylvania, USA, 2005. ACM.

[57] Youyou Lu, Jiwu Shu, and Weimin Zheng. Extending
the Lifetime of Flash-based Storage Through Reduc-
ing Write Amplification from File Systems. In Pro-
ceedings of the 11th USENIX Conference on File and
Storage Technologies, FAST’13, pages 257–270, San
Jose, CA, 2013.

[58] A. T. Markettos, R. N. M. Watson, S. W. Moore,
P. Sewell, and P. G. Neumann. Through Computer
Architecture, Darkly. Commun. ACM, 62(6):25–27,
May 2019.

[59] Xinxin Mei and Xiaowen Chu. Dissecting GPU Mem-
ory Hierarchy Through Microbenchmarking. IEEE
Transactions on Parallel and Distributed Systems,
28(1):72–86, January 2017.

[60] Dejan Milojicic, Ignacio M. Llorente, and Ruben S.
Montero. Opennebula: A cloud management tool.
IEEE Internet Computing, 15(2):11–14, March 2011.

[61] Jeffrey C. Mogul, Andrew Baumann, Timothy Roscoe,
and Livio Soares. Mind the Gap: Reconnecting Ar-
chitecture and OS Research. In Proceedings of the
13th USENIX Conference on Hot Topics in Operating
Systems, HotOS’13, page 1, Napa, California, 2011.

[62] Mihir Nanavati, Jake Wires, and Andrew Warfield.
Decibel: Isolation and Sharing in Disaggregated Rack-
Scale Storage. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and Imple-
mentation, NSDI’17, page 17–33, Boston, MA, USA,
2017.

[63] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram
Kaul. Declarative Infrastructure Configuration Synthe-
sis and Debugging. Journal of Network and Systems
Management, 16(3):235–258, Sep 2008.

[64] Edmund B. Nightingale, Orion Hodson, Ross McIlroy,
Chris Hawblitzel, and Galen Hunt. Helios: Hetero-
geneous Multiprocessing with Satellite Kernels. In

Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages
221–234, Big Sky, Montana, USA, 2009. ACM.

[65] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid Task Provisioning with
Serverless-Optimized Containers. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
57–70, Boston, MA, July 2018.

[66] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: The Case of AES. In
Proceedings of the 2006 The Cryptographers’ Track
at the RSA Conference on Topics in Cryptology, CT-
RSA’06, pages 1–20, San Jose, CA, 2006. Springer-
Verlag.

[67] Ruoming Pang, Ramón Cáceres, Mike Burrows,
Zhifeng Chen, Pratik Dave, Nathan Germer, Alexander
Golynski, Kevin Graney, Nina Kang, Lea Kissner, and
et al. Zanzibar: Google’s Consistent, Global Autho-
rization System. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference,
USENIX ATC ’19, page 33–46, Renton, WA, USA,
2019.

[68] Jonas Pfefferle, Patrick Stuedi, Animesh Trivedi,
Bernard Metzler, Ionnis Koltsidas, and Thomas R.
Gross. A Hybrid I/O Virtualization Framework for
RDMA-Capable Network Interfaces. In Proceedings
of the 11th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’15,
page 17–30, Istanbul, Turkey, 2015. ACM.

[69] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 663–679, Carlsbad, CA,
October 2018.

[70] Dan R. K. Ports and Jacob Nelson. When Should The
Network Be The Computer? In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS
’19, pages 209–215, Bertinoro, Italy, 2019. ACM.

[71] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung,
Derek Chiou, Kypros Constantinides, John Demme,
Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram
Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger.
A Reconfigurable Fabric for Accelerating Large-scale
Datacenter Services. In Proceeding of the 41st Annual



International Symposium on Computer Architecuture,
ISCA ’14, pages 13–24, Minneapolis, Minnesota, USA,
2014. IEEE Press.

