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ABSTRACT
Big-data systems have gained significant momentum, and Apache
Spark is becoming a de-facto standard for modern data analytics.
Spark relies on code generation to optimize the execution perfor-
mance of SQL queries on a variety of data sources. Despite its
already efficient runtime, Spark’s code generation suffers from sig-
nificant runtime overheads related to data de-serialization during
query execution. Such performance penalty can be significant, espe-
cially when applications operate on human-readable data formats
such as CSV or JSON.
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1 INTRODUCTION
Big-data systems such as Apache Spark [26] or Apache Flink [3]
are becoming de-facto standards for distributed data processing.
Their adoption has grown at a steady rate over the past years in
domains such as data analytics, stream processing, and machine
learning. One of the key advantages of systems such as Apache
Spark over their predecessors (e.g., the Hadoop [19] MapReduce
framework) is the extensive availability of high-level programming
models, coupled with the support for a vast variety of data formats,
from plain text files to compressed and highly efficient columnar
binary formats such as Apache Parquet [21]. One of the most pop-
ular programming models supported by many big-data systems,
including Spark, is the SQL programming language.

The Spark SQL API [1] can be conveniently used by data sci-
entists to perform analytical queries over structured or semi-
structured data without having to import the data into a database
management system (DBMS). The popularity of the SQL language
together with the ability to execute queries over raw data (e.g.,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7507-8/20/03.
https://doi.org/10.1145/3397537.3397566

directly on a CSV file) are two of the key reasons for the increasing
popularity of systems like Spark, and represent appealing features
for data scientists, who often need to combine analytical workloads
(easily expressed in SQL) with numerical computing, for example
in the context of large statistical analyses (expressed in Python or
R). Another important advantage comes from the opportunity to
optimize data processing by applying many results achieved by the
relational-database community during the last decades, thanks to
the well-studied topic of query-plan optimization [4–6].

In this paper, we describe how SQL compilation is implemented
in Apache Spark and some missing optimization opportunities in
the code generation. Moreover, we discuss our approach to over-
come such inefficiencies and we report our preliminary results.

2 BACKGROUND
When executing an SQL query, Spark generates a query execution
plan [17], i.e., an intermediate representation of the query execu-
tion at various abstraction layers (e.g., logical and physical, like the
ones generated by a traditional DBMS). The physical plan in Spark
is a directed acyclic graph (DAG) representing the actual query
computation steps (e.g., file scan, filters, projections, joins, sorting,
and aggregations) in the distributed cluster. Then, Spark SQL relies
on code generation to optimize the DAG: an SQL query is com-
piled into one or more Java classes, which are responsible for the
distributed query execution on a cluster of machines or in cloud de-
ployments. The generation of Java code plays a focal role in Spark’s
SQL execution pipeline, as it is responsible for ensuring that the
entire analytical workload can efficiently execute in a distributed
way, using internal Spark abstractions such as Resilient Distributed
Datasets [25] (RDDs). In addition to performance, Spark’s SQL code
generation plays another fundamental role in the Spark ecosystem,
as it corresponds to a language-independent API: data scientists
and developers can process the results of an SQL query with any
language supported by Spark (Java, Scala, R, Python).

Compiling SQL to optimize the execution of a query at run-
time has become common in commercial databases (e.g., Oracle
RDBMS [14], MonetDB [9], PrestoDB [22], MapDB [20], etc.). How-
ever, unlike traditional database systems, Spark SQL compilation
does not target a specific data format (e.g., the columnar memory
layout used by a specific database system), but typically targets
all data formats supported by the platform within a single version
of the generated code. Due to the great number of such formats,
Spark SQL generates highly polymorphic code. In this way, Spark
separates data access (i.e., parsing and de-serializing the input data)
from the actual data processing: in a first step, data is read from the
data source (e.g., a CSV file) and is stored in memory; in a second
step, the generated code is executed to perform the actual query
execution on the in-memory data. In this way, the same compilation
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class GeneratedBySpark {

int dateFrom = dateToInt("2020 -03 -23");

int dateTo = dateToInt("2020 -03 -26");

public void compute(Data input) {

while (input.hasNext ()) {

// parse the next CSV input data

Row row = input.parseNext ();

// string comparison

UTF8String city = row.getUTF8String("city");

if(!city.equals("Porto")) continue;

// date range check

int date = row.getDate("shipdate");

if (date < dateFrom) continue;

if (date > dateTo) continue;

// accumulate value 'price ' as result

double price = row.getDouble("price");

accumulate(price);

}

}

}

Figure 1: Java code produced by Spark for the example query

pipeline can be re-used to target multiple data formats, without
having to extend the SQL compiler back-end for new data formats.

As an example, consider the following SQL query.