[72] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
Cristiano Giuffrida, and Herbert Bos. Flip Feng Shui:
Hammering a Needle in the Software Stack. In Pro-
ceedings of the 25th USENIX Conference on Security
Symposium, SEC’16, pages 1–18, Austin, TX, USA,
2016.

[73] Christopher J. Rossbach, Jon Currey, Mark Silberstein,
Baishakhi Ray, and Emmett Witchel. PTask: Operating
System Abstractions to Manage GPUs As Compute
Devices. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP
’11, pages 233–248, Cascais, Portugal, 2011. ACM.

[74] Zhenyuan Ruan, Tong He, and Jason Cong. INSIDER:
Designing In-Storage Computing System for Emerging
High-Performance Drive. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 379–
394, Renton, WA, 2019.

[75] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-Network Com-
putation is a Dumb Idea Whose Time Has Come. In
Proceedings of the 16th ACM Workshop on Hot Topics
in Networks, HotNets-XVI, pages 150–156, Palo Alto,
CA, USA, 2017. ACM.

[76] Brandon Schlinker, Radhika Niranjan Mysore, Sean
Smith, Jeffrey C. Mogul, Amin Vahdat, Minlan Yu,
Ethan Katz-Bassett, and Michael Rubin. Condor: Bet-
ter Topologies Through Declarative Design. In Pro-
ceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication, SIGCOMM
’15, pages 449–463, London, United Kingdom, 2015.
ACM.

[77] Adrian L. Schüpbach. Tackling OS Complexity with
Declarative Techniques. PhD thesis, ETH Zurich,
2012. https://www.research-collection.ethz.
ch/handle/20.500.11850/61055.

[78] Michael Schwarz, Moritz Lipp, Claudio Canella,
Robert Schilling, Florian Kargl, and Daniel Gruss. Con-
TExT: A Generic Approach for Mitigating Spectre. In
Network and Distributed Systems Security (NDSS) Sym-
posium 2020, NDSS’20, 2020.

[79] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. NetSpectre: Read Arbitrary
Memory over Network. In European Symposium on
Research in Computer Security, ESORICS’19, 2019.

[80] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiy-
ing Zhang. LegoOS: A Disseminated, Distributed
OS for Hardware Resource Disaggregation. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 69–87, Carlsbad, CA,
2018.

[81] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A Network Archi-
tecture for Disaggregated Racks. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 255–270, Boston, MA,
2019.

[82] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei
Qu, Yongqiang Xiong, Derek Chiou, and Thomas
Moscibroda. Direct Universal Access: Making Data
Center Resources Available to FPGA. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 127–140, Boston, MA,
2019.

[83] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of Temporary Storage in the NodeKernel
Architecture. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19), pages 767–782, Renton,
WA, July 2019.

[84] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and
Toni Cortes. Tailwind: Fast and Atomic RDMA-based
Replication. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 851–863, Boston,
MA, 2018.

[85] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer Attacks over the
Network and Defenses. In 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pages 213–226,
Boston, MA, 2018.

[86] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang.
Pythia: Remote Oracles for the Masses. In 28th
USENIX Security Symposium (USENIX Security 19),
Santa Clara, CA, 2019.

[87] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution.
In Proceedings of the 27th USENIX Security Sympo-
sium, August 2018.

https://www.research-collection.ethz.ch/handle/20.500.11850/61055
https://www.research-collection.ethz.ch/handle/20.500.11850/61055


[88] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-
flight data load. In 2019 IEEE Symposium on Security
and Privacy (S&P), pages 88–105, May 2019.

[89] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted Execution Environments on GPUs.
In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 681–696,
Carlsbad, CA, October 2018.

[90] Hui Wang, Canturk Isci, Lavanya Subramanian, Jong-
moo Choi, Depei Qian, and Onur Mutlu. A-DRM:
Architecture-aware Distributed Resource Management
of Virtualized Clusters. In Proceedings of the 11th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE ’15, pages 93–
106, Istanbul, Turkey, 2015. ACM.