SELECT SUM(price)

FROM orders

WHERE city = 'Porto '

AND shipdate BETWEEN

date '2020 -03 -23' AND date '2020 -03 -26'

The Java code that Spark generates at runtime for the example
query is depicted in Figure 11. As the figure shows, Spark generates
Java code to process the input data file line-by-line. The generated
Java code relies on explicit runtime calls to internal Spark compo-
nents to execute certain data-processing tasks. For example, the
generated code calls parseNext() to parse the CSV input data, allo-
cating one or more Java object for each input element. All such calls
to internal Spark components have the advantage of not requiring
to change the code generation depending on the input data format:
in fact, the generated code in Figure 1 can execute the query on
CSV files, on JSON files, as well as on any other supported data
format for which Spark has an implementation of parseNext().

A downside of Spark’s modular code generation separating data
de-serialization from data processing is performance. Indeed, it is
known [11] that the total cost of a query execution on JSON data is
dominated (>80%) by JSON parsing, even for complex queries that
involve joins and aggregations. Specifically, the code in Figure 1
presents two significant limitations that may impair SQL execution
performance:

1 Note that this is a simplified version; the accumulate operation adds the value price
to a local accumulator which will be sent as input to the next phase that sums up all
local accumulators returned by Spark executors in the cluster.

(1) Eager parsing of the input data: each single row is parsed by
a general-purpose de-serializer (e.g., a CSV parser) that con-
sumes the entire body of the input data. This is potentially
a significant waste of resources, since parsing each single
CSV value in a very large file means allocating many tem-
porary, short-lived objects in the JVM heap memory space.
Short-lived values are not always needed to execute the en-
tire query: depending on the number of fields needed by the
given query, and its selectivity [12], limiting parsing to a
subset of the elements may already be enough to filter out
values that are not relevant for the query evaluation.

(2) General-purpose predicate evaluation: each predicate in-
volved in the query execution has a generic implementation.
I.e., the generated code does not take into account the under-
lying data format, since all the input values are converted
into the Spark internal representation during parsing, then
predicates are evaluated on such representations.

As we will discuss in the rest of this paper, generality in SQL
compilation comes at the price of performance. In contrast, we
argue that code generation should be specialized asmuch as possible,
taking into account both static and dynamic information about the
executed query.

3 BETTER CODE GENERATION IN SPARK
To highlight and overcome some of the missing optimization oppor-
tunities of Spark’s code generation, we implemented a prototype
which jointly optimizes data access to text-based data formats and
the predicate evaluation on raw data. Our SQL compiler relies on
the intuition that data de-serialization and predicate evaluation
should be specialized according to the input data schema and other
aspects of an SQL query. Specifically, we believe that the generated
code should include a parser specialized for the given query, instead
of relying on a general purpose one. Moreover, the generated code
should be able to adapt at runtime based on the specific properties
of the data. To this end, we are investigating dynamic optimization
techniques for predicate evaluation.

3.1 Specialized Data Access
Our SQL compiler generates executable Java code that combines
input data parsing with actual SQL execution. Data access (e.g., CSV
parsing) is specialized according to the fields used by the query
and their declaration order in the input dataset. The CSV parsing
approach is based on the intuition that the compiled SQL code
should parse only the values that are needed, and should parse
them incrementally, that is, lazily rather than eagerly. In particular,
the generated parser should be able to skip all the fields which
are not used by the given query. Moreover, the order in which
fields are read during query evaluation should follow the order in
which the data is actually consumed. This information is not used
by the Spark SQL code generator, but can be exploited to optimize
query execution even further by avoiding parsing values that are
not needed by the query. By re-ordering the evaluation of query
predicates where possible, the parsing operation can be executed
in a single step, instead of converting the byte array into a single
Java String object and then into a String array, as Spark currently
does. As an example, consider the CSV input data shown in Figure 2.
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|id:int|price:decimal|shipdate:date|city:string|.....
|1 |9.95 |2020-03-24 |Porto |.....

Figure 2: Example input value and schema for the CSV val-
ues in the example

To execute the example query from Section 2, the main loop body
of the code generated with our approach consists of (1) skipping
the value of the irrelevant field id, (2) storing the position of the
field price so that it can be retrieved later (if the predicate passes),
(3) evaluating the predicate on field shipdate, (4) evaluating the
predicate on field city and (5) materializing the value of field price.

A similar approach can be applied when executing queries on
JSON data sets. However, values in JSON are not necessarily always
declared in the same order, and it is possible for a given value to
appear at different positions in two different JSON objects. In this
scenario, access to JSON data can be optimized by the generated
code using a speculative approach [2]. Specifically, the JSON parser
code can be generated based on the assumption that the input
JSON objects will match a given JSON structure; if successful, the
parsing operation can be performed with higher performance; if
not, a general-purpose JSON parser is used to carry out a full JSON
parsing operation.