[91] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael Swift. Peeking Behind the
Curtains of Serverless Platforms. In Proceedings of
the 2018 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’18, pages 133–145,
Boston, MA, USA, 2018.

[92] Yaron Weinsberg, Danny Dolev, Tal Anker, Muli Ben-
Yehuda, and Pete Wyckoff. Tapping into the Foun-
tain of CPUs: On Operating System Support for Pro-
grammable Devices. In Proceedings of the 13th In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS XIII, pages 179–188, Seattle, WA, USA, 2008.
ACM.

[93] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One Bit Flips, One Cloud Flops: Cross-
VM Row Hammer Attacks and Privilege Escalation.
In Proceedings of the 25th USENIX Conference on
Security Symposium, SEC’16, Austin, TX, USA, 2016.

[94] Cong Xu, Karthick Rajamani, Alexandre Ferreira, Wes-
ley Felter, Juan Rubio, and Yang Li. dCat: Dy-
namic Cache Management for Efficient, Performance-
sensitive Infrastructure-as-a-service. In Proceedings
of the Thirteenth EuroSys Conference, EuroSys ’18,
pages 14:1–14:13, Porto, Portugal, 2018. ACM.

[95] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam
Morrison, Christopher W. Fletcher, and Josep Torrellas.
InvisiSpec: Making Speculative Execution Invisible
in the Cache Hierarchy. In Proceedings of the 51st

Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-51, page 428–441, Fukuoka,
Japan, 2018. IEEE Press.

[96] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Orion: A Distributed File System for Non-Volatile
Main Memory and RDMA-Capable Networks. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 221–234, Boston, MA, 2019.

[97] Tian Yang, Robert Gifford, Andreas Haeberlen, and
Linh Thi Xuan Phan. The Synchronous Data Center.
In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems, HotOS ’19, pages 142–148, Bertinoro,
Italy, 2019. ACM.

[98] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-channel
Attack. In Proceedings of the 23rd USENIX Confer-
ence on Security Symposium, SEC’14, pages 719–732,
San Diego, CA, 2014.

[99] Ying Ye, Richard West, Zhuoqun Cheng, and Ye Li.
COLORIS: A Dynamic Cache Partitioning System
Using Page Coloring. In 2014 23rd International Con-
ference on Parallel Architecture and Compilation Tech-
niques (PACT), PACT’14, pages 381–392, 2014.

[100] Qin Yin, Adrian Schüpbach, Justin Cappos, Andrew
Baumann, and Timothy Roscoe. Rhizoma: A Runtime
for Self-deploying, Self-managing Overlays. In Pro-
ceedings of the 10th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’09, pages
10:1–10:20, Urbanna, Illinois, 2009. Springer-Verlag.

[101] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia
Li, Keren Zhou, and Mingyu Chen. Understanding the
GPU Microarchitecture to Achieve Bare-Metal Perfor-
mance Tuning. In Proceedings of the 22Nd ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’17, pages 31–43, Austin,
Texas, USA, 2017. ACM.

[102] Yiwen Zhang, Juncheng Gu, Youngmoon Lee,
Mosharaf Chowdhury, and Kang G. Shin. Performance
Isolation Anomalies in RDMA. In Proceedings of the
Workshop on Kernel-Bypass Networks, KBNets ’17,
page 43–48, Los Angeles, CA, USA, 2017. ACM.

[103] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu,
Emmett Witchel, and Mark Silberstein. Understanding
The Security of Discrete GPUs. In Proceedings of
the General Purpose GPUs, GPGPU-10, pages 1–11,

Austin, TX, USA, 2017. ACM.


	Introduction
	The Case for Stratus
	Design of Stratus
	Capturing Tenants Requirements
	Isolation Credit
	Evaluating Constraints
	Building on Available Mechanisms

	Open Challenges
	Contributions to Workshop Discussion