3.2 Specialized Predicate Execution
As discussed, generating a query-specialized parser integrated with
the code that actually executes the query allows skipping unneces-
sary de-serialization steps. Moreover, integrating a parser within
the generated code allows one to specialize the predicate execution
too, by generating code which takes into account the underlying
data format, rather than relying on general purpose comparisons
among heap allocated Java objects.

Consider the code that executes the date range and string equal-
ity predicates shown in Figure 1. The code generated by Spark SQL
suffers from the following inefficiencies:

(1) Data materialization: once the value for shipdate has been
parsed from the input data (CSV or JSON), the corresponding
value is converted from a sequence of bytes to an heap-
allocated Java String, then converted into a Date object
and finally into a primitive int. This operation introduces
extra conversion overhead, since allocating many objects
with a short life-time (i.e., the processing time of a single
tuple) may put the JVM’s garbage collector under pressure.

(2) Comparisons: once converted to a Java value, the compar-
ison between the input value and the expected constant
is performed using the general comparison operator (e.g.,
UTF8String.equals). This operation is efficient as long as
the data type is a primitive Java type, but may introduce
runtime overhead for Spark data types such as UTF8String.

Predicate evaluation can be performed more efficiently by lever-
aging the static information available at SQL compilation time. In
this example, such information include the underlying data format
(i.e., UTF-8 in this case) and the expected operations to be performed
(i.e., a date range check and a string equality operations in our ex-
ample), as well as the expected date format (i.e., ’yyyy-MM-dd’).
Specifically, the compiler can generate machine code that is capable

of performing the predicates (1) without allocating new objects
nor pushing primitives on the stack, and (2) evaluating each con-
dition (i.e., ‘2020-03-23’ <= shipdate <= ‘2020-03-26’ and
city == "Porto") on the raw input byte array. Such an optimized
comparison can be executed in a single pass in most cases, but may
not always be successful (e.g., a date may not match the expected
format). Therefore, the predicate evaluation code can be generated
under speculative assumptions, so that it falls back to the Spark
generic implementation if the speculative assumptions do not hold.

3.3 Results Overview
Our prototype [16] is implemented on top of the Truffle frame-
work [24] and relies on its optimization and de-optimization ca-
pabilities to dynamically (re)compile the generated code based on
runtime properties of the processed data. Our novel SQL compiler
outperforms the state-of-the-art Spark SQL compiler in all TPC-H
queries [23], with speedups up to 8.45x for CSV and 4.9x for JSON
in a local setting (i.e., executing Spark on a single machine) and up
to 4.4x for CSV and 2.6x for JSON in a distributed setting .

4 RELATEDWORK
The execution time of SQL queries on text-based data formats, in
particular for simple queries, is dominated by data de-serialization
time [11]. Thus, different approaches have been proposed to ad-
dress the parsing problem in the context of SQL query processing.
Mison [11] is a recent work which pushes down both predicates
and projections to JSON parsing (i.e., to execute both predicates
and projections during the parsing phase, instead of doing it later).
In particular, the idea behind Mison is to speculate over the value
positions (i.e., to avoid a full-scan operation to find the begin and
end positions of fields) and to use SIMD instructions to vectorize
the scanning operation. Another recent technique that takes ad-
vantage of predicate push-down is Sparser [15]. The idea behind
Sparser is to execute a pre-filtering phase over raw data which can
discard rows that surely do not pass the predicate. Generally, such
a pre-filtering phase is not completely accurate, since a row that
passes the pre-filtering stage may still be discarded later by the
actual filters. Hence, using Sparser, such a pre-filtering phase avoids
parsing a subset of data rows when is known that it does not pass
a specific predicate.

To the best of our knowledge, no existing work optimizes the
parsing phase within Spark code generation and, instead, the exist-
ing approaches are usually implemented in external C programs
and executed by Spark using the Java Native Interface (JNI) [13], as
required by both Mison and Sparser. Since JNI incurs additional in-
vocation costs [7, 8, 10, 18], we believe that a better code generation
can overcome the need to invoke statically compiled applications
from dynamic libraries to achieve better performance.

5 CONCLUSION
SQL query compilation in Apache Spark relies on static code gener-
ation: once compiled to Java code, a query is executed without any
further interactions with the query compiler. Static compilation has
the main limitation that runtime information cannot be exploited
by the generated code. In contrast, we believe that SQL compilation
should be dynamic: after an initial compilation of the query, the
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compiled query code should be able to perform runtime profiling
in order to take into account any aspect of a query execution, and
modify the behavior of the query execution by triggering code
optimization and de-optimization accordingly.

We are currently working on a prototype which enables dynamic
optimizations in the Spark-SQL code generation. Our initial pro-
totype is focused on the so-called “physical operation” of a query,
i.e., the leaves of the query plan generated by Spark (i.e., file scans
with filter, and projection operations). We are also investigating
other optimization opportunities in the context of other SQL oper-
ators (e.g., joins and aggregations). Moreover, we are interested in
extending our approach to other data formats, e.g., Apache Parquet.
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